A105 assessment Vectors SOLUTIONS

Do the questions as a test – circle questions you cannot answer

Red

1)		Given that the point A has position vector $6\mathbf{i} - 7\mathbf{j}$ and the point B has position vector $-2\mathbf{i} + 3\mathbf{j}$,		
	a)	find the vector \overrightarrow{AB}	[2]	
	b)	Find $ \overrightarrow{AB} $ Give your answer as a simplified surd.	[2]	
	a)	$\overrightarrow{AB} = \begin{pmatrix} -2\\ 3 \end{pmatrix} - \begin{pmatrix} 6\\ -7 \end{pmatrix} = \begin{pmatrix} -8\\ 10 \end{pmatrix}$	M1A1	
	b)	Magnitude $ \vec{AB} \sqrt{(-8)^2 + (10)^2} = 2\sqrt{41}$	M1A1	

2)	Find in exact form the unit vector in the same direction as $\mathbf{a} = 7\mathbf{i} - \mathbf{14j}$		
		[3]	
	Makes an attempt to use Pythagoras' theorem to find $ \mathbf{a} \sqrt{7^2 + (-14)^2} = 7\sqrt{5}$		
	So write vector is $\begin{pmatrix} 1 & 7 \\ 2 & - \end{pmatrix} = \begin{pmatrix} 1 & (i & 2i) \\ - & \sqrt{5} & (i & 2i) \end{pmatrix}$	M1A1	
	So unit vector is $\frac{1}{7\sqrt{5}} \binom{7}{-14} = \frac{1}{\sqrt{5}} (i-2j) = \frac{\sqrt{5}}{5} (i-2j)$	A1	

3)		Given that the point P has position vector $-4\mathbf{i} - 5\mathbf{j}$ and the point Q has position vector $5\mathbf{i} - 8\mathbf{j}$,		
	a)	find the vector \overrightarrow{PQ}	[2]	
	b)	Find a vector in the same direction as that has magnitude of $\sqrt{10}$	[2]	
	a)	$\overrightarrow{PQ} = \begin{pmatrix} -4\\-5 \end{pmatrix} - \begin{pmatrix} 5\\-8 \end{pmatrix} = \begin{pmatrix} -9\\3 \end{pmatrix} = -9i + 3j$	M1A1	
	b)	Magnitude is $\sqrt{(-9)^2 + (3)^2} = 3\sqrt{10}$		
		Vector in same direction is $\frac{1}{3} \binom{-9}{3} = \binom{-3}{1} = -3i + j$	M1A1	

4)		Consider the points $A(7, 6)$, $B(5, 5)$ and $C(12, -4)$	
	a)	Find \overrightarrow{AB} and \overrightarrow{AC}	[3]
	b)	Find the sine of the angle between \overrightarrow{AB} and \overrightarrow{AC}	[3]
	a)	$\overrightarrow{AB} = \begin{pmatrix} -2\\ -1 \end{pmatrix} \qquad \overrightarrow{AC} = \begin{pmatrix} 5\\ -10 \end{pmatrix}$	M1A2
	b)	$\theta = 90^{\circ}$, so sin $\theta = 1$	M2A1

Amber

	Given that point A has the position vector $7\mathbf{i} - \mathbf{14j}$ and point B has the position vector $11\mathbf{i} + q\mathbf{j}$, where q is a constant, find	
a)	the vector \overrightarrow{AB} in terms of q	[2]
b)	Given further that $\overrightarrow{AB} = 4\sqrt{17}$, find the two possible values of q showing detailed reasoning in your working	[5]
a)	Makes an attempt to find the vector \overrightarrow{AB} For example, writing $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$ or	M1
	$\overrightarrow{AB} = \binom{11}{q} - \binom{7}{-14} = \binom{4}{q+14} = 4i + (q+14)j$	A1
b)	Interprets correctly giving $4^2 + (q + 14)^2 = (4\sqrt{17})^2 = 252$ Method to solve resulting quadratic $q^2 + 28q - 60 = 0$ Factorising $(q + 30)(q - 2) = 0$ or formula Solves to $q = -30$ or $q = 2$	M1 M2 A2
	b) a)	vector 11i + qj, where q is a constant, find a) the vector \overrightarrow{AB} in terms of q b) Given further that $\overrightarrow{AB} = 4\sqrt{17}$, find the two possible values of q showing detailed reasoning in your working a) Makes an attempt to find the vector \overrightarrow{AB} For example, writing $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$ or $\overrightarrow{AB} = {11 \choose q} - {7 \choose -14} = {4 \choose q+14} = 4i + (q+14)j$ b) Interprets correctly giving $4^2 + (q+14)^2 = (4\sqrt{17})^2 = 252$ Method to solve resulting quadratic $q^2 + 28q - 60 = 0$ Factorising $(q+30)(q-2) = 0$ or formula

