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Abstract 

Objectives: Early detection of epidemics is one of the most challenging objectives for 

public health Surveillance worldwide. To date, a surge of research has been carried out in 

terms of statistical modeling of count data to detect abrupt changes in the disease incidence. 

However, most of them have ended in a number of complex formulas that are not easily usable 

except by a limited number of skilled programmers. Therefore, exploring methods that employ 

conceptually simple frameworks and require less advanced computations, still accurate in 

detecting outbreaks seems to be essential in public health practice. In the present study, 

we aimed at introducing a warning threshold for detecting the unexpected incidences of 

Tuberculosis (TB) using a Hidden Markov Model (HMM). 

Methods: we extracted the weekly counts of newly diagnosed patients with sputum 

smear-positive pulmonary TB from April 2005 to March 2011 nationwide. To detect 

unexpected incidences of the disease, two approaches: Serfling’s technique and HMM, 

were applied in presence/absence of linear, seasonal and autoregressive components. 

Parameters were estimated through the least squares error and Baum-Welch methods 

respectively. A Veterbi algorithm was also employed to decode state sequence of the 

disease in HMM. Models were subsequently evaluated in terms of goodness-of-fit, and 

their results were compared in detection of the disease phases. Then, multiple 

hypothetical thresholds were constructed based on the estimated models and the optimal 

one was revealed via ROC analysis. 

Results: Values of both adjusted coefficient of determination ( 2R~ ) and Bayesian 

Information criterion (BIC) reflect a better goodness-of-fit for Periodic Auto-regressive 

Hidden Markov model (PAHMM) ( 61323.BIC −=  and 7402 .R~ = ) than other applied models. 

Furthermore, according to the ROC curve analysis, higher amounts of Youden’s index 

and area under curve (0.96 and 0.98 respectively) were obtained by the warning threshold 

on the basis of Periodic Autoregressive Model (PARM).  

Conclusions: The warning threshold constructed based on the Periodic Autoregressive 

Model can be regarded as a useful alternative for HMM in detection of the weeks with 

unexpected incidence of TB. Therefore, it may be suggested for monitoring TB incidence 

data in the disease surveillance system. 

Keywords: Diseases surveillance, Warning threshold, Sputum smear-positive pulmonary 

Tuberculosis, Hidden Markov model, Serfling’s approach, Periodic autoregressive model. 
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Chapter 1 
Introduction 

 

Tuberculosis (TB) still poses a serious threat to global health, despite the significant 

developments in diagnosis and treatment of the disease over the past century (1, 2). TB 

currently ranks among the top ten mortality causes and undertakes 2.5% of the Global 

Burden of Disease. Nearly nine million new cases and two million deaths are annually 

reported due to TB (3-5). Multi-Drug-Resistant (MDR) TB and TB-HIV co-infecting 

over recent decades caused global control strategies to be failed (6-11).  

In Iran, after establishment of the National Tuberculosis Program in 1990, TB began 

to be well-controlled, and attributed mortality displayed a descending trend (12, 13). 

However, increasing the number of MDR-TB and being surrounded by high burden TB 

countries like Afghanistan, Pakistan and Iraq have doubled the obstacle toward the 

disease control (14-17). In 2012, there were totally 11,471 old and new cases with TB in 

Iran, of which 0.8% were MDR and 2.4% were HIV positive (18). 

TB surveillance and preventing further spread of the disease requires full 

understanding of the biological factors affecting TB, and also finding mathematical 

patterns explaining the mechanism of TB transmission through the community (19). 

Although TB is not recognized as an infection with rapid dynamics (the chance of 

getting infection per contact is low), the risk of transmission is higher from patients 

with sputum smear positive (SS+) (20). Therefore, regarding this assumption, it would 

be acceptable the fact that the number of persons getting infection over the next time 

period depends on the number of infectious cases at the current time period. Moreover, 

some studies have illustrated variable periods of peak seasonality of TB time series with 

various patterns in different countries. In particular, some of them have reported a 

higher incidence of the disease in the late winter to early spring in the sense that the 
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indoor activities in the cold weather is much more common than in a warm climate (21, 

22). 

