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Abstract. We present a methodology, called OPEV, to validate the
translation between OCaml and PVS, which supports non-executable se-
mantics. This validation occurs by generating large-scale tests for OCaml
implementations, generating test lemmas for PVS, and generating proofs
that automatically discharge these lemmas. OPEV incorporates an inter-
mediate type system that captures a large subset of OCaml types, em-
ploying a variety of rules to generate test cases for each type. To prove the
PVS lemmas, we developed automatic proof strategies and discharged
the test lemmas using PVS Proof-Lite, a powerful proof scripting utility
of the PVS verification system. We demonstrated our approach on two
case studies that include two hundred and fifty-nine functions selected
from the Sail and Lem libraries. For each function, we generated thou-
sands of test lemmas, all of which are automatically discharged. The
methodology contributes to a reliable translation between OCaml and
PVS.
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1 Introduction

Verifying a “translator” that translates a specification written in one language to
another language is of fundamental interest in many settings, such as compilers,
assemblers, and interpreters. A rigorous methodology that can be used to verify
the translation is refinement proving. This method requires a translation into
a formal verification language to generate a formal certificate. The translated
model, whether it was generated manually or mechanically, must comply with
the intended meaning of the program being certified for the certificate to be valid.
For example, seL4’s formal certification used a translation from a subset of C
called C0 into Isabelle/HOL [1]. The conformance relationship was established
based on a refinement proof that required significant human effort [2].
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However, the validation of translation between different languages is exac-
erbated when languages at either end of the “translation pipe” have no formal
semantics, which is the case in many settings. This precludes establishing a two-
way equivalence relationship between the source and the destination languages.
In such cases, a testing methodology is perhaps a more effective verification
strategy to establish equivalence between the two specifications. For example,
Lem [3] is a specification language that used to translate mathematically rigor-
ous models of multiple ISAs into different theorem provers and into OCaml. For
instance, Lem can be translated to OCaml for emulation of testing as well as
to Isabelle/HOL, Coq, HOL4, and other languages. The OCaml translation was
validated via predefined tests written in the Lem language [3].

Though translators can be validated by testing [4], this does not have the
same level of rigor as refinement proofs and does not require formal semantics
for the target languages. Testing requires that both languages are executable.
However, some specifications with formal semantics can be either executable
or non-executable, and the results of the non-executable specification cannot be
directly calculated. For example, in the Prototype Verification System (PVS) [5],
PVSio [6], the emulator utility in PVS, can only execute a subset of the functional
specifications in PVS. This is a limitation of many theorem provers, not just PVS
– their specification languages are designed to state and prove theorems, but
not execute. In fact, large subsets of many provers’ powerful specifications are
non-executable. This downside can be overcome by stating theorems on these
specifications that capture the intended behaviors and proving them, mostly
interactively – a highly labor-intensive effort. For example, validation of the
CompCert compiler [7] involved 100K lines of Coq proof.

Motivated by these concerns, we present a test-and-proof methodology to val-
idate the translation between two different languages with one of them support-
ing non-executable semantics. Our methodology (Section 2), folded into a tool
called OPEV (for “OCaml-to-PVS Equivalence Validation”), takes an OCaml
program and a corresponding PVS implementation as input. From these inputs,
OPEV automatically generates large-scale test cases, which are directly executed
on the OCaml program and also used for constructing a large number of test
lemmas on the PVS specification. The test lemmas are proved automatically
using proof strategies. The results are compared to establish equivalence.

We demonstrate OPEV by using it to validate a manually implemented
OCaml-to-PVS translation and a Sail-to-PVS parser (Section 3.2) that we man-
ually developed. This parser includes 2,763 LOC and was used to translate 7,542
LOC of Lem code to 10,990 LOC of PVS implementation. OPEV generated and
proved 458,247 test lemmas for these two case studies, and detected 11 errors
(Section 3). The development of OPEV took 3 person-months and the effort to
develop and validate the translator took 5 person-months.

