

ASCoT : *The Official Release* A Web-Based Flight Software Estimation Tool

Jairus Hihn, Elinor Huntington, Alex Lumnah, Michael

Saing, Tom Youmans,

Systems Analysis, Modeling & Architecture Jet Propulsion Laboratory, California Institute of Technology

James Johnson

Strategic Investment Division, Office of the Chief Financial Officer National Aeronautics and Space Administration

August 29-31, 2017 2017 NASA Cost Symposium NASA HQ

- Many individuals have contributed or assisted with this work:
 - North Carolina State University: Dr. Tim Menzies and George Mathew,
 Original research that made it all possible
 - JHU APL: Nicole Powers-Krepps, Sally Whitley, Meagan Hahn, Christian Patton
 - NASA GRC: Elizabeth (Betsy) Turnbull, Chris Blake, Tom Parkey, Bob Sefcik
 - NASA HQ: Cris Guidi, Charley Hunt, Doug Comstock, Eric Plumer
 - NASA GSFC: Stephen Shinn, Tamra Goldstein
 - NASA ARC: Tommy Paine
 - Special thanks to Julie McAffee and Mike Blandford of ONCE team
- Contact:
 - Dr. Jairus Hihn, jairus.m.hihn@jpl.nasa.gov
 - James K. Johnson, james.k.johnson@nasa.gov

Strategic Investment Division

- ASCoT is the NASA Analogy Software Cost Tool
 - ASCoT has been under development for 3 years based on 10 years of research
 - The purpose of ASCoT is to
 - Supplement current estimation capabilities
 - Be effective in the very early lifecycle when our knowledge is fuzzy
 - uses high level systems information (Symbolic Data)
 - Be usable by Cost Estimators, Software Engineers and Systems Engineers
 - Methodology handles
 - small sample sizes and noisy data
 - Previous talks and papers described the research approach and activities
 - ICEAA 2014, 2015
 - NASA Cost Symposium 2014, 2015, 2016
 - IEEE Aerospace 2016, 2017, 2018 (forthcoming)
 - Numerous research publications in IEEE Software, lead by Dr. Tim Menzies et.al.

Reminder: What We Learned So Far

Strategic Investment Division

- There are a variety of models whose performance are hard to distinguish (given currently available data) but some models are better than others
- If one has sufficient data to run COCOMO or a comparable parametric model then the best model is the parametric model
- When insufficient information exists then a model using only system parameters can be used to estimate software costs with 'acceptable' reduction in accuracy. The main weakness is the possibility of occasional very large estimation errors which the parametric model does not exhibit.
- Use MRE to supplement standard statistical evaluation metrics
- Use median over average when possible
- While a nearest neighbor method performs as well as clustering models based on MMRE, clustering handles outliers better and provides a structured model that supports cost analysis and not just prediction

Major Changes to ASCoT

Strategic Investment Division

- Added Nearest Neighbor (KNN) and COCOMO II
- More and Improved Mission Data
- Improved Input Parameters
 - Redefined mission type into two parameters destination and a new mission type parameter to improve specificity
 - Removed lines of code
 - even as a categorical parameter it can be difficult for people to assess, especially those with limited software experience
 - Removed Secondary Element
- Changed Clustering algorithm
 - Based on extensive analysis of four different clustering methods
- More extensive evaluation criteria
 - MRE, cluster stability, effort variation
- ASCoT almost runs on ONCE as a web-based tool !!
 - 1 last problem

"ASCoT" Key Estimation/Analysis Components

Strategic Investment Division

- Cluster & Regression Analysis components listed rely on high level Mission Descriptors such as # of Instruments and Mission Type
- COCOMO II is a reproduction and uses traditional inputs
 - Will be linked to Analogy Cluster Model in future release

- Where the data came from
 - CADRe
 - NASA 93 Historical NASA data originally collected for ISS (1985-1990) and extended for NASA IV&V (2004-2007)
 - Contributed Center level data
 - NASA Software Inventory
 - Project websites and other sources for system level information if not available in CADRe

Strategic Investment Division

Total of 51 missions with data

 47 can be used in at least 1 of the estimation models

Missions by Destination

- Earth 23
- Asteroids/Comets 7
- Inner Planets– 17
- Outer Planets 4

New Missions Added:

