
A VERY SHORT INTRODUCTION TO DIFFERENTIAL FORMS
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Abstract. This short notes (non-examinable) provide Math 433 students

some connection between the surface theory and its generalization in higher
dimensions, namely differential forms and Riemannian geometry. I tried best

to make it self contained and short. Instead of being standard textbook style
introducing too many abstract concepts, we will take a short cut to the main

idea by making definition as simple as possible. Jump to Theorem 2.7 and

Remarks 2.8, 2.9, and 2.10, you’ll find something familiar.
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1. Introduction

Many of us remember the following fact we mentioned in class: traveling with
constant velocity along the great circle on the earth is actually not a constant move
in R3, because the directions are changing. However, there should be a way to
explain why it is reasonable for the traveler oneself thinking that he/she’s doing a
constant speed motion. This is why we define the covariant derivative (tangential
derivative) which is different from Euclidean derivative, and define the great circle
as the geodesic since the covariant derivative never changes along this curve. In
higher dimension, we have similar concepts, generalizing the surface to a manifold,
tangent plane to tangent space, 1st fundamental form to a Riemannian metric.
Covariant derivatives and geodesics are defined similarly and many fundamental
theorems and facts are still true in higher dimensions, e.g Gauss-Bonnet. Einstein
adopted high-dimensional Riemannian geometry as the frame of his field equation
(4) in General Relativity; while new phenomena appear as people explore many
interesting questions, as discussed in Section 5.

A short reading guide: if you are interested in dimension 2 surface theory or
R3, please take a look at Theorem 2.6, Remarks 4.6, and Question 5.4. If you are
curious about what’s going on in the higher dimension, then reading in a linear
order will help.

Date: April 18, 2019.
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2. Differential Forms in Euclidean Spaces

Many popular (standard) textbooks, such as do Carmo’s Riemannian Geome-
try [CF92] and Guillemin-Pollack’s Differential Topology [GP74] introduce forms
by first playing with heavy algebraic/analytical facts of tensors. However, many
people never get used to the whole mathematical theory of tensors and hence never
really feel comfortable with the core part of differential form such as Stokes’ The-
orem, Hodge star operation, etc. Since our Math 433 students have such a diverse
background, it’s necessary to write some tensor free approach to differential forms.
We start with a formal definition and computation rules, then directly move on to
the key theorems.

Our approach is straightforward going into the core properties of differential
forms, while the drawback is lack of intuition. Hence we also provide some geometry
about differential forms in Remark 2.11. Also, tensors are important as they appear
in physics, computer science, and statistics (e.g. nowadays they are popular in
Learning theory). You can find a short introduction to tensors in Remark 4.7.

Here starts the introduction to differential forms. We strongly encourage
everyone who’s interested to read [Arn89] Chapter 7 for more details.

On Rn, we start with the symbols dx1, . . . , dxn(those are indeed basis on 1-
forms), and define a ”multiplication” operation (called wedge product or exte-
rior product) on these symbols, denoted by ∧, subject to the condition

dxi ∧ dxj = −dxj ∧ dxi.
Note that the anti-symmetry condition indeed means

dxi ∧ dxi = 0.

Also, if I = {i1, . . . , ik} is index set where we have repeated indices, then dxi1 ∧
· · · ∧ dxik = 0. For example,

dx1 ∧ dx2 ∧ dx1 = −dx1 ∧ dx1 ∧ dx2 = −(dx1 ∧ dx1) ∧ dx2 = 0.

Remark 2.1. dxi is a linear function from Rn to R. Here you can think it measures
the length of a vector in the xi direction (or the xi component of the vector). And
dxi ∧ dxj measures the orientaed area of the parallelogram spanned by the vector in
xi and xj direction. For general geometric meaning, see Remark 2.11.

