
Journal of Machine Learning Research 7 (2006) 1159–1182 Submitted 2/05; Revised 4/06; Published 7/06

A Very Fast Learning Method for Neural Networks
Based on Sensitivity Analysis

Enrique Castillo CASTIE@UNICAN .ES

Department of Applied Mathematics and Computational Sciences
University of Cantabria and University of Castilla-La Mancha
Avda de Los Castros s/n, 39005 Santander, Spain

Bertha Guijarro-Berdi ñas CIBERTHA@UDC.ES

Oscar Fontenla-Romero OFONTENLA@UDC.ES

Amparo Alonso-Betanzos CIAMPARO@UDC.ES

Department of Computer Science
Faculty of Informatics, University of A Coruña
Campus de Elviña s/n, 15071 A Corũna, Spain

Editor: Yoshua Bengio

Abstract
This paper introduces a learning method for two-layer feedforward neural networks based on sen-
sitivity analysis, which uses a linear training algorithm for each of the two layers. First, random
values are assigned to the outputs of the first layer; later, these initial values are updated based on
sensitivity formulas, which use the weights in each of the layers; the process is repeated until con-
vergence. Since these weights are learnt solving a linear system of equations, there is an important
saving in computational time. The method also gives the local sensitivities of the least square errors
with respect to input and output data, with no extra computational cost, because the necessary in-
formation becomes available without extra calculations. This method, called the Sensitivity-Based
Linear Learning Method, can also be used to provide an initial set of weights, which significantly
improves the behavior of other learning algorithms. The theoretical basis for the method is given
and its performance is illustrated by its application to several examples in which it is compared with
several learning algorithms and well known data sets. The results have shown a learning speed gen-
erally faster than other existing methods. In addition, it can be used as an initialization tool for other
well known methods with significant improvements.

Keywords: supervised learning, neural networks, linear optimization, least-squares, initialization
method, sensitivity analysis

1. Introduction

There are many alternative learning methods and variants for neural networks. In the case of feedfor-
ward multilayer networks the first successful algorithm was the classical backpropagation (Rumel-
hart et al., 1986). Although this approach is very useful for the learning process of this kind of
neural networks it has two main drawbacks:

• Convergence to local minima.

• Slow learning speed.

c©2006 Enrique Castillo, Bertha Guijarro-Berdiñas, Oscar Fontenla-Romero and Amparo Alonso-Betanzos.

CASTILLO , GUIJARRO-BERDIÑAS, FONTENLA-ROMERO AND ALONSO-BETANZOS

In order to solve these problems, several variations of the initial algorithm and also new methods
have been proposed. Focusing the attention on the problem of the slow learning speed, some algo-
rithms have been developed to accelerate it:

• Modifications of the standard algorithms: Some relevant modifications of the backpropaga-
tion method have been proposed. Sperduti and Antonina (1993) extend the backpropagation
framework by adding a gradient descent to the sigmoids steepness parameters. Ihm and Park
(1999) present a novel fast learning algorithm to avoid the slow convergence due to weight
oscillations at the error surface narrow valleys. To overcome this difficulty they derive a
new gradient term by modifying the original one with an estimated downward direction at
valleys. Also, stochastic backpropagation—which is opposite to batch learning and updates
the weights in each iteration—often decreases the convergence time, and is specially rec-
ommended when dealing with large data sets on classification problems (see LeCun et al.,
1998).

• Methods based on linear least-squares: Some algorithms based on linear least-squares meth-
ods have been proposed to initialize or train feedforward neural networks (Biegler-K̈onig and
Bärmann, 1993; Pethel et al., 1993; Yam et al., 1997; Cherkassky and Mulier, 1998; Castillo
et al., 2002; Fontenla-Romero et al., 2003). These methods are mostly based on minimiz-
ing the mean squared error (MSE) between the signal of an output neuron, before the output
nonlinearity, and a modified desired output, which is exactly the actual desired output passed
through the inverse of the nonlinearity. Specifically, in (Castillo et al., 2002)a method for
learning a single layer neural network by solving a linear system of equations is proposed.
This method is also used in (Fontenla-Romero et al., 2003) to learn the last layer of a neural
network, while the rest of the layers are updated employing any other non-linear algorithm
(for example, conjugate gradient). Again, the linear method in (Castillo et al., 2002) is the
basis for the learning algorithm proposed in this article, although in this case all layers are
learnt by using a system of linear equations.

• Second order methods: The use of second derivatives has been proposed to increase the con-
vergence speed in several works (Battiti, 1992; Buntine and Weigend, 1993; Parker, 1987). It
has been demonstrated (LeCun et al., 1991) that these methods are more efficient, in terms of
learning speed, than the methods based only on the gradient descent technique. In fact, second
order methods are among the fastest learning algorithms. Some of the most relevant exam-
ples of this type of methods are the quasi-Newton, Levenberg-Marquardt (Hagan and Men-
haj, 1994; Levenberg, 1944; Marquardt, 1963) and the conjugate gradient algorithms (Beale,
1972). Quasi-Newton methods use a local quadratic approximation of the error function, like
the Newton’s method, but they employ an approximation of the inverse of the hessian matrix
to update the weights, thus getting a lowest computational cost. The two most common up-
dating procedures are the Davidson-Fletcher-Powell (DFP) and Broyden-Fletcher-Goldfarb-
Shanno (BFGS) (Dennis and Schnabel, 1983). The Levenberg-Marquardt method combines,
in the same weight updating rule, both the gradient and the Gauss-Newton approximation of
the hessian of the error function. The influence of each term is determinedby an adaptive
parameter, which is automatically updated. Regarding the conjugate gradientmethods, they
use, at each iteration of the algorithm, different search directions in a waythat the compo-
nent of the gradient is parallel to the previous search direction. Several algorithms based on

1160

A V ERY FAST LEARNING METHOD FORNEURAL NETWORKSBASED ON SENSITIVITY ANALYSIS

conjugate directions were proposed such as the Fletcher-Reeves (Fletcher and Reeves, 1964;
Hagan et al., 1996), Polak-Ribiére (Fletcher and Reeves, 1964; Hagan et al., 1996), Powell-
Beale (Powell, 1977) and scaled conjugate gradient algorithms (Moller, 1993). Also, based
on these previous approaches, several new algorithms have been developed, like those of
Chella et al. (1993) and Wilamowski et al. (2001). Nevertheless, second-order methods are
not practicable for large neural networks trained in batch mode, althoughsome attempts to
reduce their computational cost or to obtain stochastic versions have appeared (LeCun et al.,
1998; Schraudolph, 2002).