6)		A D C	
		The vectors $\overrightarrow{AB} = 7i + 9j$ and $\overrightarrow{AD} = 9i + 2j$ represent two sides of the parallelogram <i>ABCD</i> shown	
	a)	Find vectors which represent each of the diagonals of ABCD.	[4]
	b)	Find the length of AC.	[2]
	a)	$\overrightarrow{AC} = 16\mathbf{i} + 11\mathbf{j}$ $\overrightarrow{BD} = 2\mathbf{i} - 7\mathbf{j}$	M2A2
	b)	$\left \overrightarrow{AC}\right = \sqrt{377}$	M1A1

7)	Points A $(7,1)$, B $(10,5)$ and C $(14, 2)$ lie on a plane surface	
	Show that triangle ABC is right angled and find its area	[3]
	Distance AB $\sqrt{(10-7)^2 + (5-1)^2} = 5$	M1 any
	Distance AC $\sqrt{(14-7)^2 + (2-1)^2} = \sqrt{50} = 5\sqrt{2}$	ini any
	Distance BC $\sqrt{(14-10)^2 + (2-5)^2} = 5$	
	So $\sqrt{AB^2 + BC^2} = \sqrt{5^2 + 5^2} = \sqrt{50} = AC$ hence ABC is a RAT	M1A1

A105 assessment Vectors SOLUTIONS

8)		In $\triangle ABC$, $\overrightarrow{AB} = -3i + 6j$ and $\overrightarrow{AC} = 10i - 2j$	
	a)	Find the size of $\angle BAC$, in degrees, to 1 decimal place	
	b)	Find the exact value of the area of $\triangle ABC$	
	a)	States or implies that $\overrightarrow{BC} = \begin{pmatrix} 10 \\ -2 \end{pmatrix} - \begin{pmatrix} -3 \\ 6 \end{pmatrix} = \begin{pmatrix} 13 \\ -8 \end{pmatrix} = 13i - 8j$ and recognises	
		that cosine rule needed $\overrightarrow{BC}^2 = \overrightarrow{AB}^2 + \overrightarrow{AC}^2 - 2\overrightarrow{AB} \times \overrightarrow{AC} \cos A$	M2
		$(\sqrt{233})^2 = (\sqrt{45})^2 + (\sqrt{104})^2 - 2\sqrt{45}\sqrt{104}\cos A$ oe	M2
		$\cos A = \frac{-7}{\sqrt{130}}$ gives $A = 127.9^{\circ}$ A is obtuse	A1
	b)	Area = $\frac{1}{2} \times \sqrt{45} \times \sqrt{104} \times \sin 127.9 = 27$ uses correct formula; correct values	M2
		Note – exact answer if not rounded angle when using calculator	A1