Another important property of the wedge operation is the linearity: let α, β, γ
be arbitrary products of dxi’s, and c be any real number, then

(α+ β) ∧ γ = α ∧ γ + β ∧ γ
α ∧ (β + γ) = α ∧ β + α ∧ γ
(α ∧ β) ∧ γ = α ∧ (β ∧ γ)

(cα) ∧ β = α ∧ (cβ) = c(α ∧ β)(1)

Definition 2.2 (Differential forms). We define a k-form (or degree k-form) to
be ∑

I

fI(x)dxI ,

where I is a index I = {i1, . . . , ik} of whereij ∈ {1, 2, . . . , n} and dxI means
dxi1 ∧ · · · ∧ dxik . And each dxI has a smooth function fI on Rn as its coefficient.
Simply put, one can think the space of differential form a linear space spanned by

{1; dx1, dx2, · · · , dxn; dxi ∧ dxj ; · · · ; dx1 ∧ · · · ∧ dxn}
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with smooth functions as their coefficients.

Question 2.3. How many linearly independent basis of differential forms are there
in Rn?

The answer is that for fixed degree k-forms, there are
(
n
k

)
basis; while the total

number is 2n, simple combinatorics.
We are indeed very familiar with form on R3:

• 0-forms are smooth functions F (x, y, z) on R3

• 1-forms can be uniquely written as Pdx + Qdy + Rdz, where P , Q and R
are smooth functions and we denote dx, dy, dz for dx1, dx2, dx3.
• 2-forms can be uniquely written as Pdx ∧ dy +Qdz ∧ dx+Rdy ∧ dz.
• 3-forms look like F (x, y, z)dx ∧ dy ∧ dz.
• Any k-form on R3 with k > 3 is zero, because there must be repeated

indices in the index set.

You can check that on R3, there are 1,3,3,1 basis for degree 0, 1, 2, 3 forms
respectively, and 1 + 3 + 3 + 1 = 8 = 23. Verifies the answer to Question 2.3.

Definition 2.4 (Exterior Derivative). Let ω =
∑
I fIdx

I be k-form, then we
define the exterior derivative

• If ω = f is a 0-form:

df(x) =
∑ ∂f(x)

∂xj
dxj ;

• if ω is a k-form, k 6= 0,

dω =
∑
I

dfI(x) ∧ dxI .

Here’s one simple example R2, if ω = xydx+ axdy, then

dω = ydx ∧ dx+ xdy ∧ dx+ ln(a)axdx ∧ dy + 0dy ∧ dy
= (ln(a)ax − x)dx ∧ dy.(2)

And we verified that in class that on R3, the exterior derivative

• acts on 0-forms (functions F (x, y, z)) are gradient ∇ = ( ∂
∂x ,

∂
∂y ,

∂
∂z );

• acts on 1-forms ω = Pdx+Qdy +Rdz are curl, i.e. dω = ∇× (P,Q,R);
• acts on 2-forms ω = Pdx ∧ dy + Qdz ∧ dx + Rdy ∧ dz are divergence, i.e.
dω = ∇ · (P,Q,R) = (∂R∂x + ∂Q

∂y + ∂P
∂z )dx ∧ dy ∧ dz;

• acts on any k-form on R3 with k ≥ 3 is zero, because higher degree forms
vanishes.

As we mentioned, whatever in mathematics named a derivative(or deviation)
will satisfy some Leibnitz rule:

Theorem 2.5. If ω is a k-form and θ is an `-form, then

d(ω ∧ θ) = (dω) ∧ θ + (−1)kω ∧ (dθ).

Proof. By linearity, it suffices to check the basis, and we can assume ω = fIdx
I

and θ = gJdx
J .

ω ∧ θ = fI(x)gJ(x)dxI ∧ dxJ

d(ω ∧ θ) =
∑
j

∂j(fI(x)gJ(x))dxj ∧ dxI ∧ dxJ
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=
∑
j

(∂jfI(x))gJ(x)dxj ∧ dxI ∧ dxJ

+
∑
j

fI(x)∂jgJ(x)dxj ∧ dxI ∧ dxJ

=
∑
j

(∂jfI(x))dxj ∧ dxI ∧ gJ(x)dxJ

+(−1)k
∑
j

fI(x)dxI ∧ ∂jgJ(x)dxj ∧ dxJ

= (dω) ∧ θ + (−1)kω ∧ dθ.(3)

�

The following is called “Poincarè Lemma.” Even through this is called a Lem-
ma, it is indeed the most important fact about exterior derivative. This is the

generalization that partial derivatives are commute i.e. ∂2

∂u∂v = ∂2

∂v∂u :

Theorem 2.6 (Poincarè Lemma).
d(dω) = 0. (Simple denote d2 = 0.)