This paper’s central contribution is the proposed, semi-automatic test-and-
proof methodology for validating translators supporting non-executable speci-
fications. In principle, the OPEV methodology can be applied to any pair of
target languages where one has non-executable semantics.
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2 OPEV: OCaml-to-PVS Equivalence Validation

OPEV’s methodology increases the trust in the translated OCaml code into PVS.
The translation can be automatic (for a subset of OCaml) or manual. More-
over, OPEV enables proving auto-generated test cases from the target language
OCaml to PVS, where the inputs/ouputs have identical names and arguments.

2.1 OPEV Workflow

Figure 1 shows the OPEV workflow. In OPEV, we have designed an intermediate
type system, Subsection 2.2, to capture the commonality of OCaml and PVS
types, which are restricted to a subset of the complete OCaml and PVS types.
OPEV parses the PVS and OCaml sources to construct the intermediate type
annotations for each function. With these annotations, OPEV generates random
test cases for every OCaml and PVS function. OPEV then runs the OCaml test
cases to obtain the test results, translates the OCaml test results to PVS, and
constructs PVS test lemmas using the PVS test cases and translated results. The
test lemmas are directly employed as test oracles, which can be automatically
verified using manually implemented, generic PVS proof strategies. If the test
lemmas are proved to be false, we know that there are mismatches in the OCaml-
to-PVS translation. Thus, we investigate the cases and try to detect the reasons.
The total codebase of OPEV is 3,783 LOC.

Fig. 1. The OPEV workflow.
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Extensibility. OPEV has already incorporated the semantics of a large subset
of OCaml and PVS for automatic test-generation. To ensure that OPEV can be
extended to incorporate more types in the future, we represent the generated
test cases and testing results in the string format to circumvent the real type
system of OCaml and PVS.

Listing 1.1. A sample PVS reverse function.

rev[A:TYPE](l:list[A]) : RECURSIVE list[A] =

CASES l OF

cons(x, xs): append(rev(xs), cons(x, null))

ELSE null

ENDCASES

MEASURE length(l)

For example, in Listing 1.1, suppose we randomly generate [1, 6, 8] as the test
value for the argument l of function rev. We then construct a string “let res =
rev [1; 6; 8];;” as the OCaml command and delegate it to the OCaml Toploop
library to execute the command. The result can be fetched from the res variable,
which has the value [8; 6; 1]. Then OPEV parses the result according to its type
and composes a PVS test lemma, such as th rev in Listing 1.2.

Listing 1.2. A sample of OPEV PVS test lemmas for rev function.

th_rev: LEMMA rev((: 1, 6, 8 :)) = ((: 8, 6, 1 :))

The lemma is also written in the string format. This string-format representation
allows us to avoid writing various functions for different argument types and
simplifies the extension of OPEV.

Non-Executable Semantics. We construct PVS test lemmas rather than
directly executing the PVS test cases because the semantics of some testing
functions are non-executable. That is, in PVS, functions with non-executable
semantics cannot be executed using the PVS ground evaluator and PVS built-
in strategies. For instance, most functions with set-theoretic semantics in PVS
are non-executable, including relational specifications, which are represented as
predicates on sets in PVS. For example, the semantics of the function filter,

Listing 1.3. A PVS function with non-executable semantics.

filter[A:TYPE](p:[A->bool])(s:set[A]):set[A]=

{x: A | member(x, s) AND p(x)}

shown in Listing 1.3, is non-executable. This is because the filter function
simply describes what kind of elements should be in the result set after the
execution of the function but does not specify the steps of how to execute the
function in PVS executable syntax. For instance, trying to execute this function
directly in PVSio will issue an error message that indicates the filter function
includes a non ground expression.
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2.2 Intermediate Type Classification

To generate tests for OCaml and PVS functions respectively, we have to
determine the commonality and difference between the two languages. Therefore,
we design an intermediate type system to fill the gap between the type systems
of the two languages. Since the types of the two languages cannot be matched
with each other one-to-one, we classify the types of the two languages into five
different classes and design rules to handle them separately.