Detection of epidemics in earlier stages is one of the most challenging objectives for 

public health surveillance worldwide (23, 24). Since two decades ago, traditional 

surveillance techniques were replaced by biosurveillance system with the purpose of 

reducing time delay to detect and report outbreaks (25). Biosurveillance provide early 

warning system of epidemics by monitoring the data typically consist of time series 

counts of incident cases of disease, gathered monthly, weekly, or more frequently (26).  

There has been already a surge of interest and research in using statistical methods 

for the early detection of outbreaks based on the routinely surveillance data. Regression 

techniques, time series analysis, statistical process control and Bayesian methods are 

some examples of the statistical method which have been used for monitoring the 

epidemiologic surveillance of infectious diseases (27). However, the majority of such 

models have ended in a number of complex formulas that are not easily usable except 

by a limited number of skilled programmers (28, 29). Therefore, exploring methods that 

employ conceptually simpler frameworks and require less advanced computations, still 

accurate in detecting outbreaks seems to be essential in public health practice. 

Whereas infectious diseases mostly lie into one of the two non-epidemic and epidemic 

phases (30), it seems using the concept of finite mixture model is preferred to fit models 

based on a unique distribution. The basic idea of using Hidden Markov Model (HMM) 

for monitoring the epidemiologic surveillance of infectious diseases was proposed by Le 

Strat and Carret in 1999 (31). They applied the model to the time series of flu-like 

disease incidence rates and poliomyelitis counts and demonstrated the ability of HMM 

in modeling the routinely diseases surveillance data. Nevertheless, it has been rarely 

applied in public health systems for the same purpose (32). Five years later, Toni M. 

Rath et al. indicated some problems and shortcomings in Strat’s approach and 

presented some modification to their models (33).  
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To date, the practical use of HMM has been proved in some infections such as Flu-

like diseases, Poliomyelitis (31), Malaria, Leprosy (34), nosocomial infections (29, 35), 

Hepatitis A and B (32, 36). However, we found no literature that uses this model in TB 

surveillance for the same purpose. In this study, HMM which seems to be an appropri-

ate tool in this issue will be used for monitoring the anomaly states of the weekly 

numbers of newly diagnosed cases with SS+. Then, we aim to explore an optimal 

warning threshold that can be used instead of HMM in the TB surveillance. This 

threshold was expected to be not only accurate in distinguishing between the disease 

phases, but also simple in concept and application. 
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Chapter 2 
Material and Methods 

 

2.1. Study area and data source 

Data required for this study were derived from the national TB surveillance program 

in Iran. We extracted the weekly time series of the number of new SS+ pulmonary TB 

cases detected between April 2005 and March 2011 throughout the country using TB 

register software (version 7.0). The first version of the software was released in 2005 in 

order to improve the quality of data and statistical reports resulting from the TB 

surveillance system of Iran (37).  

The diagnostic criterion of a new SS+ pulmonary TB case was based on the 

existence of one of the following conditions: (a) At least two initial sputum smear tests 

positive for Acid-Fast-Bacilli (AFB), or (b) One sputum smear test positive for AFB 

plus radiographic diagnosis of active pulmonary TB, or (c) One sputum smear positive 

for AFB plus sputum culture-positive for Mycobacterium TB. Currently, the detailed 

information of the  new patients with any type of the disease is gathered at TB register 

units located in any districts across the country and reported quarterly to the 

“Administration of Tuberculosis and Leprosy Control” of Ministry of Health and 

Medical Education (12). Figure 1 depicts the time series of the weekly counts of SS+ 

TB patients over the six-year period 2005-2011. 
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Fig. 1. Time series of the weekly counts of SS+ pulmonary TB in Iran over 2005-2011 

 

2.2. Detecting state sequence of the disease 

Two distinct approaches were employed to detect the weeks with unexpected phase 

of the disease: (a) Serfling’s technique and (b) Hidden Markov Model.  