Proof. It’s easy for you to check that on R3,

(∇×)∇ = 0,

(∇·)(∇×) = 0.

The reason is simply ∂2

∂u∂v = ∂2

∂v∂u .
In higher dimension, this can be verified by (a similar) direction computation,

and it is true for the same reason. �

Theorem 2.7 (Stokes’ Theorem ). Let M be a compact oriented n-dimensional
manifold-with-boundary ∂M , and let ω be an (n− 1)-form on M . Then∫

M

dω =

∫
∂M

ω.

There’s indeed some subtle orientation issue on the boundary ∂M , and in the
class, I’m being a little bit sloppy on this point, due to the limited time. You can
check it by figuring out the following Remarks (where we indeed did in class) 2.8,
2.9, 2.10 by yourself:

Remark 2.8. Suppose that I is a compact connected oriented 1-manifold-with-
boundary. (Simply put, think about a closed interval [a, b].) The Stokes’ Theorem
on I is the Fundamental Theorem of Calculus.

Remark 2.9. Suppose that R is a bounded region in R2. Then the Stokes’ Theorem
on R is the Green’s Theorem.

Remark 2.10. Suppose that D is a bounded domain in R3 with boundary surface
S = ∂E. Then the Stokes’ Theorem on E is the Divergence Theorem.

Remark 2.11. By doing the above exercises, we may have realized that the ge-
ometry meaning of a differential form is an oriented volume element. When doing
integration over a manifold of the correct dimension, the integration gives the mea-
surement of the manifold in terms if the oriented volume element.
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3. Smooth Manifolds (you may skip detais of this part when first
reading)

Everyone in our class has some feeling about topological spaces. But mathemat-
ics treatment needs to deal with it in full generality. We refer to Hitchin’s note
page 10 for the notion of a ”topological structure,” ”Hausdorff” and ”continuity,
homeomorphism.” Once we know these concepts, we have the following, which can
be found in any standard book on smooth manifolds, for example, Guillemin and
Pollack [GP74]:

In mathematics, a manifold is a topological space that locally resembles Eu-
clidean space near each point.

Definition 3.1 (n-dim Topological Manifold). An n-dimensional topological
manifold N , is a Hausdorff topological space (N , τN ) which is locally homeomor-
phic to the Euclidean space Rn. This means that any point P ∈ N is contained in
some neighborhood VP ⊆ N , homeomorphic to a domain U = φ(VP ) ⊆ Rn of the
Euclidean space.

Thus when N is an n-dim. topological manifold, we can find in N a system
of open sets Vi numbered by finitely (or infinitely) many indices i and a system
of homeomorphisms φi : Vi → φ(Vi) ≡ Ui ⊆ Rn of the open sets Vi on the
open domains Ui. The system of the open sets {Vi} must cover the space N i.e.
N =

⋃
i Vi and the domains Ui may, in general, intersect each other.

Definition 3.2 (local chart). If N is a topological manifold, any pair (V, φ) will be
called a local chart, where V is an open subset of N and φ : V → U ≡ φ(V ) ⊆ Rn
an homeomorphism onto an open domain U of Rn

Suppose that (Uα, ϕα) and (Uβ , ϕβ) are two charts for a manifold M such that
Uα ∩ Uβ is non-empty. The transition map τα,β : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ) is
the map defined by τα,β = ϕβ ◦ ϕ−1α .

Figure 1. transition map, picture taken from Wikipedia



6 JUN LI

Definition 3.3 (smooth manifold). If N is a topological manifold, if there exists
a atlas (Uα, ϕα) where all the transition maps are diffeomorphism between Rn, then
N with charts (Uα, ϕα) is called a smooth manifold.