OPEV’s intermediate type system is categorized into 6 different classes:
PEmpty, PBasic, PComplex, PDef, PExt, and PSpec. In this classification, PEmpty
represents a dummy type that is used as a placeholder to occupy some blank
space in the type notation. The existing OCaml types are then grouped accord-
ing to the remaining five classes. Namely, basic built-in types such as bool, nat,
and int; complex data types such as string, tuple, and list; user-defined
types including datatype, record, and others; external library types; and types
requiring special treatment such as functional types.

For each intermediate type, we design a generating rule and parsing rule
according to the class of the type. Currently, OPEV only handles a subset of the
OCaml type system. To extend the current OPEV type system into new types,
one has to manually add specialized test generating heuristics in OPEV for the
new types.

2.3 Test Generation

Types in the PBasic and PComplex classes have corresponding built-in types in
OCaml and PVS. Thus, the test generating rules are simple and straightforward.
OPEV generates multiple values for every function argument according to its
type and then denotes the values to fit them into OCaml and PVS formats.

For example, for the int type, OPEV randomly generates an integer in a
predefined range ([-10, 10] by default). The integer follows a uniform distribution,
and the predefined range can be modified by the user. For instance, for the range
[-5, 5], the corresponding command is as follows:

./opev --range -5 5 library_path

For types in the PDef, PExt, and PSpec classes, we develop more intricate
and complex rules to generate the test cases. For example, OPEV only generates
test cases for concrete types. Thus, for an arbitrary type, we define a rule that
each arbitrary type must be instantiated to bool or nat, following the built-in
test rules in the Lem source code.

Complex Data Types. For complex data types such as list and string, we
set a length parameter that constrains the maximum length of the type element:

./opev --length 16 library_path
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Since these complex data types have corresponding built-in definitions in
OCaml and PVS, we do not need to consider the termination problem for some
recursively defined data types because we design specific rules for each of these
data types.

For example, if the argument type is list, OPEV first randomly generates
an integer which is the length of the list, constrained by the predefined maximum
length parameter. Then OPEV generates elements for the list, following the rules
for the list type. The test value for the list is constructed for OCaml and PVS,
respectively, following their list representations. For instance, for a list of length
n, if the list elements are x0, x1, ..., and xn−1, OPEV composes an OCaml list
as [x0; x1; ...; xn−1] and a PVS list as (: x0, x1, ..., xn−1 :).

User-Defined Types. In OCaml, developers can apply the type keyword to
define a new type that represents a record or a datatype. The newly defined
type may have various fields, and each field is denoted with a specific constructor
and the corresponding type annotation. OPEV sequentially constructs test-cases
for each field of the user-defined type. However, this may cause an infinite loop
when there are recursive definitions in the user-defined type; thus, we set a
maximum limit of recursive times to prevent infinite construction. Additionally,
if the return type is a user-defined type, OPEV requires additional construction
rules to directly translate the return results from OCaml to PVS, which means
that, if a developer intends to use OPEV to generate tests for a new user-defined
type, he/she needs to implement the construction function in the source code of
OPEV.

External Types. To automatically generate test cases for the case studies (Sec-
tion 3), we define generation rules for some external types that are used in these
libraries. External types are the OCaml types imported from external libraries,
which means we do not know the detailed implementations of the interfaces
regarding these types. We have to manually design specific mapping functions
from the OPEV intermediate type to OCaml external types and PVS types.

For instance, in our case studies, a typical external type is Nat big num.num,
which is introduced in the library file nums.cma. This type is employed to handle
the situation where there are large integer operations. However, in PVS, there
are no limitations on the range of the default int and nat types. Thus, in PVS,
the test cases can be generated following the rules for int and nat. On the other
hand, in OCaml, we introduce a mapping function named Nat big num.of int,
which converts an integer into a Nat big num.num number.

