

# Axial Piston Variable Pump A10V(S)O (US-Version)

### **RA-A 92701/03.12** 1/52 Replaces: 12.09

### Data sheet

Series 31 Size NG18 ((A)A10VSO) Size NG28 to 140 (A10VO) Nominal pressure 4000 psi (280 bar) Maximum pressure 5100 psi (350 bar) Open circuit

### Contents

| Type code for standard program            |
|-------------------------------------------|
| Technical data                            |
| DG – Two-point control, directly operated |
| DR – Pressure control                     |
| DRG – Pressure control, remotely operated |
| DFR/DFR1 - Pressure and flow control      |
| DFLR – Pressure, flow and power control   |
| ED – Electro-hydraulic pressure control   |
| ER – Electro-hydraulic pressure control   |
| Dimensions size 18 to 140                 |
| Dimensions through drive                  |
| Summary mounting options                  |
| Combination pumps A10VO + A10VO           |
| Connector for solenoids                   |
| Installation instructions                 |
| General instructions                      |

### Features

| realures                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Variable pump in axial piston swashplate design for hydrosta-<br/>tic drives in an open circuit</li> </ul>                               |
| <ul> <li>The flow is proportional to the drive speed and the displace-<br/>ment.</li> </ul>                                                       |
| <ul> <li>The flow can be steplessly varied by adjustment of the<br/>swashplate angle.</li> </ul>                                                  |
| - 2 case drain ports                                                                                                                              |
| <ul> <li>Excellent suction characteristics</li> </ul>                                                                                             |
| - Low noise level                                                                                                                                 |
| - Long service life                                                                                                                               |
| <ul> <li>Favorable power/weight ratio</li> </ul>                                                                                                  |
| - Versatile controller range                                                                                                                      |
| <ul> <li>Short control time</li> </ul>                                                                                                            |
| <ul> <li>The through drive is suitable for adding gear pumps and axial<br/>piston pumps up to the same size, i.e., 100% through drive.</li> </ul> |
|                                                                                                                                                   |
|                                                                                                                                                   |



# Type code for standard program

|          |                     | 0          |          |           | 1         | 31        |          | _         | V     |    |    |           |    |     |     |                    |
|----------|---------------------|------------|----------|-----------|-----------|-----------|----------|-----------|-------|----|----|-----------|----|-----|-----|--------------------|
| C        | 01 02               | 03         | 04       | 05        |           | 06        | 07       |           | 08    | 09 |    | 10        | 11 |     | 12  | 13                 |
|          |                     |            |          |           |           |           |          |           |       |    |    |           |    |     |     |                    |
|          | Version             |            |          |           |           |           |          |           |       | 18 | 28 | 45        | 71 | 100 | 140 |                    |
| 01       | Standard version    |            | symbol   | )         |           |           |          |           |       | •  | •  | •         | •  | •   | •   |                    |
| <u> </u> | High-speed version  | on         |          |           |           |           |          |           |       | -  | -  | $\bullet$ | •  |     | •   | Н                  |
|          | Axial piston unit   |            |          |           |           |           |          |           |       |    |    |           |    |     |     |                    |
|          | Swashplate desig    | n, variat  | ole, nom | inal pres | ssure 40  | 00 psi (2 | 280 bar) | ,         |       |    | -  | -         | -  | -   | -   | A10VS              |
| 02       | maximum pressur     | e 5100 p   | osi (350 | bar)      |           |           |          |           |       | -  | •  | •         | •  | •   | •   | A10V               |
|          |                     |            |          |           |           |           |          |           |       | -  |    |           |    |     |     |                    |
|          | Operation mode      | :.         |          |           |           |           |          |           |       |    |    |           |    |     |     |                    |
| 03       | Pump, open circu    |            |          |           |           |           |          |           |       |    |    |           |    |     |     | 0                  |
|          | Size (NG)           |            |          |           |           |           |          |           |       |    |    |           |    |     |     |                    |
| 04       | Geometric displace  | cement,    | see tabl | e of val  | ues on p  | ages 6 a  | nd 7     |           |       | 18 | 28 | 45        | 71 | 100 | 140 |                    |
|          | Control device      |            |          |           |           |           |          |           |       |    |    |           |    |     |     |                    |
|          | Two-point control,  | directly   | operate  | d         |           |           |          |           |       |    |    |           |    |     |     | DG                 |
|          | Pressure control    |            |          |           |           |           |          |           |       | •  | •  | •         | •  | •   | •   | DR                 |
|          | with flow cont      | trol, hydi | raulic   |           |           |           |          |           |       |    | 1  |           | 1  | 1   | I   |                    |
|          |                     | X-T open   |          |           |           |           |          |           |       |    |    |           | •  |     | •   | DFR                |
|          |                     | X-T cl     |          |           |           |           |          |           |       | •  | •  | •         | •  | •   | •   | DFR1               |
|          | with flow and       |            |          | sure coi  | ntrol ele | ctrically | variable |           |       | 0  |    |           |    |     | -   | EF <sup>1)</sup>   |
| 05       | with pressure       |            |          |           |           | ouriouny  |          |           |       |    | •  |           | •  | -   |     |                    |
|          | hydraulic           |            |          |           |           |           |          |           |       | •  |    |           |    |     |     | DRG                |
|          | electrical          | negat      | ive char | acteristi | с         |           | 12V      |           |       | •  | •  | •         | •  | •   | •   | ED71               |
|          |                     | 0          |          |           |           |           | 24V      |           |       | •  | •  | •         | •  | •   | •   | ED72               |
|          |                     | positi     | ve chara | cteristic | <b>)</b>  |           | 12V      |           |       | •  | •  | •         | •  | •   | •   | ER71 <sup>2)</sup> |
|          |                     |            |          |           |           |           | 24V      |           |       | •  | •  |           | •  | •   | •   | ER72 <sup>2)</sup> |
|          | Pressure, flow and  | power c    | control  |           |           |           |          |           |       | -  | •  |           | •  | •   | •   | DFLR               |
|          |                     |            |          |           |           |           |          |           |       |    |    |           |    |     |     |                    |
|          | Series              |            |          |           |           |           |          |           |       |    |    |           |    |     |     | 21                 |
| 00       | Series 3, Index 1   |            |          |           |           |           |          |           |       |    |    |           |    |     |     | 31                 |
|          | Direction of rotati |            |          |           |           |           |          |           |       |    |    |           |    |     |     | . <u> </u>         |
| 07       | Viewed on drive s   | haft       |          |           |           |           |          | kwise     |       |    |    |           | -  |     |     | R                  |
|          |                     |            |          |           |           |           | cou      | nter cloc | kwise |    |    |           |    |     |     | L                  |
|          | Seals               |            |          |           |           |           |          |           |       |    |    |           |    |     |     |                    |
|          | FKM (fluor-caouto   | chouc)     |          |           |           |           |          |           |       |    |    |           |    |     |     | v                  |

1) See RE 92709

2) The following must be taken into account during project planning:

Excessive current levels (I > 1200 mA with 12 V or I > 600 mA with 24 V) to the ER solenoid can result in undesired increase of pressure which can lead to pump or system damage:

- Use I<sub>max</sub> current limiter solenoids.

- A sandwich plate pressure reducing valve can be used to protect the pump in the event of overflow.

An accessory kit with sandwich plate pressure reducing valve can be ordered from Rexroth under part number R902490825.

# Type code for standard program

|   |    |    | 0  |    |    | / | 31 |    | - | V  |    |    |    |    |    |
|---|----|----|----|----|----|---|----|----|---|----|----|----|----|----|----|
| Ī | 01 | 02 | 03 | 04 | 05 |   | 06 | 07 |   | 08 | 09 | 10 | 11 | 12 | 13 |

|    | Drive shaft                                                                                       |                                                                                                                                                                                                                                                                                                                  | 18                 | 3 :           | 28           | 45                                                                  | 71                                                                                      | 100                                                                                         | 140                                                                  |                                        |
|----|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|--------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------|
|    | Splined shaft                                                                                     | standard shaft                                                                                                                                                                                                                                                                                                   |                    |               | •            | $\bullet$                                                           | $\bullet$                                                                               |                                                                                             |                                                                      | S                                      |
| 29 | ANSI B92.1a                                                                                       | similar to shaft "S" however for higher in                                                                                                                                                                                                                                                                       | nput torque        |               |              |                                                                     | •                                                                                       | -                                                                                           | -                                                                    | R                                      |
| 09 |                                                                                                   | reduced diameter, not for through drive                                                                                                                                                                                                                                                                          | •                  | )             | •            | •                                                                   | •                                                                                       | •                                                                                           | 0                                                                    | U                                      |
|    | same as "U", higher torque; not for through drive                                                 |                                                                                                                                                                                                                                                                                                                  |                    |               |              | •                                                                   | •                                                                                       | •                                                                                           | 0                                                                    | W                                      |
|    | Mounting flange                                                                                   |                                                                                                                                                                                                                                                                                                                  | 18                 | 3             | 28           | 45                                                                  | 71                                                                                      | 100                                                                                         | 140                                                                  |                                        |
|    | ISO 3019-1 (SAE)                                                                                  | 2-hole                                                                                                                                                                                                                                                                                                           |                    | )             | •            |                                                                     |                                                                                         |                                                                                             |                                                                      | С                                      |
| 10 |                                                                                                   | 4-hole                                                                                                                                                                                                                                                                                                           |                    |               |              |                                                                     | -                                                                                       | -                                                                                           |                                                                      | D                                      |
|    | Service line port                                                                                 |                                                                                                                                                                                                                                                                                                                  | 18                 | 3             | 28           | 45                                                                  | 71                                                                                      | 100                                                                                         | 140                                                                  |                                        |
|    | SAE flange ports at rear                                                                          | UNC fastening thread, not for through drive                                                                                                                                                                                                                                                                      | , –                |               | •            | •                                                                   | -                                                                                       |                                                                                             |                                                                      | 61                                     |
|    |                                                                                                   |                                                                                                                                                                                                                                                                                                                  | -                  |               | -            | -                                                                   | •                                                                                       | -                                                                                           | -                                                                    | 91                                     |
| 11 | SAE flange ports on op                                                                            | oosite side, UNC fastening thread                                                                                                                                                                                                                                                                                | •                  | ,             | •            | •                                                                   | -                                                                                       | •                                                                                           | •                                                                    | 62                                     |
|    |                                                                                                   |                                                                                                                                                                                                                                                                                                                  | -                  |               | -            | -                                                                   | ٠                                                                                       | -                                                                                           | -                                                                    | 92                                     |
|    |                                                                                                   |                                                                                                                                                                                                                                                                                                                  |                    |               |              |                                                                     |                                                                                         |                                                                                             |                                                                      |                                        |
|    | Through drive                                                                                     |                                                                                                                                                                                                                                                                                                                  | 18                 | 3             | 28           | 45                                                                  | 71                                                                                      | 100                                                                                         | 140                                                                  |                                        |
|    | Through drive without through drive                                                               |                                                                                                                                                                                                                                                                                                                  | 18                 | 3 :           | 28<br>●      | 45<br>●                                                             | 71<br>●                                                                                 | 100                                                                                         | 140<br>●                                                             | N00                                    |
|    |                                                                                                   | ) coupling for splined sl                                                                                                                                                                                                                                                                                        |                    | <b>3</b> :    | 28<br>●      | 45<br>●                                                             | 71<br>●                                                                                 | 100<br>●                                                                                    | 140<br>●                                                             | N00                                    |
|    | without through drive                                                                             | ) coupling for splined st<br>diameter                                                                                                                                                                                                                                                                            |                    | <b>3</b> :    | 28<br>●      | 45<br>●                                                             | 71<br>●                                                                                 | 100<br>●                                                                                    | 140<br>●                                                             | N00                                    |
|    | without through drive<br>Flange ISO 3019-1 (SAE                                                   |                                                                                                                                                                                                                                                                                                                  |                    | 3 :           | 28<br>●      | 45<br>•                                                             | 71<br>●                                                                                 | 100                                                                                         | 140<br>●                                                             | N00<br>K01                             |
|    | without through drive<br>Flange ISO 3019-1 (SAE<br>Diameter<br>82-2 (A)                           | diameter                                                                                                                                                                                                                                                                                                         |                    | <b>3</b> :    | 28<br>•<br>• | 45<br>•<br>•                                                        | 71<br>•<br>•                                                                            | 100<br>•                                                                                    | 140<br>•                                                             | K01                                    |
| 12 | without through drive<br>Flange ISO 3019-1 (SAE<br>Diameter<br>82-2 (A)                           | diameter<br>5/8 in 9T 16/32DP                                                                                                                                                                                                                                                                                    |                    | 3 :<br>)      | 28<br>•<br>• | 45<br>•<br>•                                                        | 71<br>•<br>•                                                                            | 100<br>•<br>•                                                                               | 140<br>•<br>•                                                        | K01<br>K52                             |
| 12 | without through drive<br>Flange ISO 3019-1 (SAE<br>Diameter<br>82-2 (A)                           | diameter<br>5/8 in 9T 16/32DP<br>3/4 in 11T 16/32DP                                                                                                                                                                                                                                                              | haft <sup>1)</sup> | 3 :<br>)<br>) | •            | 45<br>•<br>•<br>•                                                   | 71<br>•<br>•<br>•                                                                       | 100<br>•<br>•<br>•<br>•<br>•                                                                | 140<br>•<br>•<br>•                                                   | K01<br>K52<br>K68                      |
| 12 | without through drive<br>Flange ISO 3019-1 (SAE<br>Diameter<br>82-2 (A)                           | diameter<br>5/8 in 9T 16/32DP<br>3/4 in 11T 16/32DP<br>7/8 in 13T 16/32DP                                                                                                                                                                                                                                        | haft <sup>1)</sup> | 3             | •            | 45<br>•<br>•<br>•<br>•<br>•<br>•<br>•                               | 71<br>•<br>•<br>•<br>•<br>•                                                             | 100<br>•<br>•<br>•<br>•<br>•                                                                | 140<br>•<br>•<br>•<br>•                                              | K01<br>K52<br>K68                      |
| 12 | without through drive<br>Flange ISO 3019-1 (SAE<br>Diameter<br>82-2 (A)<br>101-2 (B)              | diameter<br>5/8 in 9T 16/32DP<br>3/4 in 11T 16/32DP<br>7/8 in 13T 16/32DP<br>1 in 15T 16/32DP                                                                                                                                                                                                                    | haft <sup>1)</sup> | 3 2           | •            | 45<br>•<br>•<br>•<br>•<br>•<br>•<br>•                               | 71<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•                                              | 100<br>• • • • • • • • • • • • • • • • • •                                                  | 140<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•                          | K01<br>K52<br>K68<br>K04<br>K07        |
| 12 | without through drive<br>Flange ISO 3019-1 (SAE<br>Diameter<br>82-2 (A)<br>101-2 (B)              | diameter           5/8 in         9T 16/32DP           3/4 in         11T 16/32DP           7/8 in         13T 16/32DP           1 in         15T 16/32DP           1 1/4 in         14T 12/24DP                                                                                                                 | haft <sup>1)</sup> |               | •            | 45<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>• | 71<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•                          | 100<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•                        | 140<br>●<br>●<br>●<br>●<br>●<br>●<br>●<br>●<br>●<br>●<br>●<br>●<br>● | K52<br>K68<br>K04                      |
| 12 | without through drive<br>Flange ISO 3019-1 (SAE<br>Diameter<br>82-2 (A)<br>101-2 (B)<br>127-2 (C) | diameter           5/8 in         9T 16/32DP           3/4 in         11T 16/32DP           7/8 in         13T 16/32DP           1 in         15T 16/32DP           1 in         15T 16/32DP           1 1/4 in         14T 12/24DP           1 1/2 in         17T 12/24DP           1 3/4 in         13T 8/16DP | haft <sup>1)</sup> |               | •            | 45<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>• | 71<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>• | •<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>• | 140<br>●<br>●<br>●<br>●<br>●<br>●<br>●<br>●<br>●<br>●<br>140         | K01<br>K52<br>K68<br>K04<br>K07<br>K24 |

1) Coupling for splined shaft as per ANSI B92.1a

2) Connectors for other electric components can deviate.

# Technical data

### Hydraulic fluid

Before starting project planning, please refer to our data sheets RE 90220 (mineral oil), RE 90221 (environmentally acceptable hydraulic fluids) and RE 90222 (HFD hydraulic fluids) for detailed information regarding the choice of hydraulic fluid and application conditions.

If environmentally acceptable hydraulic fluids are being used, the limitations regarding technical data and other seals must be observed. Please contact us.