- LADEE
- MMS
- Solar Probe Plus

Earth	Asteroids/Com	Inner	Outer
Van Allen Probe	DS1	Mars Odyssey	GLL
000	Stardust	Genesis	JUNO
SDO	Deep Impact	MRO	New Horizons
SMAP	OSIRIS REX	Maven	Cassini
GPM Core	Dawn	Messenger	
NuStar	NEAR	Solar Probe Plus	
GEMS	Contour	LRO	
GLORY		Grail	
GOES-R		LCROSS	
GEOTAIL		LADEE	
EO1		Kepler	
Aqua		Stereo	
GLAST		MPF	
NOAA-N-Prime		MER	
NPP		MSL	
LDCM		Phoenix	
RHESSI		Insight	
TIMED			
IRIS			
MMS			
HST			
GRO			
WISE			

• Effort, Lines of Code and Productivity by Destination

Destination	# of Records	Effort (N	Months)	Logical Delievered LOC		
	# OF RECORDS	Median	S.D.	Median	S.D.	
Astreroids/Comet	7	546	373	143,000	35,189	
Earth	23	499	466	62,000	39,986	
Inner	17	664	435	122,000	133,765	
Outer	4	620	411	54,000	21,633	

• Number of Deployable and Instruments by Destination

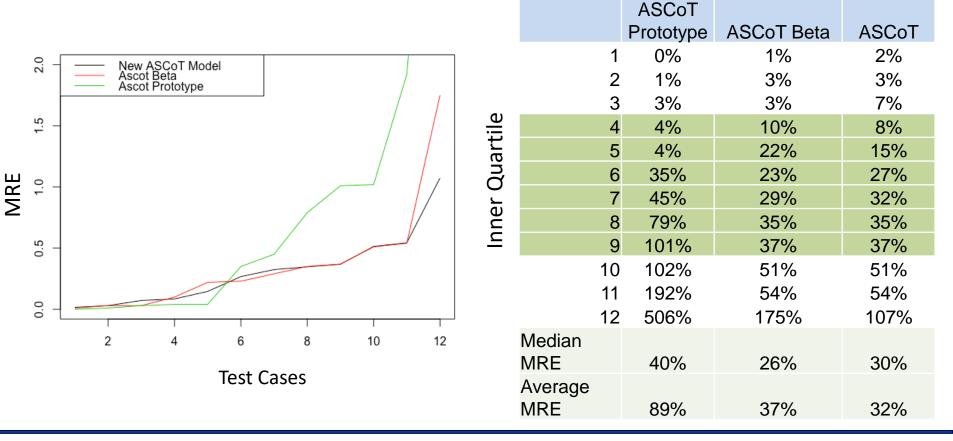
Destination	Instru	ıment	Deployable			
	Median	Median Range		Range		
Astreroids/Comet	3	2-5	1	0-3		
Earth	3	1-10	2	0-8		
Inner	4	3-10	2	0-10		
Outer	10	7-12	3	0-8		

Strategic Investment Division

• Original Mission-Type parameter combined type of Mission Type with Destination

Mission Type	Values	Values Description Ex				
	Orbiter	A Robotic spacecraft that orbits or it's target body. Also includes flyby spacecraft.	Aqua, New Horizons			
	Observatory	Observatories are space based telescopes that support space based astronomy across a wide set of frequencies. They can be earth trailing or at the various LaGrange points created by the gravity fields of the eartb, sun and moon.	Kepler			
	Lander	A robotic spacecraft that does its science in-situ or from the surface of a solar system body. It does not move from its original location.	Phoenix			
	Rover	A robotic spacecraft that does its science in-situ or from the surface of a solar system body and has the ability to move on the surface. To date all rovers have wheels but in the future they may crawl, walk or hop.	MSL			
Destination	Values	Description	Example			
	Earth	Missions that are in an Earth orbit.	0C0			
	Inner Planetary	Missions that target planets within the asteroid belt. Also includes missions that are Heliocentric, Earth leading or trailing, at the Earth-Sun-Moon LaGrange points, and lunar mission.	Maven			
	Asteroid/Comet	Missions that target asteroids or comets. As these may typically require more complex, or different, trajectories than inner planetary missions.	Dawn			
	Outer Planetary	Outer Planetary missions are missions that travel beyond the asteroid belt.	JUNO			

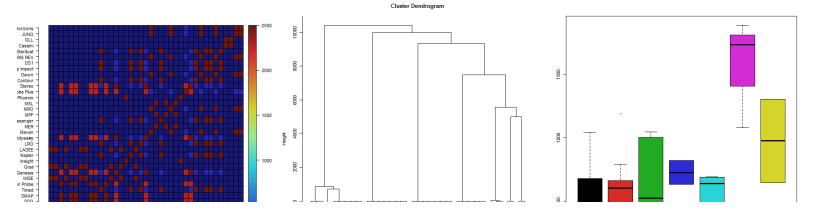
- ASCoT Beta used spectral clustering to derive the clusters
- Conducted extensive analysis to verify this was indeed the best method
 - Spectral Clustering
 - K-Means
 - Hierarchical Clustering
 - PCA- Principle Components
- The methods were examined for
 - cluster membership stability
 - minimum within-cluster range
 - Effort estimation error based on leave-one-out MRE