2.2.1. Serfling’s technique 

In the mid-1960s, Surfling developed a Periodic Regression Model (PRM) to monitor 

and detect the anomaly activities of Pneumonia and Influenza based on the weekly 

excess mortality data attributed to the disease. The model characterized the historical 

sequence of the disease time series by combination of a linear term with a trigonometric 

function describing the seasonal trend (38). This idea originated from the Fourier series 

and can be formulated with two terms as a multiple linear regression: 

tt )
r

tcos()
r

tsin(ty επβπβββ ++++=
22

3210
 

Where yt denotes observed weekly Pneumonia and Influenza deaths at week t for five 

years period; βj ;  j=0,1,2,3 are regression coefficients, as β0 and β1 describe the linear 
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part and β2 and β3 belong to the seasonal part; r is the time duration of fluctuations; 

and εt is an independent normally distributed error term with a constant variance.  

In fact, the Serfling method followed a two-step procedure. The first step was to 

determine a baseline describing the expected pattern of the historical disease excess 

mortality. Since the baseline model estimated the non-epidemic phase of the disease, 

weeks that typically showed high disease incidence were excluded to avoid 

overestimating the parameters. The main problem in Serfling approach was to 

determine the epidemic points in this stage. As a criterion, Pelat et al. (2007) proposed 

excluding the 20% highest values of data to account for past outbreaks in modeling the 

baseline (39). Then the estimated baseline was used to predict future time series of the 

expected disease rates. In the second step, an epidemic threshold was obtained by 

calculating an upper percentile for the prediction distribution according to the baseline. 

Consequently, an outbreak was detected while an observation exceeds the predefined 

threshold (27). Moreover, an automated web-based application of Serfling model has 

been constructed by Pelat et al. for the retrospective and prospective surveillance of 

diseases (39).  

In our study, we initially fitted the mentioned Model (PRM) on the weekly incidence 

data, assuming r=52 due to our weekly data (there are about 52 weeks in a year). In 

order to capture the effect of the disease incidence in previous weeks, we also added a 

first-order autoregressive term to our model (PARM). Then, estimation of the 

parameters was done by use of a least squares error method for both models. 

Eventually, an upper bound of 95% confidence interval for the prediction ( tŷ ) was 

computed and assigned as the alarm threshold for detecting the disease unexpected 

incidences. It means that any week whose incidence exceeded the threshold an 

unexpected state was flagged.  
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2.2.2. Hidden Markov Model 

HMM is a statistical tool to fit a mixture distribution on a sequence of dependent 

data. The application of the models have been recognized in many areas, including 

automatic speech recognition, electrocardiographic signal analysis, epileptic seizure 

frequency analysis, DNA sequence analysis, the modeling of neuron firing and 

meteorology (31). An HMM consists of a bivariate discrete time process like {St ,Yt}t≥1, 

where {St} is an unobservable Markov chain and, conditional on {St}, {Yt} is a sequence 

of independent random variables such that the conditional distribution of Yt only 

depends on St . The sequences {St} and {Yt} are often called state sequence and observed 

sequence, respectively (40). The dependence structure of a HMM can be represented by 

a graphical model as in Figure 2. 

 
Fig. 2. Graphical representation of the dependence structure of two sequences in a hidden Markov 

Let St (t=1,2,…,n) represents a first order Markov chain which takes on one of the m 

values 1,2,…,m by a transition matrix Γ=(αij)m×m and initial probability distribution 

π=(π1,…, πm)T, where 

αij = P(St=j|St-1=i)   i, j = 1,2,…,m;   t = 1,2,…,n 

πi = P(S1=i)   i = 1,2,…,m 

Moreover, the conditional distribution of Yt given St=i follows a parametric form fi(yt;θi) 

where θi is a vector of unknown parameters. Fitting a HMM to the data requires 

estimation of the parameters including the initial and transition probabilities and 

y
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distribution parameters. There are mainly two approaches to estimate the parameters in 

the HMM literatures. The first can be achieved by a maximum likelihood technique 

using a modified EM-algorithm, known as the Baum-Welch method. The other is 

Bayesian framework which assumes the parameters follow a prior distribution and then 

updates them through a Monte Carlo Markov Chain (MCMC) technique. Consequently, 

after the estimation of parameters, the most likely sequence of hidden states that 

produced the data should be decoded by use of the Viterbi algorithm. The following 

section explains how we used HMMs to detect unusual states of sputum smear- positive 

pulmonary TB in Iran. 

