A2TH Trig Packet – Unit 1

In this unit, students will be able to:

- Use the Pythagorean theorem to determine missing sides of right triangles
- Learn the definitions of the sine, cosine, and tangent ratios of a right triangle
- Set up proportions using sin, cos, tan to determine missing sides of right triangles
- Use inverse trig functions to determine missing angles of a right triangle
- Solve word problems involving right triangles
- Identify and name angles as rotations on the coordinate plane
- Determine the sign (+/-) of trig functions on the coordinate plane
- Determine sin, cos, and tangent of "special angles" (exact trig values)
- Determine reference angles for angles on the coordinate plane
- Determine the sine, cosine, and tangent of angles on the coordinate plane
- Do all of the above, using the reciprocal trig functions

Name:_____

Teacher:_____

Pd: _____

Table of Contents

Day 1: Reciprocal Trig Functions

SWBAT: apply ratios to reciprocal trig functions

Pages 1 - 5

HW: Pages 6 and 7 in Packet

Day 2: Arcs and Angles as Rotations SWBAT: apply arcs and angles as rotations Pages 8 - 14 HW: Page 15 # 4 – 16 and Page 16 #'s 29, 33, 36, 38, 41, 42, 45, 54, 62 and 63

Day 3: Arc Length and the Unit Circle SWBAT: apply arc and the unit circle Pages 17 - 26 HW: Pages 27 – 29 in Packet

Day 4: Special Angles and Exact Values of Trig Functions SWBAT: apply "Special" Angles to find the exact value of trig Functions Pages 30 - 33 HW: Pages 34 – 36 in Packet

Day 5: Reference Angles SWBAT: apply reference angles to find the exact value of trig functions Pages 37 - 44 HW: Page 45 in Packet

Answer Keys: start at page 46!

Warm Up

Determine the trigonometric ratios for the following triangle:

- (a) Sin A =
- (b) Cos A =
- (c) Tan A =
- (d) Sin B =
- (e) $\cos B =$
- (f) Tan B =

- What are the 3 trigonometry ratios?
- What are the purposes of these ratios?

S $\frac{O}{H}$	C A/H	$T\frac{O}{A}$
• What does θ represent?		

Algebra REVIEW

Problem 1: Using Trig to find a missing side

Find x.

Problem 2: Using Trig to find a missing angle Find x.

LEARNING GOAL: How Do We Use the Reciprocal Trig Functions?

- SECANT is the reciprocal trigonometry function of ______
- COSECANT is the reciprocal trigonometry function of ______
- COTANGENT is the reciprocal trigonometry function of ______

<u>Secant</u>	Cosecant	<u>Cotangent</u>
$\sec \theta$ =	$\csc \theta =$	$\cot \theta =$
sec θ =	$\csc \theta =$	$\cot \theta =$

Problem 3: Find the 3rd side first, then find all six trigonometric ratios.

$\sin\theta =$	$\csc \theta =$
$\cos \theta =$	$\sec \theta =$
$\tan \theta =$	$\cot \theta =$

Problem 4: If $\sin \theta = \frac{6}{7}$, find the other 5 trigonometric ratios.

Regents Question

- **1.** If $\csc \theta = -2$, what is the value of $\sin \theta$?
 - 1) -2 2
 - 2)
 - 3) $-\frac{1}{2}$

 - $\frac{1}{2}$ 4)
- ^{2.} The expression $\cot \theta \cdot \sec \theta$ is equivalent to
 - $\frac{\cos\theta}{\sin^2\theta}$ 1)
 - $\sin \theta$ 2)
 - $\cos^2 \theta$
 - $\csc \theta$ 3)
 - 4) $\sin\theta$

LEARNING GOAL: Converting Angles into Degrees, Minutes, and Seconds

> Angles are measured in degrees, minutes, and seconds.

14.88264119

14°52'57.508"

Where do you find all the degree, minute, and second buttons in the calculator?

a. Round to the nearest thousandth:	b. Round to the nearest tenth:	c. Round to the nearest hundredth:
sin 30°45′	tan 60°23'37"	cos 210°15'37.025"
d . Round to the nearest thousandth:	e . Round to the nearest hundredth:	f. Round to the nearest tenth.
sec 62°25'	cot 125°5'48''	csc 280°31'20.125"

ROUNDING WITH MINUTES, SECONDS

14.88264119

14°52'57.508"

Rounded to the nearest minute: 14°52'57.508"	Rounded to the nearest second: 14°52'57.508"	Rounded to the nearest ten minutes: 14°52'57.508"
Rounded to the nearest minute:	Rounded to the nearest second:	Rounded to the nearest ten minutes:
$\sin \theta = \frac{5}{23}$	$\tan \theta = \frac{5}{3}$	$\cos \theta = 0.7125689$
Rounded to the nearest minute:	Rounded to the nearest second:	Rounded to the nearest ten minutes:
$\cot \theta = .4663$	$\csc \theta = 7.1853$	sec θ = 1.2521