• Adaptive step size: In the standard backpropagation method the learning rate, which deter-
mines the magnitude of the changes in the weights for each iteration of the algorithm, is fixed
at the beginning of the learning process. Several heuristic methods for the dynamical adapta-
tion of the learning rate have been developed (Hush and Salas, 1988; Jacobs, 1988; Vogl et al.,
1988). Other interesting algorithm is the superSAB, proposed by Tollenaere (Tollenaere,
1990). This method is an adaptive acceleration strategy for error backpropagation learning
that converges faster than the gradient descent with optimal step size value, reducing the sen-
sitivity to parameter values. Moreover, in (Weir, 1991) a method for the self-determination of
this parameter has also been presented. More recently, in Orr and Leen (1996), an algorithm
for fast stochastic gradient descent, which uses a nonlinear adaptivemomentum scheme to op-
timize the slow convergence rate was proposed. Also, in Almeida et al. (1999), a new method
for step size adaptation in stochastic gradient optimization was presented. This method uses
independent step sizes for all parameters and adapts them employing the available derivatives
estimates in the gradient optimization procedure. Additionally, a new online algorithm for
local learning rate adaptation was proposed (Schraudolph, 2002).

• Appropriate weights initialization: The starting point of the algorithm, determined by the
initial set of weights, also influences the method convergence speed. Thus, several solutions
for the appropriate initialization of weights have been proposed. Nguyen and Widrow assign
each hidden processing element an approximate portion of the range of thedesired response
(Nguyen and Widrow, 1990), and Drago and Ridella use the statistically controlled activation
weight initialization, which aims to prevent neurons from saturation during theadaptation
process by estimating the maximum value that the weights should take initially (Dragoand
Ridella, 1992). Also, in (Ridella et al., 1997), an analytical technique, to initialize the weights
of a multilayer perceptron with vector quantization (VQ) prototypes given the equivalence
between circular backpropagation networks and VQ classifiers, has been proposed.

• Rescaling of variables: The error signal involves the derivative of the neural function, which
is multiplied in each layer. Therefore, the elements of the Jacobian matrix can differ greatly
in magnitude for different layers. To solve this problem Rigler et al. (1991) have proposed a
rescaling of these elements.

On the other hand, sensitivity analysis is a very useful technique for deriving how and how
much the solution to a given problem depends on data (see, for example, Castillo et al., 1997,
1999, 2000). However, in this paper we show that sensitivity formulas can also be used for learning,
and a novel supervised learning algorithm for two-layer feedforwardneural networks that presents a
high convergence speed is proposed. This algorithm, the Sensitivity-Based Linear Learning Method

1161

CASTILLO , GUIJARRO-BERDIÑAS, FONTENLA-ROMERO AND ALONSO-BETANZOS

(SBLLM), is based on the use of the sensitivities of each layer’s parameters with respect to its inputs
and outputs, and also on the use of independent systems of linear equations for each layer, to obtain
the optimal values of its parameters. In addition, this algorithm gives the sensitivities of the sum of
squared errors with respect to the input and output data.

The paper is structured as follows. In Section 2 a method for learning one layer neural networks
that consists of solving a system of linear equations is presented, and formulas for the sensitivities
of the sum of squared errors with respect to the input and output data are derived. In Section 3 the
SBLLM method, which uses the previous linear method to learn the parameters of two-layer neural
networks and the sensitivities of the total sum of squared errors with respect to the intermediate
output layer values, which are modified using a standard gradient formulauntil convergence, is
presented. In Section 4 the proposed method is illustrated by its application to several practical
problems, and also it is compared with some other fast learning methods. In Section 5 the SBLLM
method is presented as an initialization tool to be used with other learning methods.In Section 6
these results are discussed and some future work lines are presented. Finally, in Section 7 some
conclusions and recommendations are given.

2. One-Layer Neural Networks

Consider the one-layer network in Figure 1. The set of equations relatinginputs and outputs is given
by

y js = f j

(

I

∑
i=0

w ji xis

)

; j = 1,2, . . . ,J; s= 1,2, . . . ,S,

whereI is the number of inputs,J the number of outputs,x0s = 1, w ji are the weights associated
with neuronj andS is the number of data points.

f1

f2

fJ

...

y1S

y2S

yJS

x1S

x2S

xIS

...

w11

w21wJ1

w12

w22

wJ2

w1I w2I

wJI

wJ0
w10

w20

x0S=1

+

+

+

Figure 1: One-layer feedforward neural network.

To learn the weightsw ji , the following sum of squared errors between the real and the desired
output of the networks is usually minimized:

1162

A V ERY FAST LEARNING METHOD FORNEURAL NETWORKSBASED ON SENSITIVITY ANALYSIS

P =
S

∑
s=1

J

∑
j=1

δ2
js =

S

∑
s=1

J

∑
j=1

(

y js− f j

(

I

∑
i=0

w ji xis

))2

.

Assuming that the nonlinear activation functions,f j , are invertible (as it is the case for the most
commonly employed functions), alternatively, one can minimize the sum of squared errors before
the nonlinear activation functions (Castillo et al., 2002), that is,

Q =
S
∑

s=1

J
∑
j=1

ε2
js =

S
∑

s=1

J
∑
j=1

(

I
∑

i=0
w ji xis− f−1

j (y js)

)2

, (1)

which leads to the system of equations:

∂Q
∂w jp

= 2
S

∑
s=1

(

I

∑
i=0

w ji xis− f−1
j (y js)

)

xps = 0; p = 0,1, . . . , I ; ∀ j,

that is,

I

∑
i=0

w ji

S

∑
s=1

xisxps =
S

∑
s=1

f−1
j (y js)xps; p = 0,1, . . . , I ; ∀ j

or

I

∑
i=0

Apiw ji = bp j; p = 0,1, . . . , I ; ∀ j, (2)

where

Api =
S

∑
s=1

xisxps; p = 0,1, . . . , I ; ∀i

bp j =
S

∑
s=1

f−1
j (y js)xps; p = 0,1, . . . , I ; ∀ j.

Moreover, for the neural network shown in Figure 1, the sensitivities (see Castillo et al., 2001,
2004, 2006) of the new cost function,Q, with respect to the output and input data can be obtained
as:

∂Q
∂ypq

= −

2

(

I
∑

i=0
wpixiq − f−1

p (ypq)

)

f ′p(ypq)
; ∀p,q (3)

∂Q
∂xpq

= 2
J

∑
j=1

(

I

∑
i=0

w ji xiq − f−1
j (y jq)

)

w jp; ∀p,q. (4)

1163

CASTILLO , GUIJARRO-BERDIÑAS, FONTENLA-ROMERO AND ALONSO-BETANZOS

3. The Proposed Sensitivity-Based Linear Learning Method

The learning method and the sensitivity formulas given in the previous sectioncan be used to de-
velop a new learning method for two-layer feedforward neural networks, as it is described below.

Consider the two-layer feedforward neural network in Figure 2 whereI is the number of inputs,
J the number of outputs,K the number of hidden units,x0s = 1,z0s = 1,Sthe number of data samples
and the superscripts(1) and(2) are used to refer to the first and second layer, respectively. This
network can be considered to be composed of two one-layer neural networks. Therefore, assuming
that the intermediate layer outputsz are known, using equation (1), a new cost function for this
network is defined as

Q(z) = Q(1)(z)+Q(2)(z) =

=
S

∑
s=1

K

∑
k=1

(

I

∑
i=0

w(1)
ki xis− f (1)−1

k (zks)

)2

+
J

∑
j=1

(

K

∑
k=0

w(2)
jk zks− f (2)−1

j (y js)

)2

.