Functional Types. The challenge of constructing a functional argument lies
in that the function domain and range are potentially infinite. We initially con-
sidered applying the methods in Haskell QuickCheck [8] to generate a functional
argument; however, the generated function might have different behaviors in
OCaml and PVS because they take random generation seeds. Since we have to
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generate equivalent functions for OCaml and PVS, we designed a comparatively
simple method to generate the functional argument.

First, we define multiple functions in PVS with some specific function pat-
terns. Then OPEV randomly selects a predefined function and applies the func-
tion name as the PVS argument. Meanwhile, the OCaml argument is the corre-
sponding function name related to the PVS one.

However, if there are no predefined PVS functions for certain patterns or
there are no matching OCaml functions, OPEV constructs a LAMBDA expression
to take symbolic arguments as the inputs and return a randomly generated con-
stant as the output. This LAMBDA expression directly serves as the PVS argument,
and a corresponding fun expression is built as the OCaml argument.

Dependent Types. The generation tactic for a dependent type is to construct
the arguments according to its supertype, complying with the constraints of
the dependent type. Right now, the supported constraints include arithmetic
and comparison operations. Aside from these types of constraints, OPEV will
directly generate test cases according to the supertype.

For example, a dependent type in PVS named word is defined as follows.
word is a subtype of nat, and the word type is constrained by the constant N.
OPEV uses the constraint to set up a new range for the natural number and
generate a natural number within the range as a word type argument.

word : TYPE = {i: nat | i < exp2(N)}

This test construction strategy does not support more complicated con-
straints than arithmetic and comparison operations, as those would result in
some redundant test lemmas that OPEV would reject. Although such test lem-
mas do not cause any inconsistency for the OCaml and PVS equivalence, they
narrow the test coverage for functions with arguments of these dependent types.

2.4 Proof Automation

For each PVS function, OPEV can automatically generate thousands of test
lemmas. It is impractical to manually prove all of them. To automate the proof
process, we prove 392 general theorems that support fundamental properties of
many translated functions, such as the commutativity and associativity of add
operations for bit-vectors with the same length, Listing 1.4.

Listing 1.4. A general PVS theorem.

minus_eq_plus_neg: LEMMA FORALL (n:nat, m:nat, bv1:bvec[n],

bv2:bvec[m]): m = n IMPLIES bv1 - bv2 = bv1 +

add_vec_range[m]((bv2), 1)

Then we implement generic PVS strategies using these general theorems accord-
ing to the patterns of the functions that are being tested.
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For example, in Listing 1.4, the theorem named minus eq plus neg proved
that the subtraction of two bit-vectors is equivalent to the addition of the first
bit-vector and the negation of the second bit-vector. With this theorem, testing
regarding bit-vector subtraction operation can be rewritten to addition operation
and negation operation.

With the pre-implemented PVS strategies, we then leverage a utility in PVS
called Proof-Lite [6] to prove the test lemmas on these functions. The strate-
gies will be able to instantiate these general theorems with concrete numbers
as need be in the test lemmas. Moreover, Proof-Lite verifies the test lemmas
sequentially. Therefore, we design a memory management algorithm to prove
the test lemmas concurrently while efficiently utilizing memory. In the memory
management algorithm, OPEV calls multiple processes to verify the test lemmas
concurrently, monitors the status of the running machine, and automatically ad-
justs the number of activated processes according to the memory usage of the
machine.

Automatic Proof Strategies. To automatically prove large-scale test lem-
mas with non-executable semantics in PVS, we implement a set of generic PVS
strategies. To construct a generic PVS strategy for different functions, we start
from a single test lemma and prove it manually. During the manual proof proce-
dure, we extract a simple PVS strategy for this test lemma pattern. Then we try
to prove other tests with different patterns using this PVS strategy. If this strat-
egy does not work, we manually prove the new tests and get new PVS strategies.
Then we try to combine the PVS strategies for different test patterns together
using branching, backtracking, or feature extracting and summarizing. By re-
peatedly carrying out this process, we synthesize the unified pattern behind the
verification of the test lemmas. We then construct a generic PVS strategy using
the unified pattern. (It is possible to automate this proof generation, possibly
using SMT solvers; we scope that out as future work.)