Challenge

In rectangle *PQRS*, if $\tan \angle QPT = \frac{1}{5}$ and $\tan \angle TSR = \frac{1}{2}$, then $\tan \angle PQS =$ (A) $\frac{9}{10}$ (B) $\frac{4}{5}$ (C) $\frac{7}{10}$ (D) $\frac{1}{2}$ (E) $\frac{2}{5}$

Summary

	The Dasie 1	rig Demittions	
the sine function :	$\sin \theta = \frac{\text{opposite}}{\text{humotomum}}$	the cosecant function : $\csc\theta =$	hypotenuse
	adjacent		opposite hypotenuse
the cosine function : $\cos\theta =$	$\cos\theta = \frac{1}{\text{hypotenuse}}$	the secant function : $\sec\theta =$	adjacent
the tangent function	$: \tan \theta = \frac{\text{opposite}}{\text{adjacent}}$	the cotangent function : $\cot\theta =$	adjacent opposite

The Basic Trig Definitions

EXAMPLE 6 Convert 72.18° to D°M'S" notation. Solution On a calculator, we enter 72.18. The result is $72.18^\circ = 72^\circ 10'48''$.

Without a calculator, we can convert as follows:

 $72.18^{\circ} = 72^{\circ} + 0.18 \times 1^{\circ}$ = 72^{\circ} + 0.18 × 60' 1^{\circ} = 60' = 72^{\circ} + 10.8' = 72^{\circ} + 10' + 0.8 × 1' = 72^{\circ} + 10' + 0.8 × 60" 1' = 60" = 72^{\circ} + 10' + 48" = 72^{\circ}10'48".

Exit Ticket

Which ratio represents cscA in the diagram below?

- **3.** In figure 7, if $\theta = 44^\circ$, what is the value of c?
- (A) 6.94
- (B) 7.19
- (C) 9.66
- (D) 10.36
- (E) 13.90

Note: Figure not drawn to scale.

Figure 7

4. In the right triangle shown in the diagram below, what is the value of x to the nearest whole number?

- Convert to DMS form. Show work.
 Convert to degree form. Show work.
 - a. 37.285° a. 82°42′
 - b. 314.42° b. 213°15′56″
- 7. Use a calculator to determine the value of each trigonometric ratio: Round answers to the nearest ten-thousandths.

a) sin 52°47′	b) cos 79°15′45″	c) cot 36°

8. If $\sin \theta = \frac{2}{5'}$ find $\csc \theta$.

If $\sec \theta = 1.5$, find $\cos \theta$.

9. A person measures the angle of depression from the top of a wall to a point on the ground. The point is located on level ground 62 feet from the base of the wall and angle of depression is $52^{\circ}27'$. How high is the wall, to the nearest tenth of a foot?

10.

In a right triangle, θ is an acute angle and $\csc = \frac{19}{18}$. Evaluate the other five trigonometric functions of θ .

a.
$$\sin\theta = \frac{18}{19}$$

 $\cos\theta = \frac{\sqrt{37}}{19}$ $\sec\theta = \frac{19\sqrt{37}}{37}$
 $\tan\theta = \frac{18\sqrt{37}}{37}$ $\cot\theta = \frac{\sqrt{37}}{18}$
b. $\sin\theta = \frac{18}{19}$
 $\cos\theta = \frac{19\sqrt{37}}{37}$ $\cot\theta = \frac{\sqrt{37}}{18}$
 $\cos\theta = \frac{19\sqrt{37}}{18}$ $\cot\theta = \frac{18\sqrt{37}}{37}$
 $\sin\theta = \frac{18}{19}$
 $\cos\theta = \frac{19\sqrt{37}}{37}$ $\sec\theta = \frac{\sqrt{37}}{19}$
 $\tan\theta = \frac{\sqrt{37}}{19}$ $\sin\theta = \frac{19\sqrt{37}}{37}$
 $\tan\theta = \frac{\sqrt{37}}{19}$ $\sin\theta = \frac{19\sqrt{37}}{37}$
 $\tan\theta = \frac{\sqrt{37}}{18}$ $\cot\theta = \frac{18\sqrt{37}}{37}$
 $\tan\theta = \frac{18\sqrt{37}}{37}$ $\cot\theta = \frac{\sqrt{37}}{18}$

<u>Warm – Up</u>

Write each decimal degree measure in DMS form and each DMS measure in decimal degree form to the nearest thousandth.

1. 28.955°	2. -57.3278°

3. 32° 28′ 10″

4. −73° 14′ 35″

AIM: ANGLES OF ROTATION

PART I: Initial vs. Terminal Side

- Initial Side the ray (side) at which an angle of rotation begins
- Terminal Side the ray (side) at which an angle of rotation ends

• Standard Position - an angle is in standard position if its vertex is located at the origin and one ray is on the positive x-axis

Clockwise vs. Counter Clockwise		
Counter Clockwise (positive angles)	Clockwise (negative angles)	

• Quadrantal Angles –

You Try It!

Draw an angle with the given measure in standard position and determine the quadrant in which the angle lies.

LEARNING GOAL: How Do We Convert Between Radian and Degree Measure?

 What is a radian? – a radian is the measure of an angle that, when drawn as a central angle of a circle, intercepts an arch whose length is equal to the length of a radius of the circle.