Thus, using the outputszks we can learn, for each layer independently, the weightsw(1)
ki and

w(2)
jk by solving the corresponding linear system of equations (2). After that, the sensitivities (see

equations (3) and (4)) with respect tozks are calculated as:

∂Q
∂zks

=
∂Q(1)

∂zks
+

∂Q(2)

∂zks
=

= −

2

(

I
∑

i=0
w(1)

ki xis− f (1)−1

k (zks)

)

f
′(1)
k (zks)

+2
J

∑
j=1

(

K

∑
r=0

w(2)
jr zrs− f (2)−1

j (y js)

)

w(2)
jk

with k = 1, . . . ,K, asz0s = 1,∀s.

fK
(1)

f2
(1)

f1
(1)wki

(1)

f1
(2)

fJ
(2)

x1s

x0s

xIs

y1s

yJs

wjk
(2)z1s

z2s

zKs

z0s

Figure 2: Two-layer feedforward neural network.

Next, the values of the intermediate outputsz are modified using the Taylor series approxima-
tion:

Q(z+∆z) = Q(z)+
K

∑
k=1

S

∑
s=1

∂Q(z)
∂zks

∆zks≈ 0,

1164

A V ERY FAST LEARNING METHOD FORNEURAL NETWORKSBASED ON SENSITIVITY ANALYSIS

which leads to the following increments

∆z = −ρ
Q(z)

||∇Q||2
∇Q, (5)

whereρ is a relaxation factor or step size.

The proposed method is summarized in the following algorithm.

Algorithm SBLLM

Input. The data set (input,xis, and desired data,y js), two threshold errors (ε andε′) to control
convergence, and a step sizeρ .

Output. The weights of the two layers and the sensitivities of the sum of squared errors with
respect to input and output data.

Step 0: Initialization. Assign to the outputs of the intermediate layer the output associated with
some random weightsw(1)(0) plus a small random error, that is:

zks = f (1)
k

(

I

∑
i=0

w(1)
ki (0)xis

)

+ εks; εks∼U(−η,η);k = 1, . . . ,K,

whereη is a small number, and initializeQprevious andMSEprevious to some large number, where
MSEmeasures the error between the obtained and the desired output.

Step 1: Subproblem solution.Learn the weights of layers 1 and 2 and the associated sensitivities
solving the corresponding systems of equations, that is,

I

∑
i=0

A(1)
pi w(1)

ki = b(1)
pk

K

∑
k=0

A(2)
qk w(2)

jk = b(2)
q j ,

whereA(1)
pi =

S
∑

s=1
xisxps; b(1)

pk =
S
∑

s=1
f (1)−1

k (zks)xps; p = 0,1, . . . , I ; k = 1,2, . . . ,K

andA(2)
qk =

S
∑

s=1
zkszqs; b(2)

q j =
S
∑

s=1
f (2)−1

j (y js)zqs; q = 0,1, . . . ,K; ∀ j.

Step 2: Evaluate the sum of squared errors.EvaluateQ using

Q(z) = Q(1)(z)+Q(2)(z)

=
S

∑
s=1

K

∑
k=1

(

I

∑
i=0

w(1)
ki xis− f (1)−1

k (zks)

)2

+
J

∑
j=1

(

K

∑
k=0

w(2)
jk zks− f (2)−1

j (y js)

)2

and evaluate also theMSE.

1165

CASTILLO , GUIJARRO-BERDIÑAS, FONTENLA-ROMERO AND ALONSO-BETANZOS

Step 3: Convergence checking.If |Q−Qprevious| < ε or |MSEprevious−MSE| < ε′ stop and return
the weights and the sensitivities. Otherwise, continue with Step 4.

Step 4: Check improvement ofQ. If Q > Qprevious reduce the value ofρ, that is,ρ = ρ/2, and
return to the previous position, that is, restore the weights,z= zprevious, Q= Qpreviousand go to Step
5. Otherwise, store the values ofQ andz, that is,Qprevious= Q, MSEprevious= MSEandzprevious= z
and obtain the sensitivities using:

∂Q
∂zks

= −

2

(

I
∑

i=0
w(1)

ki xis− f (1)−1

k (zks)

)

f
′(1)
k (zks)

+2
J

∑
j=1

(

K

∑
r=0

w(2)
jr zrs− f (2)−1

j (y js)

)

w(2)
jk ;k = 1, . . . ,K.

Step 5: Update intermediate outputs. Using the Taylor series approximation in equation (5),
update the intermediate outputs as

z = z−ρ
Q(z)

||∇Q||2
∇Q

and go to Step 1.
The complexity of this method is determined by the complexity of Step 1 which solves alinear

system of equations for each network’s layer. Several efficient methods can be used to solve this
kind of systems with a complexity ofO(n2), wheren is the number of unknowns. Therefore, the
resulting complexity of the proposed learning method is alsoO(n2), beingn the number of weights
of the network.

4. Examples of Applications of the SBLLM to Train Neural Networks

In this section the proposed method, SBLLM,1 is illustrated by its application to five system iden-
tification problems. Two of them are small/medium size problems (Dow-Jones andLeuven compe-
tition time series), while the other three used large data sets and networks (Lorenz time series, and
the MNIST and UCI Forest databases). Also, in order to check the performance of the SBLLM,
it was compared with five of the most popular learning methods. Three of these methods are the
gradient descent (GD), the gradient descent with adaptive momentum and step sizes (GDX), and
the stochastic gradient descent (SGD), whose complexity isO(n). The other methods are the scaled
conjugated gradient (SCG), with complexity ofO(n2), and the Levenberg-Marquardt (LM) (com-
plexity of O(n3)). All experiments were carried out in MATLABR© running on a Compaq HPC 320
with an Alpha EV68 1 GHz processor and 4GB of memory. For each experiment all the learning
methods shared the following conditions:

• The network topology and neural functions. In all cases, the logistic function was used for
hidden neurons, while for output neurons the linear function was used for regression problems
and the logistic function was used for classification problems. It is important toremark that
the aim here is not to investigate the optimal topology, but to check the performance of the
algorithms in both small and large networks.

1. MATLAB R© demo code available at http://www.dc.fi.udc.es/lidia/downloads/SBLLM.

1166

A V ERY FAST LEARNING METHOD FORNEURAL NETWORKSBASED ON SENSITIVITY ANALYSIS

• Initial step size equal to 0.05, except for the stochastic gradient descent. In this last case, we
used a step size in the interval[0.005,0.2]. These step sizes were tuned in order to obtain
good results.

• The input data set was normalized (mean = 0 and standard deviation = 1).

• Several simulations were performed using for each one a different setof initial weights. This
initial set was the same for all the algorithms (except for the SBLLM), and was obtained by
the Nguyen-Widrow (Nguyen and Widrow, 1990) initialization method.