And we have the following (slight different phrased but equivalent as we talked
in class) theorem:

Theorem 3.4 (partition of unity). On a smooth manifold N with charts
(Uα, ϕα) there exist a smooth partition of unity. Here a partition of unity on N
is a collection gi (i ∈ I where I is a possibly uncountable index set)of smooth real
valued functions on X such that (1) 0 ≤ gi ≤ 1 for each i; (2) every x ∈ N has a
neighborhood U such that U ∩{gi 6= 0) = ∅ for all but finitely many gi; (3) for each
x ∈ N ∑

i

gi(x) = 1.

Remark 3.5. A partition of unity can be used to patch together objects defined
locally. For instance, we can extend the differential forms in Rn, a metric of Rn,
or a vector field to any smooth manifold.

4. Riemannian Geometry in Arbitrary (finite) Dimensions

We indeed covered basic Riemannian Geometry in dimension 2, where we can
regard surface as a dim-2 manifold and the 1st fundamental form as a Riemannian
metric. Now we assume people know a bit basics of a smooth manifold of dimension
n, denoted by Mn for details, see section 3. Throughout the section, we use the
coordinate-dependent approach to define everything. The advantage is this way is
the simplest and mostly same as the the surface theory, and the drawback is a bit
loss of generality, see Remark 4.8.

Through out this section the setting is that there’s a local chart Rn → Np ⊂M,
where p ∈ Np is an open neighborhood of any point p ∈ Mn. Then we choose
orthonormal coordinates in Rn as (x1, · · ·xn), where the unit tangent vector fields

on the xi curve in Mn is denoted as ~Xi. Then the tangent space TpM
nat p is

spanned by the vectors { ~X1, · · · , ~Xn} at point p. Note that there’s coordinate-free
approach of defining the tangent space, but it’s too complicated to introduce here.
We refer to do Carmo’s Riemannian Geometry [CF92] for details.

Definition 4.1 (Metric). At every point p we define an bilinear form < −,− >

on TpM
n and denote gij =< ~Xi, ~Xj > . Then at every point p we have a n × n

symmetric matrix. If the matrix (gij)n×n is smooth on Mn, which means every
entry gij as a function on Mn is smooth, then (gij)n×n is called a (smooth) metric
on Mn. When the matrix (gij)n×n is positive definite, it is called a Riemannian
metric. We also denote (gij)n×n as the inverse of the matrix (gij)n×n. i.e.

(gij)n×n = (gij)
−1
n×n.

On a surface, (gij)2×2 = I, namely,

g11 = E, g12 = F, g21 = F, g22 = G.

A metric is a smooth 2-tensor field on a manifold. Simply put, a 2-tensor is a
matrix, where input 2 vectors output a scalar. A 2-tensor field on Mn just means
on every point there’s a 2-tensor, namely a matrix (gij)n×n. Strictly speaking, we
defined a (0, 2)-tensor field, see Remark 4.8.
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As we did in the surface theory, we need a notion of derivative in the curved
space, such that the derivative of any tangential vector field is again a tangential
vector field. Throughout this section we follow Einstein summation convention if
any upper index appears to be the same as a lower index, that means we are taking
sum on that index. For example, aibick :=

∑n
i=1 a

ibick, where i takes value through
1 to n and k is a fixed index.

Definition 4.2 (Covariant Derivative). We again take the coordinate-depend
approach, and only define Covariant Derivative along coordinate lines {xi} or vector

fields ~Xj . For any i, j the covariant derivative of ~Xj along the {xi} curve is defined
as

∇i ~Xj := Γkij ~Xk =

n∑
k=1

Γkij ~Xk.

Here Γkij is the Christofell symbol, given by

Γkij =
1

2
gkl(∂igjl + ∂jgil − ∂lgij).

The above definition may looks complicated, however, we have already seen them
several times in class. On a surface, let i = 1, j = 2,

∇u ~Xv = Γ1
12
~X1 + Γ2

12
~X2.

And for the Christofell symbol, let i = 1, j = 2, k = 1, check the following agrees
with the book expression:

Γ1
12 =

1

2
(g11(Fu + Ev − Fu) + g12(Gu + Fv − Fv)) =

GEv − FGu
2(EG− F 2)

.