 2π radians = 360°

To change angle measures from radians to degrees or vice versa, solve the equation above in terms of both units.

$2\pi \text{ radians} = 360^{\circ}$	2π radians = 360°
1 radian =	= 1°
1 radian is about	1 degree is about

These equations suggest a method for converting between radian and degree measure.

• How do we convert between radian and degree measure?

Examples: Convert the following to radian measure.

y 4

0

2π radians

or 360°

50°	-120°	270°

Examples: Convert the following to degree measure.

π	2π	1.7π
-		1.776
6		
	5	

1. Find, to the nearest minute, the angle whose measure is 3.45 radians.

2. What is the radian measure, in terms of π , of the angle formed by the hands of a clock at 4:00 p.m.?

3. Sketch and label θ in standard position if $\theta = \frac{7\pi}{6}$.

PART IV: Coterminal Angles

<u>Coterminal Angles</u>- angles in standard position that have the same terminal side

Find one angle with positive measure and one angle with negative measure coterminal with each angle.

a. 240°

b. $\frac{9\pi}{4}$

Regents questions

 I. In which quadrant does a -285° angle lie?

 (1)
 I

 (2)
 II

 (3)
 III

 (4)
 IV

Explain your answer below.

Which angle is not coterminal with an angle that measures 300°?

(1) -420°

(2) -300° (3) -60°

(3) -60°
 (4) 660°

3. Which angle is coterminal with an angle that measures -120°?

(1) -80°

(2) 60°

(3) 240°

(4) 580°

Explain your answer below.

____4. State if the given angles are coterminal.

 $\frac{23\pi}{18}, \frac{11\pi}{6}$

A) No B) Yes

Explain your answer below.

____ 5. Find a coterminal angle between 0 and 2π for each given angle.

$$-\frac{5\pi}{6}$$
A) $\frac{5\pi}{3}$
B) $\frac{7\pi}{6}$
C) $\frac{\pi}{6}$
D) $\frac{5\pi}{6}$

Challenge

ENTERTAINMENT Suppose

the gondolas on the Navy Pier Ferris wheel were numbered from 1 through 40 consecutively in a counterclockwise fashion. If you were sitting in gondola number 3 and the wheel were to rotate counterclockwise through 846

degrees, which gondola used to be in the position that you are in now?

SUMMARY:

Example 2 Convert Between Degree and Radian Measure

Rewrite the degree measure in radians and the radian measure in degrees.

ł

$$-\frac{7\pi}{4} = \left(-\frac{7\pi}{4} \operatorname{radians}\right) \left(\frac{180^{\circ}}{\pi \operatorname{radians}}\right)$$
$$= -\frac{1260^{\circ}}{4} \operatorname{or} -315^{\circ}$$

Example 4 Find Coterminal Angles

Find one angle with positive measure and one angle with negative measure coterminal with each angle.

a. 240°

A positive angle is $240^\circ + 360^\circ$ or 600° . A negative angle is $240^\circ - 360^\circ$ or -120° .

b.
$$\frac{9\pi}{4}$$

A positive angle is $\frac{9\pi}{4} + 2\pi$ or $\frac{17\pi}{4}$. $\frac{9\pi}{4} + \frac{8\pi}{4} = \frac{17\pi}{4}$

A negative angle is
$$\frac{9\pi}{4} - 2(2\pi)$$
 or $-\frac{7\pi}{4}$. $\frac{9\pi}{4} + \left(-\frac{16\pi}{4}\right) = -\frac{7\pi}{4}$

Exit Ticket

What is the radian measure of an angle whose measure is -420° ?

1) $-\frac{7\pi}{3}$ 2) $-\frac{7\pi}{6}$ 3) $\frac{7\pi}{6}$ Page 15 # 4 – 16 and Page 16 #'s 29, 33, 36, 38, 41, 42, 45, 54, 62 and 63

Check for Und	erstanding		1.1.1.1///	11///				
Сопсерт Сһеск	 Name the set of numbers to which angle measures belong. Define the term radian. OPEN ENDED Draw and label an example of an angle with negative measure in standard position. Then find an angle with positive measure that is coterminal with this angle. 							
Guided Practice	4. 70°	with the given measure i 5. 300° egree measure in radians	6. 570°	7. −45°				
	8. 130° 11. $\frac{3\pi}{4}$ Find one angle	9. -10° 12. $-\frac{\pi}{6}$ with positive measure an	id one angle v	10. 485° 13. $\frac{19\pi}{3}$ with negative measure				
	coterminal with 14. 60°	1 each angle. 15. 425°		16. $\frac{\pi}{3}$				
Application		For Exercises 17 and 18, its axis once every 24 hou		ing information.				
	17. How long does it take Earth to rotate through an angle of 315°? 18. How long does it take Earth to rotate through an angle of $\frac{\pi}{6}$?							
🖈 indicates increased d	ifficulty			-				
Practice and A	pply	0		11///				

Draw an angle with	the give	n measure in sta	ndard position.		
19. 235°	20. 270	• 21.	790°	22.	380°
23. -150°	245)° ★ 25.	π	26.	$\frac{2\pi}{3}$

Rewrite each degree measure in radians and each radian measure in degrees.