#### Operating viscosity range

For optimum efficiency and service life we recommend that the operating viscosity (at operating temperature) be selected in the range

```
v_{out} = opt. operating viscosity 80 - 170 SUS (16 ... 36 mm<sup>2</sup>/s)
```

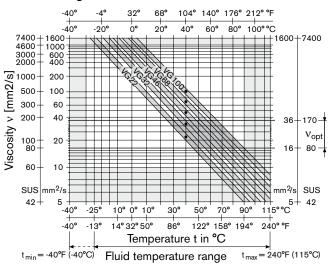
referred to reservoir temperature (open circuit).

#### Limits of viscosity range

For critical operating conditions the following values apply:

 $\begin{array}{ll} n_{min} = & 60 \; SUS \; (10 \; mm^2/s) \\ & \mbox{short-term} \; (t \leq 1 \; min) \\ & \mbox{at max perm. case drain temperature of } 239 \; {}^\circ F \\ & (115 \; {}^\circ C). \end{array}$ 

Please also ensure that the max. case drain temperature of 239 °F (115 °C) is not exceeded in localized areas (for instance, in the bearing area). The fluid temperature in the bearing area is


approx. 7 °F (5 K) higher than the average case drain temperature.

n<sub>max</sub> = 7500 SUS (1600 mm<sup>2</sup>/s) short-term (t ≤ 1 min) on cold start (p ≤ 435 psi (30 bar), n ≤ 1000 rpm, t<sub>min</sub> -13 °F (-25 °C))

Depending on the installation situation, special measures are necessary at temperatures between -40 °F (-40°C) and -13 °F (-25°C). Please contact us.

For detailed information on operation with low temperatures see data sheet RE 90300-03-B.

#### Selection diagram



#### Notes on the choice of hydraulic fluid

In order to select the correct hydraulic fluid, it is necessary to know the operating temperature in the reservoir (open circuit) in relation to the ambient temperature.

The hydraulic fluid should be selected so that within the operating temperature range, the viscosity lies within the optimum range ( $v_{opt}$ ), see shaded section of the selection diagram. We recommend to select the higher viscosity grade in each case.

Example: at an ambient temperature of X °F (°C) the operating temperature is 140 °F (60 °C). In the optimum operating viscosity range ( $v_{opt}$ ; shaded area) this corresponds to viscosity grades VG 46 resp. VG 68; VG 68 should be selected.

#### Important:

The case drain temperature is influenced by pressure and input speed and is always higher than the reservoir temperature. However, at no point in the component may the temperature exceed 239 °F (115 °C). The temperature difference specified on the left is to be taken into account when determining the viscosity in the bearing.

If the above conditions cannot be met, due to extreme operating parameters please contact us.

#### Filtration of the hydraulic fluid

The finer the filtration the better the cleanliness level of the hydraulic fluid and the longer the service life of the axial piston unit.

In order to guarantee the functional reliability of the axial piston unit it is necessary to carry out a gravimetric evaluation of the hydraulic fluid to determine the particle contamination and the cleanliness level according to ISO 4406. A cleanliness level of at least 20/18/15 must be maintained.

At very high hydraulic fluid temperatures (195 °F (90 °C) to maximum 239 °F (115 °C)), a cleanliness level of at least 19/17/14 according to ISO 4406 is necessary.

If the above cleanliness levels cannot be maintained, please contact us.

# Technical data

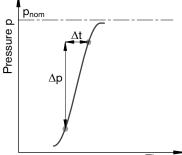
### **Operating pressure range**

(when using mineral oil)

#### Pressure at service line port B

Nominal pressure pnom \_\_\_\_\_ 4000 psi (280 bar) absolute

 Maximum pressure pmax
 5100 psi (350 bar) absolute


 Single operating period
 2.0 ms

 Total operating period
 300 h

### Minimum pressure (high-pressure side)

\_\_\_\_\_ 145 psi (10 bar) absolute<sup>1)</sup>

Rate of pressure change R<sub>A max</sub>\_ 232060 psi/s (16000 bar/s)





#### Pressure at suction port S (inlet)

#### Note

Please contact us for values for other hydraulic fluids.

#### Case drain pressure

Maximum permissible case drain pressure (at port L,  $L_1$ ): Maximum 0.5 bar higher than the inlet pressure at port S, however not higher than 2 bar absolute.

PL max abs \_\_\_\_\_

\_\_\_\_\_ 30 psi (2 bar) absolute<sup>1)</sup>

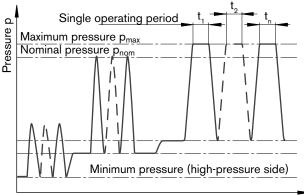
#### 1) Other values on request

#### Definition

#### Nominal pressure pnom

The nominal pressure corresponds to the maximum design pressure.

### Maximum pressure p<sub>max</sub>


The maximum pressure corresponds to the maximum operating pressure within the single operating period. The total of the single operating periods must not exceed the total operating period.

#### Minimum pressure (high-pressure side)

Minimum pressure in the high-pressure side (port B) that is required in order to prevent damage to the axial piston unit. The minimum pressure depends on the speed and displacement of the axial piston unit.

#### Rate of pressure change R<sub>A</sub>

Maximum permissible pressure build-up and pressure reduction speed with a pressure change over the entire pressure range.



Time t

Total operating period =  $t_1 + t_2 + ... + t_n$ 

# Technical data, standard unit

Table of values (theoretical values, without efficiencies and tolerances: values rounded)

| Size                                        |                                                                 | NG                    |                                    | 18                 | 28                 | 45                 | 71                 | 100                | 140                |
|---------------------------------------------|-----------------------------------------------------------------|-----------------------|------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Geometrical displace                        | cement per revoluti                                             | on                    |                                    |                    |                    |                    |                    |                    |                    |
|                                             |                                                                 | V <sub>g max</sub>    | in <sup>3</sup> (cm <sup>3</sup> ) | 1.10 (18)          | 1.71 (28)          | 2.75 (45)          | 4.33 (71)          | 6.1 (100)          | 8.54 (140)         |
| Maximum speed                               | 1)                                                              |                       |                                    |                    |                    |                    |                    |                    |                    |
| at $V_{g max}$                              |                                                                 | n <sub>nom</sub>      | rpm                                | 3300               | 3000               | 2600               | 2200               | 2000               | 1800               |
| at V <sub>g</sub> < V <sub>g max</sub>      |                                                                 | n <sub>max perm</sub> | n rpm                              | 3900               | 3600               | 3100               | 2600               | 2400               | 2100               |
| Flow                                        |                                                                 |                       |                                    |                    |                    |                    |                    |                    |                    |
| at $n_{nom}$ and $V_{gr}$                   | nax                                                             | q <sub>v max</sub>    | gpm (l/min)                        | 15.7 (59)          | 22 (84)            | 31 (117)           | 41 (156)           | 53 (200)           | 67 (252)           |
| at $n_E = 1800 rp$                          | om and $V_{g max}$                                              | $q_{vE max}$          | gpm (l/min)                        | 8.5 (32)           | 13.3 (50)          | 21.4 (81)          | 33.8 (128)         | 47.6 (180)         | 67 (252)           |
| Power at $\Delta p = 40$                    | 000 psi (280 bar)                                               |                       |                                    |                    |                    |                    |                    |                    |                    |
| at n <sub>nom</sub> , V <sub>g max</sub>    |                                                                 | P <sub>max</sub>      | HP (kW)                            | 40 (30)            | 51 (39)            | 74 (55)            | 96 (73)            | 124 (93)           | 156 (118)          |
| at n <sub>E</sub> = 1800 rp                 | om and V <sub>g max</sub>                                       | P <sub>E max</sub>    | HP (kW)                            | 19 (15)            | 31 (24)            | 50 (38)            | 79 (69)            | 111 (84)           | 156 (118)          |
| Torque                                      |                                                                 |                       |                                    |                    |                    |                    |                    |                    |                    |
| at $V_{g max}$ and                          | $\Delta p = 4000 \text{ psi}$<br>$\Delta p = (280 \text{ bar})$ | T <sub>max</sub>      | lb-ft (Nm)                         | 58 (80)            | 91 (125)           | 146 (200)          | 230 (316)          | 324 (445)          | 453 (623)          |
|                                             | $\Delta p = 1450 \text{ psi}$<br>$\Delta p = (100 \text{ bar})$ | Т                     | lb-ft (Nm)                         | 14.6 (30)          | 33 (45)            | 53 (72)            | 83 (113)           | 117 (159)          | 164 (223)          |
| Rotary stiffness,<br>drive shaft            | S                                                               | С                     | lb-ft/rad<br>(Nm/rad)              | 8082<br>(11087)    | 16400<br>(22317)   | 27560<br>(37500)   | 53018<br>(71884)   | 89348<br>(121142)  | 125042<br>(169537) |
|                                             | R                                                               | с                     | lb-ft/rad<br>(Nm/rad)              | 10870<br>(14850)   | 19400<br>(26360)   | 30241<br>(41025)   | 56456<br>(76545)   | -<br>(-)           | _<br>(_)           |
|                                             | U                                                               | С                     | lb-ft/rad<br>(Nm/rad)              | 5946<br>(8090)     | 12310<br>(16695)   | 22107<br>(30077)   | 38920<br>(52779)   | 67180<br>(91093)   | _<br>(_)           |
|                                             | W                                                               | С                     | lb-ft/rad<br>(Nm/rad)              | -<br>(-)           | 14670<br>(19898)   | 25330<br>(34463)   | 42360<br>(57460)   | 74858<br>(101847)  | _<br>(-)           |
| Moment of inertial rotary group             |                                                                 | J <sub>TW</sub>       | lbs-ft²<br>(kgm²)                  | 0.022<br>(0.00093) | 0.0403<br>(0.0017) | 0.0783<br>(0.0033) | 0.1970<br>(0.0083) | 0.3963<br>(0.0167) | 0.5743<br>(0.0242) |
| Angular acceleration, maximum <sup>2)</sup> |                                                                 | α                     | rad/s <sup>2</sup>                 | 6800               | 5500               | 4000               | 3300               | 2700               | 2700               |
| Filling capacity                            |                                                                 | V                     | gal (L)                            | 0.1 (0.4)          | 0.2 (0.7)          | 0.26 (1.0)         | 0.4 (1.6)          | 0.6 (2.2)          | 0.8 (3.0)          |
| Weight (without thr                         | ough drive) approx.                                             | m                     | lbs (kg)                           | 26.5 (12)          | 33 (15)            | 46 (21)            | 73 (33)            | 99 (45)            | 132 (60)           |

1) The values are applicable:

- for an absolute pressure  $p_{abs} = 15 \text{ psi}$  (1 bar) at suction port S

- within the optimum viscosity range from  $v_{opt} = 80$  to 170 SUS (16 to 36 mm<sup>2</sup>/s)

- for mineral-oil based hydraulic fluid.

2) The scope of application lies between the minimum necessary and the maximum permissible drive speeds. Valid for external excitation (e.g. diesel engine 2- to 8-fold rotary frequency, cardan shaft 2-fold rotary frequency). The limiting value is only valid for a single pump.

The loading capacity of the connecting parts must be taken into account.

#### Note

Exceeding the maximum or falling below the minimum permissible values can lead to a loss of function, a reduction in operational service life or total destruction of the axial piston unit. We recommend to check the loading through tests or calculation / simulation and comparison with the permissible values.

#### Calculation of characteristics

| Flow   | a —              | V <sub>g</sub> • n • η <sub>V</sub> |                                 | [gpm     | $V_{g}$            | = | Displacement per revolution in cm <sup>3</sup> |
|--------|------------------|-------------------------------------|---------------------------------|----------|--------------------|---|------------------------------------------------|
| FIOW   | q <sub>V</sub> = | 231 (1000)                          |                                 | (l/min)] | $\Delta p$         | = | Pressure differential in bar                   |
| Taraua | т_               | V <sub>g</sub> • ∆p                 |                                 | [lb-ft   | n                  | = | Speed in rpm                                   |
| Torque | · =              | 24 (20) • π • η <sub>mh</sub>       |                                 | (Nm)]    | $\eta_{V}$         | = | Volumetric efficiency                          |
| Bower  | D _              | 2π • T • n                          | qv • ∆p                         | [HP      | $\eta_{\text{mh}}$ | = | Mechanical-hydraulic efficiency                |
| Power  | г =              | 33000 (60000)                       | <br>1714 (600) • η <sub>t</sub> | (kW)]    | $\eta_t$           | = | Total efficiency $(h_t = h_V \bullet h_{mh})$  |

# Technical data, high-speed version

Table of values (theoretical values, without efficiencies and tolerances: values rounded)

| Size                                     |                                                                 | NG                    |                                           | 45                 | 71                 | 100                | 140                |
|------------------------------------------|-----------------------------------------------------------------|-----------------------|-------------------------------------------|--------------------|--------------------|--------------------|--------------------|
| Geometrical displace                     | cement per revolut                                              | ion                   |                                           |                    |                    |                    |                    |
|                                          |                                                                 | V <sub>g max</sub>    | in <sup>3</sup> (cm <sup>3</sup> )        | 2.75 (45)          | 4.33 (71)          | 6.1 (100)          | 8.54 (140)         |
| Maximum speed                            | 1)                                                              |                       |                                           |                    |                    |                    | ·                  |
| at V <sub>g max</sub>                    |                                                                 | n <sub>nom</sub>      | rpm                                       | 3000               | 2550               | 2300               | 2050               |
| at $V_g < V_{g max}$                     |                                                                 | n <sub>max peri</sub> | <sub>n</sub> rpm                          | 3300               | 2800               | 2500               | 2200               |
| Flow                                     |                                                                 |                       |                                           |                    |                    |                    |                    |
| at $n_{nom}$ and $V_{gn}$                | nax                                                             | q <sub>v max</sub>    | gpm (l/min)                               | 35 (135)           | 47 (178)           | 61 (230)           | 76 (287)           |
| Power at $\Delta p = 40$                 | 000 psi (280 bar)                                               |                       |                                           |                    |                    |                    |                    |
| at n <sub>nom</sub> , V <sub>g max</sub> |                                                                 | P <sub>max</sub>      | HP (kW)                                   | 84 (63)            | 112 (83)           | 143 (107)          | 177 (134)          |
| Torque                                   |                                                                 |                       |                                           |                    |                    |                    |                    |
| at $V_{g max}$ and                       | $\Delta p = 4000 \text{ psi}$<br>$\Delta p = (280 \text{ bar})$ | T <sub>max</sub>      | lb-ft (Nm)                                | 146 (200)          | 230 (316)          | 324 (445)          | 453 (623)          |
|                                          | $\Delta p = 1450 \text{ psi}$<br>$\Delta p = 100 \text{ bar}$   | Т                     | lb-ft (Nm)                                | 53 (72)            | 83 (113)           | 117 (159)          | 164 (223)          |
| Rotary stiffness,<br>drive shaft         | S                                                               | С                     | lb-ft/rad<br>(Nm/rad)                     | 27560<br>(37500)   | 53ß18<br>(71884)   | 89348<br>(121142)  | 125042<br>(169537) |
|                                          | R                                                               | С                     | lb-ft/rad<br>(Nm/rad)                     | 30240<br>(41025)   | 56456<br>(76545)   | _<br>(_)           | _<br>(_)           |
|                                          | U                                                               | С                     | lb-ft/rad<br>(Nm/rad)                     | 22107<br>(30077)   | _<br>(–)           | 67180<br>(91093)   | _<br>(_)           |
|                                          | W                                                               | С                     | lb-ft/rad<br>(Nm/rad)                     | 25330<br>(34463)   | _<br>(-)           | 74858<br>(101847)  | _<br>(_)           |
| Moment of inertial rotary group          |                                                                 | $J_{TW}$              | lbs-ft <sup>2</sup><br><sup>(</sup> kgm²) | 0.0783<br>(0.0033) | 0.1970<br>(0.0083) | 0.3968<br>(0.0167) | 0.5743<br>(0.0242) |
| Angular acceleratio                      | on, maximum <sup>2)</sup>                                       | α                     | rad/s <sup>2</sup>                        | 4000               | 3300               | 2700               | 2700               |
| Filling capacity                         |                                                                 | V                     | gal (L)                                   | 0.26 (1.0)         | 0.4 (1.6)          | 0.6 (2.2)          | 0.8 (3.0)          |
| Weight (without three                    | m                                                               | lbs (kg)              | 46 (21)                                   | 73 (33)            | 99 (45)            | 132 (60)           |                    |

1) The values are applicable:

- for an absolute pressure  $p_{abs} = 15 \text{ psi} (1 \text{ bar})$  at suction port S

- within the optimum viscosity range from  $v_{opt} = 80$  to 170 SUS (16 to 36 mm<sup>2</sup>/s)

- for mineral-oil based hydraulic fluid.

2) The scope of application lies between the minimum necessary and the maximum permissible drive speeds.