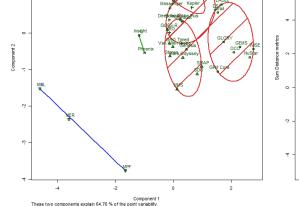

Model MRE Performance

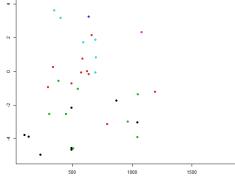
Strategic Investment Division

Jet Propulsion Laboratory

Model Estimation Error, based on MRE, shows dropping SLOC as an input did not reduce estimation accuracy

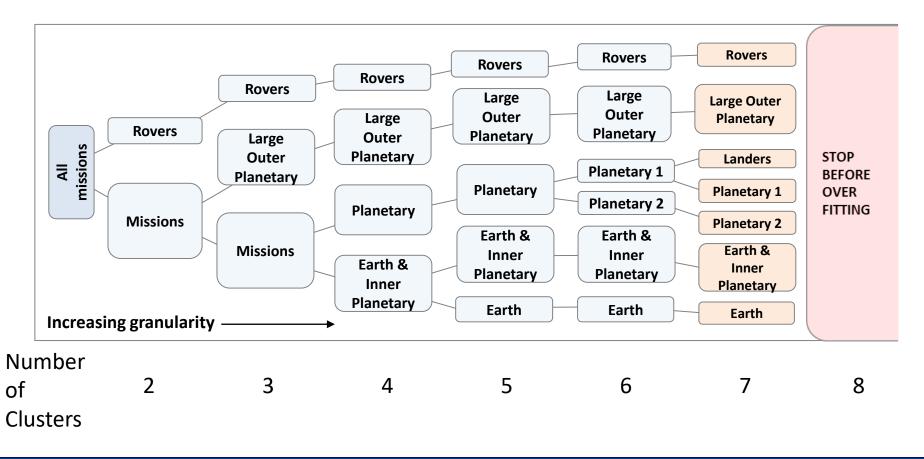

MRE Comparison Based on Test Cases


Strategic Investment Division


Jet Propulsion Laboratory

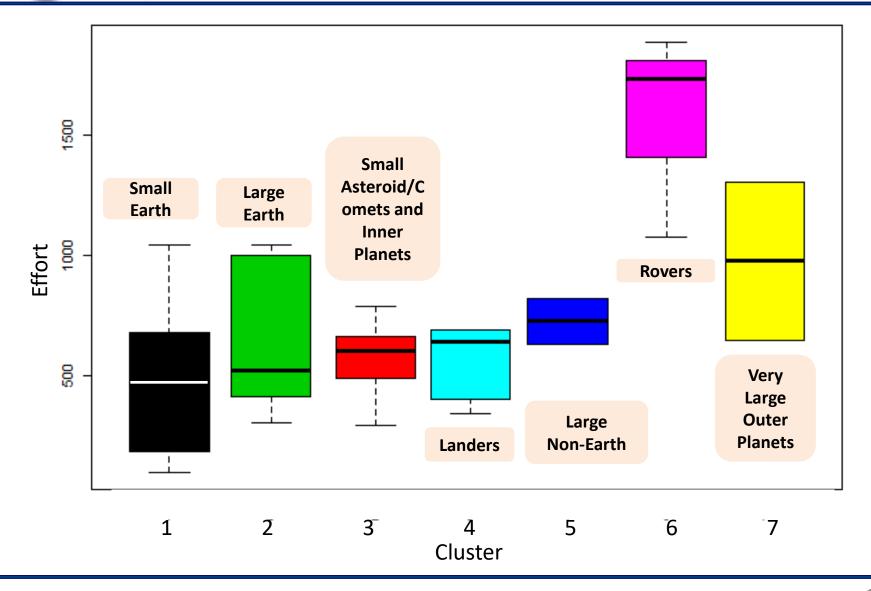
For detailed discussion come to the breakout session!