In the current study, a two-state HMM was applied to the incidence data sequence. 

We initially described }Y{ t
 for each t=1,2,…,n denoting the counts of SS+ TB patients 

observed over week t. We also supposed }S{ t  to be a two-state Morkov chain that 

takes values 1 and 2 corresponding to usual and unusual phases of the disease in week t, 

respectively. Moreover, П=(π1, π2)T and Γ=(αij)2×2 were assumed to be the initial 

probabilities of the state sequence and transition probabilities matrix between the 

disease states respectively. These elements are defined as below: 

πi = P (St=i)   i = 1, 2;   t = 1, 2,…, n 

αij = P (St=j|St-1=i)   i, j = 1, 2;   t = 1, 2,…, n 

Figure 3 illustrates a better representation for the first chain of the model structure and 

related probabilities applied to the SS+ pulmonary TB data. 

 
Fig. 3. Graphical representation of the first chain of HMM structure and related probabilities applied to the SS+ 

pulmonary TB data 
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Since the data were considered as discrete counts, a mixture of Poisson-Poisson 

distribution was supposed to fit the data. So, the conditional distribution of  

i=S|y=Y tt  ;  21,i =  was defined as below: 

21,i/y!λe=i)=S|y=P(Y y
it

λ
tt

it =−
 

To determine the expected case load of the disease in each phase ( 21,iit =λ ), 

several patterns were considered. Firstly, itλ  was assumed to be consonant over time 

through. So we applied a Simple Hidden Markov Model (SHMM). Next, to control 

linear and seasonal effects of the disease incidence, a Periodic Regression (PHMM) was 

utilized to describe the disease case load as below: 

)2sin()2cos()1|( 32101 r
t

r
ttSYE ttt

πβπβββλ +++===  

)2sin(3)2cos()()2|( 2102 r
t

r
ttSYE Uttt

πβπββββλ ++++===  

Where 0β  ، 1β  ، 2β  and 3β  are the model coefficients, and Uβ  controls abrupt changes 

in the disease incidence when moves from usual state to unusual state. Eventually, in 

order to capture the effect of the disease incidence in previous weeks, again, a first-order 

autoregressive term was taken into account, with an exception that all parameters were 

estimated independently in each phases. We defined them as follows: 

ttttt ytttSYE εβ
π

β
π

βββλ +++++=== −114131211101 )
52

2(sin)
52

2(cos)1|(  

ttttt ytttSYE εβ
π

β
π

βββλ +++++=== −124232221202 )
52

2(sin)
52

2(cos)2|(  

In the current study, we exploited a modified EM-algorithm so-called Baum-Weltch 

to calculate the Maximum likelihood estimation of the parameters in HMM. We also 

computed adjusted coefficient of determination ( 2R~ ) and Bayesian Information Criterion 

(BIC) as two quantities for evaluating models’ goodness-of-fit. Then, the model with the 
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highest values of both criteria was chosen to determine the appropriate warning 

threshold in the next section. 

2.3. Exploring an optimal warning threshold  

To choose an appropriate warning threshold for detecting unexpected states of SS+ 

TB, first, through a Veterbi algorithm, the most likely state sequence of the disease 

states was uncovered, according to the best model selected in the former stage. Next, 

several hypothetical thresholds were built based on the estimated models. To begin, we 

initially assumed a time-independent warning threshold for the disease counts. In this 

case, different values within the range of observations were examined as threshold. 

Then, we calculated sensitivity and specificity measures for each value and plotted the 

ROC curve considering the pre-determined state sequence as reference. Then, a 

Youden’s Index (YI) (40) was employed to determine the optimal value. Besides, in 

order to involve the linear, seasonal and autoregressive terms into our threshold, we 

exploited parameters estimation of both Serfling’s model and HMM in the usual disease 

phase. Then, an optimal value for the intercept of each model was determined by use of 

YI. For instance, in PARHMM we defined the threshold for each t as below: 

ttytttC εβπβπββ +++++ −114131211
ˆ)

52
2(sinˆ)