27. 120°	28. 60°	29. -15°	30. -225°
31. 660°	32. 570°	33. 158°	34. 260°
35. $\frac{5\pi}{6}$	36. $\frac{11\pi}{4}$	37. $-\frac{\pi}{4}$	38. $-\frac{\pi}{3}$
39. $\frac{29\pi}{4}$	40. $\frac{17\pi}{6}$	★ 41. 9	★ 42. 3

Find one angle with positive measure and one angle with negative measure coterminal with each angle.

43. 225°	44. 30°	45. -15°
46. −140°	47. 368°	48. 760°
49. $\frac{3\pi}{4}$	50. $\frac{7\pi}{6}$	51. $-\frac{5\pi}{4}$
52. $-\frac{2\pi}{3}$	53. $\frac{9\pi}{2}$	54. $\frac{17\pi}{4}$

 55. DRIVING Some sport-utility vehicles (SUVs) use 15-inch radius wheels. When driven 40 miles per hour, determine the measure of the angle through which a point on the wheel travels every second. Round to both the nearest degree and nearest radian.

GEOMETRY For Exercises 56 and 57, use the following information.

A *sector* is a region of a circle that is bounded by a central angle θ and its intercepted arc. The area *A* of a sector with radius *r* and central angle θ is given by

 $A = \frac{1}{2}r^2\theta$, where θ is measured in radians.

- 56. Find the area of a sector with a central angle of $\frac{4\pi}{3}$ radians in a circle whose radius measures 10 inches.
- Find the area of a sector with a central angle of 150° in a circle whose radius measures 12 meters.
- 62. QUANTITATIVE COMPARISON Compare the quantity in Column A and the quantity in Column B. Then determine whether:
 - (A) the quantity in Column A is greater,
 - (B) the quantity in Column B is greater,
 - C the two quantities are equal, or
 - (D) the relationship cannot be determined from the information given.

Column A	Column B
56°	$\frac{14\pi}{45}$

63. Angular velocity is defined by the equation $\omega = \frac{\theta}{t}$, where θ is usually expressed in radians and *t* represents time. Find the angular velocity in radians per second of a point on a bicycle tire if it completes 2 revolutions in 3 seconds.

Day 3 – Arc Length and the Unit Circle

<u>Warm - Up</u>

Draw an angle with the given measure in standard position.

1.
$$160^{\circ}$$
 2. $-\frac{5\pi}{4}$ **3.** 400°

Rewrite each degree measure in radians and each radian measure in degrees.

4. 140°	5. -860°	6. $-\frac{3\pi}{5}$	7. $\frac{11\pi}{3}$
----------------	-----------------	----------------------	----------------------

Concept 1: Arc Length

To find the measure of an angle in radians when you are given the lengths of the arc and radius:

Measure of an angle in radians = <u>length of the intercepted arc</u>

length of radius

In general, if Θ is the measure of a central angle in radians, s is the length of the intercepted arc, and r is the length of a radius, then:

Examples

 In a circle, a central angle of 3 radians intercepts an arc of 18 centimeters. What is the radius, in centimeters, of the circle?

2) As shown in the accompanying diagram, a dial in the shape of a semicircle has a radius of 4 centimeters. Find the measure of θ, in radians, when the pointer rotates to form an arc whose length is 1.38 centimeters.

 Circle *O* shown below has a radius of 12 centimeters. To the *nearest tenth of a centimeter*, determine the length of the arc, *x*, subtended by an angle of 83°50'.

Concept 2: Unit Circle

UNIT CIRCLE

WHAT IS THE UNIT CIRCLE?

• A **unit circle** is a circle with a radius of one (a unit radius). In trigonometry, the unit circle is centered at the origin.

• In the unit circle, the coordinates (x, y) can be rewritten as $(\cos \theta, \sin \theta)$

	~	
cin	Δ	_
SIII	υ	_

PRACTICE WITH THE UNIT CIRCLE

 $tan \theta =$

In questions 6 - 9, you are given the coordinates of point P, where **OP** = 1, and $m \not\equiv ROP = \theta$. Find a) sin θ b) cos θ c)tan θ

 $\sin \theta =$ ____, because _____ = ___-coordinate on the unit circle.

 $\cos \theta =$ _____, because _____ = ___-coordinate on the unit circle.

 $\tan \theta =$ because ____ = ___

- $\csc \theta =$ _____, because it's the reciprocal of _____.
- sec θ = ____, because it's the reciprocal of _____.
- $\cot \theta =$ _____, because it's the reciprocal of _____.

7.
$$P\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$$

 $\sin \theta =$ _____, because _____ = ___-coordinate on the unit circle.

 $\cos \theta =$ _____, because _____ = ___-coordinate on the unit circle.

 $\tan \theta =$ because ____ =

- $\csc \theta =$ _____, because it's the reciprocal of _____.
- sec θ = _____, because it's the reciprocal of _____.
- $\cot \theta =$ _____, because it's the reciprocal of _____.