Valid for external excitation (e.g. diesel engine 2- to 8-fold rotary frequency, cardan shaft 2-fold rotary frequency). The limiting value is only valid for a single pump.

The loading capacity of the connecting parts must be taken into account.

#### Note

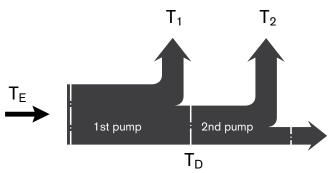
Exceeding the maximum or falling below the minimum permissible values can lead to a loss of function, a reduction in operational service life or total destruction of the axial piston unit. We recommend to check the loading through tests or calculation / simulation and comparison with the permissible values.

Sizes 45, 71, 100 and 140 are optionally available in high-speed version. External dimensions are not affected by this option.

# Technical data

# Permissible radial and axial loading on the drive shaft

| Size                           | NG                    |            | 18           | 28            | 45            | 71            | 100           | 140            |
|--------------------------------|-----------------------|------------|--------------|---------------|---------------|---------------|---------------|----------------|
| Radial force maximum<br>at a/2 | a/2 a/2<br>a          | lbf<br>(N) | 80<br>(350)  | 270<br>(1200) | 340<br>(1500) | 427<br>(1900) | 517<br>(2300) | 630<br>(2800)  |
| Axial force maximum            |                       |            |              |               |               |               |               |                |
| ±Fax <del>«</del> -            | + F <sub>ax max</sub> | lbf<br>(N) | 157<br>(700) | 225<br>(1000) | 340<br>(1500) | 540<br>(2400) | 900<br>(4000) | 1080<br>(4800) |


# Permissible input and through-drive torques

| Size                          |                                                                     | NG                 |               | 18           | 28           | 45           | 71           | 100           | 140            |
|-------------------------------|---------------------------------------------------------------------|--------------------|---------------|--------------|--------------|--------------|--------------|---------------|----------------|
| Torque<br>at V <sub>g r</sub> | e $_{\rm nax}$ and $\Delta p = 4000~{\rm psi}~(280~{\rm bar^{1)}})$ | lb-ft<br>(Nm)      | 58<br>(80)    | 91<br>(125)  | 146<br>(200) | 230<br>(316) | 324<br>(445) | 453<br>(623)  |                |
| Input                         | torque for drive shaft, maximum <sup>2)</sup>                       |                    |               |              |              |              |              |               |                |
|                               | S                                                                   | T <sub>E max</sub> | lb-ft<br>(Nm) | 92<br>(124)  | 146<br>(198) | 235<br>(319) | 462<br>(626) | 814<br>(1104) | 1195<br>(1620) |
|                               |                                                                     | Ø                  | in            | 3/4          | 7/8          | 1            | 1 1/4        | 1 1/2         | 1 3/4          |
|                               | R                                                                   | T <sub>E max</sub> | lb-ft<br>(Nm) | 118<br>(160) | 184<br>(250) | 295<br>(400) | 475<br>(644) | _<br>(_)      | _<br>(_)       |
|                               |                                                                     | Ø                  | in            | 3/4          | 7/8          | 1            | 1 1/4        | -             | -              |
|                               | U                                                                   | T <sub>E max</sub> | lb-ft<br>(Nm) | 44<br>(59)   | 77<br>(105)  | 139<br>(188) | 221<br>(300) | 439<br>(595)  | _<br>(-)       |
|                               |                                                                     | Ø                  | in            | 5/8          | 3/4          | 7/8          | 1            | 1 1/4         | -              |
|                               | W                                                                   | T <sub>E max</sub> | lb-ft<br>(Nm) | -<br>(-)     | 103<br>(140) | 162<br>(220) | 291<br>(394) | 469<br>(636)  | _<br>(_)       |
|                               |                                                                     | Ø                  | in            | -            | 3/4          | 7/8          | 1            | 1 1/4         | -              |
| Maxim                         | num through-drive torque for drive                                  | shaft              |               |              |              |              |              |               |                |
|                               | S                                                                   | T <sub>D max</sub> | lb-ft<br>(Nm) | 80<br>(108)  | 118<br>(160) | 235<br>(319) | 363<br>(492) | 574<br>(778)  | 934<br>(1266)  |
|                               | R                                                                   | T <sub>D max</sub> | Nm            | 89<br>(120)  | 130<br>(176) | 269<br>(365) | 404<br>(548) | _<br>(-)      | _<br>(-)       |

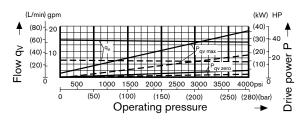
1) Without considering efficiency

2) For drive shafts free of radial force

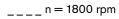
### **Distribution of torques**

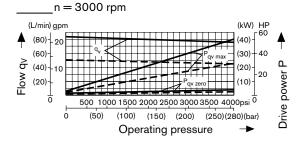


# Technical data

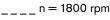

### Drive power and flow

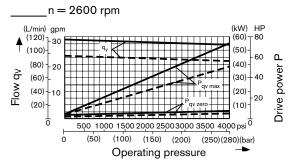
Operating material:


Hydraulic fluid ISO VG 46 DIN 51519, t = 122 °F (50 °C)


#### Size 18

\_\_\_\_n = 3300 rpm

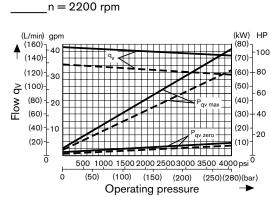






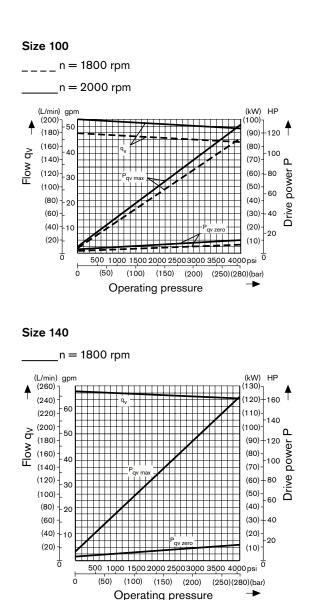







\_\_\_\_ n = 1800 rpm






۵

power

Drive f

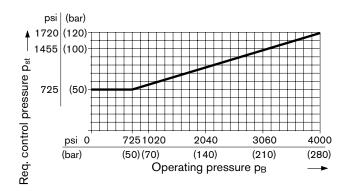


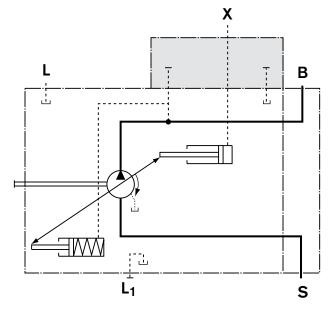
# DG - Two-point control, directly operated

The variable pump can be set to a minimum swivel angle by connecting an external control pressure to port X.

### Circuit diagram

This will supply control fluid directly to the stroke piston; a minimum control pressure of  $p_{st} \ge 725$  psi (50 bar) is required.


The variable pump can only be switched between  $V_{g max}$  or  $V_{g min}$ .


Please note, that the required control pressure at port X is directly dependent on the actual operating pressure  $p_B$  in port B. (See control pressure characteristic).

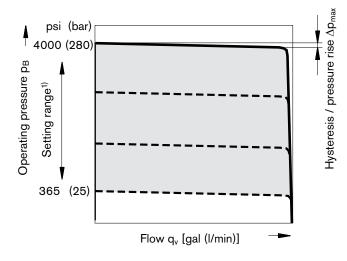
Control pressure  $p_{st}$  in X = 0 psi (0 bar)  $\triangleq V_{g max}$ 

Control pressure  $p_{st}$  in X  $\geq$  725 psi (50 bar)  $\triangleq$  V<sub>g min</sub>

#### Control pressure characteristic



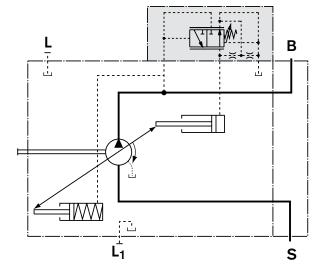



|                   | Port for                |
|-------------------|-------------------------|
| В                 | Service line            |
| S                 | Suction line            |
| L, L <sub>1</sub> | Case drain (L1 plugged) |
| Х                 | Pilot pressure          |

# DR – Pressure control

The pressure control limits the maximum pressure at the pump output within the pump control range. The variable pump only supplies as much hydraulic fluid as is required by the consumers. If the operating pressure exceeds the pressure setpoint set at the integrated pressure valve, the pump will adjust towards a smaller displacement and the control deviation will be reduced. The pressure can be set steplessly at the control valve.

#### Static characteristic


(at  $n_1 = 1800 \text{ rpm}$ ;  $t_{fluid} = 122 \text{ °F} (50 \text{ °C})$ )



 In order to prevent damage to the pump and the system, this setting range is the permissible setting range and must not be exceeded.

The range of possible settings at the valve are greater.

#### Circuit diagram, sizes 18 to 100



#### Circuit diagram, size 140

| +-  | <u>\_</u> |
|-----|-----------|
| - 1 |           |

|                   | Port for                            |
|-------------------|-------------------------------------|
| В                 | Service line                        |
| S                 | Suction line                        |
| L, L <sub>1</sub> | Case drain (L <sub>1</sub> plugged) |

#### **Control data**

|                                         |              | · / ヘ · · · · |
|-----------------------------------------|--------------|---------------|
| Hysteresis and repeatability $\Delta p$ | maximum 45 p | nsi (: A har) |
|                                         | maximum ro p |               |

#### Pressure rise, maximum

| NG |       | 18  | 28  | 45  | 71  | 100  | 140  |
|----|-------|-----|-----|-----|-----|------|------|
| Δр | psi   | 60  | 60  | 90  | 115 | 145  | 175  |
|    | (bar) | (4) | (4) | (6) | (8) | (10) | (12) |

Control fluid consumption \_\_\_\_\_ max. approx. 0.8 gpm (3 l/min)

Flow losses at  $q_{Vmax}$  see page 9.

Not included in the delivery contents

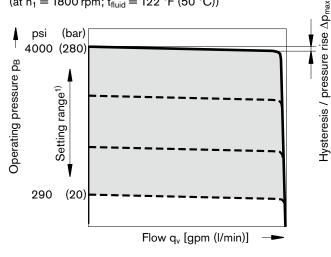
# DRG - Pressure control, remotely operated

The DR-control valve (see page 11) is overriding this DRGremote setting of max. outlet pressure.

A pressure relief valve can be externally piped to port X for remote setting of pressure below the setting of the DR control valve spool. This relief valve is not included in the delivery contents of the DRG control.

The differential pressure at the DRG control valve is set as standard to 290 psi (20 bar). This results in a pilot oil flow to the relief valve of approx. 0.4 gpm (1.5 l/min) at port X. If another setting is required (range from 145-320 psi (10-22 bar)) please state in clear text.

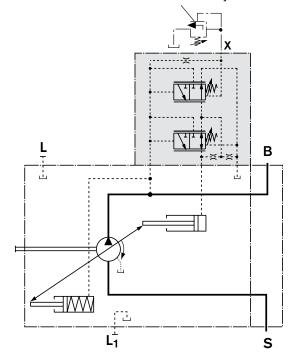
As a separate pressure relief valve we can recommend:


DBDH 6 (hydraulic) to RE 25402 or

DBETR-SO 381 with orifice dia 0.03 inch (Ø 0.8 mm) in P (electric) to RE 29166.

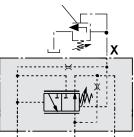
The max. length of piping should not exceed 6.5 ft (2 m).

#### Static characteristic


(at n<sub>1</sub> = 1800 rpm; t<sub>fluid</sub> = 122 °F (50 °C))



1) In order to prevent damage to the pump and the system, this setting range is the permissible setting range and must not be exceeded.


The range of possible settings at the valve are greater.

Circuit diagram, sizes 18 to 100



#### Circuit diagram, size 140

Not included in the delivery contents



|                   |                              | Port for                |
|-------------------|------------------------------|-------------------------|
| В                 |                              | Service line            |
| S                 |                              | Suction line            |
| L, L <sub>1</sub> |                              | Case drain (L1 plugged) |
| Х                 | NG 18 to 100<br>with adapter | Pilot pressure          |
| Х                 | NG 140<br>without adapter    | Pilot pressure          |

#### Control data

Hysteresis and repeatability ∆p \_\_\_\_\_ maximum 45 psi (3 bar)

Pressure rise, maximum

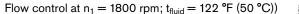
| NG     | 18  | 28  | 45  | 71  | 100  | 140  |
|--------|-----|-----|-----|-----|------|------|
| ∆p psi | 60  | 60  | 90  | 115 | 145  | 175  |
| (bar)  | (4) | (4) | (6) | (8) | (10) | (12) |

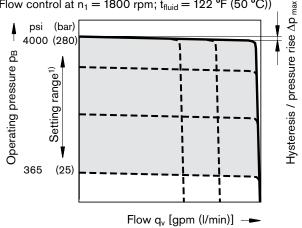
Control fluid consumption max. approx. 1.2 gpm (4.5 l/min)

Flow losses at q<sub>Vmax</sub> see page 9.

# DFR/DFR1 – Pressure and flow control

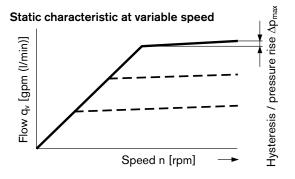
In addition to the pressure control function (see page 11), the pump flow may be varied by means of a differential pressure over an adjustable orifice (e.g. directional valve) installed in the service line to the actuator. The pump flow is equal to the actual required flow by the actuator, regardless of changing pressure levels.


The pressure control overrides the flow control function.


#### Note

The DFR1 version has no connection between X and the reservoir. Unloading the LS-pilot line must be possible in the valve system.

Because of the flushing function sufficient unloading of the X-line must also be provided.

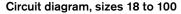

#### Static characteristic

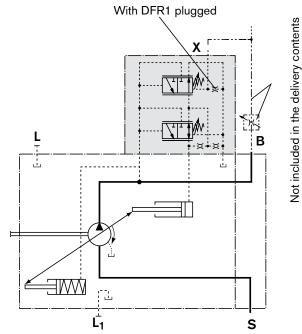


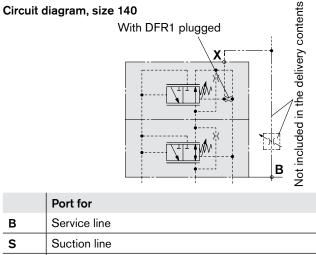


1) In order to prevent damage to the pump and the system, this setting range is the permissible setting range and must not be exceeded.

The range of possible settings at the valve are greater.





#### Differential pressure $\Delta p$


Standard setting: 200 to 320 psi (14 to 22 bar).

If another setting is required, please state in clear text. Relieving the load on port X to the reservoir results in a zero

stroke ("standby") pressure which lies about 15 to 30 psi (1 to 2 bar) higher than the differential pressure ∆p. System influences are not taken into account.







| S                 | Suction line                        |
|-------------------|-------------------------------------|
| L, L <sub>1</sub> | Case drain (L <sub>1</sub> plugged) |
| Х                 | Pilot pressure                      |

#### Control data

Data for pressure control DR, see page 11. Maximum flow deviation measured with drive speed n = 1500 rpm.

| NG                |         |       |       |       | 71    |       |       |
|-------------------|---------|-------|-------|-------|-------|-------|-------|
| $\Delta q_{vmax}$ | gpm     | 0.24  | 0.26  | 0.48  | 0.75  | 1.06  | 1.60  |
|                   | (I/min) | (0.9) | (1.0) | (1.8) | (2.8) | (4.0) | (6.0) |

Control fluid consumption DFR \_\_ max. approx. 0.8 to 1.2 gpm (3 to 4.5 l/min)

Control fluid consumption DFR1 \_\_\_\_maximum approx. 0.8 gpm (3 l/min) Volume flow loss at q<sub>Vmax</sub>, see page 9.

# DFLR - Pressure, flow and power control

Execution of the pressure control like DR(G), see page 11 (12). Execution of the flow control like DFR, DFR1, see page 13.

In order to achieve a constant drive torque with varying operating pressures, the swivel angle and with it the output flow from the axial piston pump is varied so that the product of flow and pressure remains constant.

Flow control is possible below the power control curve.

Static curves and torque characteristic

The power characteristic is set in the factory; when ordering, please state in clear text, e.g. 40 HP (30 kW) at 1800 rpm.