			-	Gro					
Mission	Effort	Dest	туре						
GEMS	100	Earth	Orbiter	1	Mission	Effort	Dest	туре	Grp
GLORY	133	Earth	Orbiter	1	LRO	964	Inner	Orbiter	3
GPM Core	1043	Earth	Orbiter	1	Messenger	384.4	inner	Orbiter	3
NuStar	493	Earth	Orbiter	1	Contour	307	Ast/Com	Orbiter	3
000	492	Earth	Orbiter	1	Deep Impact	1047.9	Ast/Com	Orbiter	з
WISE	233	Earth	Orbiter	1	DS1	1042.8	Ast/Com	Orbiter	3
Grall	868	Inner	Orbiter	1	Stardust	545	Ast/Com	Orbiter	3
LADEE	492	Inner	Orbiter	1	insight	822	inner	Lander	4
GOES-R	584	Earth	Orbiter	2	Phoenix	634	Inner	Lander	4
GRO	492	Earth	Orbiter	2	Maven	694	inner	Orbiter	5
MMS	662	Earth	Orbiter	2	MRO	691	Inner	Orbiter	5
SDO	1190	Earth	Orbiter	2	Davn	691.43	Ast/Com	Orbiter	5
SMAP	789	Earth	Orbiter	2	OSIRIS REX	401.01	Ast/Com	Orbiter	5
Van Allen Probe	295.6	Earth	Orbiter	2	JUNO	345	Outer	Orbiter	5
Genesis	637	Inner	Orbiter	2	New Horizons	591.1	Outer	Orbiter	5
Mars Odyssey	336	Inner	Orbiter	2	MER	1735.4	inner	Rover	6
Solar Probe Plus	621	Inner	Orbiter	2	MPF	1080	inner	Roter	6
Stereo	571.6	Inner	Orbiter	2	MSL	1888	inner	Rover	6
Timed	504	Earth	Orbiter	з	Cassini	1307	Outer	Orbiter	7
Kepler	445	Inter	Orbiter	3	GLL	648	Outer	Orbiter	7



Effort

13



By gradually increasing the granularity of our clusters, while maintaining robustness to avoid overfitting, we were able to find logical separation between groupings of missions

Reduced Cluster Effort Variation

Strategic Investment Division

Cluster Parameter Summary

Strategic Investment Division

Cluster	Mission Cost Median	Mission Cost Range	Software Inheritance	Destination	Mission Type	flight Computer Redundancy	Number of Instruments	Number of Deployabes	Development Work Months Median	Development Work Months Range
1	\$321M	\$170M - \$500M	High-Very High	Earth	Orbiter	Single String	1 to 4	0 to 4	492	230 to 870
2	\$824M	\$420M - \$1,250M	Medium to High	Earth & Inner Planets	Orbter	Dual String - Cold backup	2 to 6	2 to 8	603	340 to 790
3	\$292M	\$220M - \$550M	Medium	Asteroid/Comets & Inner Planets	Orbiter/ Flyby	Dual String - Cold backup	2 to 7	0 to 3	525	450 to 1040
4	\$548M	\$630M - \$820M	High-Very High	Inner Planet (Mars)	Lander	Dual String - Warm backup	4 to 5	2 to 3	728	630 to 820
5	\$696M	\$550M - \$850M	High-Very High	Planets & Asteroids/Comet	Orbiter/ Flyby	Dual String - Cold backup	3 to 9	0 to 3	641	400 to 690
6	\$1,123M	\$420M - \$2,600M	None-Low	Inner Planet (Mars)	Rover	Dual String - Warm backup	3 to 10	6 to 10	1735	1000 to 1890
7	\$2680M	\$2,300M - \$3,000M	None-Low	Outer Planets	Orbiter/ Flyby	Dual String - Warm backup	11 to 12	4 to 8	978	650 to 1300