• Finally, statistical tests were performed in order to check whether the differences in accuracy
and speed were significant among the different training algorithms. Specifically, first the
non-parametric Kruskal-Wallis test (Hollander and Wolfe, 1973) was applied to check the
hypothesis that all mean performances are equal. When this hypothesis is rejected, a multiple
comparison test of means based on the Tukey’s honestly significant difference criterion (Hsu,
1996) was applied to know which pairs of means are different. In all cases, a significance
level of 0.05 was used.

4.1 Dow-Jones Time Series

The first data set is the time series corresponding to the Dow-Jones index values for years 1994-
1996 (Ley, 1996). The goal of the network in this case is to predict the index for a given day based
on the index of five previous days. For this data set a 5-7-1 topology (5 inputs, 7 hidden neurons
and 1 output neuron) was used. Also, 900 samples were employed for thelearning process. In order
to obtain the MSE curves during the learning process 100 simulations of 3000iterations each, were
done.

Figure 3(a) shows, for each method, the mean error curve calculated over the 100 simulations.
Also, in Figure 3(b) the box-whisker plots are shown for the 100 MSEs obtained by each method at
the end of the training. In this graphic the box corresponds to the interquartile range, the bar inside
the box represents the median, the whiskers extend to the farthest points that are not outliers, and
outliers are represented by the plus sign.

Also, different measures were calculated and collected in Table 4.1. These measures are:

• M1: Mean and standard deviation of the minimum MSEs obtained by each method over the
100 simulations.

• M2: Mean epoch and corresponding standard deviation in which each of theother methods
reaches the minimum MSE obtained by the SBLLM.

• M3: MSE and standard deviation for each of the other methods at the epoch in which the
SBLLM gets its minimum.

In this case, the best mean MSE is achieved by the LM method (seeM1 in Table 4.1). Also,
applying the multiple comparison test, it was found that the difference betweenthis mean and those
from the others methods was statistically significant.

Finally, the mean CPU times and the corresponding standard deviations for each of the methods
are shown in Table 4.1. In this table, the variablestepochmean and tepochstd are the mean and
standard deviation CPU time (in seconds) per epoch, respectively, while the variablesttotalmeanand

1167

CASTILLO , GUIJARRO-BERDIÑAS, FONTENLA-ROMERO AND ALONSO-BETANZOS

ttotalstd correspond to the mean and standard deviation of the time needed to reach theminimum
MSE. TheRatio column contains the relation between thettotalmean of each algorithm and the
fastest one. Again, the multiple comparison test applied over thettotalmeanrevealed that the speed
of the fastest method, that is the SBLLM, was only comparable to that of the SCG.

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Epoch

M
ea

n
M

S
E

SBLLM

LM

SGD

SCG

GDX

GD

(a) Mean error curves over 100 simulations

 GD SCG GDX LM SBLLM SGD

0

0.01

0.02

0.03

0.04

0.05

0.06

M
S

E
(b) Boxplot of the 100 MSE values obtained at the
end of the training

Figure 3: Results of the learning process for the Dow-Jones data.

M1 M2 M3

SBLLM 4.866×10−4±2.252×10−6 2.08±0.394 4.866×10−4±2.252×10−6

LM 4.601×10−4±1.369×10−5 20±11.5 9.099×10−2±2.190×10−1

SCG 1.928×10−3±8.959×10−3 354±150(∗1) 5.517×10−2±6.034×10−3

GDX 7.747×10−3±1.802×10−2 2,180±635(∗2) 4.717×10−1±5.962×10−1

GD 2.020×10−2±2.369×10−2 > 3000 5.517×10−2±5.950×10−1

SGD 5.995×10−2±1.360×10−3 > 3000 9.001×10−2±1.356×10−2

(∗1) 4% of the curves did not get the minimum of SBLLM

(∗2) 99.5% of the curves did not get the minimum of SBLLM

Table 1: Comparative measures for the Dow-Jones data.

tepochmean tepochstd ttotalmean ttotalstd Ratio
GD 0.0077 9.883×10−5 23.125 0.297 223.4

GDX 0.0078 1.548×10−4 22.764 3.548 219.9
SBLLM 0.0089 1.600×10−3 0.104 0.115 1

SCG 0.0165 2.800×10−3 15.461 8.595 149.4
LM 0.0395 3.460×10−2 115.619 106.068 1,117.1
SGD 0.2521 1.814×10−3 756.570 5.445 7,274.7

Table 2: CPU time comparison for the Dow-Jones data.

1168

A V ERY FAST LEARNING METHOD FORNEURAL NETWORKSBASED ON SENSITIVITY ANALYSIS

4.2 K.U. Leuven Competition Data

The K.U. Leuven time series prediction competition data (Suykens and Vandewalle, 1998) were
generated from a computer simulated 5-scroll attractor, resulting from a generalized Chua’s circuit
which is a paradigm for chaos. 1800 data points of this time series were usedfor training. The
aim of the neural network is to predict the current sample using only 4 previous data points. Thus
the training set is reduced to 1796 input patterns corresponding to the number of 4-samples sliding
windows over the initial training set. For this problem a 4-8-1 topology was used. As for the
previous experiment 100 simulations of 3000 iterations each were carried out. Results are shown in
Figure 4, and Tables 4.2 and 4.2.

In this case, the best mean MSE is achieved by the LM method (seeM1 in Table 4.2). However,
the multiple comparison test did not show any significant difference with respect to the means of
the SCG and the SBLLM. Regarding thettotalmean, the multiple comparison test showed that the
speed of the fastest method, that is the SBLLM, was only comparable to thoseof the GDX and the
GD.

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Epoch

M
ea

n
M

S
E

SBLLM

LM

SGD

SCG

GDX GD

(a) Mean error curves over 100 simulations

 GD SCG GDX LM SBLLM SGD

10
−4

10
−3

M
S

E

(b) Boxplot of the 100 MSE values obtained at the
end of the training

Figure 4: Results of the learning process for the Leuven competition data.

M1 M2 M3

SBLLM 3.639×10−5±2.098×10−7 2.2±0.471 3.639×10−5±2.098×10−7

LM 2.7064×10−5±2.439×10−6 23.5±16.3 1.323×10−1±3.143×10−1

SCG 3.517×10−5±9.549×10−7 2160±445(∗) 1.949×10−1±2.083×10−1

GDX 8.121×10−4±4.504×10−4 > 3000 7.190×10−1±6.651×10−1

GD 3.280×10−3±1.698×10−3 > 3000 1.949×10−1±6.621×10−1

SGD 4.748×10−5±9.397×10−6 > 3000 8.458×10−3±5.292×10−3

(∗) 9.8% of the curves did not get the minimum of SBLLM

Table 3: Comparative measures for the Leuven competition data.

1169

CASTILLO , GUIJARRO-BERDIÑAS, FONTENLA-ROMERO AND ALONSO-BETANZOS

tepochmean tepochstd ttotalmean ttotalstd Ratio
GDX 0.0114 3.256×10−4 34.309 0.977 710.3
GD 0.0117 3.208×10−4 35.018 0.963 725

SBLLM 0.0173 2.362×10−3 0.048 0.017 1
SCG 0.0238 6.271×10−4 69.571 5.022 1440.4
LM 0.0669 5.440×10−2 196.816 164.539 4074.9
SGD 0.5083 2.982×10−3 1,525.34 8.949 31,777.9

Table 4: CPU time comparison for the Leuven competition data.