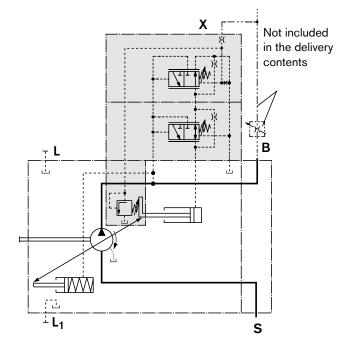
### Control data

For pressure control DR data, see page 11. For flow control FR data, see page 13.

### Circuit diagram, sizes 28 to 100


# psi | (bar) Maximum 4350 (300) power curve 4000 (280) 3600 (250) ВВ Operating pressure 2900 (200) 2200 (150) 1450 (100) Maximum 725 (50) power curve 0 (0) Δqv Torque T [lb-ft (Nm)] (see table on page 13) 0 100 Volume flow $q_v$ [%]

### Control data


Beginning of control \_\_\_\_\_\_ 725 psi (50 bar) Control fluid consumption\_ maxi. approx. 1.45 gpm (5.5 l/min)

Flow loss at qv max, see page 9.

|                   | Port for                |
|-------------------|-------------------------|
| В                 | Service line            |
| S                 | Suction line            |
| L, L <sub>1</sub> | Case drain (L1 plugged) |
| Х                 | Pilot pressure          |



Circuit diagram, size 140



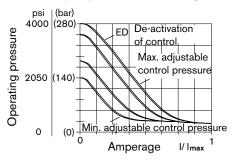
# ED – Electro-hydraulic pressure control

The ED valve is set to a certain pressure by a specified, variable solenoid current.

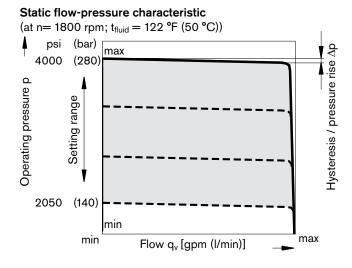
If there is a change at the consumer (load pressure), the position of the control piston changes.

This causes an increase or decrease in the pump swivel angle (flow) in order to maintain the electrically set pressure level.

The pump thus only delivers as much hydraulic fluid as the consumers can take. The desired pressure level can be set steplessly by varying the solenoid current.


When the solenoid current signal drops towards a zero value, the maximum output pressure is limited to  $p_{max}$  by an adjustable hydraulic pressure cut-off (secure fail safe function in case of a loss of power e.g. for use as fan drives).

The response time characteristic of the ED-control was optimized for the use as a fan drive system.

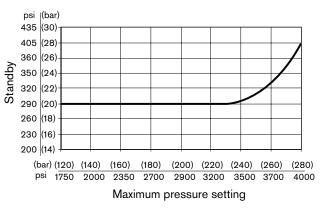

When ordering, state the type of application in clear text.

#### Static current-pressure characteristic ED

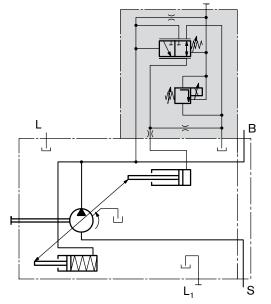
(measured at pump in zero stroke - negative characteristic)



| Hysteresis of the static current-pressure characteristic |
|----------------------------------------------------------|
| < 45 psi (3 bar)                                         |




#### Control data


Standby standard settings (see diagram at right), other values on request.

Hysteresis and pressure increase  $\Delta p < 60$  psi (4 bar) Control fluid consumption 0.8 to 1.2 gpm (3 to 4.5 l/min)

#### Influence of pressure setting on standby level



### Circuit diagram ED..



|                   | Port for                            |
|-------------------|-------------------------------------|
| В                 | Service line                        |
| S                 | Suction line                        |
| L, L <sub>1</sub> | Case drain (L <sub>1</sub> plugged) |

| Technical data, solenoid        | ED71             | ED72         |
|---------------------------------|------------------|--------------|
| Voltage                         | 12 V (±20 %)     | 24 V (±20 %) |
| Control current                 |                  |              |
| Start of control at $V_{g min}$ | 100 mA           | 50 mA        |
| End of control at $V_{g max}$   | 1200 mA          | 600 mA       |
| Limiting current                | 1.54 A           | 0.77 A       |
| Nominal resistance (at 20 °C)   | 5.5 Ω            | 22.7 Ω       |
| Dither frequency                | 100 to           | 100 to       |
|                                 | 200 Hz           | 200 Hz       |
| Actuated time                   | 100 %            | 100 %        |
| For type of protection, see plu |                  | -            |
| For details on the control elec | tronics, see pag | ge 16        |

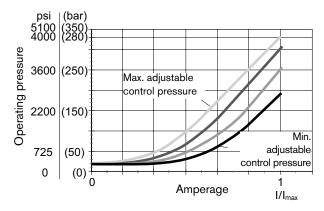
Operating temperature range at valve -4 °F to 239 °F (-20 °C to +115 °C)

# ER – Electro-hydraulic pressure control

The ER valve is set to a specific pressure by a specified, variable solenoid current.

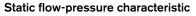
If there is a change at the consumer (load pressure), the position of the control piston changes.

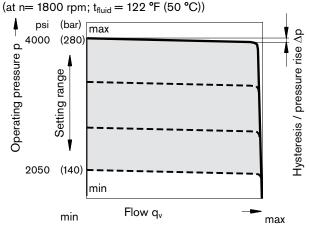
This causes an increase or decrease in the pump swivel angle (flow) in order to maintain the electrically set pressure level.


The pump thus only delivers as much hydraulic fluid as the consumers can take. The desired pressure level can be set steplessly by varying the solenoid current.

If the solenoid current drops to zero, the pressure is limited to  $\ensuremath{\mathsf{p}_{\mathsf{min}}}$  (stand-by).

Observe the project planning note on page 2.

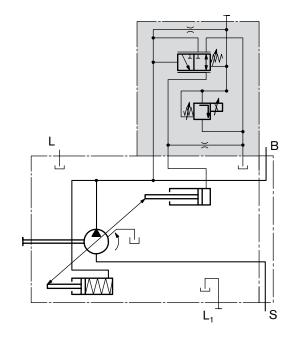

### Static current-pressure characteristic ER


(measured at pump in zero stroke - positive characteristic)



Hysteresis of the static current-pressure characteristic < 45 psi (3 bar)

Influence of pressure setting on stand-by ±30 psi (±2 bar)






#### Control data

Standby standard setting 290 psi (20 bar), other values on request.

Hysteresis and pressure increase  $\_ \Delta p < 60$  psi (4 bar) Control fluid consumption \_\_\_\_\_ 0.8 to 1.2 gpm (3 to 4.5 l/min)



Circuit diagram ER..

|                   | Port for                            |
|-------------------|-------------------------------------|
| В                 | Service line                        |
| S                 | Suction line                        |
| L, L <sub>1</sub> | Case drain (L <sub>1</sub> plugged) |

| Technical data, solenoid                           | ER71         | ER72         |  |  |  |
|----------------------------------------------------|--------------|--------------|--|--|--|
| Voltage                                            | 12 V (±20 %) | 24 V (±20 %) |  |  |  |
| Control current                                    |              |              |  |  |  |
| Start of control at $V_{g min}$                    | 100 mA       | 50 mA        |  |  |  |
| End of control at $V_{g max}$                      | 1200 mA      | 600 mA       |  |  |  |
| Limiting current                                   | 1.54 A       | 0.77 A       |  |  |  |
| Nominal resistance (at 20 °C)                      | 5.5 Ω        | 22.7 Ω       |  |  |  |
| Dither frequency                                   | 100 to       | 100 to       |  |  |  |
|                                                    | 200 Hz       | 200 Hz       |  |  |  |
| Actuated time                                      | 100 %        | 100 %        |  |  |  |
| For type of protection, see plug design on page 47 |              |              |  |  |  |

Operating temperature range at valve -4 °F to 239 °F (-20 °C to +115 °C)

The following electric controllers and amplifiers are available for controlling the proportional solenoids:

| Analog amplifier RA                           | RE 95230 |
|-----------------------------------------------|----------|
| Digital controller RC2-2/21 <sup>1)</sup>     | RE 95201 |
| Analog amplifier VT2000 <sup>2)</sup>         | RE 29904 |
| Analog amplifier VT 11029/11030 <sup>2)</sup> | RE 29741 |

1) Power outlets for 2 valves, can be actuated separately


2) Only 24V nominal voltage

# Notes

DFR, DFR1 – Pressure and flow control, hydraulic

Clockwise rotation

Before finalizing your design request a certified installation drawing. Dimensions in inches and (mm).

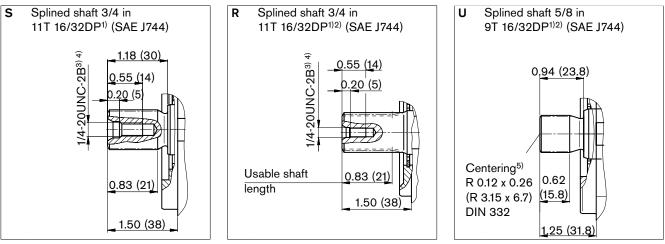


### Ports

| Designation    | Port for                          | Standard                | Size <sup>1)</sup>                      | Max. press.<br>[psi /(bar)] <sup>2)</sup> | State           |
|----------------|-----------------------------------|-------------------------|-----------------------------------------|-------------------------------------------|-----------------|
| В              | Service line,<br>fastening thread | SAE J518<br>ASME B1.1   | 3/4 in<br>3/8-16 UNC-2B; 0.79 (20) deep | 5100 (350)                                | 0               |
| S              | Suction line,<br>fastening thread | SAE J518<br>ASME B1.1   | 1 in<br>3/8-16 UNC-2B; 0.79 (20) deep   | 145 psi (10)                              | 0               |
| L              | Case drain fluid                  | ISO 11926 <sup>3)</sup> | 9/16-18UNF-2B; 0.47 (12) deep           | 30 (2)                                    | O <sup>4)</sup> |
| L <sub>1</sub> | Case drain fluid                  | ISO 11926 <sup>3)</sup> | 9/16-18UNF-2B; 0.47 (12) deep           | 30 (2)                                    | X <sup>4)</sup> |
| Х              | Pilot pressure                    | ISO 11926 <sup>3)</sup> | 7/16-20UNF-2B; 0.45 (11.5) deep         | 5100 (350)                                | 0               |
| Х              | Pilot pressure with DG-control    | DIN ISO 2283)           | G 1/4 in; 0.47 (12) deep                | 5100 (350)                                | 0               |

1) For the maximum tightening torques the general instructions on page 52 must be observed.

2) Depending on the application, short-term pressure spikes can occur. Consider this when selecting measuring equipment and fittings. Pressure values in psi (bar) absolute

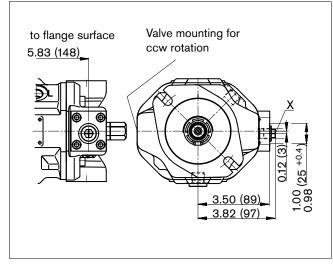

3) The spot face can be deeper than as specified in the standard

4) Depending on the installation position, L or L<sub>1</sub> must be connected (see also installation instructions on pages 48, 49)

O = Must be connected (plugged on delivery)

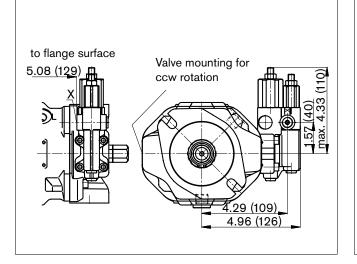
X = Plugged (in normal operation)

### **Drive shaft**



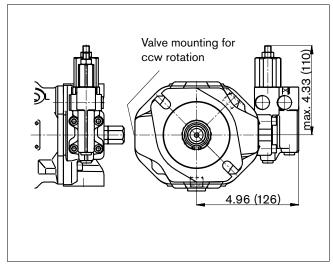

- 1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Splines according to ANSI B92.1a, run out of spline is a deviation from standard
- 3) Thread according to ASME B1.1
- 4) For the maximum tightening torques the general instructions on page 52 must be observed
- 5) Coupling axially secured, e.g. with a clamp coupling or radially mounted clamping screw

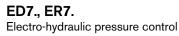
Before finalizing your design request a certified installation drawing. Dimensions in inches and (mm).

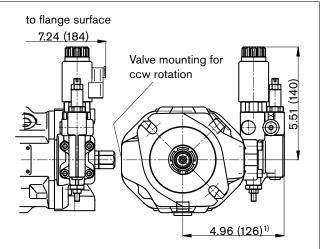

### DG

Two-point control, directly operated




# DRG


Pressure control, remotely operated

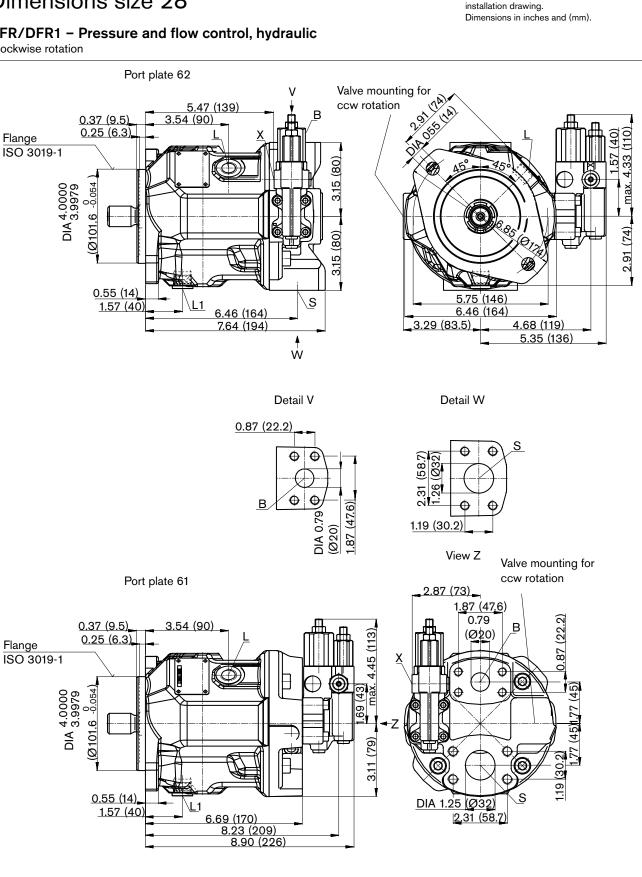



Before finalizing your design request a certified installation drawing. Dimensions in inches and (mm).







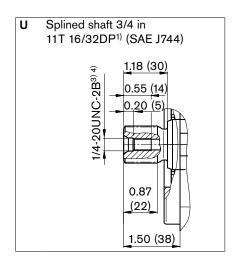


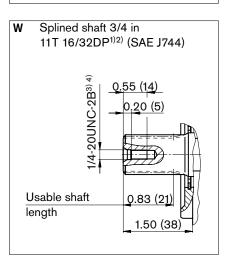

Before finalizing your design request a certified

# Dimensions size 28

DFR/DFR1 - Pressure and flow control, hydraulic

Clockwise rotation





### Drive shaft

S

Splined shaft 7/8 in R Splined shaft 7/8 in 13T 16/32DP1) (SAE J744) 13T 16/32DP1)2) (SAE J744) 1.30 (33.1) 1/4-20UNC-2B<sup>3) 4)</sup> 1/4-20UNC-2B<sup>3) 4)</sup> 0.63 (16) 0.63 (16) 0.20 (5) 0.20 (5) Usable shaft 0.98 (25 0.99 length (25.1)1.61 (41 1.61 (41)

Before finalizing your design request a certified installation drawing. Dimensions in inches and (mm).





1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

2) Spline according to ANSI B92.1a, run out of spline is a deviation from standard.

3) Thread according to ASME B1.1

4) For the maximum tightening torques the general instructions on page 52 must be observed.

### Ports

| Designation    | Port for                          | Standard                | Size <sup>5)</sup>                         | Max. press.<br>[psi (bar)] <sup>6)</sup> | State           |
|----------------|-----------------------------------|-------------------------|--------------------------------------------|------------------------------------------|-----------------|
| В              | Service line,<br>fastening thread | SAE J518<br>ASME B1.1   | 3/4 in<br>3/8-16 UNC-2B; 0.79 (20) deep    | 5100 (350)                               | 0               |
| S              | Suction line,<br>fastening thread | SAE J518<br>ASME B1.1   | 1 1/4 in<br>7/16-14 UNC-2B; 0.94 (24) deep | 145 (10)                                 | 0               |
| L              | Case drain fluid                  | ISO 11926 <sup>7)</sup> | 3/4-16 UNF-2B; 0.55 (14) deep              | 30 (2)                                   | O <sup>8)</sup> |
| L <sub>1</sub> | Case drain fluid                  | ISO 11926 <sup>7)</sup> | 3/4-16 UNF-2B; 0.55 (14) deep              | 30 (2)                                   | X <sup>8)</sup> |
| Х              | Pilot pressure                    | ISO 11926 <sup>7)</sup> | 7/16-14UNC-2B; 0.45 (11.5) deep            | 5100 (350)                               | 0               |
| Х              | Pilot pressure with DG-control    | DIN ISO 2287)           | G 1/4in; 0.47 (12) deep                    | 5100 (350)                               | 0               |

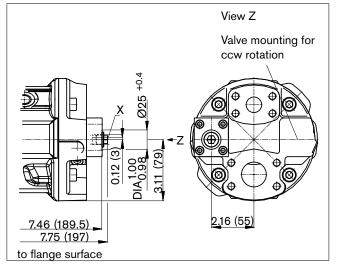
5) For the maximum tightening torques the general instructions on page 52 must be observed.