8. P(.6, -.8)

 $\sin \theta =$

 $\cos \theta =$

- $\tan \theta =$
- $\csc \theta =$
- $\sec \theta =$
- $\cot \theta =$

Concept 3: Points not on the Unit Circle

9) Find all 6 trigonometric function values of the angle formed by the point (-3, 4)

Draw each of the following points on a coordinate plane. Let θ be the angle in standard position that terminates at that point. Determine the sine, cosine, and tangent of θ .

(-8, 15)

Concept 4: Quadrantal Angles

TRIGONOMETRY WITH QUADRANTAL ANGLES (DO NOT NEED TO MEMORIZE)

	0 °	90°	180°	270°	360°
$\sin heta$					
$\cos \theta$					
tan θ					

YOU CAN JUST PLUG THESE INTO YOUR CALCULATOR (in degree mode)

Concept 5: Signs of Trig Functions in the Quadrants

As point P(x, y) moves around the unit circle, and θ increases from 0° to 360°, x and y change signs, and thus the signs of sin θ , cos θ , and tan θ also change.

There is an easy way to remember the signs of sin, cos, and tan in the different quadrants.

NOTE: * Reciprocal Functions have the same sign values as each other.*

IMPORTANT: ">0" means "is positive" "<0" means "is negative"

Example 12: In what quadrant(s) could θ be when...

a) $\sin \theta > 0$ and $\cos \theta > 0$

- 1) I
- 2) II
- 3) III
- 4) IV

b) $\tan \theta > 0$ and $\cos \theta < 0$

- d) If $\cos x = -0.7$ and $\csc x > 0$, the terminal side of angle x is located in Quadrant
 - 1) I
 - 2) II
 - 3) III
 - 4) IV

- e) If $\tan x = -\sqrt{3}$, in which quadrants could angle x terminate?
 - 1) I and III
 - 2) II and III
 - 3) II and IV
 - 4) III and IV

f) If $\sin \theta = \frac{1 - \sqrt{17}}{4}$, then angle θ lies in which

quadrants?

- 1) I and II, only
- 2) II and IV, only
- 3) III and IV, only
- 4) I, II, III, and IV

Let point P be on the terminal side of θ . Draw a picture, and determine the sine, cosine, and tangent of the angle.

- 13. If $\sin \theta = \frac{12}{13}$, where θ is in Quadrant I, find $\cos \theta$ and $\cot \theta$
- 14. If $\cos \theta = \frac{2}{3}$, where θ is in Quadrant IV, find $\csc \theta$ and $\tan \theta$.

- 15. If $\tan \theta = 3$, where θ is in Quadrant III, find $\sin \theta$ and $\sec \theta$.
- 16. If $\sin \theta = \frac{5}{6}$, where θ is in Quadrant II, find $\cot \theta$ and $\sec \theta$.

SUMMARY

Exit Ticket

If sin θ is negative and cos θ is negative, in which quadrant does the terminal side of θ lie?

- 1) I
- 2) II
- 3) III
- 4) IV

1. What is 235°, expressed in radian measure?

(1)
$$235\pi$$
 (3) $\frac{36\pi}{47}$

(2)
$$\frac{\pi}{235}$$
 (4) $\frac{47\pi}{36}$

2. What is the number of degrees in an angle whose radian measure is $\frac{7\pi}{12}$?

5. A sprinkler system is set up to water the sector shown in the accompanying diagram, with angle ABC measuring 1 radian and radius AB = 20 feet.

What is the length of arc AC, in feet?

3) 20

4) 10

B C

6. In a circle of radius 8, find the length of the arc intercepted by a central angle of 1.5 radians.

3. Find, to the *nearest minute*, the angle whose measure is 2.75 radians.

7. Cities *H* and *K* are located on the same line of longitude and the difference in the latitude of these cities is 9°, as shown in the accompanying diagram. If Earth's radius is 3,954 miles, how many miles north of city *K* is city *H* along arc *HK*? Round your answer to the *nearest tenth of a mile*.

4. An art student wants to make a string collage by
connecting six equally spaced points on the
circumference of a circle to its center with string. A –
What would be the radian measure, in terms of
$$\pi$$
, of
the angle between two adjacent pieces of string?

3,954 mi A ______9°

(Not drawn to scale)

8. The accompanying diagram shows unit circle *O*, with radius OB = 1.

9. If $f(x) = \sin 2x + \cos x$, then $f(\pi) =$ (1) 1 (3) 0 (2) 2 (4) -1

- If sec x < 0 and cot x < 0, in which quadrant does the terminal side of angle x lie?
 - 1) I 2) II
 - 2) II 3) III
 - 4) IV

Which line segment has a length equivalent to $\cos \theta$?

(1) \overline{AB} (3) \overline{OC}

(2) \overline{OB} (4) \overline{OA}

Find the exact values of the six trigonometric functions of θ if the terminal side of θ in standard position contains the given point.

11. (-15, 8) 12. (-3, 0) 13. (4, 4)

Suppose θ is an angle in standard position whose terminal side is in the given quadrant. For each function, find the exact values of the remaining five trigonometric functions of θ .