4.3 Lorenz Time Series

A Lorenz system (Lorenz, 1963) is described by the solution of three simultaneous differential
equations:

dx/dt = −σx+σy

dy/dt = −xz+ rx−y

dz/dt = xy−bz,

whereσ, r andb are constants. For this work, we employedσ = 10, r = 28, andb = 8/3, for which
the system presents a chaotic dynamics. The goal of the network is to predict the current sample
based on the four previous samples. For this data set a 8-100-1 topologywas used. Also, 150000
samples were employed for the learning process. In this case, and due to the large size of both the
data set and the neural networks, the conditions of the experiments were the following:

• The number of simulations, which were carried out to obtain the MSE curves during the
learning process was reduced to 30, of 1000 iterations each.

• Neither the GD nor the LM methods were used. The results of the GD will not bepresented
because the method performed poorly, and the LM is impractical in these cases as it is highly
computationally demanding (LeCun et al., 1998).

Results are shown in Figure 5, and Tables 4.3 and 4.3. In this case, the SBLLM was the best
both in mean MSE and total CPU time, confirmed by the multiple comparison test.

1170

A V ERY FAST LEARNING METHOD FORNEURAL NETWORKSBASED ON SENSITIVITY ANALYSIS

10
0

10
1

10
2

10
3

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Epoch

M
ea

n
M

S
E

SBLLM

SGD

SCG

GDX

(a) Mean error curves over 30 simulations

 SCG GDX SBLLM SGD

10
−7

10
−6

10
−5

10
−4

10
−3

M
S

E

(b) Boxplot of the 30 MSE values obtained at the
end of the training

Figure 5: Results of the learning process for the Lorenz data.

M1 M2 M3

SBLLM 3.118×10−8±2.151×10−8 2.47±0.776 3.118×10−8±2.151×10−8

SGD 1.426×10−6±2.710×10−7 > 1000 2.512×10−2±1.345×10−2

SCG 1.545×10−5±3.922×10−6 > 1000 1.286×101±5.538
GDX 3.774×10−3±8.409×10−4 > 1000 7.722×101±1.960×101

Table 5: Comparative measures for the Lorenz data.

tepochmean tepochstd ttotalmean ttotalstd Ratio
GDX 9.75 0.04 9,750.92 42.65 849.7
SCG 21.01 0.63 21,111.2 633.62 1830.9
SGD 56.56 0.39 56,611.9 395.15 986.6

SBLLM 22.55 0.40 57.38 20.57 1

Table 6: CPU time comparison for the Lorenz data.

4.4 MNIST Data Set

The MNIST database, available at http://yann.lecun.com/exdb/mnist/, contains grey level images of
handwritten digits of 28×28 pixels. It is a real classification problem whose goal is to determine
the written number which is always an integer in the range between 0 and 9. This database is
originally divided into a training set of 60,000 examples, and a test set of 10,000 examples. Further
we extracted 10,000 samples from the training set to be used as a validation set.

For this data set we used 784 inputs neurons fed by the 28×28 pixels of each input pattern, and
one output neuron per class. Specifically a 784-800-10 topology was used. In this case, and due to
the large size of both the data set and the neural network, the conditions ofthe experiments were
the following:

• The number of simulations, which were carried out to obtain the classification error was
reduced to 20.

1171

CASTILLO , GUIJARRO-BERDIÑAS, FONTENLA-ROMERO AND ALONSO-BETANZOS

• Allowing a maximum of 200 iterations per simulation, the early stopping criteria usingthe
validation set was employed to halt learning.

• The LM method was not used, since it is impractical in these cases as it is highlycomputa-
tionally demanding (LeCun et al., 1998).

• Concerning the other batch methods only the SCG was used since it is the one that clearly
obtains the best results and convergence speed in the previous experiments.

Results are shown in Tables 4.4 and 4.4. As mentioned, the training process of the three methods
were halted using the stop learning criteria. In this case, as can be observed the SGD achieved the
best mean test accuracy, confirmed by the multiple comparison test. Besides,in all simulations the
SBLLM always stops in iteration 75 achieving a worse accuracy than the SGD but employing a total
time lesser than the other methods. In order to check if this result could be improved we did some
other experiments allowing the SBLLM to run as long as the Stochastic GradientDescent (SGD).
However, results were not improved. Therefore, the presented tablesshow the most favourable
situation for each algorithm.

Regarding the total CPU time, again the fastest method is the SBLLM, with attotalmeansignifi-
cantly different from the other two methods.

Trainmean±std Validationmean±std Testmean±std

SGD 99.93±0.04 97.87±0.09 97.70±0.08
SCG 78.12±22.46 77.21±21.97 77.03±22.05

SBLLM 85.73±0.03 86.52±0.15 86.08±0.26

Table 7: Classification accuracy for the MNIST data.

tepochmean±std ttotalmean±std iterationsmean±std Ratio
SGD 1,209.86±6.70 87,607.1±485.41 72.4±16.99 2.73
SCG 310.64±2.93 61,311.4±1,537 197.4±5.81 1.92

SBLLM 422.82±1.28 32,134.4±97 75±0 1

Table 8: CPU time comparison for the MNIST data.

4.5 Forest

The Forest CoverType database, on-line at http://kdd.ics.uci.edu/databases/covertype/covertype.html,
contains data describing the wilderness areas and soil types for 30×30 meter cells obtained from US
Forest Service Region 2 Resource Information System data. It is also a real classification problem
whose goal is to determine the forest cover type from 54 input variables.Originally, the problem
consider 7 cover classes, although in this case we have employed the 2-class version of the problem
that consist of distinguishing the most frequent class from the other six (Collobert et al., 2003).
This database contains 500,000 examples from which we built a training set of 101,241 examples, a
validation set of 10,123 and a test set of 50,620 examples. These sets preserve the same proportion
of samples for each of the seven classes as in the original data set.

1172

A V ERY FAST LEARNING METHOD FORNEURAL NETWORKSBASED ON SENSITIVITY ANALYSIS

For this data set a 54-500-2 topology was used. Regarding the number ofsimulations, stopping
criteria and learning methods, the conditions were the same as those of the MNIST experiment
described in the previous section.

As in the previous section, the most favourable results for each algorithm are shown in Tables
4.5 and 4.5. In this data set, the SGD achieved the best mean test accuracy,confirmed by the
multiple comparison test. Regarding the total CPU time, the fastest method is the SBLLM, with a
ttotalmeansignificantly different from the other two methods. It is important to remark that although
in this case the SBLLM is the fastest method, this is due to the stop of the learning process in an
early stage. This does not allow the SBLLM to achieve a good accuracy, as it is shown in Table 4.5.
These results confirm that, for classification problems the SGD seems to be better in error than the
SBLLM, which is similar in error but faster than the SCG.