6) Depending on the application, short-term pressure spikes can occur. Consider this when selecting measuring equipment and fittings. Pressure values in psi (bar) absolute.

7) The spot face can be deeper than as specified in the standard.

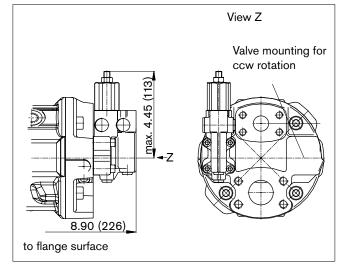
8) Depending on the installation position, L or L1 must be connected (see also installation instructions on pages 48, 49)

O = Must be connected (plugged on delivery)


X = Plugged (in normal operation)

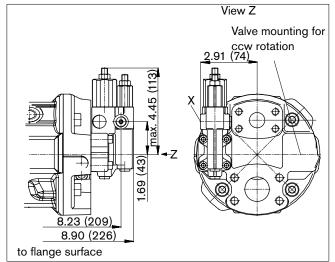
Before finalizing your design request a certified

# Dimensions size 28


### DG

Two-point control, directly operated, port plate 61

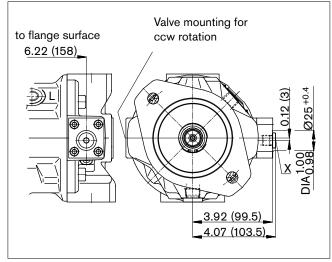



# DR

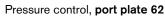
Pressure control, port plate 61

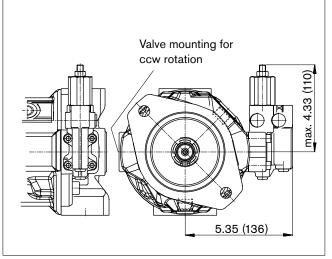


# DRG


Pressure control, remotely operated, port plate 61

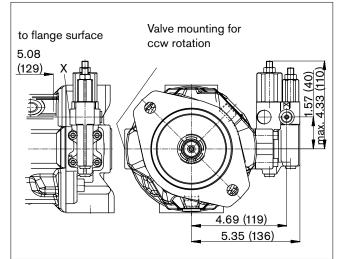



# DG


Two-point control, directly operated, port plate 62

installation drawing. Dimensions in inches and (mm).

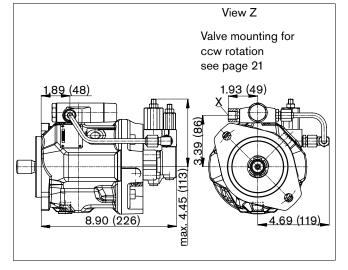



# DR



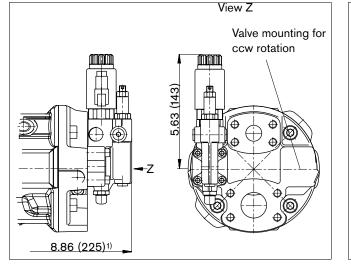


### DRG


Pressure control, remotely operated, port plate 62

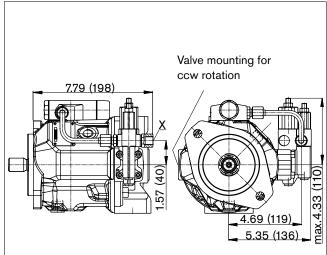


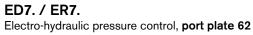
For details of connection options and drive shafts, see also pages 21 and 22

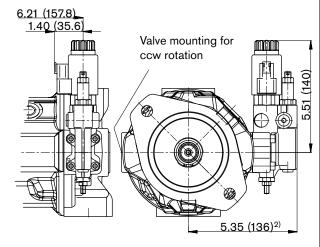

# DFLR

Pressure, flow and power control, port plate 61




# ED7. / ER7.


 $Electro-hydraulic \ pressure \ control, \ port \ plate \ 61$ 




Before finalizing your design request a certified installation drawing. Dimensions in inches and (mm).

### DFLR Pressure, flow and power control, port plate 62



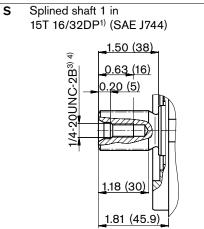


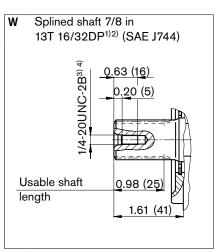


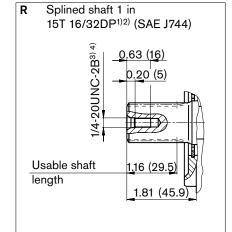
ER7.: 10.24 in (260 mm) when using a sandwich plate pressure reducing valve.
 ER7.: 6.83 in (170.9 mm) when using a sandwich plate pressure reducing valve.
 For details of connection options and drive shafts, see also pages 21 and 22

Before finalizing your design request a certified

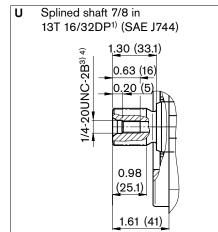
installation drawing. Dimensions in inches and (mm).


# Dimensions size 45


# DFR/DFR1 - Pressure and flow control, hydraulic


Clockwise rotation

Valve mounting Port plate 62 for ccw rotation 6.06 (154) 0.37 (9.5) 0.25 (6.3) 3.78 (96) Flange max. 4.33 (110 ISO 3019-1 57 (40 3.54 (90) DIA 4.0000 3.9979 Ø101.6 -0.054) 3.17 (80.5) 3.54 (90) 0.56 (14.3) L1 5.75 (146) 1.77 (45) 7.24 (184) 7.24 (184) 3.68 (93.5) 5.08 (129) 8.62 (219) 5.75 (146) ŧ Ŵ Detail V View W В S ₼ 2.75 (69.9) Ø 1.57 Φ œ DIA 0.98 ሰ  $\oplus$ (Ø25) 1.03  $\cap$ (26.2 1.40 (35.7 Port plate 61 View Z Valve mounting for ccw rotation 3.23 (82) 0.37 (9.5) 8.98 (228) 2.06 (52.4) 0.25 (6.3) 3.78 (96) .03 (26. DIA 0.98 (Ø25) В 110 max. 50 DIA 4.0000 3.9979 Ø101.6 -0.054) ሱ 4 6 Z (50) 1.97 88 Flange ISO 3019-1 S 1.40 (35.7) 0.56 (14.3) L1 1.57 (Ø40) 1.77 (45) 2.75 7.44 (189) (69.9) 9.65 (245)


### Drive shaft







Before finalizing your design request a certified installation drawing. Dimensions in inches and (mm).



1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

2) Spline according to ANSI B92.1a, run out of spline is a deviation from standard.

3) Thread according to ASME B1.1

4) For the maximum tightening torques the general instructions on page 52 must be observed.

### Ports

| Designation    | Port for                          | Standard                | Size <sup>5)</sup>                        | Max. press.<br>[psi (bar)] <sup>6)</sup> | State           |
|----------------|-----------------------------------|-------------------------|-------------------------------------------|------------------------------------------|-----------------|
| В              | Service line,<br>fastening thread | SAE J518<br>ASME B1.1   | 1 in<br>3/8-16 UNC-2B; 0.71 (17) deep     | 5100 (350)                               | 0               |
| S              | Suction line,<br>fastening thread | SAE J518<br>ASME B1.1   | 1 1/2 in<br>1/2-13 UNC-2B; 0.87 (20) deep | 145 (10)                                 | 0               |
| L              | Case drain fluid                  | ISO 11926 <sup>7)</sup> | 7/8-14 UNF-2B; 0.63 (16) deep             | 30 (2)                                   | O <sup>8)</sup> |
| L <sub>1</sub> | Case drain fluid                  | ISO 11926 <sup>7)</sup> | 7/8-14 UNF-2B; 0.63 (16) deep             | 30 (2)                                   | X <sup>8)</sup> |
| Х              | Pilot pressure                    | ISO 11926 <sup>7)</sup> | 7/16-20UNF-2B; 0.45 (11.5) deep           | 5100 (350)                               | 0               |
| Х              | Pilot pressure with DG-control    | DIN ISO 2287)           | G 1/4 in; 0.47 (12) deep                  | 5100 (350)                               | 0               |

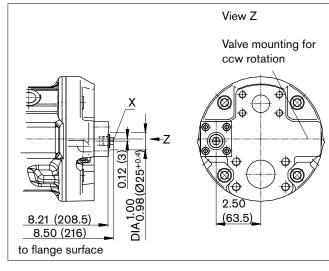
5) For the maximum tightening torques the general instructions on page 52 must be observed.

6) Depending on the application, short-term pressure spikes can occur. Consider this when selecting measuring equipment and fittings. Pressure values in psi (bar) absolute.

7) The spot face can be deeper than as specified in the standard.

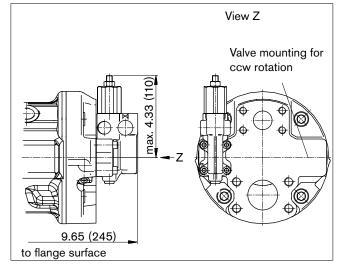
8) Depending on the installation position, L or L1 must be connected (see also installation instructions on pages 48, 49)

O = Must be connected (plugged on delivery)


X = Plugged (in normal operation)

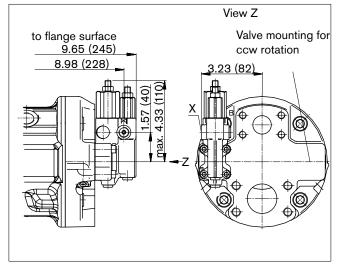
Before finalizing your design request a certified

# Dimensions size 45


### DG

Two-point control, directly operated, port plate 61

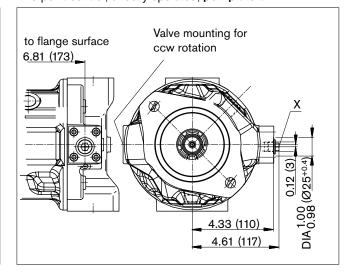



# DR

Pressure control, port plate 61

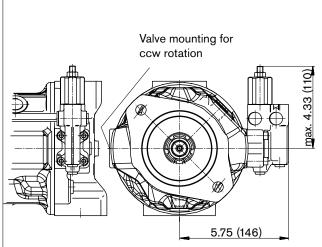


# DRG


Pressure control, remotely operated, port plate 61

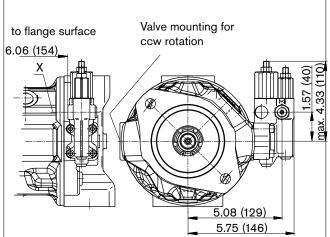


DG


Two-point control, directly operated, **port plate 62** 

installation drawing. Dimensions in inches and (mm).

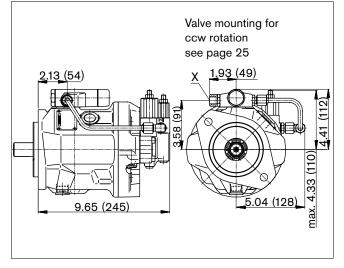



# DR

Pressure control, port plate 62

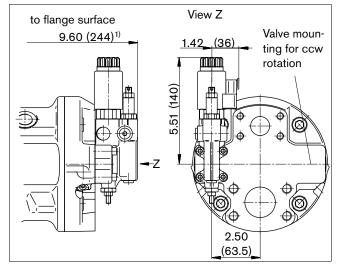


### DRG


Pressure control, remotely operated, port plate 62

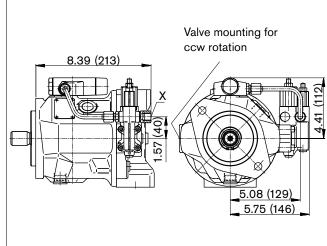


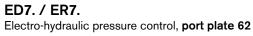
For details of connection options and drive shafts, see pages 25 and 26

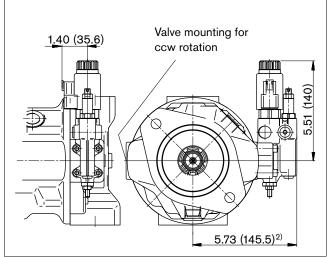

## DFLR

Pressure, flow and power control, port plate 61




### ED7. / ER7.


Electro-hydraulic pressure control, port plate 61

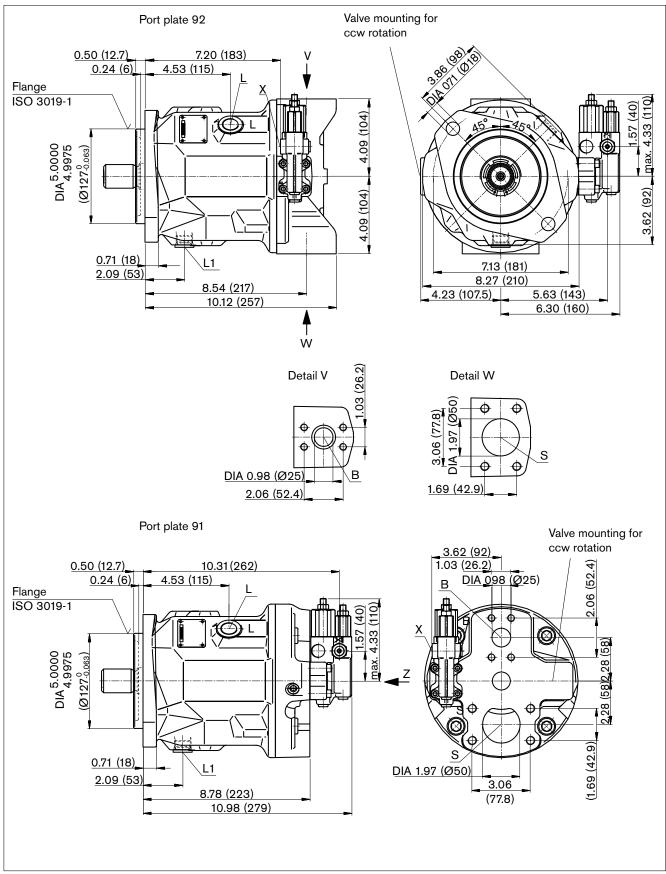



Before finalizing your design request a certified installation drawing. Dimensions in inches and (mm).

### DFLR Pressure, flow and power control, port plate 62








ER7.: 10.98 in (279 mm) when using a sandwich plate pressure reducing valve
 ER7.: 7.11 in (180.5 mm) when using a sandwich plate pressure reducing valve.
 For details of connection options and drive shafts, see also pages 21 and 22

# DFR/DFR1 - Pressure and flow control, hydraulic

Clockwise rotation

Before finalizing your design request a certified installation drawing. Dimensions in inches and (mm).



14T 12/24DP1) (SAE J744)

5/16-18UNC-2B<sup>3) 4)</sup>

<u>1</u>.87 (47.5)

0.75 (19)

.<u>20</u> (5

1.56

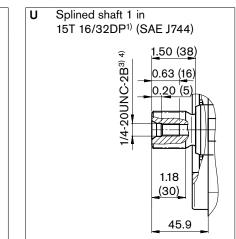
(39.5)

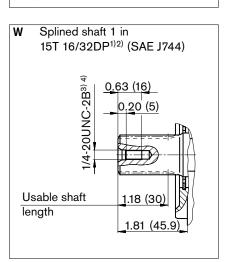
2.18 (55.4)

Splined shaft 1 1/4 in

### Drive shaft

S


 
 R
 Splined shaft 1 1/4 in 14T 12/24DP<sup>1/2</sup>) (SAE J744)
 U
 Splined shaft 1 15T 16/32DP<sup>1</sup>


 Image: Comparison of the state of the stat

1.50 (38)

2.18 (55

Before finalizing your design request a certified installation drawing. Dimensions in inches and (mm).





1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

2) Spline according to ANSI B92.1a, run out of spline is a deviation from standard.