Green

9)				
		Given that the resultant of the vectors $\mathbf{a} = 2p\mathbf{i} - 5\mathbf{j}$ and $\mathbf{b} = 6\mathbf{i} - 3p\mathbf{j}$ is parallel		
	to the vector $\mathbf{c} = 4\mathbf{i} - 5\mathbf{j}$, find			
	a)	the value of p	[4]	
	b)	the resultant of the vectors a and b	[2]	
	a)	Equates the i components for the equation $\mathbf{a} + \mathbf{b} = m\mathbf{c}$ oe $2p + 6 = 4m$ Equates the j components for the their equation $\mathbf{a} + \mathbf{b} = m\mathbf{c}$ $-5 - 3p = -5m$ Makes an attempt to find <i>p</i> by eliminating <i>m</i> in some way. For example, $\frac{10p + 30 = 20m}{20 + 12p = 20m}$ o.e. or $\frac{2p + 6}{-5 - 3p} = -\frac{4}{5}$ o.e. $p = 5$	B1 B1 M1A1	
	b)	Using their value for p from above, makes a substitution into the vectors to form $\mathbf{a} + \mathbf{b}$ $10\mathbf{i} - 5\mathbf{j} + 6\mathbf{i} - 15\mathbf{j}$ Correctly simplifies $16\mathbf{i} - 20\mathbf{j}$	M1 ft A1 ft	

10)		A particle P of mass 6 kg moves under the action of two forces, F_1 and F_2 ,		
10)		where $F_1 = (8\mathbf{i} - 10\mathbf{j})$ N and $F_2 = (p\mathbf{i} + q\mathbf{j})$ N, p and q are constants.		
		The acceleration of P is $\mathbf{a} = (3\mathbf{i} - 2\mathbf{j}) \text{ ms}^{-2}$		
	a)	Find, to 1 decimal place, the angle between the acceleration and \mathbf{i}	[2]	
	b)	Find the values of p and q		
	c)	Find the magnitude of the resultant force R of the two forces F_1 and F_2 . Simplify your answer fully		
	a)	States that $\tan \theta = \pm \frac{2}{3}$ or $\theta = \tan^{-1} \pm \frac{2}{3}$ (if θ shown on diagram sign must be consistent		
		with this). Finds -33.7° (must be negative)	M1 A1	
	6)	Makes an attempt to use the formula $\mathbf{F} = \mathbf{m}\mathbf{a}$	M1	
		Finds $p = 10$ Note: $8 + p = 6 \times 3 \Rightarrow p = 10$	M1	
		Finds $q = -2$ Note: $-10 + q = 6 \times -2 \Longrightarrow q = -2$	A2	
	<i>c</i>)	Attempt to find R (either $6(3\mathbf{i} - 2\mathbf{j})$ or $8\mathbf{i} - 10\mathbf{j} + '10'\mathbf{i} + '-2'\mathbf{j}$)		
		Makes an attempt to find the magnitude of their resultant force. For example,		
		$ R = \sqrt{18'^2 + 12'^2} \left(= \sqrt{468}\right)$		
			M 1	
		Presents a fully simplified exact final answer. $ R = 6\sqrt{13}$	M1A1	

11)		In $\triangle OAB$, $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$. <i>P</i> divides <i>OA</i> in the ratio 3 : 2 and <i>Q</i> divides <i>OB</i> in the ratio 3 : 2	
	a)	Show that PQ is parallel to AB	[4]
	b)	Given that AB is 10 cm in length find the length of PQ	[1]
	a)	States that $\overrightarrow{AB} = -\mathbf{a} + \mathbf{b}$ States $\overrightarrow{PQ} = \overrightarrow{PO} + \overrightarrow{OQ}$ or $\overrightarrow{PQ} = -\frac{3}{5}\mathbf{a} + \frac{3}{5}\mathbf{b}$ States $\overrightarrow{PQ} = \frac{3}{5}(-\mathbf{a} + \mathbf{b})$ or $\overrightarrow{PQ} = \frac{3}{5}\overrightarrow{AB}$ Draws the conclusion that as \overrightarrow{PQ} is a multiple of \overrightarrow{AB} the two lines PQ and AB must be parallel	M1 M1 A1 A1
	<i>b</i>)	$PQ = \frac{3}{5} \times 10 \text{ cm} = 6 \text{ cm cao}$	B1

TOTAL 60

A	В	С	D	E
80%	70%	60%	50%	40%

EBI: (What you are going to do)

A105 assessment Vectors SOLUTIONS