Trainmean±std Validationmean±std Testmean±std

SGD 89.60±0.92 88.21±0.69 88.22±0.56
SCG 79.03±1.29 78.69±1.15 79.08±1.16

SBLLM 79.87±1.05 79.65±0.22 79.92±0.15

Table 9: Classification accuracy for the forest cover type data.

tepochmean±std ttotalmean±std iterationsmean±std Ratio
SGD 106.95±1.92 15,210.63±273.34 142.2±55.36 109.14
SCG 100.20±3.40 17,903.66±3063.92 178.60±29.66 92.58

SBLLM 139.37±0.72 139.37±0.72 1±0 1

Table 10: CPU time comparison for the forest cover type data.

5. The SBLLM as Initialization Method

As has been shown in the previous section, the SBLLM achieves a small error rate in very few
epochs. Although this error rate is very small and, in general, better than the errors obtained by
other learning methods, as can be seen in Figures 3(a), 4(a) and 5(a),once the SBLLM gets this
point the variation in the MSE in further epochs is not significant. For this reason, an interesting
alternative is to combine the SBLLM with other learning methods.

In this section, the results of the SBLLM used as an initialization method instead of as a learning
algorithm are presented. Thus, several experiments were accomplishedusing the SBLLM only to
get the initial values of the weights of the neural network. Afterwards, theLM and SCG were used
as learning methods from these initial values. The experiments were carriedout using the Dow-
Jones, Leuven and Lorenz time series. For these three data sets the experimental conditions were
the same as those described in Section 4.

For every experiment 100 simulations were done of 3000 iterations each. In all cases, the
SBLLM performed at most three iterations to get the initial weights. Moreover, in order to ac-
complish a comparative study, the obtained results were confronted with the ones achieved by the
same learning methods (LM and SCG) but using the Nguyen-Widrow (NW) initialization method
(Nguyen and Widrow, 1990), one of the most popular, to obtain the initial weights.

1173

CASTILLO , GUIJARRO-BERDIÑAS, FONTENLA-ROMERO AND ALONSO-BETANZOS

Figures 6(a), 7(a) and 8(a) show the corresponding mean curves (over the 100 simulations) of
the learning process using the SBLLM and the NW as initialization methods and theLM as the
learning algorithm. Figures 6(b), 7(b) and 8(b) show the same mean curves of the learning process
using this time the SCG as learning algorithm.

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Epoch

M
ea

n
M

S
E

NW + LM

SBLLM + LM

(a) Mean error curves for the LM method

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Epoch

M
ea

n
M

S
E

NW + SCG

SBLLM + SCG

(b) Mean error curves for the SCG method

Figure 6: Mean error curves over 100 simulations for the Dow-Jones time series using the SBLLM
and the NW as initialization methods.

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Epoch

M
ea

n
M

S
E

NW + LM

SBLLM + LM

(a) Mean error curves for the LM method

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Epoch

M
ea

n
M

S
E

NW + SCG

SBLLM + SCG

(b) Mean error curves for the SCG method

Figure 7: Mean error curves over 100 simulations for the Leuven competition time series using the
SBLLM and the NW as initialization methods.

1174

A V ERY FAST LEARNING METHOD FORNEURAL NETWORKSBASED ON SENSITIVITY ANALYSIS

10
0

10
1

10
2

10
3

10
4

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

M
ea

n
M

S
E

NW + LM

SBLLM + LM

Epoch

(a) Mean error curves for the LM method

10
0

10
1

10
2

10
3

10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Epoch

M
ea

n
M

S
E

NW + SCG

SBLLM + SCG

(b) Mean error curves for the SCG method

Figure 8: Mean error curves over 100 simulations for the Lorenz time series using the SBLLM and
the NW as initialization methods.

Figures 9(a), 10(a) and 11(a) contain the boxplots of the methods in the last epoch of training
(3000) using the SBLLM and NW as initialization methods and the LM as the learning algorithm.
Figures 9(b), 10(b) and 11(b) depict the same boxplots when using the SCG as the learning algo-
rithm.

NW + LM SBLLM + LM

4.3

4.4

4.5

4.6

4.7

4.8

x 10
−4

M
S

E

(a) Boxplot for the LM method

NW + SCG SBLLM + SCG

4.7

4.75

4.8

4.85

x 10
−4

M
S

E

(b) Boxplot for the SCG method

Figure 9: Boxplot of the 100 MSE values at the last epoch of training for the Dow-Jones time series
using the SBLLM and NW as initialization methods.

1175

CASTILLO , GUIJARRO-BERDIÑAS, FONTENLA-ROMERO AND ALONSO-BETANZOS

NW + LM SBLLM + LM

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

x 10
−5

M
S

E

(a) Boxplot for the LM method

NW + SCG SBLLM + SCG
3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

x 10
−5

M
S

E

(b) Boxplot for the SCG method

Figure 10: Boxplot of the 100 MSE values at the last epoch of training forthe Leuven competition
time series using the SBLLM and NW as initialization methods.

NW + LM SBLLM + LM

0

1

2

3

4

5

6

7

x 10
−11

M
S

E

(a) Boxplot for the LM method

NW + SCG SBLLM + SCG

0

0.5

1

1.5

2

2.5

3

3.5

x 10
−6

M
S

E

(b) Boxplot for the SCG method

Figure 11: Boxplot of the 100 MSE values at the last epoch of training forthe Lorenz time series
using the SBLLM and NW as initialization methods.

6. Discussion

Regarding the behavior of the SBLLM as alearning algorithm, and from the experiments made and
the results presented in Section 4, there are three main features of the SBLLM that stand out:

1. High speed in reaching the minimum error. For the first three problems (Dow-Jones, Leuven
and Lorenz time series), this feature can be observed in Figures 3(a), 4(a) and 5(a), and the
measureM2 in Tables 4.1, 4.2 and 4.3, where it can be seen that in all cases the SBLLM

1176

A V ERY FAST LEARNING METHOD FORNEURAL NETWORKSBASED ON SENSITIVITY ANALYSIS

obtains its minimum MSE (minMSE) just before the first 4 iterations and also sooner than
the rest of the algorithms. Moreover, and generally speaking, measureM3 reflects that the
SBLLM gets its minimum in an epoch for which the other algorithms are far from similar
MSE values.

If we take into account the CPU times in Tables 4.1, 4.2, 4.3, 4.4 and 4.5 we can see that,
as expected, the CPU time per epoch of the SBLLM is similar to that of the SCG (both of
O(n2)), and when we consider the total CPU time per simulation the SBLLM is, in the worst
case, more than 150 times faster than the fastest algorithm for the regression examples and
approximately 2 times faster for the classification examples. It is also important toremark
that despite of the advantages of the LM method, it could not be applied in the experiments
that involved large data sets and neural networks as it is impractical for such cases (LeCun
et al., 1998).