3) Thread according to ASME B1.1

4) For the maximum tightening torques the general instructions on page 52 must be observed.

Usable shaft

length

### Ports

| Designation    | Port for                          | Standard                | Size <sup>5)</sup>                    | Max. press.<br>[psi (bar)] <sup>6)</sup> | State           |
|----------------|-----------------------------------|-------------------------|---------------------------------------|------------------------------------------|-----------------|
| В              | Service line,<br>fastening thread | SAE J518<br>ASME B1.1   | 1 in<br>3/8-16 UNC-2B; 0.71 (18) deep | 5100 (350)                               | 0               |
| S              | Suction line,<br>fastening thread | SAE J518<br>ASME B1.1   | 2 in<br>1/2-13 UNC-2B; 0.87 (22) deep | 145 (10)                                 | 0               |
| L              | Case drain fluid                  | ISO 11926 <sup>7)</sup> | 7/8-14 UNF-2B; 0.63 (16) deep         | 30 (2)                                   | O <sup>8)</sup> |
| L <sub>1</sub> | Case drain fluid                  | ISO 11926 <sup>7)</sup> | 7/8-14 UNF-2B; 0.63 (16) deep         | 30 (2)                                   | X <sup>8)</sup> |
| Х              | Pilot pressure                    | ISO 11926 <sup>7)</sup> | 7/16-20 UNF-2B; 0.45 (11.5) deep      | 5100 (350)                               | 0               |
| Х              | Pilot pressure with DG-control    | DIN ISO 2287)           | G 1/4 in; 0.47 (12) deep              | 5100 (350)                               | 0               |

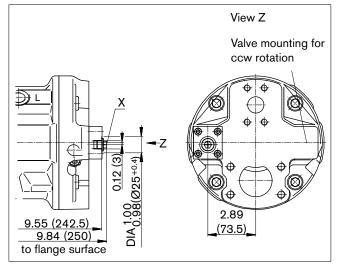
5) For the maximum tightening torques the general instructions on page 52 must be observed.

6) Depending on the application, short-term pressure spikes can occur. Consider this when selecting measuring equipment and fittings. Pressure values in psi (bar) absolute.

7) The spot face can be deeper than as specified in the standard.

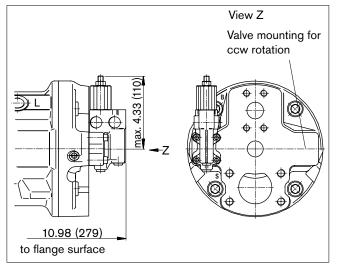
8) Depending on the installation position, L or L1 must be connected (see also installation instructions on pages 48, 49)

O = Must be connected (plugged on delivery)


X = Plugged (in normal operation)

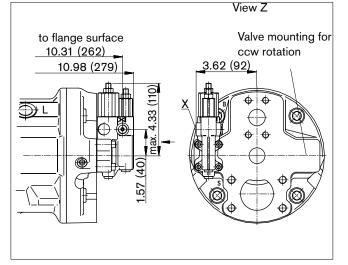
Before finalizing your design request a certified

# Dimensions size 71


### DG

Two-point control, directly operated, port plate 91

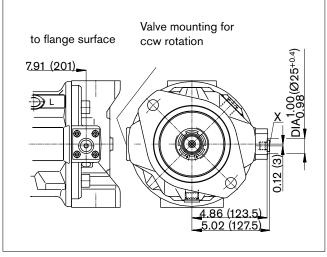



# DR

Pressure control, port plate 91



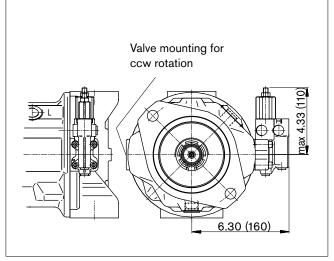
# DRG


Pressure control, remotely operated, port plate 91



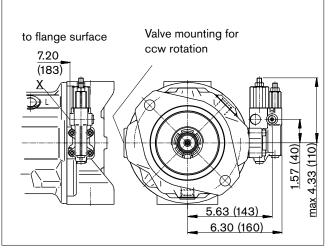
Details on connection options can be found on pages 29 and 30

DG


Two-point control, directly operated, port plate 92

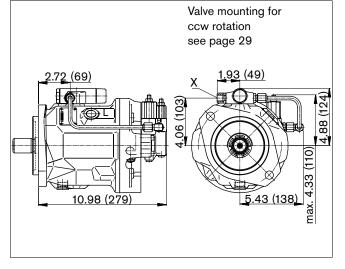


installation drawing. Dimensions in inches and (mm).


# DR

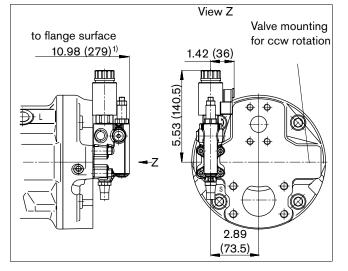





### DRG

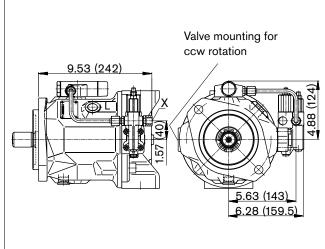
Pressure control, remotely operated, port plate 92

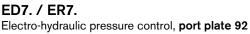


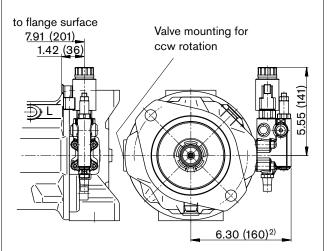

## DFLR

Pressure, flow and power control, port plate 91




ED7. / ER7.


Electro-hydraulic pressure control, port plate 91

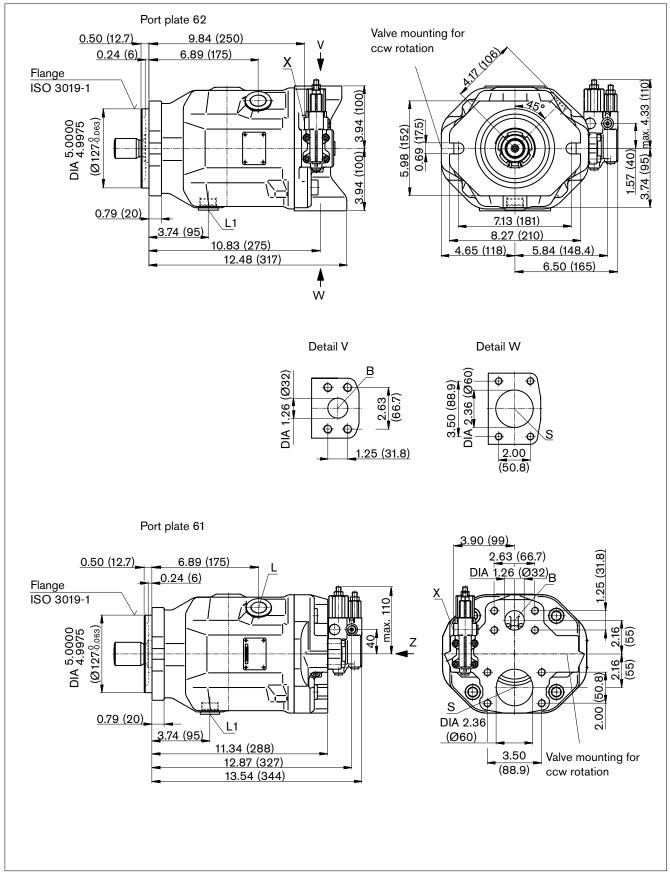



Before finalizing your design request a certified installation drawing. Dimensions in inches and (mm).

DFLR Pressure, flow and power control, port plate 92

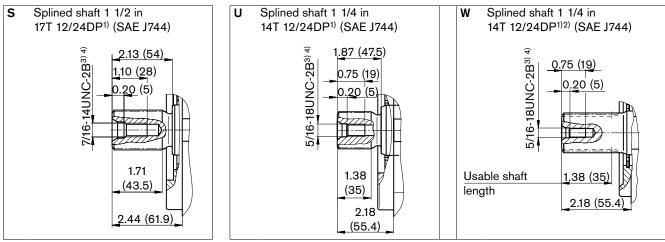







ER7.: 12.36 in (314 mm) when using a sandwich plate pressure reducing valve.
 ER7.: 7.68 in (195 mm) when using a sandwich plate pressure reducing valve.
 For details of connection options and drive shafts, see also pages 21 and 22

### DFR/DFR1 - Pressure and flow control, hydraulic


Clockwise rotation

Before finalizing your design request a certified installation drawing. Dimensions in inches and (mm).



### **Drive shaft**

Before finalizing your design request a certified installation drawing. Dimensions in inches and (mm).



- 1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Spline according to ANSI B92.1a, run out of spline is a deviation from standard.
- 3) Thread according to ASME B1.1
- 4) For the maximum tightening torques the general instructions on page 52 must be observed.

### Ports

| Designation    | Port for                          | Standard                | Size <sup>5)</sup>                        | Max. press.<br>[psi (bar)] <sup>6)</sup> | State           |
|----------------|-----------------------------------|-------------------------|-------------------------------------------|------------------------------------------|-----------------|
| В              | Service line,<br>fastening thread | SAE J518<br>ASME B1.1   | 1 1/4 in<br>1/2-13 UNC-2B; 0.75 (19) deep | 5100 (350)                               | 0               |
| S              | Suction line,<br>fastening thread | SAE J518<br>ASME B1.1   | 2 1/2 in<br>1/2-13 UNC-2B; 0.87 (22) deep | 145 (10)                                 | 0               |
| L              | Case drain fluid                  | ISO 11926 <sup>7)</sup> | 1 1/16-12 UNF-2B; 0.71 (18) deep          | 30 (2)                                   | O <sup>8)</sup> |
| L <sub>1</sub> | Case drain fluid                  | ISO 11926 <sup>7)</sup> | 1 1/16-12 UNF-2B; 0.71 (18) deep          | 30 (2)                                   | X <sup>8)</sup> |
| Х              | Pilot pressure                    | ISO 11926 <sup>7)</sup> | 7/16-20 UNF-2B; 0.45 (11.5) deep          | 5100 (350)                               | 0               |
| Х              | Pilot pressure with DG-control    | DIN ISO 2287)           | G 1/4 in; 0.47 (12) deep                  | 5100 (350)                               | 0               |

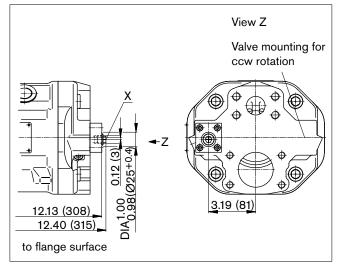
5) For the maximum tightening torques the general instructions on page 52 must be observed.

6) Depending on the application, short-term pressure spikes can occur. Consider this when selecting measuring equipment and fittings. Pressure values in psi (bar) absolute.

7) The spot face can be deeper than as specified in the standard.

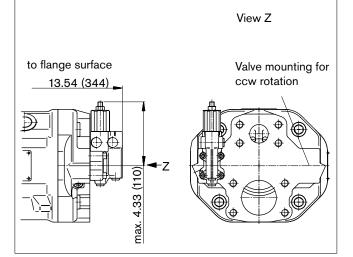
8) Depending on the installation position, L or L1 must be connected (see also installation instructions on pages 48, 49)

O = Must be connected (plugged on delivery)


X = Plugged (in normal operation)

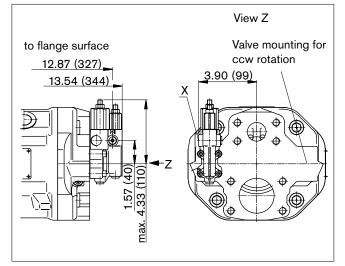
Before finalizing your design request a certified

# Dimensions size 100


### DG

Two-point control, directly operated, port plate 61

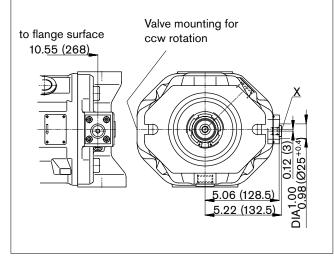



# DR

Pressure control, port plate 61

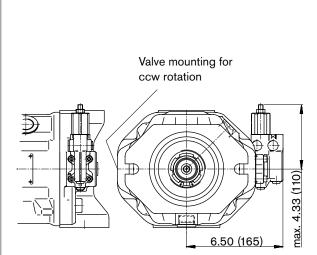


# DRG


Pressure control, remotely operated, port plate 61

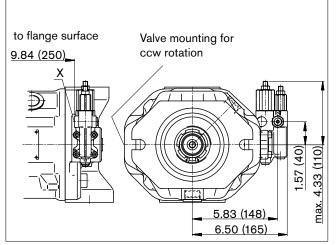


DG


Two-point control, directly operated, port plate 62

installation drawing. Dimensions in inches and (mm).

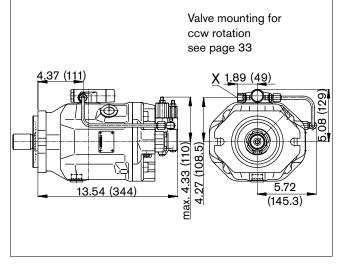



# DR

Pressure control, port plate 62

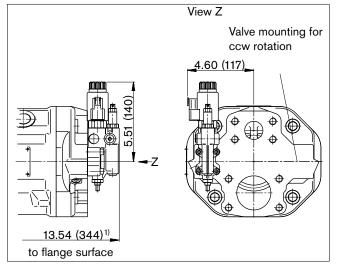


### DRG


Pressure control, remotely operated, port plate 62

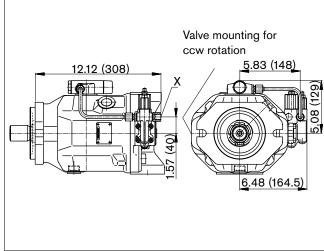


Details on connection options and shaft ends can be found on pages 33 and 34


# DFLR

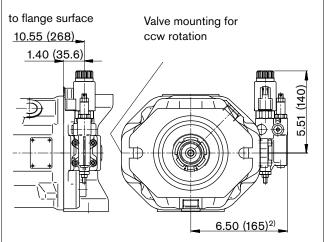
Pressure, flow and power control, port plate 61




### ED7./ER7.

Electro-hydraulic pressure control, port plate 61



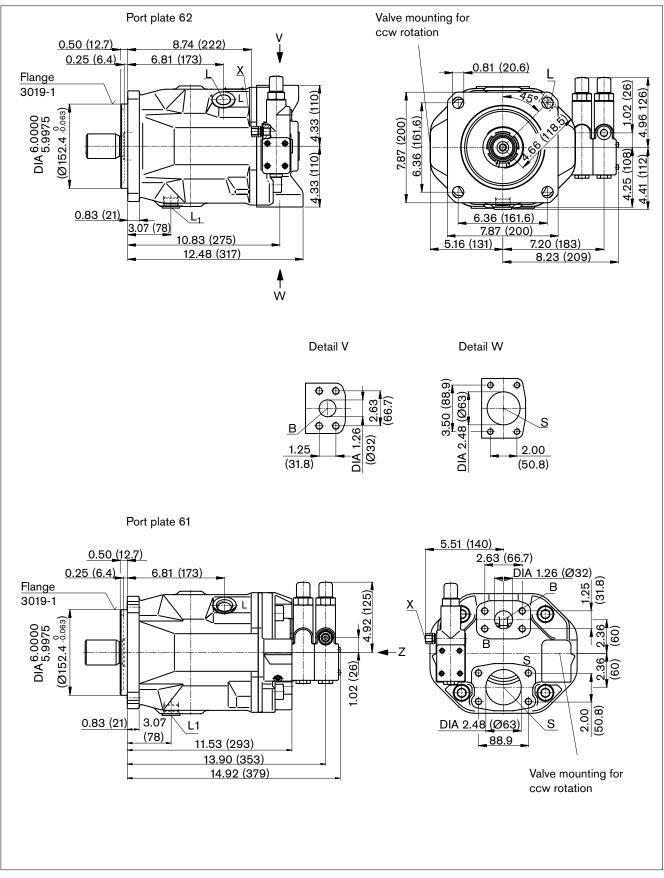

Before finalizing your design request a certified installation drawing. Dimensions in inches and (mm).