MASA Mission Clustering is More Logical

Strategic Investment Division

Jet Propulsion Laboratory

Mission	Effort	Destination	Туре	Cluster	Mission	Effort	Destinatio	Туре	Cluster
GEMS	100	Earth	Observatory	1			n		
GLORY	133	Earth	Orbiter	1	Timed	504	Earth	Orbiter	3
GPM Core	1043	Earth	Orbiter	1	Kepler	446	Inner	Observatory	3
NuStar	493	Earth	Observatory	1	LRO	964	Inner	Orbiter	3
000	492	Earth	Orbiter	1	Messenger	384.4	Inner	Orbiter	3
WISE	233	Earth	Observatory	1	Contour	307	Ast/Com	Orbiter	3
Grail	868	Inner (Lunar)	Orbiter	1	Deep Impact	1047.9	Ast/Com	Orbiter	3
LADEE	492	Inner (Lunar)	Orbiter	1	DS1	1042.8	Ast/Com	Orbiter	3
GOES-R	584	Earth	Orbiter	2	Stardust	546	Ast/Com	Orbiter	3
GRO	492	Earth	Observatory	2	Insight	822	Inner	Lander	4
MMS	662	Earth	Orbiter	2	Phoenix	634	Inner	Lander	4
SDO	1190	Earth	Observatory	2	Maven	694	Inner	Orbiter	5
SMAP	789	Earth	Orbiter	2	MRO	691	Inner	Orbiter	5
Van Allen	295.6	Earth	Orbiter	2	Dawn	691.43	Ast/Com	Orbiter	5
Genesis	637	Inner (L1)	Orbiter	2	OSIRIS REX	401.01	Ast/Com	Orbiter	5
Mars Odyssey	336	Inner	Orbiter	2	JUNO	346	Outer	Orbiter	5
Solar Probe	621	Inner (Solar)	Orbiter	2	New Horizons	591.1	Outer	Orbiter	5
Stereo	571.6	Inner	Observatory	2	MER	1735.4	Inner	Rover	6
					MPF	1080	Inner	Rover	6
					MSL	1888	Inner	Rover	6
					Cassini	1307	Outer	Orbiter	7
						1			