14.
$$\cos \theta = -\frac{1}{2}$$
, Quadrant II 15. $\cot \theta = -\frac{\sqrt{2}}{2}$, Quadrant IV

- 16. If $\sin \theta = \cos \theta$, in which quadrants may angle θ terminate?
 - I, II 1)
 - 2) II, III
 - I, III 3)
 - 4) I, IV

- 17. If $\sin x = -\frac{1}{3}$ and $\sin x \cos x > 0$, in which quadrant does angle x lie?
 - 1) I 2) Π
 - 3) Ш
 - 4) IV

18. An angle that measures $\frac{5\pi}{6}$ radians is drawn in standard position. In which quadrant does the terminal side of the angle lie?

20. If $f(x) = \cos 3x + \sin x$, then $f\left(\frac{\pi}{2}\right)$ equals 1) 1 2) 2 3) -1 4) 0

21. If θ is an angle in standard position and its terminal side passes through the point $\left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$ on a *unit circle*, find all 6 trigonometric functions.

29

19. If
$$f(x) = \sin^2 x$$
, then $f\left(\frac{\pi}{2}\right)$ equals
1) 1
2) $\frac{3}{4}$
3) $\frac{1}{2}$
4) $\frac{1}{4}$

Day 4: SWBAT apply "Special" Angles to find the exact value of Trig Functions

Do Now: Recall the following theorems from Geometry:

Complete the tables with a partner:

- a) Find the lengths of the missing sides.
- b) Find the sine, cosine and tangent of each acute angle in each triangle.
- c) What relationship do you notice?

Use these triangles to determine the following trigonometric values:

	30°	45°	60°
Sine			
Cosine			
Tangent			
Cosecant			
Secant			
Cotangent			

Putting it all together (only QI)

	0°	30°	45°	60°	90°
Sine					
Cosine					
Tangent					

How to construct this table:

- For Sines and Cosines only, write a denominator of "2" for each.
- For Sine, fill in the following numerators, left to right: $\sqrt{0}$, $\sqrt{1}$, $\sqrt{2}$, $\sqrt{3}$, $\sqrt{4}$.
- For Cosine, fill in the following numerators, left to right: $\sqrt{4}$, $\sqrt{3}$, $\sqrt{2}$, $\sqrt{1}$, $\sqrt{0}$.
- Simplify.
- Since tangent = sin/cos, each tangent box is sin/cos. Divide, and rationalize the denominators.

	0°	30°	45°	60°	90°
Sine					
Cosine					
Tangent					

Exact Values/Aprroximations

$$\sin 60^\circ = \frac{\sqrt{3}}{2}$$
. This

This is exact!

 $\sin 60^{\circ} \approx 0.8660254038$. This is an approximation!

Model Problems:

1. Find the exact value of (sin 30°)(cos 60°).	2. Find the exact value of csc ² 60°.
3. θ is an angle drawn in standard position and intersect a unit circle at point A.	
If the coordinates of point A are $\left(\frac{1}{2}\right)$	$\left(\frac{\sqrt{3}}{2}\right)$, what is the smallest positive value
of 0?	

Find the EXACT value of each expression.

a) cos 60° + 3 tan 45°	b) $\frac{\cos \frac{\pi}{3}}{\tan \frac{\pi}{3}}$
a) sin ² 45° + cos ² 45°	b) $2\cos\frac{\pi}{6} + 4\tan\frac{\pi}{3}$
c) (sec $\frac{\pi}{4}$)(cos $\frac{\pi}{3}$)	d) Let $f(x) = \csc 2x$. Determine $f\left(\frac{\pi}{6}\right)$
e) $2\sin \pi + \sec \frac{\pi}{2}$	f) $\frac{\cos 180^\circ - \sin 90^\circ}{\cot 45^\circ}$
g) If $f(x) = \csc x + \cot x$, find $f\left(\frac{\pi}{6}\right)$.	h) An acute angle is drawn in standard position. The coordinates of the terminal side are $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$, what does the angle measure?

Exit ticket: The value of $2(\sin 30^{\circ})(\cos 30^{\circ})$ is equal to the value of: (1) $\sin 60^{\circ}$ (2) $\cos 60^{\circ}$ (3) $\sin 90^{\circ}$ (4) $\tan 30^{\circ}$

1. If
$$f(x) = \tan \frac{x}{3} + \cos x$$
, what is $f(180^{\circ})$
2. Express as a single fraction the exact value of: $\cos \frac{\pi}{6} \cos \frac{\pi}{4} - \sin \frac{\pi}{6} \sin \frac{\pi}{4}$.
3. What is the value of $\cot(\frac{\pi}{3})$ in simplest radical form?
4. If θ is an angle in standard position and its terminal side passes through the point $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ on a unit circle, a possible value of θ is (1) 30 (3) 120°
(2) $60^{\circ}(4) 150^{\circ}$
5. If $f(x) = 2\cos\left(\frac{x}{6}\right)$, find $f(180)$.