2. A good performance. From Figures 3(a), 4(a) and 5(a), and the measureM1 in Tables 4.1, 4.2
and 4.3, it can be deduced that not only the SBLLM stabilizes soon, but also the minMSE that
it reaches is quite good and comparable to that obtained by the second order methods. On the
other hand, the GD and the GDX learning methods never succeeded in attaining this minMSE
before the maximum number of epochs, as reflected in measureM2 (Tables 4.1, 4.2 and 4.3).
Finally, the SCG algorithm presents an intermediate behavior, although seldomachieves the
levels of performance of the LM and SBLLM.

Regarding the classification problems, from Tables 4.4 and 4.5, it can be deduced that the
SBLLM performs similar or better than the other batch method, that is the SCG, while the
stochastic method (SGD) is the best algorithm for this kind of problems (LeCunet al., 1998).

Although the ability of the proposed algorithm to get a minimum in just very few epochs
is usually an advantage, it can also be noticed that once it achieves this minimum(local
or global) it gets stuck in this point. This causes that, sometimes like in the classification
examples included, the algorithm is not able to obtain a high accuracy. This behavior could
be explained by the initialization method and the updating rule for the step size employed.

3. Homogeneous behavior. This feature comprehends several aspects:

• The SBLLM learning curve stabilizes soon, as can be observed in Figures 3(a), 4(a) and
5(a).

• Regarding the minimum MSE reached at the end of the learning process, it can be
observed from Figures 3(b), 4(b) and 5(b) that, in any case, the GD and GDX algorithms
present a wider dispersion, given even place to the appearance of outliers. On the other
hand, the SGD, SCG, LM and SBLLM algorithms tend to always obtain nearervalues
of MSE. This fact is also reflected by the standard deviations of measureM1.

• The SBLLM behaves homogeneously not only if we consider just the end of the learning
process, as commented, but also during the whole process, in such a waythat very sim-
ilar learning curves where obtained for all iterations of the first three experiments. This
is, in a certain way, reflected in the standard deviation of measureM3 which corresponds
to the MSE value taken at some intermediate point of the learning process.

1177

CASTILLO , GUIJARRO-BERDIÑAS, FONTENLA-ROMERO AND ALONSO-BETANZOS

• Finally, from Tables 4.4 and 4.5 it can be observed that for these last two experiments
(MNIST and Forest databases) this homogeneus behaviour stands forthe SGD and the
SBLLM, while the SCG presents a wider dispersion in its classification errors.

With respect to the use of the SBLLM asinitialization method, as it can be observed in Figures
6, 7 and 8, the SBLLM combined with the LM or the SCG achieves a faster convergence speed than
the same methods using the NW as initialization method. Also, the SBLLM obtains a very good
initial point, and thus a very low MSE in a few epochs of training. Moreover,in this case, most
of the times the final MSE achieved is smaller than the one obtained using the NW initialization
method. This result is better illustrated in the boxplots of the corresponding time series where it can
be observed, in addition, that the final MSE obtained with NW presents a higher variability than
that achieved by the SBLLM, that is, the SBLLM helps the learning algorithms toobtain a more
homogeneous MSE at the end of the training process. Thus, experiments confirm the utility of the
SBLLM as an initialization method, which effect is to speed up the convergence.

7. Conclusions and Future Work

The main conclusions that can be drawn from this paper are:

1. The sensitivities of the sum of squared errors with respect to the outputs of the intermediate
layer allow an efficient and fast gradient method to be applied.

2. Over the experiments made the SBLLM offers an interesting combination of speed, reliability
and simplicity.

3. Regarding the employed regression problems only second order methods, and more specifi-
cally the LM, seem to obtain similar results although at a higher computational cost.

4. With respect to the employed classification problems, the SBLLM performs similar or bet-
ter than the other batch method, although requiring less computational time. Besides, the
stochastic gradient (SGD) is the one that obtains the lowest classification error. This result is
in accordance with that obtained by other authors (LeCun et al., 1998) that recommend this
method for large data sets and networks in classification tasks.

5. The SBLLM used as an initialization method significantly improves the performance of a
learning algorithm.

Finally, there are some aspects of the proposed algorithm that need an in depth study, and will
be addressed in a future work:

1. A more appropriate method to set the initial values of the outputsz of hidden neurons (step 0
of the proposed algorithm).

2. A more efficient updating rule for the step sizeρ, like a method based on a line search (hard
or soft).

3. An adaptation of the algorithm to improve its performance on classification problems, specif-
ically for large data sets.

1178

A V ERY FAST LEARNING METHOD FORNEURAL NETWORKSBASED ON SENSITIVITY ANALYSIS

Acknowledgments

We would like to acknowledge support for this project from the Spanish Ministry of Science and
Technology (Projects DPI2002-04172-C04-02 and TIC2003-00600, this last partially supported by
FEDER funds) and the Xunta de Galicia (project PGIDT04PXIC10502PN). Also, we thank the
Supercomputing Center of Galicia (CESGA) for allowing us the use of the highperformance com-
puting servers.

References

L. B. Almeida, T. Langlois, J. D. Amaral, and A. Plakhov. Parameter adaptation in stochastic
optimization. In D. Saad, editor,On-line Learning in Neural Networks, chapter 6, pages 111–
134. Cambridge University Press, 1999.

R. Battiti. First and second order methods for learning: Between steepestdescent and Newton’s
method.Neural Computation, 4(2):141–166, 1992.

E. M. L. Beale. A derivation of conjugate gradients. In F. A. Lootsma, editor, Numerical methods
for nonlinear optimization, pages 39–43. Academic Press, London, 1972.

F. Biegler-K̈onig and F. B̈armann. A learning algorithm for multilayered neural networks based on
linear least-squares problems.Neural Networks, 6:127–131, 1993.

W. L. Buntine and A. S. Weigend. Computing second derivatives in feed-forward networks: A
review. IEEE Transactions on Neural Networks, 5(3):480–488, 1993.

E. Castillo, J. M. Gutíerrez, and A. Hadi. Sensitivity analysis in discrete bayesian networks.IEEE
Transactions on Systems, Man and Cybernetics, 26(7):412–423, 1997.

E. Castillo, A. Cobo, J. M. Gutiérrez, and R. E. Pruneda. Working with differential, functional and
difference equations using functional networks.Applied Mathematical Modelling, 23(2):89–107,
1999.

E. Castillo, A. Cobo, J. M. Gutiérrez, and R. E. Pruneda. Functional networks. a new neural network
based methodology.Computer-Aided Civil and Infrastructure Engineering, 15(2):90–106, 2000.

E. Castillo, A. Conejo, P. Pedregal, R. Garcı́a, and N. Alguacil.Building and Solving Mathematical
Programming Models in Engineering and Science. John Wiley & Sons Inc., New York., 2001.

E. Castillo, O. Fontenla-Romero, A. Alonso Betanzos, and B. Guijarro-Berdiñas. A global optimum
approach for one-layer neural networks.Neural Computation, 14(6):1429–1449, 2002.

E. Castillo, A. S. Hadi, A. Conejo, and A. Fernández-Canteli. A general method for local sensitivity
analysis with application to regression models and other optimization problems.Technometrics,
46(4):430–445, 2004.