GLL

648

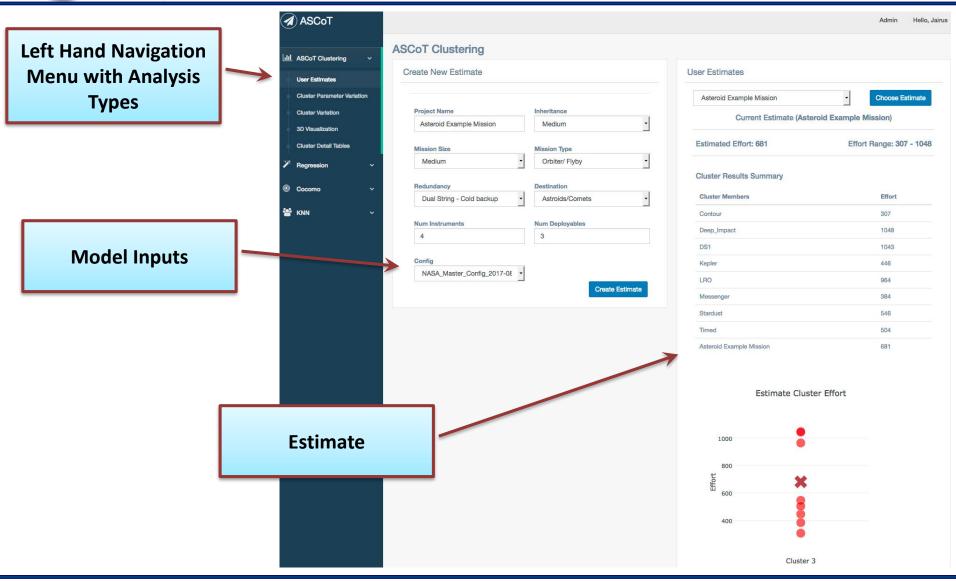
Outer

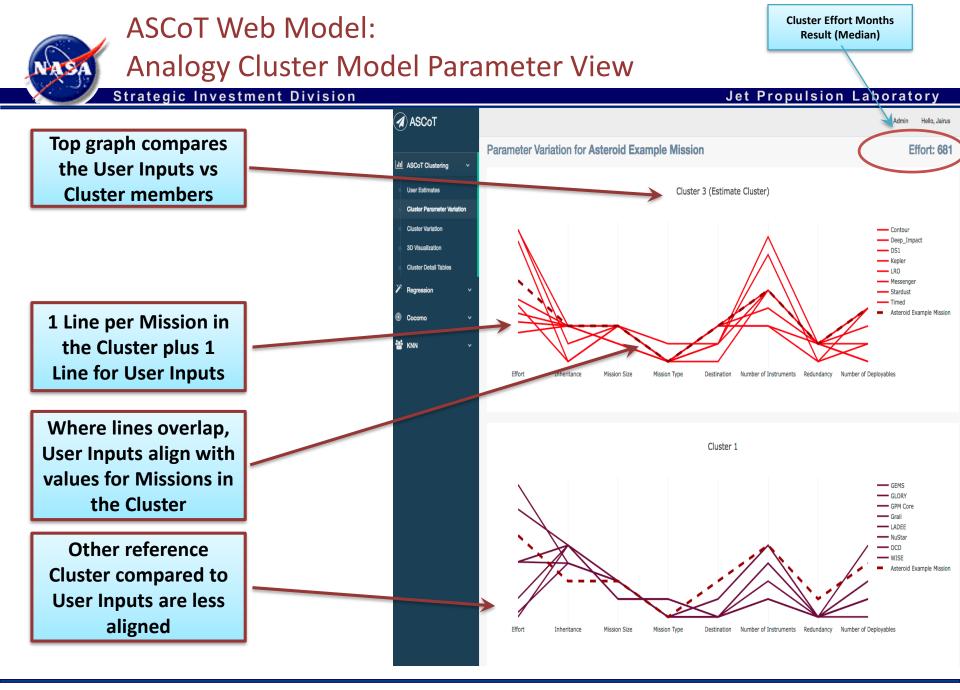
7

Orbiter

Reduced Cluster Parameter Variation

Strategic Investment Division

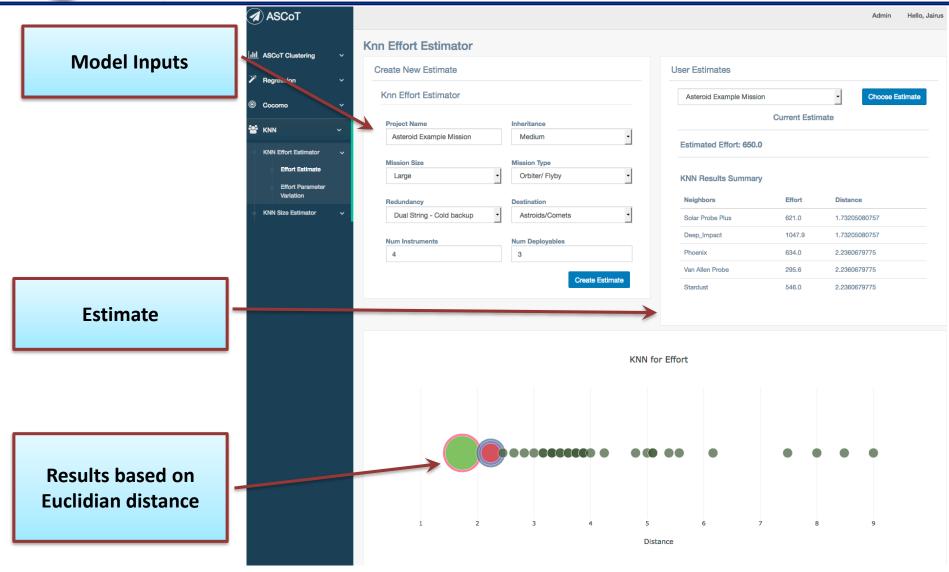


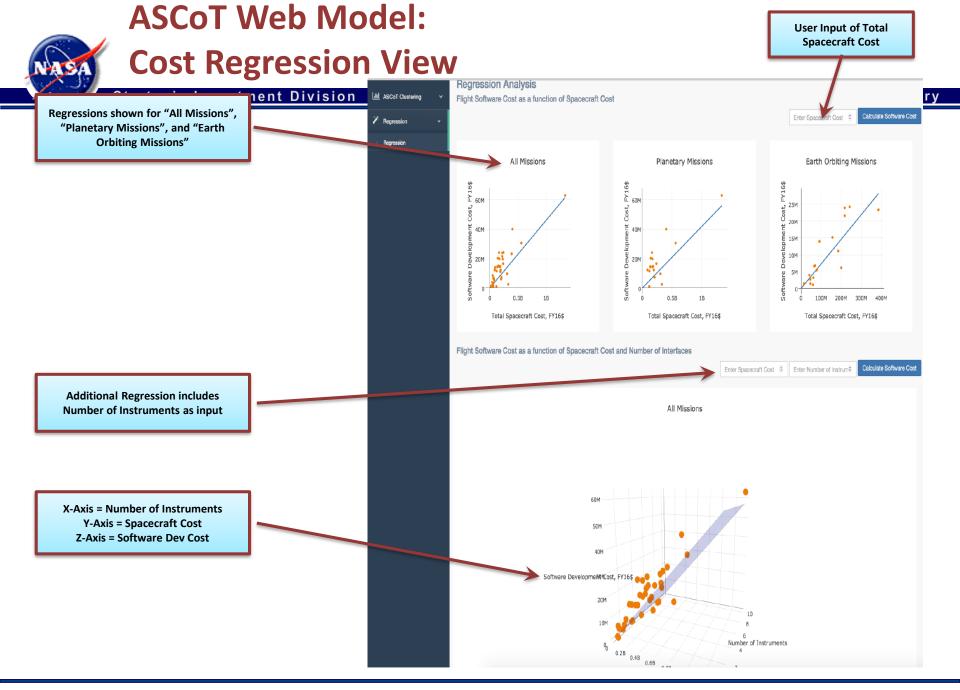


ASCoT Web Model :