### DFLR Pressure, flow and power control, port plate 62



### ED7./ER7. Electro-hydraulic pressure contro

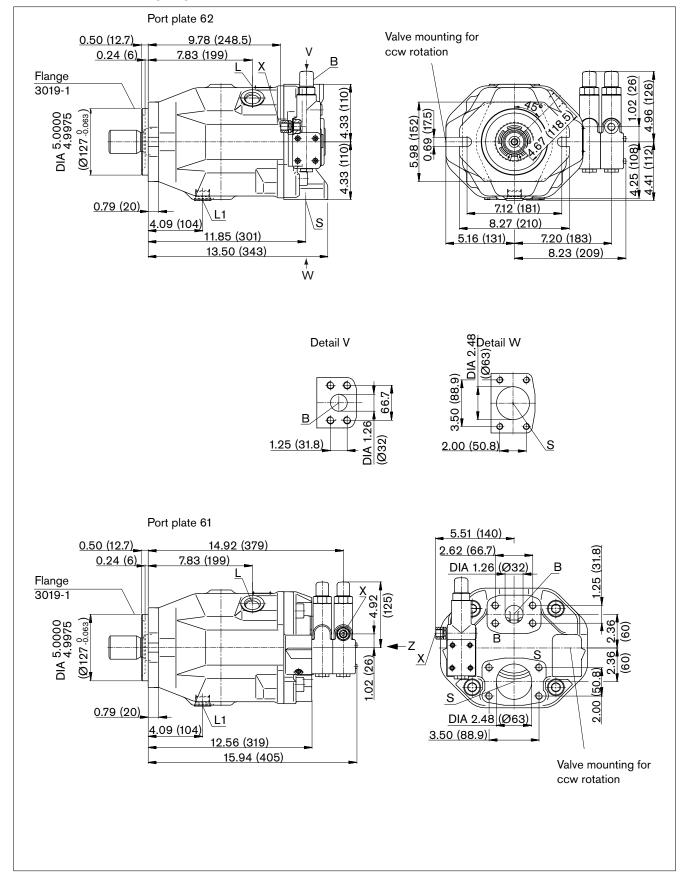
Electro-hydraulic pressure control, port plate 62



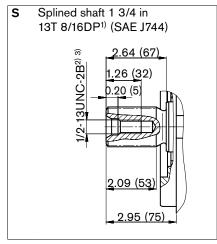

ER7.: 14.92 in (379 mm) when using a sandwich plate pressure reducing valve.
 ER7.: 7.87 in (200 mm) when using a sandwich plate pressure reducing valve.
 Details on connection options and shaft ends can be found on pages 33 and 34

## DFR/DFR1 - Pressure and flow control, hydraulic

Clockwise rotation, mounting flange D


Before finalizing your design request a certified installation drawing. Dimensions in inches and (mm).




## DFR/DFR1 - Pressure and flow control, hydraulic

Clockwise rotation, mounting flange C

Before finalizing your design request a certified installation drawing. Dimensions in inches and (mm).



## Drive shaft



1) ANSI B92.1 a, 30° pressure angle, flat root, side fit, tolerance class 5

2) Thread according to ASME B1.1

3) For the maximum tightening torques the general instructions on page 52 must be observed.

#### Ports

| Designation    | Port for                          | Standard                | Size <sup>4)</sup>                        | Max. press.<br>[psi (bar)] <sup>5)</sup> | State           |
|----------------|-----------------------------------|-------------------------|-------------------------------------------|------------------------------------------|-----------------|
| В              | Service line,<br>fastening thread | SAE J518<br>ASME B1.1   | 1 1/4 in<br>1/2-13 UNC-2B; 0.94 (24) deep | 5100 (350)                               | 0               |
| S              | Suction line,<br>fastening thread | SAE J518<br>ASME B1.1   | 2 1/2 in<br>1/2-13 UNC-2B; 0.94 (24) deep | 145 (10)                                 | 0               |
| L              | Case drain fluid                  | ISO 11926 <sup>6)</sup> | 1 1/16-12 UNF-2B; 0.71 (18) deep          | 30 (2)                                   | O <sup>7)</sup> |
| L <sub>1</sub> | Case drain fluid                  | ISO 11926 <sup>6)</sup> | 1 1/16-12 UNF-2B; 0.71 (18) deep          | 30 (2)                                   | X <sup>7)</sup> |
| Х              | Pilot pressure                    | ISO 11926 <sup>6)</sup> | 9/16-18UNF-2B; 0.51 (13) deep             | 5100 (350)                               | 0               |
| Х              | Pilot pressure with DG-control    | DIN ISO 2286)           | M14 x 1.5; 12 deep                        | 5100 (350)                               | 0               |
| M <sub>H</sub> | Gauge port, high pressure         | DIN 3852                | M14 x 1.5, 12 deep                        | 5100 (350)                               | Х               |

4) For the maximum tightening torques the general instructions on page 52 must be observed.

5) Depending on the application, short-term pressure spikes can occur. Consider this when selecting measuring equipment and fittings. Pressure values in psi (bar) absolute.

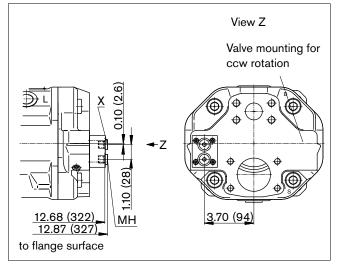
6) The spot face can be deeper than as specified in the standard.

7) Depending on the installation position, L or L<sub>1</sub> must be connected (see also installation instructions on pages 48, 49)

O = Must be connected (plugged on delivery)

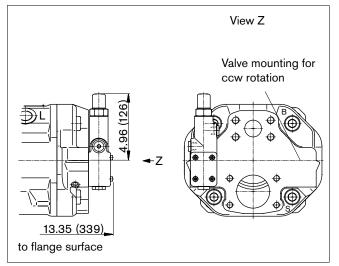
X = Plugged (in normal operation)

Before finalizing your design request a certified installation drawing. Dimensions in inches and (mm).


installation drawing. Dimensions in inches and (mm).

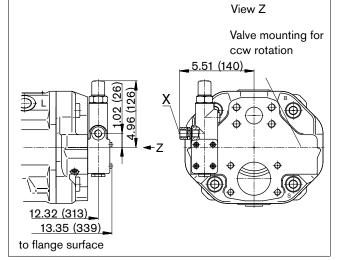
Before finalizing your design request a certified

# Dimensions size 140


## DG

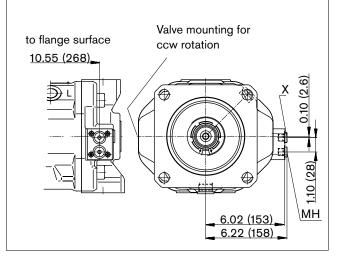
Two-point control, directly operated, port plate 61




## DR

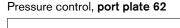
Pressure control, port plate 61

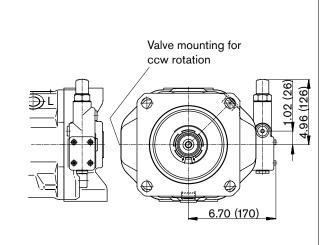



## DRG

Pressure control, remotely operated, port plate 61

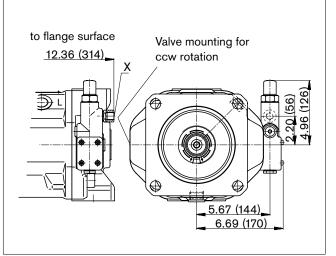



Details on connection options can be found on pages 37, 38 and 39


Two-point control, directly operated, port plate 62

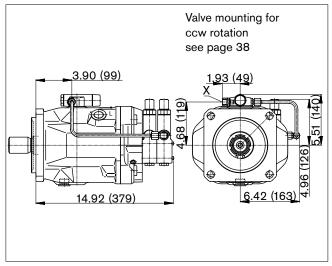


## DR

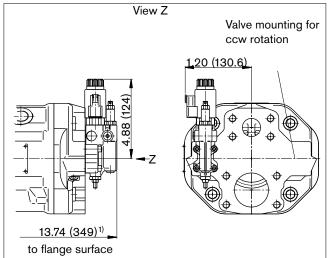

DG






## DRG

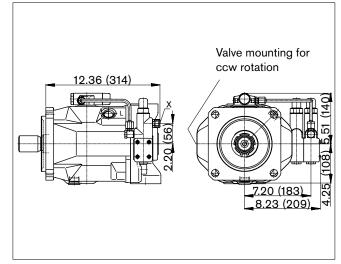
Pressure control, remotely operated, port plate 62

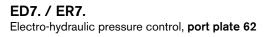


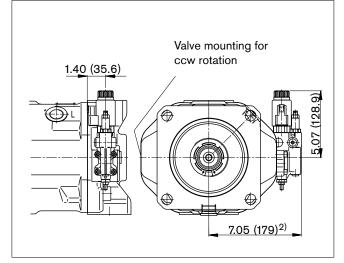

## DFLR

Pressure, flow and power control, port plate 61




ED7. / ER7. Electro-hydraulic pressure control, port plate 61





Before finalizing your design request a certified installation drawing. Dimensions in inches and (mm).

## DFLR

Pressure, flow and power control, port plate 62



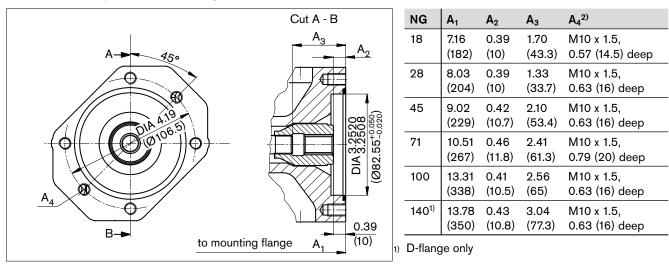




ER7.: 15.12 in (384 mm) when using a sandwich plate pressure reducing valve.
 ER7.: 8.43 in (214 mm) when using a sandwich plate pressure reducing valve.

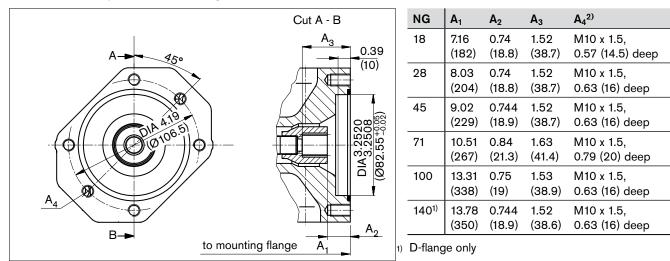
Details on connection options can be found on pages 37, 38 and 39

Dimensions in inches and (mm).


installation drawing.

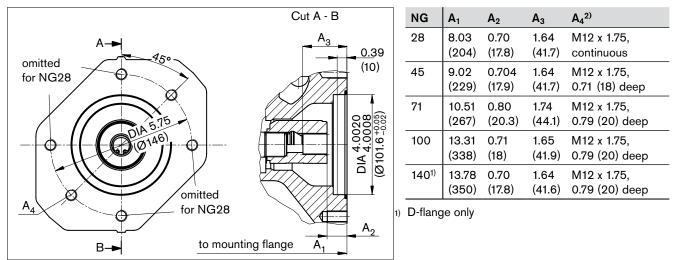
Before finalizing your design request a certified

# Dimensions through drive


K01 flange ISO 3019-2 (SAE J744 - 82-2 (A))

Coupling for splined shaft according to ANSI B92.1a-1996 5/8 in 9T 16/32 DP<sup>1)</sup> (SAE J744 - 16-4 (A))




#### K52 flange ISO 3019-2 (SAE J744 - 82-2 (A))

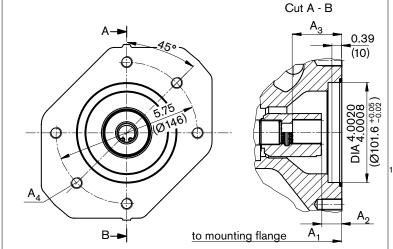
Coupling for splined shaft according to ANSI B92.1a-1996 3/4 in 11T 16/32 DP<sup>1</sup> (SAE J744 - 19-4 (A-B))



## K68 flange ISO 3019-2 (SAE J744 - 101-2 (B))

Coupling for splined shaft according to ANSI B92.1a-1996 7/8 in 13T 16/32 DP<sup>1)</sup> (SAE J744 - 22-4 (B))




1) 30° pressure angle, flat root, side fit, tolerance class 5

2) Thread according to DIN 13, observe the general instructions on page 52 for the maximum tightening torques.

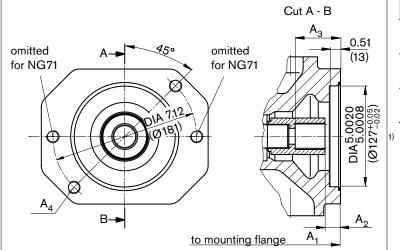
# Dimensions through drive

K04 flange ISO 3019-2 (SAE J744 - 101-2 (B))

Coupling for splined shaft according to ANSI B92.1a-1996



Before finalizing your design request a certified installation drawing. Dimensions in inches and (mm).

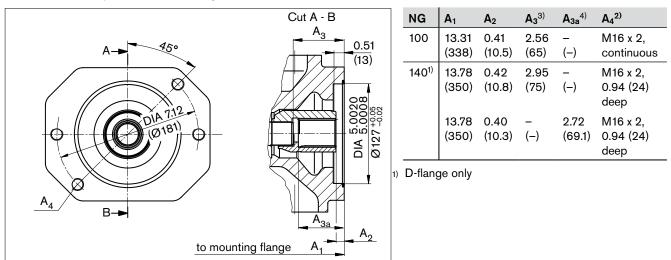

| NG                | <b>A</b> <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> | A <sub>4</sub> <sup>2)</sup> |
|-------------------|-----------------------|----------------|----------------|------------------------------|
| 45                | 9.02                  | 0.724          | 1.84           | M12 x 1.75,                  |
|                   | (229)                 | (18.4)         | (46.7)         | 0.71 (18) deep               |
| 71                | 10.51                 | 0.82           | 1.93           | M12 x 1.75,                  |
|                   | (267)                 | (20.8)         | (49.1)         | 0.79 (20) deep               |
| 100               | 13.31                 | 0.716          | 1.83           | M12 x 1.75,                  |
|                   | (338)                 | (18.2)         | (46.6)         | 0.79 (20) deep               |
| 140 <sup>1)</sup> | 13.78                 | 0.72           | 1.81           | M12 x 1.75,                  |
|                   | (350)                 | (18.3)         | (45.9)         | 0.79 (20) deep               |

1) D-flange only

1 in 15T 16/32 DP1) (SAE J744 - 25-4 (B-B))

K07 flange ISO 3019-2 (SAE J744 - 127-2 (C))

Coupling for splined shaft according to ANSI B92.1a-1996 1 1/4 in 14T 12/24 DP<sup>1)</sup> (SAE J744 - 32-4 (C))




 $A_1$ NG A<sub>2</sub> A<sub>3</sub> A<sub>4</sub><sup>2)</sup> 71 10.51 0.86 2.31 M16 x 2, (267)(21.8) (58.6)continuous 100 13.31 0.77 2.22 M16 x 2, (338)(19.5) (56.4)continuous 140<sup>1)</sup> 13.78 0.76 2.21 M16 x 2, (350) (19.3) (56.1) 0.94 (24) deep

1) D-flange only

K24 flange ISO 3019-2 (SAE J744 - 127-2 (C))

Coupling for splined shaft according to ANSI B92.1a-1996 1 1/2 in 17T 12/24 DP1) (SAE J744 - 38-4 (C-C))



- 1) 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Thread according to DIN 13, observe the general instructions on page 52 for the maximum tightening torques.
- a) Coupling without stop

A<sub>3</sub>

3.04

(77.3)

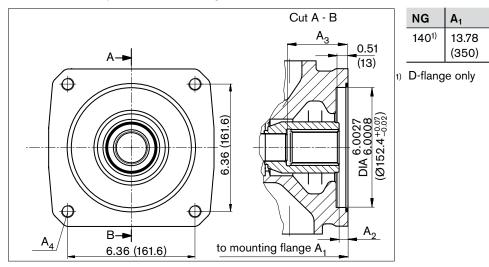
 $A_2$ 

0.43

(11)

# Dimensions through drive

K17 flange ISO 3019-2 (SAE J744 - 152-4 (A))


Coupling for splined shaft according to ANSI B92.1a-1996 1 3/4 in 13T 8/16 DP<sup>1</sup> (SAE J744 - 44-4 (D))

Before finalizing your design request a certified installation drawing. Dimensions in inches and (mm).

**A**<sub>4</sub><sup>2)</sup>

M16 x 2,

continuous



1) **30°** pressure angle, flat root, side fit, tolerance class 5

2) Thread according to DIN 13, observe the general instructions on page 52 for the maximum tightening torques.