6.									
Tł	The value of (sin 60°)(cos 60°) is								
7									
	Сору	and	comp	olete	the ta	ble.			
	θ	0°	30°	45°	60°	90°	180°	270°	360°
	Radians				-				
	$\sin \theta$								
	$\cos \theta$								
	Tan θ								
-									
Fin	d the exact val	ue: <u>cos</u>	$\frac{s^2 30^\circ + s}{\sec 60}$						
			secou)					
. Find									
, ma	Find, in <i>simplest radical form</i> , the exact value of $\csc \frac{\pi}{3}$								
	3								

10. If $f(x) = \sin 2x + \cos x$, then $f(\pi) =$ (3) 0 (1) 1 (4) -1(2) 2 11. If the coordinates of point *A* are $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ What is θ ? 12. If θ is an angle in standard position and its terminal side passes through the point $(\frac{1}{2}, \frac{\sqrt{3}}{2})$ on a unit circle, a possible value of θ is $(1)30^{\circ}$ (3) 120° $(2)60^{\circ}$ $(4)150^{\circ}$

Day 5: SWBAT apply Reference Angles to find Trig Values in All Quadrants

Do Now:

1) In the diagram, the center of circle O is at the origin, radius OB = 1, and $m \ge AOB = 30$.

What are the coordinates of point *B*?

1.
$$\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$$

2. $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$
3. $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$
4. (1, 1)

2) a) Draw an angle of 150° in standard position.

b) Draw a line parallel to the y-axis and perpendicular to the x-axis. What is measure of the angle formed?

What is happening in this example above? Why?

What is a reference angle? The reference angle is the positive acute angle formed by the terminal side of the given angle and the x-axis.

Refer to the diagram. Fill in the chart below.

Reference angles look different in each quadrant. In QI, the reference angle for θ is θ itself. Every angle in QI is acute, so any angle in QI (θ_I) doesn't need a reference angle.

Reference angles for other quadrants

REMEMBER: Reference angles are ALWAYS formed between the terminal side of the original angle and the x-axis. NEVER with the y-axis!!

Also, there are no reference angles for quadrantal angles (0°, 90°, 180°, 270°...)

Reference Angles

We already know that we can have trigonometric values of any angle, in any quadrant, and we've already determined what the signs (+/-) of each of them are. But we can also find the actual trig function values.

Model Problem: Find the exact value of cos 135.					
a) Find the reference angle:					
b) Express as the function of a positive acute angle:					
c) Use your special angle values to find the exact value of the function:					

Examples:

1. Find the exact value of cos (135°).	2. Find the exact value of $\sin \frac{5\pi}{3}$
3. Find the exact value of tan (-150°).	4. Find the exact value of sec $\frac{7\pi}{6}$
5. Find the exact value of cot(300°).	6. Find the exact value of $\csc \frac{-11\pi}{6}$.

7. Find the exact value of csc 750°	8. Find the exact value of $\tan\left(-\frac{\pi}{2}\right)$.
9. Find the value of cot (-840°).	10. Find the smallest positive angle drawn in standard position that intersects the unit circle at $\left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$.
11. Express sin 225 as the function of a positive acute angle:	12. Express sec -80 as the function of a positive acute angle.

SUMMARY

$90^{\circ} < \theta < 180^{\circ}$	$180^\circ < \theta < 270^\circ$	$270^\circ < \theta < 360^\circ$
Quadrant II	Quadrant III	Quadrant IV
$\sin \theta = \sin (180^\circ - \theta)$	$\sin \theta = -\sin (\theta - 180^{\circ})$	$\sin \theta = -\sin (360^\circ - \theta)$
$\cos \theta = -\cos (180^{\circ} - \theta)$ $\tan \theta = -\tan (180^{\circ} - \theta)$	$\cos \theta = -\cos (\theta - 180^{\circ})$ $\tan \theta = \tan (\theta - 180^{\circ})$	$\cos \theta = \cos (360^\circ - \theta)$ $\tan \theta = -\tan (360^\circ - \theta)$

If θ is the measure of an angle greater than 90° but less than 360°:

Exit Ticket:

Expressed as a function of a positive acute angle, $\cos{(-305^\circ)}$ is equal to

- (1) $-\cos 55^{\circ}$ (3) $-\sin 55^{\circ}$
- (2) $\cos 55^{\circ}$ (4) $\sin 55^{\circ}$

Day 5 - Homework

Find the exact value of each trigonometric function.

1) sin 765°	2) tan 315°
3) csc 930°	4) csc 600°
5) csc -480°	6) tan -990°
7) $\csc -\frac{\pi}{6}$	8) $\cot \frac{14\pi}{3}$
9) sin -210°	10) $\sec \frac{\pi}{6}$

Find the reference angle.

11) $\frac{13\pi}{4}$	12) $-\frac{7\pi}{9}$
4	9

13)
$$\frac{28\pi}{9}$$
 14) 640°

17) Find the smallest positive angle drawn in standard position that intersects the unit circle at $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$.

18) Find the smallest positive angle drawn in standard position that intersects the unit circle at $\left(\frac{-\sqrt{2}}{2}, \frac{-\sqrt{2}}{2}\right)$.