For instance, in the basic OCaml-to-PVS translation (Section 3.1) library,
functions mainly focus on bit-vector operations. The functions in this library
involve conversions between natural numbers and their corresponding bit-vector
representations. This conversion from natural number to bit-vector in PVS is
defined as follows (the source code is in [9]):

nat2bv(val: below(exp2(N))): {bv: bvec[N] | bv2nat(bv) = val}

The nat2bv function is non-executable since it just declares that it is the in-
verse function of bv2nat, which defines the conversion from bit-vector to natural
number. Meanwhile, most of the functions in the OPEV Value library call this
nat2bv function. Thus, we can exploit the relation between nat2bv and bv2nat

to circumvent the execution of nat2bv function, which is non-executable, and
to prove test lemmas containing nat2bv function.

For example, the case-split-strat strategy, as illustrated in Listing 1.5,
applies the injectivity and invariance properties of the nat2bv and bv2nat func-
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tions. This PVS strategy can be grandly applied to test lemmas for functions in
the OPEV Value (Section 3.1) library.

Listing 1.5. A generic PVS strategy.

(defstep case-split-strat (fname &optional (fnum 1))

(let ((rewritestr1 (format nil "~a_inj" fname))

(rewritestr2 (format nil "~a_inv" fname)))

(branch (case-insert-fname fname fnum)

((then (rewrite rewritestr1)(grind)(eval-formula))

(then (hide 2)(rewrite rewritestr2)(grind)(eval-formula))

(then (grind)(eval-formula)))))

"" "")

After implementing the generic strategy, we apply Proof-Lite, augmented
with our memory management algorithm, and the PVS strategy to prove all the
test lemmas generated for the functions in the library. We are able to efficiently
prove hundreds of thousands of test lemmas automatically. The statistics are
illustrated in Section 3.

3 Case Studies

We now illustrate the application of OPEV on two case studies: a manually
implemented OCaml-to-PVS translation and a Sail-to-PVS parser. We detected
11 mismatches during the validation of these case studies. Documentation on
these errors is available in [10]. The verification was carried out on an AMD
Opteron server (2.3GHz, 64 core, 128GB).

3.1 Manually Implemented OCaml-to-PVS Translation

OPEV validated a manually implemented PVS library for which the source is a
single OCaml file in the Sail source code [11], which supplies Sail with definitions
and operations of bits and bit-vectors. Since the translation is done manually,
the translated PVS library is error-prone. It is desirable to increase the reliability
of the translation.

Table 1 illustrates the statistics for this validation. We verified ∼200K test
lemmas and found 6 mismatches. An example mismatch: in the implementa-
tion of add overflow vec bit signed function in PVS, if the second operand
is false, we then assume that there is no overflow and no carry bit for the addi-
tion operation. However, in one version of sail values.ml [11] (commit ce962ff),
overflow is set to true. Thus, there is a conflict in the two implementations and
the results parsed from the execution of the OCaml function cannot be verified
in the PVS test lemmas. OPEV detected this difference in intention as an error.
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Table 1. Statistics on validating the OCaml-to-PVS translation.

OCaml Source Code Size 1,488 LOC

PVS Destination Code Size 1,533 LOC

# of Validated Functions 150

# of Manually Proved Generic Lemmas 268

# of Auto-Generated Test Lemmas 215,562

# of Missmatches Found 6

3.2 Sail-to-PVS Parser

The Sail language [12], which is a first-order imperative language, has been used
to describe the semantics of ISAs such as x86, ARM, RISC-V, and PowerPC [12].
To facilitate the reasoning on these semantics, we implemented a Sail-to-PVS
Parser to expose the semantics of many ISAs and their multitudes of variants –
already available in Sail – to the community of PVS users.