Note: The name “Covariant” comes from physics, means that the derivative
behaves well (covariant) under change of coordinate. We also have the notion of
contravariant, where we will not go into details and anyone who’s interested can
look at Wikipedia or talk to me in person.

A bit different (but closely related, see Remark 4.6), we have many different
curvatures in higher dimensions, where we address 3 of them here: Riemann
curvature tensor, Ricci curvature tensor, and the scalar curvature.

Definition 4.3 (Riemann curvature tensor). We again take the coordinate-
depend approach, and only define Riemann curvature tensor for coordinate vector

fields ~Xj . Riemann curvature tensor Rmijk is a 4-tensor (strictly speaking, a (0,4)-

tensor), namely, for any i, j, k,m the Rmijk is a linear operation taking 4 tangent

vectors ~Xi, ~Xj , ~Xk, ~Xm as input and a scalar Rmijk as output. Here’s the details:

firstly it measure how much the tangential derivatives fail to commute (compare
this with Theorem 2.6):

R( ~Xi, ~Xj) ~Xk := (∇j∇i −∇i∇j) ~Xk.

Note this is a tangential derivative, which should be a linear combination of the

basis of tangent vectors, and we define Rmijk to be the coefficient of ~Xm in this

linear combination (we saw this in class when proving Gauss Theorema
Egregium and Gauss-Bonnet):

(∇j∇i −∇i∇j) ~Xk = Rmijk ~Xm.
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Also, we have another 4-tensor Rijkl, defined by

Rijkl = R( ~Xi, ~Xj) ~Xk · ~Xl = Rmijkgml,

which is very useful.

Note that the Rmijk and Rijkl are anti-symmetric on the index pair (i, j) or (k, l).
This can be easily checked using our HW5 question 4:

d

dt
< ~v(t), ~w(t) >=< ∇γv(t), ~w(t) > + < ~v(t),∇γw(t) > .

Definition 4.4 (Ricci curvature tensor). Ricci curvature tensor Rik is a 2-
tensor (strictly speaking, a (0,2)-tensor), which is the matrix trace of Rijkl over
indices j, l. Namely,

Rik := Rijklg
jl = Rjijk.

Note that taking the trace of a 4-tensor we get a 2-tensor(a matrix), and if we
further take the trace of a 2-tensor, we will get a 0-tensor(a scalar). Indeed the
scalar curvature is obtained in this way:

Definition 4.5 (Scalar curvature). The scalar curvature R is a scalar (0-tensor),
which is the trace of the Ricci curvature tensor Rij Namely,

R := Rijg
jl.

Remark 4.6. Suppose we have a surface S with first fundamental form IS , we
indeed covered the above curvatures in class:

• Riemann curvature tensor: By the anti-symmetry, the only non-zero tensor
on S is R1212. Indeed we saw this in Hitchin’s proof of Gauss’ Theorema
Egregium, where we amount to prove that

R1212 = KdetIS ,

where K is the Gaussian curvature of the surface S.
• Ricci curvature tensor: there are 4 of them and uniformly we have

Rij = Kgij .

More explicitly, if we write the intrinsic expression of Rij using definition
on the left-hand side, and the right-hand side is one of EK,FK,GK, this
is the Gauss equation.
• Scalar curvature is exactly twice of the Gaussian curvature, namely,

R = 2K.

Remark 4.7. This is indeed linear algebra (where they call multi-linear algebra).
We know if we have some linear space V, the collection of linear functions on V
form a linear space, which is isomorphic to V itself, called the dual space, and
denoted by V ∗. In general, a (p, q)-tensor T is a linear function

T : V ∗ × · · · × V ∗︸ ︷︷ ︸
p copies

×V × · · · × V︸ ︷︷ ︸
q copies

→ R.

Now come back to the question why we have (0,4) or (0,2) curvature tensors:
our tangent space TpM

n is the above linear space V, its dual is called the cotangent
space denoted by T ∗pM

n or simply V ∗. Our Riemannian curvature tensor takes 4
tangent vectors(which lives in TpM

n) linearly to a real number, and hence it is a
(0,4)-tensor. Similarly, Ricci is a (0,2)-tensor.
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Remark 4.8. • For any tangential vector fields ~X, ~Y , ~Z, people in general
define

R( ~X, ~Y )~Z := (∇ ~X∇~Y −∇~Y∇ ~X)~Z −∇[ ~X,~Y ]
~Z.