Analogy Cluster Model Main View

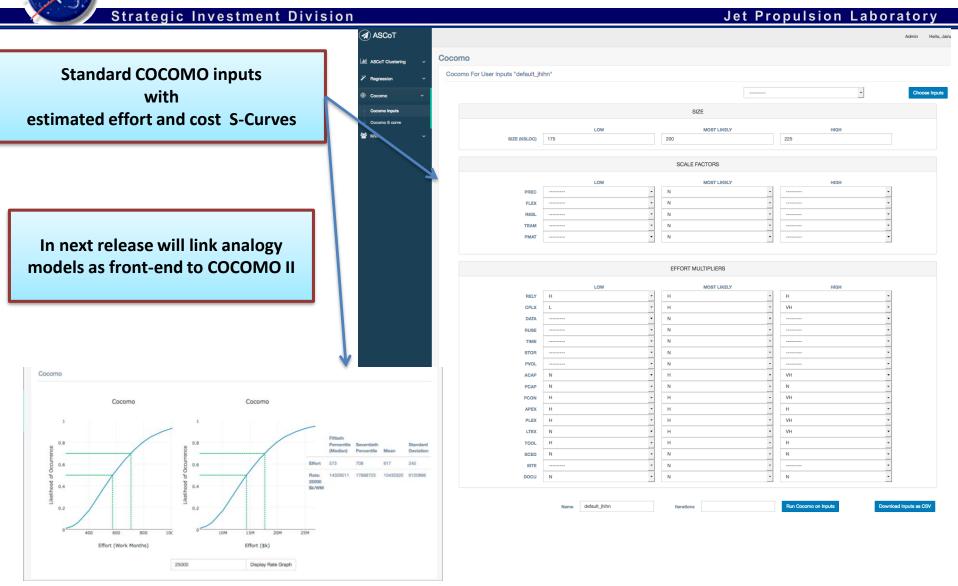
Strategic Investment Division




ASCoT Web Model:

KNN Model Main View

Strategic Investment Division


Jet Propulsion Laboratory

ASCoT Web Model:

COCOMO II Model Main View

Jet Propulsion Laboratory

ASCoT Break Out Session mini-tutorial and more on what is under the hood

Jet Propulsion Laboratory

Back Up

Data Items Overview

Strategic Investment Division

Data Item	2017
Total development effort in work months	41
Flight Software Development Cost	43
Flight System Development Cost	43
Logical Lines of Code (LOC)	
Delivered LOC	51
Inherited LOC (Reused plus Modified	44
COCOMO Model inputs (See Appendix A	
for tge parameter definitions) - Translated	
from CADRe which has SEER model inputs	
becauase the SEER data items are very	19
Systems Parameters	
Mission Destination (Asteroid/Comets,	
Earth, Inner (planetary), Outer	51
Multiple element (probe, etc)	51
Number of Instruments	51
Number of Deployables	51
Flight Computer Redundancy (Dual	
Warm, Dual Cold, Single String)	51
Software Reuse (Low, Medium, High)	44
Software Size (Small, Medium, Large,	
Very Large)	51

ASCoT Publications & Presentations

Strategic Investment Division

Publications: Conference

- 2. IEEE Aerospace
- Improving and Expanding NASA Software Estimation
 Methods, 2016 Aerospace Conference, Big Sky, Mt., March 2016.
- NASA Analogy Software Cost Model: A Web-Based Cost Analysis Tool, , 2017 Aerospace Conference, Big Sky, Mt., March 2017.
- 2. Automation in Software Engineering (ASE)
- Data Mining Methods and Cost Estimation Models: Why is it so hard to infuse new ideas?, Automation in Software Engineering 2015, Norman, Nebraska, Nov. 2015.
- 1. International Cost Estimation and Analysis Association (ICEAA)
- NASA Software Cost Estimation Model: An Analogy Based Estimation Method, 2015 International Cost Estimation and Analysis Association (ICEAA) Professional Development & Training Workshop, San Diego California, June 2015
- A Next Generation Software Cost Model, 2014 International Cost Estimation and Analysis Association (ICEAA) Professional Development & Training Workshop, Denver Colorado, June 2014.