E. Castillo, C. Castillo A. Conejo and, R. Mı́nguez, and D. Ortigosa. A perturbation approach to
sensitivity analysis in nonlinear programming.Journal of Optimization Theory and Applications,
128(1):49–74, 2006.

1179

CASTILLO , GUIJARRO-BERDIÑAS, FONTENLA-ROMERO AND ALONSO-BETANZOS

A. Chella, A. Gentile, F. Sorbello, and A. Tarantino. Supervised learningfor feed-forward neural
networks: a new minimax approach for fast convergence.Proceedings of the IEEE International
Conference on Neural Networks, 1:605 – 609, 1993.

V. Cherkassky and F. Mulier.Learning from Data: Concepts, Theory, and Methods. Wiley, New
York, 1998.

R. Collobert, Y. Bengio, and S. Bengio. Scaling large learning problems withhard parallel mixtures.
International Journal of Pattern Recognition and Artificial Intelligence, 17(3):349–365, 2003.

J. E. Dennis and R. B. Schnabel.Numerical Methods for Unconstrained Optimization and Nonlinear
Equations. Prentice-Hall, Englewood Cliffs, NJ, 1983.

G. P. Drago and S. Ridella. Statistically controlled activation weight initialization (SCAWI). IEEE
Transactions on Neural Networks, 3:899–905, 1992.

R. Fletcher and C. M. Reeves. Function minimization by conjugate gradients.Computer Journal, 7
(149–154), 1964.

O. Fontenla-Romero, D. Erdogmus, J.C. Principe, A. Alonso-Betanzos,and E. Castillo. Linear
least-squares based methods for neural networks learning.Lecture Notes in Computer Science,
2714(84–91), 2003.

M. T. Hagan and M. Menhaj. Training feedforward networks with the marquardt algorithm.IEEE
Transactions on Neural Networks, 5(6):989–993, 1994.

M. T. Hagan, H. B. Demuth, and M. H. Beale.Neural Network Design. PWS Publishing, Boston,
MA, 1996.

M. Hollander and D. A. Wolfe.Nonparametric Statistical Methods. John Wiley & Sons, 1973.

J. C. Hsu. Multiple Comparisons. Theory and Methods. Chapman&Hall/CRC, Boca Raton, FL,
1996.

D. R. Hush and J. M. Salas. Improving the learning rate of back-propagation with the gradient reuse
algorithm.Proceedings of the IEEE Conference of Neural Networks, 1:441–447, 1988.

B. C. Ihm and D. J. Park. Acceleration of learning speed in neural networks by reducing weight
oscillations. Proceedings of the International Joint Conference on Neural Networks, 3:1729–
1732, 1999.

R. A. Jacobs. Increased rates of convergence through learning rate adaptation.Neural Networks, 1
(4):295–308, 1988.

Y. LeCun, I. Kanter, and S.A. Solla. Second order properties of error surfaces: Learning time and
generalization. In R.P. Lippmann, J.E. Moody, and D.S. Touretzky, editors, Neural Information
Processing Systems, volume 3, pages 918–924, San Mateo, CA, 1991. Morgan Kaufmann.

Y. LeCun, L. Bottou, G.B. Orr, and K.-R. M̈uller. Efficient backprop. In G. B. Orr and K.-R. M̈uller,
editors,Neural Networks: Tricks of the trade, number 1524 in LNCS. Springer-Verlag, 1998.

1180

A V ERY FAST LEARNING METHOD FORNEURAL NETWORKSBASED ON SENSITIVITY ANALYSIS

K. Levenberg. A method for the solution of certain non-linear problems in least squares.Quaterly
Journal of Applied Mathematics, 2(2):164–168, 1944.

E. Ley. On the peculiar distribution of the U.S. stock indeces’ first digits.The American Statistician,
50(4):311–314, 1996.

E. N. Lorenz. Deterministic nonperiodic flow.Journal of the Atmospheric Sciences, 20:130–141,
1963.

D. W. Marquardt. An algorithm for least-squares estimation of non-linear parameters.Journal of
the Society of Industrial and Applied Mathematics, 11(2):431–441, 1963.

M. F. Moller. A scaled conjugate gradient algorithm for fast supervisedlearning.Neural Networks,
6:525–533, 1993.

D. Nguyen and B. Widrow. Improving the learning speed of 2-layer neural networks by choosing
initial values of the adaptive weights.Proceedings of the International Joint Conference on
Neural Networks, 3:21–26, 1990.

G. B. Orr and T. K. Leen. Using curvature information for fast stochastic search. In M.I. Jordan,
M.C. Mozer, and T. Petsche, editors,Neural Information Processing Systems, volume 9, pages
606–612, Cambridge, 1996. MIT Press.

D. B. Parker. Optimal algorithms for adaptive networks: second order back propagation, second
order direct propagation, and second order hebbian learning.Proceedings of the IEEE Conference
on Neural Networks, 2:593–600, 1987.

S. Pethel, C. Bowden, and M. Scalora. Characterization of optical instabilities and chaos using MLP
training algorithms.SPIE Chaos Opt., 2039:129–140, 1993.

M. J. D. Powell. Restart procedures for the conjugate gradient method.Mathematical Programming,
12:241–254, 1977.

S. Ridella, S. Rovetta, and R. Zunino. Circular backpropagation networks for classification.IEEE
Transactions on Neural Networks, 8(1):84–97, January 1997.

A. K. Rigler, J. M. Irvine, and T. P. Vogl. Rescaling of variables in backpropagation learning.
Neural Networks, 4:225–229, 1991.

D. E. Rumelhart, G. E. Hinton, and R. J. Willian. Learning representations of back-propagation
errors.Nature, 323:533–536, 1986.

N. N. Schraudolph. Fast curvature matrix-vector products for second order gradient descent.Neural
Computation, 14(7):1723–1738, 2002.

A. Sperduti and S. Antonina. Speed up learning and network optimization withextended back
propagation.Neural Networks, 6:365–383, 1993.

J. A. K. Suykens and J. Vandewalle, editors.Nonlinear Modeling: advanced black-box techniques.
Kluwer Academic Publishers Boston, 1998.

1181

CASTILLO , GUIJARRO-BERDIÑAS, FONTENLA-ROMERO AND ALONSO-BETANZOS

T. Tollenaere. Supersab: Fast adaptive back propagation with good scaling properties.Neural
Networks, 3(561–573), 1990.

T. P. Vogl, J. K. Mangis, A. K. Rigler, W. T. Zink, and D. L. Alkon. Accelerating the convergence
of back-propagation method.Biological Cybernetics, 59:257–263, 1988.

M. K. Weir. A method for self-determination of adaptive learning rates in back propagation.Neural
Networks, 4:371–379, 1991.

B. M. Wilamowski, S. Iplikci, O. Kaynak, and M. O. Efe. An algorithm for fast convergence in
training neural networks.Proceedings of the International Joint Conference on Neural Networks,
2:1778–1782, 2001.

J. Y. F. Yam, T. W. S Chow, and C. T Leung. A new method in determining the initial weights of
feedforward neural networks.Neurocomputing, 16(1):23–32, 1997.

1182