The architecture of the parser is shown in Figure 2. First, we rely on the Sail
compiler [11] to automatically translate Sail source code to Lem [13], which was
designed to serve as a semantic model that was mathematically rigorous [3] and
can be translated to OCaml for emulation of testing as well as to Isabelle/HOL,
Coq, HOL4, and other languages. Then we employ the Lem compiler to translate
the resulting Lem source code into a typed Abstract Syntax Tree (AST). Both
the Sail and Lem compilers are in our trusted computing base. (We argue that
trusting these two compilers is reasonable due to their small codebase. Besides,
they have undergone intensive unit testing in prior work [13].)

Fig. 2. Architecture of Sail-to-PVS parser.

Our Sail-to-PVS parser takes this typed AST as input and implements two
independent parts: an embedded translator and a rewrite handler. The translator
is embedded in the Lem source and translates the typed AST into corresponding
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PVS code using PVS syntax. The Lem type system does not support dependant
types and originally was designed to translate Sail specifications into theorem
provers that do not support dependant types, such as HOL4 and Isabelle [13]. In
addition to this challenge, at this stage, the generated PVS code is challenging
and error-prone due to other differences between PVS and Lem specification
languages. For example, the method of reasoning about the termination of re-
cursive functions and various formats of pattern matching for different pattern
types. To solve the problems, we apply a rewrite handler, written in Python,
to adjust the problematic PVS code. The rewrite handler performs two tasks:
rewrite the pattern matching to ensure that the PVS code has consistent types
and add measure functions for all the recursive functions. The total LOC of the
Sail-to-PVS parser, including the embedded translator (1,730 lines of OCaml
code) and the rewrite handler (1,033 lines of Python code), is 2,763. However,
with these modifications Sail-to-PVS parser is still restricted to pure functions
of Sail.

An important use case of the Sail-to-PVS parser is program verification at
the assembly level (using PVS). For such a use case, it is critically important
that the translation is provably correct. We automatically translate a Lem ba-
sic library [13] respectively to PVS and OCaml using the Sail-to-PVS parser
and Sail’s built-in compiler. Although Sail and Lem are executable, the gen-
erated PVS code would call some built-in PVS functions, some of which are
non-executable; however, all of them are pure. Since the generated OCaml code
is within the scope of OPEV’s OCaml subset, it enables us to validate the equiv-
alence between the generated OCaml and PVS code using OPEV. If the equiv-
alence is validated, our trust in that the Sail-to-PVS parser carries out similar
functionality as the Sail built-in compiler will increase significantly.

We generated small-scale test cases at the beginning, namely 10 test cases
for each function, and attempted to prove all the test lemmas by a default PVS
strategy called grind. For the test lemmas that cannot be proved, we designed
the PVS strategies by proving auxiliary lemmas or by combining multiple strate-
gies together according to the steps described in Section 2.4. Then we generated
large-scale test lemmas and verified them using the corresponding strategies.

Table 2. Statistics on validation of Sail-to-PVS parser.

Lem Source Code Size 7,542 LOC

PVS Destination Code Size 10,990 LOC

# of Validated Functions 109

# of Manually Proved Generic Lemmas 124

# of Auto-Generated Test Lemmas 242,685

# of Missmatches Found 5

Table 2 shows the statistics for the library. OPEV determined multiple un-
provable test lemmas in the PVS implementation. In turn, we modified the source
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code of the Sail-to-PVS parser, which generated the test lemmas reported in the
table. Due to the gap between the semantics of the Lem and PVS languages,
OPEV detected 5 mismatches. Doing this translation validation is practically
impossible to achieve manually without OPEV.

4 Past and Related Work

Significant literature exists on translation validation. In [14], the authors show
that the seL4 source code and its binary code have the same behavior. The
translation validation relies on refinement proofs. A refinement proof is possible
here due to formal semantics that was created for both the source and target
languages. However, the semantics of OCaml and PVS cannot be mapped to each
other one-to-one. Besides, refinement proofs, in general, are labor-expensive due
to the significant human intervention required. The seL4 refinement proof [1]
took 8 person-years; the seL4 total verification effort [1] is more significant and
took ∼20 person-years.