52
2(cosˆˆ  

Where 4,3,2,1;ˆ
1 =iiβ  were parameters estimations, and C was determined in a way 

to maximize YI.  At the end, in order to compare the thresholds and evaluate their 

accuracy in detection of unexpected states of the disease, we used both YI and Area 

Under Curve (AUC). We also used the splitting technique to assess how precise the 

threshold is in predicting future events by separating one third of the data sequence as 

new observations. All computations were implemented in R version 2.14.1 (Free GNU 

license), and the source code is available on request. 
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Chapter 3 
Results 

 

3.1. Descriptive analysis 

Time series of the weekly counts of SS+ TB comprised of 312 weeks from 2005 to 

2011. The minimum and maximum number of patients were reported 60 (Oct. 2005) 

and 168 (Mar. 2011), respectively. Moreover, the mean and standard error were 

obtained 97 and 20 new cases per week during these six years. Table 1 show the 

monthly number of new SS+ cases and associated incidence rates during six-year period 

2005-2011. The population estimations of Iran were obtained from the two nationwide 

censuses 1996 and 2006 for each year.     

Table 1. the number of new SS+ cases and associated incidence rates for each of the six periods 2005-
2011 

Period* 

Number 
of SS+ 
cases 

Population 
size 

Incidence 
rates per 
100,000 

2005-2006 4,561 69,390,405 6.57 
2006-2007 4,811 70,495,782 6.82 
2007-2008 4,677 71,532,062 6.54 
2008-2009 4,880 72,583,586 6.72 
2009-2010 5,086 73,650,566 6.91 
2010-2011 5,171 74,733,230 6.92 

* Each period starts from the beginning of April to 
the end of the next March. 

 

3.2. Results of Surfling’s technique  

Using Serfling’s approach, the estimation of PRM and PARM were obtained 

respectively as below: 

)
52

2(sin84.7)
52

2(cos22.1107.067.85ˆ tttyt
ππ

+++=  

1230
52

2745
52

21590502366 −++++= tt y.)t(sin.)t(cos.t..ŷ ππ  

Fisher’s test indicated that both models were statistically significant (P-value<0.0001).  
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3.3. Results of Hidden Markov Model  

Table 2 also shows parameters estimation, initial and transition probabilities for both 

usual and unusual phases of the disease in HMM approach. 

Table 2. Parameters estimation of both phases of the disease obtained by HMM approach. 

Model 
Disease 
phase 

Initial 
probably 

Transition 
probability 

 
Model parameters 

Usual Unusual  β0 β1 β2 β3 β4 

SHMMa Usual 1 0.79 0.21  82.45     
Unusual 0 0.21 0.79  111.24     

PHMMb Usual 1 0.70 0.30  76.82 0.07 7.15 7.42  
Unusual 0 0.45 0.55  100.26 0.07 7.15 7.42  

PARHMMc 
Usual 1 0.68 0.32  51.10 0.04 7.62 3.71 0.32 

Unusual 0 0.69 0.31  90.52 0.08 16.70 4.99 0.09 
a Simple Hidden Markov Model 
b Periodic Hidden Markov Model 
c Periodic Autoregressive Hidden Markov Model 

 

Results for seeking the best model have been summarized in Table 3. Comparison of 

the goodness-of-fit (adjusted-R2 and BIC) revealed that among the estimated models 

PARHMM was the best. Since values of both criteria were greater for PARHMM than 

the other models. Table 3 also contains the number of weeks detected as unexpected 

phase of the disease which is least for PARHMM (94 weeks). Figures number 4, 5 and 6 

depict the fitted SHMM, PHMM and PARHMM respectively on the TB incidence time 

series in which points represents weeks with unexpected incidences. Table 4 compares 

the rest of models with PARHMM in detecting unusual disease states by the use of 

False Alarm Rate (FAR). 