# Summary mounting options

## SAE – mounting flange

| Through-drive <sup>1)</sup> |                                 | Mounting option – 2nd pump |                                      |                                          |                                   |                                   |  |
|-----------------------------|---------------------------------|----------------------------|--------------------------------------|------------------------------------------|-----------------------------------|-----------------------------------|--|
| Flange<br>ISO 3019-1        | Coupling<br>for spline<br>shaft |                            | A10VO/31<br>NG (shaft)               | A10V(S)O/5x<br>NG (shaft)                | External gear pump<br>design (NG) | Through drive<br>available for NG |  |
| 82-2 (A)                    | 5/8 in                          | K01                        | 18 (U)                               | 10 (U)                                   | F (5 to 22)                       | 18 to 140                         |  |
|                             | 3/4 in                          | K52                        | 18 (S, R)                            | 10 (S)<br>18 (U)<br>18 (S, R)            | -                                 | 18 to 140                         |  |
| 101-2 (B)                   | 7/8 in                          | K68                        | 28 (S, R)<br>45 (U, W) <sup>1)</sup> | 28 (S, R)<br>45 (U, W) <sup>1)</sup>     | N/G (26 to 49)                    | 28 to 140                         |  |
|                             | 1 in                            | K04                        | 45 (S, R)<br>-                       | 45 (S, R)<br>60, 63 (U, W) <sup>2)</sup> | _                                 | 45 to 140                         |  |
| 127-2 (C)                   | 1 1/4 in                        | K07                        | 71 (S, R)<br>100 (U) <sup>3)</sup>   | 85 (U, W) <sup>3)</sup><br>100 (U, W)    | _                                 | 71 to 140                         |  |
|                             | 1 1/2 in                        | K24                        | 100 (S)                              | 85 (S)<br>100 (S)                        | -                                 | 100 to 140                        |  |
| 152-4<br>(4-hole D)         | 1 3/4 in                        | K17                        | 140 (S)                              | -                                        | -                                 | 140                               |  |

1) Not for main pump NG28 with K68

2) Not for main pump NG45 with K04

3) Not for main pump NG71 with K07

# Combination pumps A10VO + A10VO

Before finalizing your design request a certified installation drawing. Dimensions in inches and (mm).

When using combination pumps it is possible to have multiple, mutually independent circuits without the need for a splitter gearbox.

When ordering combination pumps the model codes for the first and the second pump must be joined by a "+".

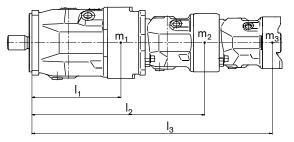
#### Order example: A10VSO100DFR1/31R-VSB12K04+ A10VSO45DFR/31R-VSA12N00

If no further pumps are to be factory-mounted, the simple type code is sufficient.

It is permissible to use a combination of two single pumps of the same size (tandem pump), considering a dynamic mass acceleration force of maximum 10 g (= 98.1 m/s<sup>2</sup>) without an additional support bracket.

Each through drive is plugged with a **non-pressure-resistant** cover. Before commissioning the units, they must therefore be equipped with a pressure-resistant cover.

Through drives can also be ordered with pressure-resistant covers. Please specify in clear text.


For combination pumps comprising more than two pumps, the mounting flange must be calculated for the permissible moment of inertia.

#### Permissible mass moment of inertia

| NG                                                          |                   |               | 18           | 28            | 45             | 71             | 100            | 140                                        |
|-------------------------------------------------------------|-------------------|---------------|--------------|---------------|----------------|----------------|----------------|--------------------------------------------|
| Permissible moment of inertia                               |                   |               |              |               |                |                |                |                                            |
| static                                                      | T <sub>m</sub>    | lb-ft<br>(Nm) | 369<br>(500) | 649<br>(880)  | 1010<br>(1370) | 1593<br>(2160) | 2213<br>(3000) | 3319 <sup>1)</sup><br>(4500) <sup>1)</sup> |
|                                                             |                   | lb-ft<br>(Nm) |              |               |                |                |                | 2213 <sup>2)</sup><br>(3000) <sup>2)</sup> |
| dynamic at 10 g (98.1 m/s <sup>2</sup>                      | ?) T <sub>m</sub> | lb-ft<br>(Nm) | 37<br>(50)   | 65<br>(88)    | 101<br>(137)   | 159<br>(216)   | 221<br>(300)   | 332 <sup>1)</sup><br>(450) <sup>1)</sup>   |
|                                                             |                   | lb-ft<br>(Nm) |              |               |                |                |                | 132 <sup>2)</sup><br>(300) <sup>2)</sup>   |
| Mass with through-drive plate<br>Mass without through drive | m                 | lbs<br>(kg)   | 30.8<br>(14) | 41.9<br>(19)  | 55.1<br>(25)   | 86<br>(39)     | 119<br>(54)    | 150<br>(68)                                |
| (e.g. 2nd pump)                                             | m                 | lbs<br>(kg)   | 26.5<br>(12) | 33<br>(15)    | 46<br>(21)     | 73<br>(33)     | 99<br>(45)     | 132<br>(60)                                |
| Distance center of gravity                                  | I                 | in<br>(mm)    | 3.54<br>(90) | 4.33<br>(110) | 5.12<br>(130)  | 5.91<br>(150)  | 6.30<br>(160)  | 6.30<br>(160)                              |

1) 4-hole flange (D)

2) 2-hole flange (C)



| m <sub>1</sub> , m <sub>2</sub> , m <sub>3</sub> | Mass of pumps              | [lbs (kg)] |
|--------------------------------------------------|----------------------------|------------|
| <sub>1</sub> ,   <sub>2</sub> ,   <sub>3</sub>   | Distance center of gravity | [in (mm)]  |

 $T_{m} = (m_{1} \cdot l_{1} + m_{2} \cdot l_{2} + m_{3} \cdot l_{3}) \cdot \underbrace{1}_{12 (102)} [\text{lb-ft (Nm)}]$ 

# Connector for solenoids DEUTSCH DT04-2P-EP04, 2-pin

Molded, without bidirectional suppressor diode

The following type of protection is provided with installed

mating connector:

IP67 \_\_\_\_\_ and IP69K

\_\_\_\_\_ DIN 40050-9

\_\_\_\_

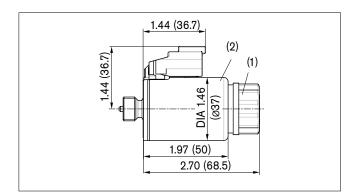
Circuit symbol

Without bidirectional suppressor diode



#### Mating connector

DEUTSCH DT06-2S-EP04 Bosch Rexroth Mat. No. R902601804


Consisting of:

- 1 case DT06-2S-EP04

- 1 wedge \_\_\_\_\_\_W2S

- 2 sockets \_\_\_\_\_0462-201-16141

The mating connector is not included in the delivery contents. This can be supplied by Bosch Rexroth on request.



Before finalizing your design request a certified installation drawing. Dimensions in inches and (mm).

## Changing connector position

If necessary, you can change the position of the connector by turning the solenoid.

To do this, proceed as follows:

Ρ

DIN/EN 60529

DT designation

- 1. Loosen the mounting nut (1) of the solenoid. To do this, turn the mounting nut (1) one revolution counter-clockwise.
- 2. Turn the solenoid body (2) to the desired position.
- Retighten the mounting nut of the solenoid. Tightening torque: 4 +0.7 lb-ft (5+1 Nm) (size WAF 26, 12-pt DIN 3124).

On delivery, the position of the connector may differ from that shown in the brochure or drawing.

# Installation instructions

## General

The axial piston unit must be filled with hydraulic fluid and air bled during commissioning and operation. This must also be observed following a longer standstill as the axial piston unit empty via the hydraulic lines.

Particularly with the "drive shaft up/down" installation position, filling and air bleeding must be carried out completely as there is, for example, a danger of dry running.

The case drain fluid in the motor housing must be directed to the reservoir via the highest case drain port  $(L_1, L_2, L_3)$ .

For combinations of multiple units, make sure that the respective case pressure in each unit is not exceeded. In the event of pressure differences at the case drain ports of the units, the shared case drain line must be changed so that the minimum permissible case pressure of all connected units is not exceeded in any situation. If this is not possible, separate case drain lines must be laid if necessary.

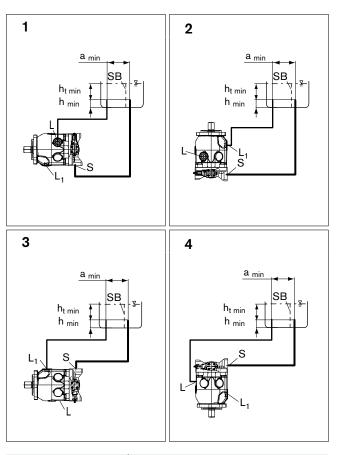
To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.

In all operating conditions, the suction line and case drain line must flow into the reservoir below the minimum fluid level . The permissible suction height  $h_S$  is a result of the overall pressure loss, but may not be greater than  $h_{S max} = 31.50$  in (800 mm). The minimum suction pressure at port S must also not fall below 12 psi (0.8 bar) absolute during operation.

## Installation position

See the following examples 1 to 12.

Additional installation positions are available upon request.


Recommended installation positions: 1 and 3.

#### Note

 You can expect certain installation positions to affect the control device. Because of gravity, unit weight and case pressure, minor characteristic displacements and response time changes may occur.

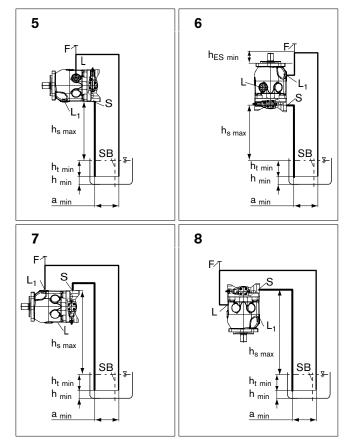
#### Below-reservoir installation (standard)

Below-reservoir installation means the axial piston unit is installed outside of the reservoir below the minimum fluid level.



| Installation position | Air bleed      | Filling            |
|-----------------------|----------------|--------------------|
| 1                     | L              | S + L <sub>1</sub> |
| 2                     | L <sub>1</sub> | S + L              |
| 3                     | L <sub>1</sub> | S + L              |
| 4                     | L              | S + L <sub>1</sub> |

Key, see page 49.


# Installation instructions

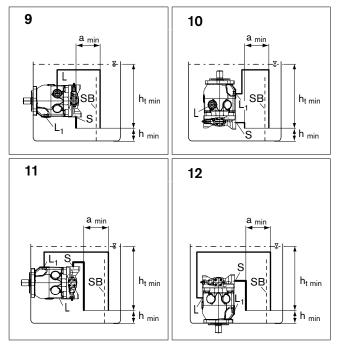
#### Above-reservoir installation

Above-reservoir installation means the axial piston unit is installed above the minimum fluid level of the reservoir. To prevent the axial piston unit from draining, a height difference  $h_{ES\,min}$  of at least 0.98 in (25 mm) at port L<sub>1</sub> is required in installation position 6.

Observe the maximum permissible suction height  $h_{S max} = 31.50$  in (800 mm).

A check valve in the case drain line is only permissible in individual cases. Consult us for approval.




| Installation position | Air bleed | Filling                |
|-----------------------|-----------|------------------------|
| 5                     | F         | L (F)                  |
| 6                     | F         | L <sub>1</sub> (F)     |
| 7                     | F         | S + L <sub>1</sub> (F) |
| 8                     | F         | S + L (F)              |

#### Inside-reservoir installation

Inside-reservoir installation is when the axial piston unit is installed in the reservoir below the minimum fluid level. The axial piston unit is completely below the hydraulic fluid.

If the minimum fluid level is equal to or below the upper edge of the pump, see chapter "Above-reservoir installation".

Axial piston units with electrical components (e.g. electric control, sensors) may not be installed in a reservoir below the fluid level.



| Installation position | Air bleed      | Filling               |
|-----------------------|----------------|-----------------------|
| 9                     | L              | L, L <sub>1</sub>     |
| 10                    | L <sub>1</sub> | L, L <sub>1</sub>     |
| 11                    | L <sub>1</sub> | S + L, L <sub>1</sub> |
| 12                    | L              | S + L, L <sub>1</sub> |

- S Suction port
- F Filling / air bleeding
- L, L<sub>1</sub> Case drain port
- SB Baffle (baffle plate)
- h<sub>t min</sub> Minimum necessary immersion depth (7.87 in (200 mm))
- h<sub>min</sub> Minimum necessary spacing to reservoir bottom (3.94 in (100 mm))
- h<sub>ES min</sub> Minimum necessary height needed to protect the axial piston unit from draining (0.98 in (25 mm)).
- h<sub>S max</sub> Maximum permissible suction height (31.50 in (800 mm))
- amin When designing the reservoir, ensure adequate distance between the suction line and the case drain line. This prevents the heated, return flow from being drawn directly back into the suction line.

# Notes

# Notes

# General instructions

- The A10VO / A10VSO pump is designed to be used in open circuit.
- Project planning, installation and commissioning of the axial piston unit require the involvement of qualified personnel.
- Before operating the axial piston unit, please read the appropriate instruction manual thoroughly and completely. If necessary, request these from Bosch Rexroth.
- During and shortly after operation, there is a risk of burns on the axial piston unit and especially on the solenoids.
   Take appropriate safety measures (e.g. by wearing protective clothing).
- Depending on the operating conditions of the axial piston unit (operating pressure, fluid temperature), the characteristics may shift.
- Service line ports:
  - The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
- The service line ports and function ports are only designed to accommodate hydraulic lines.
- Pressure cut-off and pressure control do not provide security against pressure overload. A separate pressure relief valve is to be provided in the hydraulic system.
- The data and notes contained herein must be adhered to.
- The product is not approved as a component for the safety concept of a general machine according to ISO 13849.
- The following tightening torques apply:
  - Fittings:

Observe the manufacturer's instruction regarding the tightening torques of the used fittings.

- Mounting bolts:

For mounting bolts with metric ISO thread according to DIN 13 or thread according to ASME B1.1, we recommend checking the tightening torque individually according to VDI 2230.

- Female threads in axial piston unit:

The maximum permissible tightening torques  $M_{G max}$  are maximum values for the female threads and must not be exceeded. For values, see the following table.

- Threaded plugs:

For the metal threaded plugs supplied with the axial piston unit, the required tightening torques of the threaded plugs  $M_V$  apply. For values, see the following table.

| Ports       |                  | Maximum permissible<br>tightening torque for<br>female threads M <sub>G max</sub> | Required<br>tightening torque for<br>threaded plugs My | Size of<br>hexagon socket of<br>threaded plugs |  |
|-------------|------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------|--|
| Standard    | Thread size      | interest in order ing max                                                         |                                                        | incluce plags                                  |  |
| ISO 11926   | 7/16-20 UNF-2B   | 40 Nm                                                                             | 18 Nm                                                  | 3/16 in                                        |  |
|             | 3/4-16 UNF-2B    | 160 Nm                                                                            | 70 Nm                                                  | 5/16 in                                        |  |
|             | 9/16-18 UNF-2B   | 80 Nm                                                                             | 35 Nm                                                  | 1/4 in                                         |  |
|             | 7/8-14 UNF-2B    | 240 Nm                                                                            | 110 Nm                                                 | 3/8 in                                         |  |
|             | 1 1/16-12 UNF-2B | 360 Nm                                                                            | 170 Nm                                                 | 9/16 in                                        |  |
| DIN 3852    | M14 x 1.5        | 80 Nm                                                                             | 45 Nm <sup>1)</sup>                                    | 6 mm                                           |  |
| DIN ISO 228 | G 1/4 in         | 70 Nm                                                                             | -                                                      | -                                              |  |

 The tightening torques of the threaded plugs M<sub>V</sub> apply for screws in the "dry" state as received on delivery and in the "lightly oiled" state for installation

Bosch Rexroth Corporation Mobile Applications 8 Southchase Court Fountain Inn, SC 29644-9018 USA Telephone (864) 967-2777 Facsimile (864) 967-8900 www.boschrexroth-us.com Bosch Rexroth Corporation Industrial Applications 2315 City Lane Road Bethlehem, PA 18017-2131 USA Telephone (610) 694-8300 Facsimile (610) 694-8467 www.boschrexroth-us.com

#### © Bosch Rexroth Corporation

All rights reserved. Neither this document, nor any part of it, may be reproduced, duplicated, circulated or disseminated, whether by copy, electronic format or any other means, without the prior consent and authorization of Bosch Rexroth Corp. The data and illustrations in this brochure/data sheet are intended only to describe or depict the products. No representation or warranty, either express or implied, relating to merchantability or fitness for intended use, is given or intended by virtue of the information contained in this brochure/data sheet. The information contained in this brochure/data sheet. The information to insure the proper use of the products for a specific use or application. All products contained in this brochure/data sheet are subject to normal wear and tear from usage.

Subject to change.