Here [, ] is the Lie bracket defined as

[
∑

ui ~Xi,
∑

vj ~Xj ] =
∑

ui∂i(v
j) ~Xj −

∑
vj∂j(u

i) ~Xi.

It measures how much the non-commutivity of two vector fields
∑
ui ~Xi and∑

vj ~Xj. And in our case the Lie brackets for coordinate vector fields are
zero.
• Different people use different sign conventions for Riemannian curvature

tensor. You might see some definition being the negative of our definition.
But more than 90% literature uses our sign convention.

(Sub-)Riemannian Geometry (including Minkowski geometry) becomes the core
part of modern mathematics after the 1900s, one important reason is the

Einstein field equations for general relativity:

(4) Rij −
1

2
gijR+ gijΛ =

8πG

c4
Tij .

The left side is about the geometry (Rij is the Ricci, R is the scalar curvature,
and gij is the Minkowski metric meaning that its signature is 1, 1, · · · ,−1 since time
coordinate is different from the space coordinate) of the universe and the right side
is the physics of the universe. Here’s what other terms mean: G is Newton’s
gravitational constant, c is the the speed of light, Λ is the cosmological constant,
Tij is the stress-energy tensor (which measures the matter/energy of spacetime).

This is a system of n × n equations, it is a partial differential equation of the
metric gij , since the left-hand side is all about gij and their derivatives. The
simplest case is the vacuum with the cosmological constant λ = 0, these equations
become Rij = 0, and manifolds with zero Ricci tensor is called a Ricci-flat manifold.
You may hear the name Calabi-Yau manifolds, and these are the most important
examples of Ricci-flat manifolds

Also, the topology of the Ricci-flat manifold or more generally, of a manifold with
given curvature condition, is a very important and interesting problem in modern
mathematics, see section 5.

5. Problems in Geometry/Topology and the Summary

Here are some key questions in the theory of topological/smooth manifold theory,
the answer to which is one of the great mathematical achievements in the 20th
century. We only give a list of question and known answers, for details see two
nicely written article by John Milnor [Mil15; Mil11]:

Question 5.1 (Are smooth structures Unique?). For a given topological man-
ifold N , is smooth structure unique on N? How many different smooth structures
can we find there?

People really address the question for the Euclidean space Rn and the sphere
Sn. The reason is if there are more than one smooth structures Rn, then any non-
compact n-dim manifold will have different smooth structures, simply by changing
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an open subset(same as Rn); and similarly if there are more than one smooth struc-
tures Rn, then any compact n-dim manifold will have different smooth structures,
simply by doing connect sum with Sn.

The answer for Rn is as follows:

• n = 1, 2, 3, there’s a unique smooth structure on Rn, this is essentially
known to Poincaré when he invented Topology around 1900.
• R4 is extremely hard, Donaldson-Freedman in 1982 proved that there’s

more than one smooth structure. Later, Taubes 1987 showed that there are
uncountably many smooth structures on R4. Donaldson won 1986 Fields
medal for this work.
• For Rn ≥ 5, Stallings 1961 showed that there’s a unique smooth structure.

The answer for Sn is as follows:

• n = 1, 2, there’s a unique smooth structure on Sn, this is also known to
Poincaré when he invented Topology around 1900.
• S3 is solved recently, by Perelman’s 2002 work, see the next question.
• For S4, this question is still open, see the next question.
• For Sn, n ≥ 5, John Milnor in 1956 discovered exotic smooth structures

(He won the 1962 Fields medal for this work). In the next 20 years people
fully understood smooth structures on high dimensional spheres, they form
a finite group.

Question 5.2 (How do we characterize a sphere, topologically and s-
moothly). Poincaré posed the following question, which he initially thought been
proved by himself but later found his proof being wrong: suppose Mn, n ≥ 2 is
a n−dimensional compact manifold, and every simple closed loop on Mn is con-
tractible (this is precise only in dimension n = 3, the precise assumption is “ Mn

is homotopic to the the sphere Sn”), then Mn is equivalent to the n−dimensional
sphere Sn.