Table 3. Model evaluation and goodness-of-fit for all models fitted on the data 

Model No. Unusual 
states 

No. 
parameters 

R-
squared 

Adjusted 
R-squared 

Log-
likelihood 

BIC 

PRMa 124 4 0.33 0.32 -1308.42 -1319.91 
PARMb 113 5 0.36 0.36 -1294.34 -1308.69 
SHMM 152 5 0.56 0.55 -1375.26 -1386.75 
PHMM 120 8 0.72 0.72 -1316.56 -1336.66 

PARHMM 94 13 0.75 0.74 -1281.56 -1325.58 
a Periodic Regression Model 
b Periodic Autoregressive Model 
c Simple Hidden Markov Model 
d Periodic Hidden Markov Model 
e Periodic Autoregressive Hidden Markov Model 
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Table 4. Comparison of the accuracy of fitted models with PARHMM in detection of unusual phases of the disease 

False Alarm Rate 
Model Both phases Unusual phase Normal phase 

0.12 0.02 0.30 PRM 
0.07 0.00 0.19 PARM 
0.34 0.24 0.37 SHMM 
0.15 0.10 0.17 PHMM 

 
 
 

 
Fig. 4. Unusual states of the weekly SS+ data in Iran over 2005-2011, obtained by applying by Viterbi algorithm in 

HMM without seasonality 
 

 

 
Fig. 5. Unusual states of the weekly SS+ data in Iran over 2005-2011, obtained by applying by Viterbi algorithm in HMM with 

seasonality 
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Fig. 6. Estimation of PARHMM and detected weeks with unexpected phase of SS+ Pulmonary TB 

 

3.4. Evaluation of Hypothetical threshold 

Figure 7 exhibits the sensitivity and specificity plots as well as ROC curves for each 

hypothetical threshold. Besides, optimal values of the intercept, according to YI, have 

been shown in each plot. As ROC curve shows, highest amount of AUC belongs to the 

threshold that is based on the PARM. Table 5 draws the values of intercept, AUR, 

sensitivity, specificity and YI to compare the thresholds’ accuracy in differentiating 

between the disease phases. Higher values of both AUC and YI (AUC=0.97; YI=0.96) 

demonstrate higher degrees of accuracy for the threshold based on PRM. 

Table 5. Comparison of the hypothetical threshold in detection of unusual phases of the disease 

Youden’s 
Index 

Specificity Sensitivity AUC Intercept Threshold 

0.57 0.80 0.77 0.77 102 Time-independent 
0.85 0.95 0.90 0.89 93.25 Based on PRM 
0.96 0.97 0.99 0.97 72.67 Based on PARM 
0.82 0.92 0.90 0.85 92.61 Based on PHMM 
0.94 0.97 0.97 0.96 64.52 Based on PARHMM 

 

The result of splitting method has been depicted in Figure 4. The optimal threshold 

for the first two third of the data sequence has been marked by green color. The red 

segment shows the threshold’s prediction for the next one third of the data. In addition, 

values of sensitivity and specificity were estimated 1 and 0.96 for the predicted 

threshold in detecting the disease states. 
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(b) 

 

(a) 

 
(d) 

 

(c) 

 
(f) 

 

(e) 

 
Fig. 7. Sensitivity and Specificity quantities in determining optimal cut-offs based on (a) time-independent, (b) PRM, 

(c) PARM, (d) PHMM and (e) PARHMM and Figure (f) depicts associated ROC curves  
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Fig. 8. Evaluating prediction accuracy of the optimal warning threshold using splitting technique  
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Chapter 4 
Discussion 

 

In the present study, we initially made an attempt to develop two different 

approaches: Serfling’s method and HMM, in the presence/absence of linear, seasonal 

and also autoregressive components, with the aim of monitoring the weekly SS+ TB 

incidence data in Iran. We then took steps towards exploring an optimal warning 

threshold in a way to be an appropriate substitution for HMM in discovering 

unexpected states of the disease. To our knowledge, this is the first effort to find a 

warning threshold for the TB surveillance data by means of such a model. Our study 

generally showed that PARHMM had a better goodness of fit ( 61323.BIC −=  and 

7402 .R~ = ) compared to rest of the models. Furthermore, among the examined 

hypothetical thresholds, that was constructed based on PARM had more accuracy in 

detection of the disease unexpected incidences compared to PARHMM. This optimal 

threshold was obtained as below: 

123.0)
52

2(sin74.5)
52

2(cos15.905.067.72ˆ −++++= tt yttty ππ
 

As shown in Table 5, values of both YI (0.96) and AUC (0.97) reflect a higher 

performance for the above threshold in monitoring the data at hand. According to this 

threshold, only 7 weeks out of 312 observations were incorrectly recognized in the 

unexpected phase of the disease compared to PARHMM. Thus, it can be a satisfactory 

alternative to HMM in the surveillance of TB.  