CompCert [7,15] uses a formally verified compiler to establish the correctness
of compilation from a subset of C to PowerPC, ARM, RISC-V, or x86 assembly
code. The compilation guarantees that the assembly code executes with the
behavior that was designated by the original C program [16]. However, the formal
proofs of CompCert did not cover the correctness of the formal specifications of
C and assembly [15]. In addition, it took six person-years of effort and involved
100,000 lines of Coq code [7].

In contrast with compiler verification and refinement proofs, OPEV is a light-
weight approach for the validation of a translation from a high-level language
into a theorem prover using random testing. OPEV is therefore significantly
less labor-expensive. Additionally, OPEV allows non-executable specifications
and proofs for generic theorems after translating the code for further verification.

OPEV also differs from some other test-based light-weight verification tech-
niques. For instance, Haskell’s QuickCheck mechanism [8] is designed to aid in
the verification of properties of a given function. The tests are randomly gener-
ated until either a counterexample is discovered in a given domain or a preset
threshold is reached. Likewise, AutoTest for Eiffel [17] checks program annota-
tions based on randomly generated test suites. Similar methods exist for theorem
provers. Besides, QuickCheck [18] and Nitpick [19] for Coq and Isabelle/HOL
uses random testing [20] to support counterexample discovery for a given conjec-
ture. These mechanisms work well with executable specifications. OPEV differs
from these efforts by its focus on validating the translation into a theorem prover
and the supporting of non-executable semantics. Additionally, our translation
into PVS allows the user to verify properties and specified conjectures for the
translated functions using PVS’s built-in test-generator [21] to assist in proving
these properties or reaching a counterexample once applicable. But like the other
built-in translations, it is restricted to generated PVS’s executable specifications
from our tool.
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The closest work to OPEV is MINERVA [22], which provides a practical
and rigorous general approach to produce high assurance software systems us-
ing model animation on mirrored implementations for verified algorithms [22].
However, MINERVA is limited to the executable subset of PVS. OPEV can be
viewed as complementary to MINERVA when the specification is not executable.

5 Conclusions

In this paper, we presented a validation methodology, called OPEV, that pro-
vides a high assurance on the equivalence between OCaml and PVS specifica-
tions. OPEV employs an intermediate type system to capture the commonality
of the subset of OCaml and PVS and generate test cases for both OCaml and
PVS implementations. The reliability of the validation is ensured by execut-
ing large-scale stress tests and automatically proving test lemmas using generic
PVS strategies. OPEV tool generated more than three hundred thousand test
cases and proofs. We demonstrated the OPEV methodology on two case studies,
namely a manual OCaml-to-PVS translation and a Sail-to-PVS parser. OPEV
significantly increases our trust in the translations.

Currently, OPEV handles a subset of OCaml types and pure functions. In the
future, we aim to extend the functionality of OPEV and incorporate more test
generation rules for it. We also intend to increase automation in the proof process
of OPEV. These enhancements would allow us to translate multiple mainstream
instruction sets (ISA) specifications written in Sail into PVS, a necessary step to
reason about the binary code of these architectures in PVS [23]. For instance, the
methodology of [23] of lifting ARMv8 binaries into PVS7 based on translating
ARM specification language ASL [24] into PVS, is interesting to us to generalize
for other architectures. It allows the translation of system binary code of ARMv8
into PVS, based on PVS generic theories, theory parameters, and dependent
types, in place of monad theory. Therefore, our work would open the door for
more future research to verify the binary code of several mainstream instruction
sets based on translating Sail ISAs specifications into the prototype verification
system PVS.

Artifacts of the OPEV methodology are open-source and publicly available
at: https://ssrg-vt.github.io/Renee/.
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