People call this Poincaré Conjecture, and there are two versions:
•Topological: Mn is homeomorphic to the n−dimensional sphere Sn.
•Smooth: Mn is diffeomorphic to the n−dimensional sphere Sn.

Here is a bit note of a contractible loop: we know on S2 any simple closed loop
is contractible, meaning that it can be continuously deformed to a point. And the
following picture shows that on a genus 2 surface, there are many non-contractible
loops (a,b,c,d in the picture):

The answer for the Topological Poincaré Conjecture Yes:
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• n = 2, Poincaré observed this around 1900, and this is why he proposes
this conjecture.
• S3 is solved by Perelman’s 2002 work, using Ricci flow, which is a PDE

about the Ricci curvature as defined in Definition 4.4. He was awarded the
2006 Fields medal but later on, sadly, he declined it and left math.
• For S4, this question is done by Freedman in 1980s, where he won the 1986

Fields medal for this work.
• For Sn, n ≥ 5, Smale (he attended college and grad school here at Michigan)

in 1961 and 1962 proved this result using a very elegant method, which was
quite surprising because people thought higher dimensional questions are
harder. He won the 1966 Fields medal for this work.

The answer to the Smooth Poincaré Conjecture(there’s a bit overlap with smooth
structures on Sn):

• n = 2, there’s a unique smooth structure on S2, this is also known to
Poincaré and you can try to prove this by yourself
• S3 is solved also by Perelman’s 2002 work, he indeed proved Thurston’s

geometrization program, which can be thought as a 3-d analog of the clas-
sification of compact surfaces we learned.
• For S4, this question is still open, it is considered as one of the most difficult

math questions today. People even don’t know how to guess the answer.
Indeed there are some possible exotic S4’s given by the surgery called
“Gluck twists,” but nobody knows how to tell whether or not they are
standard, because of the lack of smooth invariants in dim=4.
• For Sn, n ≥ 5, essentially, smooth Poincaré is “almost” true since there’re

only finitely many different smooth structures (on a compact manifold of
dim≥ 5).

Question 5.3 (Are manifolds subsets of Euclidean space?). For a given
smooth manifold Mn, or a Riemannian manifold (Mn, g) where g is a Riemannian
metric, people ask whether it can be smoothly or even better, isometrically embedded
into some Euclidean space?

The answer to the embedding question is Yes for both settings:

• The smooth embedding: Whitney (1936) embedding theorem states
that any smooth real n-dimensional manifold (required also to be Hausdorff
and second-countable) can be smoothly embedded in the real 2n-space
(R2n), if n > 0. Note that 2n is the upper bound, and in our class, we
know that a compact orientable surface can be smoothly embedded into
R3, which is better than this bound.
• The Riemannian setting(note that this is much stronger than the smooth

setting): Nash (1956) embedding theorem: if Mn is a given n-
dimensional Riemannian manifold (analytic or of class Ck, 3 ≤ k ≤ ∞),
then there exists a number N (with N ≤ n(3n+ 11)/2 if Mn is a compact
manifold, or N ≤ n(n + 1)(3n + 11)/2 if Mn is a non-compact manifold),
such that Mn isometrically embedded into RN . Yes, this is the Nobel
laureate John Nash who is famous for Game Theory. But the mathematics
community considered this theorem as Nash’s most important achievement.

Let’s end with the last and most important question for our 433 class:
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Question 5.4 (Why manifold?). The answer to the previous question tells us
that manifold is just some subsets of some high dimensional Rn, why don’t we just
study Euclidean spaces instead of manifolds?

The answer is the following: theoretically yes, we can and we are studying subsets
of some very high dimensional Euclidean spaces. However, practically we have to
deal with the manifold because we live in a universe where we can only measure
from inside. This means what we know is just some metric on a manifold. Then
it is curial to develop some theory which tells us information of the manifold only
from the metric, i.e. the study of intrinsic property which only depends on the
metric. And this is the main idea of our course, and also of Riemannian Geometry.
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