Jet Propulsion Laboratory

Publications: Journal

- 1. Empirical Software Engineering
- Negative results for software effort
 Estimation, Empirical Software Engineering,
 Nov 2016. Menzies, Yang, Mathew, Boehm,
 Hihn
- 1. NASA Cost Symposium
- ASCoT R2: A web-based model of the NASA Analogy Software Costing Tool, Goodbye Excel", 2016 NASA Cost Symposium, NASA Glen Research Center, August. 2016. J. Hihn and J. Johnson
- NASA Software Cost Estimation Model: An Analogy Based
 Estimation Method. 2015 NASA Cost Symposium, NASA
 Ames Research Center, August 2015. J. Hihn and J. Johnson.
- A Next Generation Software Cost Model: A look under the Hood. 2014 NASA Cost Symposium, NASA Langley Research Center, August 2014. J. Hihn and J. Johnson.
- 2. COCOMO Workshop
- NASA Analogy Software Costing Tool-ASCoT, 31tst
 International Forum on COCOMO and System/Software Cost
 Modeling, USC, October 2016. J. Hihn & M. Saing
- Just How Good is COCOMO and Parametric Estimation?, ,
 29th International Forum on COCOMO and System/Software
 Cost Modeling, USC, October 2014. Hihn et al.

Effort Estimation with Data Mining Methods References

Strategic Investment Division

Jet Propulsion Laboratory

"Active Learning and Effort Estimation: Finding the Essential Content of Software Effort Estimation Data" by Ekrem Kocaguneli and Tim~Menzies and Jacky Keung and David Cok and Ray Madachy. IEEE Transactions on Software Engineering (pre-print) 2013..

"Finding conclusion stability for selecting the best effort predictor in software effort estimation" by J. Keung and E. Kocaguneli and T. Menzies. Automated Software Engineering pages 1-25 May 2012 . Available from http://menzies.us/pdf/12findstable.pdf .

"Exploiting the Essential Assumptions of Analogy-Based Effort Estimation" by E. Kocaguneli and T. Menzies and A. Bener and J. Keung. IEEE Transactions on Software Engineering pages 425-438 2012 . Available from http://menzies.us/pdf/11teak.pdf .

"Local vs. Global Lessons for Defect Prediction and Effort Estimation" by Menzies, T. and Butcher, A. and Cok, D. and Marcus, A. and Layman, L. and Shull, F. and Turhan, B. and Zimmermann, T.. IEEE Transactions on Software Engineering pages 1 2012 . Available from http://menzies.us/pdf/12localb.pdf .

"Kernel methods for software effort estimation" by E. Kocaguneli and T. Menzies and J. Keung. Empirical Software Engineering pages 1-24 2011

"On the Value of Ensemble Effort Estimation" by Kocaguneli, E. and Menzies, T. and Keung, J.. IEEE Transactions on Software Engineering 2011

"Exploring the Effort of General Software Project Activities with Data Mining" by Topi Haapio and Tim Menzies. International Journal of Software Engineering and Knowledge Engineering pages 725-753 2011 "Stable Rankings for Different Effort Models" by Tim Menzies and Omid Jalali and Jairus Hihn and Dan Baker and Karen Lum. Automated Software Engineering December 2010 . Available from http://menzies.us/pdf/10stable.pdf .

"Case-Based Reasoning for Reducing Software Development Effort" by Adam Brady and Tim Menzies and Oussama El-Rawas and Ekrem Kocaguneli and Jacky Keung. Journal of Software Engineering and Applications 2010 . Available from http://menzies.us/pdf/10w0.pdf .

"A Second Look at Faster, Better, Cheaper" by Oussama El-Rawas and Tim Menzies. Innovations Systems and Software Engineering pages 319-335 2010 . Available from http://menzies.us/pdf/10bfc.pdf .

"Explanation vs Performance in Data Mining: A Case Study with Predicting Runaway Projects" by Tim Menzies and O. Mizuno and Y. Takagi and Y. Kikuno. Journal of Software Engineering and Applications pages 221-236 November 2009

"Accurate Estimates Without Local Data?" by Tim Menzies and S. Williams and Oussama El-Rawas and D. Baker and B. Boehm and J. Hihn and K. Lum and R. Madachy. Software Process Improvement and Practice pages 213-225 July 2009 . Available from http://menzies.us/pdf/09nodata.pdf .

"Selecting Best Practices for Effort Estimation" by Menzies, Tim and Chen, Zhihao and Hihn, Jairus and Lum, Karen. IEEE Transactions on Software Engineering pages 883--895 doi = 10.1109/TSE.2006.114 issue = 11 2006