One brilliant advantage of using such a threshold is that, unlike HMM, we are able 

to forecast it for the future time periods, i.e. we do not need to wait for the incidence to 

be observed and then apply a model to the data. To make sure of the predictive 

capabilities of this threshold, we utilized the splitting technique. As depicted in Figure 
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8, surprisingly, the predicted threshold for the last one third of the data sequence was 

able to determine the unexpected states of the disease perfectly (Sen=1). Therefore, we 

can safely apply the recommended threshold in the surveillance of TB not only for the 

current time, but for the future as well.   

In the present research, we applied a two-state HMM with linear and seasonal trends 

on the weekly TB incidence data and showed that this model could effectively 

differentiate between usual and unusual phases of the disease. In addition, an 

autoregressive term of order one was also added to the model in both Serfling’s method 

and HHM to control the influence of the disease incidence in previous weeks (31). There 

was also another change in the HMM that we estimated the model parameters 

independently in each phases of the disease. Although the number of parameters 

increased from 8 to 13, values of both adjusted-R2 and BIC increased considerably 

relative to PHMM. Additionally, the number of unusual states of the disease detected 

by PARHMM substantially reduced compared to PHMM. This also witnessed the 

higher flexibility of PARHMM in controlling regular fluctuations. 

In addition, our findings demonstrated that adding an autoregressive term to the 

periodic regression formula in the Serfling’s approach significantly increases the 

goodness-of-fit of the model. In Table 3 the accuracy of the examined models of this 

study were compared to PARHMM state sequence through the False Alarm Rate. As 

illustrated, a higher degree of accuracy was obtained for PARM in detection of the 

disease states (especially unusual phase) compared to other models (FAR=0.07). As a 

matter of fact, it is expected that this model shows a better performance as a warning 

threshold in monitoring the disease counts in the second part of the analysis. PHMM, 

PHM and SHMM took also other places respectively in accuracy. 

In the present study, we took the classical approach to estimate the parameters in 

HMM using a maximum likelihood method (29). This makes us unable to draw 

inference about parameters or build confidence intervals. Bayesian approach is the other 

alternative which initially assumes a prior distribution for the model’s parameter and 
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then tries to update it given the observations. As a privilege, Bayesian technique 

enables us to draw any inference or make confidence intervals (32, 42, 43). We also 

examined higher orders of autoregressive term in modeling the case load of the disease 

in HMM, but not more significant result was achieved.  

The use of count data in this research put restriction on choice of the probability 

distribution (36). Since Poisson distribution is often used for the rare events, the 

likelihood in HMM approach presented very small values due to amounts of 

observations. One way to overcome this problem is to use a Poisson regression 

framework by applying a log link function to the normal regression formula in both 

PARM and PARHMM (44, 45). Although this might contribute to a better fitness, it 

adds to complexity of the models and subsequent thresholds built on their basis. 

Utilizing weekly incidence rates instead of disease counts offers another way to address 

this issue. This provides us with a wider range of continuous distribution, for instance 

Gaussian or exponential distributions (33). This can be defined as a new project for 

prospective researchers to apply similar approach presented in this study on the time 

series of the weekly or even monthly TB incidence rates and then, find an optimal 

threshold for monitoring the disease rates using ROC curve analysis. 

By establishment of the national TB registry program, a huge database containing 

invaluable information on the disease and relevant risk factors has been created in the 

country. Undoubtedly, analyzing and interpreting such data can effectively help health 

providers and policy-makers with taking timely actions and strategies to control this 

deadly epidemic. Authors of the current article strongly believe that statisticians should 

work more than ever, on modeling these kinds of data in exploring earlier signals for 

coming outbreaks. This provides unique opportunities for them to put theories into 

practice and support governors in their critical decisions.    
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