Answer Keys

Homework #1

5a. 37 degrees $0.285 \text{ degrees} \cdot \frac{60 \text{ minutes}}{1 \text{ degree}} = 17.1 \text{ minutes}$ $0.1 \text{ minutes} \cdot \frac{60 \text{ seconds}}{1 \text{ minute}} = 6 \text{ seconds}$ Answer: $37^{\circ}17'6''$

5b. 314 degrees

0.42 degrees
$$\cdot \frac{60 \text{ minutes}}{1 \text{ degree}} = 25.2 \text{ minutes}$$

$$0.2 \text{ minutes} \cdot \frac{60 \text{ seconds}}{1 \text{ minute}} = 12 \text{ seconds} \qquad \text{Answer: } 314^{\circ}25'12$$

6a. 82 degrees + 42 minutes
$$\cdot \frac{1 \text{ degree}}{60 \text{ minutes}} = 82.7^{\circ}$$

6b. 213 degrees + 15 minutes $\cdot \frac{1 \text{ degrees}}{60 \text{ minutes}} + 56 \text{ seconds} \cdot \frac{1 \text{ degree}}{3600 \text{ seconds}} \approx 213.266$

8.
$$\csc \theta = \frac{5}{2}$$
 and $\cos \theta = \frac{2}{3}$

9. A person measures the angle of depression from the top of a wall to a point on the ground. The point is located on level ground 62 feet from the base of the wall and the angle of depression is 52° 27'. How high is the wall, to the nearest tenth of a foot?

10. A

70°

Draw an angle with the given measure in standard position. 4-7. See margin.

5	. 300°	6.	. 570°

7. -45°

Sector

Area

Rewrite each degree measure in radians and each radian measure in degrees.

in degrees.		07-
 8. 130° ¹³/₁₈ 	9. $-10^{\circ} - \frac{\pi}{18}$	10. 485° $\frac{97\pi}{36}$
11. $\frac{3\pi}{4}$ 135°	12. $-\frac{\pi}{6}$ -30°	13. ^{19π} / ₃ 1140°

Find one angle with positive measure and one angle with negative measure coterminal with each angle. 14–16. Sample answers are given. 14. 60° 420°, -300° 15. 425° 785°, -295° 16. $\frac{\pi}{3}$, $\frac{\pi}{3}$, $-\frac{5\pi}{3}$

Rewrite each degree measure in radians and each radian measure in degrees.

27. 120° 2π/3	28. $60^{\circ}\frac{\pi}{3}$	29. $-15^{\circ} - \frac{\pi}{12}$	30225° -5
31. 660° $\frac{11\pi}{3}$	32. 570° 19 π	33. $158^{\circ} \frac{79\pi}{90}^{\circ}$	34. 260° $\frac{13\pi}{9}$
35. $\frac{5\pi}{6}$ 150°	36. $\frac{11\pi}{4}$ 495°	37. $-\frac{\pi}{4}$ -45°	38. $-\frac{\pi}{3}$ -60°
39. ^{29π} / ₄ 1305°	40. $\frac{17\pi}{6}$ 510°	* 41. 9	* 42. 3

Find one angle with positive measure and one angle with negative measure coterminal with each angle. 43–54. Sample answers are given.

43. 225° 585°, -135°	44. 30° 390°,330°	4515° 345°, -375°
46140° 220°, -500°	47. 368° 8°, -352°	48. 760° 400°, -320°
49. $\frac{3\pi}{4} \frac{11\pi}{4}, -\frac{5\pi}{4}$	50. $\frac{7\pi}{6} \frac{19\pi}{6}, -\frac{5\pi}{6}$	51. $-\frac{5\pi}{4}\frac{3\pi}{4}, -\frac{13\pi}{4}$
52. $-\frac{2\pi}{3}\frac{4\pi}{3}, -\frac{8\pi}{3}$	53. $\frac{9\pi}{2} \frac{13\pi}{2}, -\frac{3\pi}{2}$	54. $\frac{17\pi}{4}$ $\frac{25\pi}{4}$, $-\frac{7\pi}{4}$

•• 55. DRIVING Some sport-utility vehicles (SUVs) use 15-inch radius wheels. When driven 40 miles per hour, determine the measure of the angle through which a point on the wheel travels every second. Round to both the nearest degree and nearest radian. 2689° per second; 47 radians per second

GEOMETRY For Exercises 56 and 57, use the following information.

A sector is a region of a circle that is bounded by a central angle θ and its intercepted arc. The area A of a sector with radius r and central angle θ is given by $A - \frac{1}{2}r^2\theta$, where θ is measured in radians.

- 56. Find the area of a sector with a central angle of $\frac{4\pi}{3}$ radians in a circle whose radius measures 10 inches. 209.4 in²
- Find the area of a sector with a central angle of 150° in a circle whose radius measures 12 meters. about 188.5 m²

62. QUANTITATIVE COMPARISON Compare the quantity in Column A and the quantity in Column B. Then determine whether:

- the quantity in Column A is greater,
- (B) the quantity in Column B is greater,
- The two quantities are equal, or
- (D) the relationship cannot be determined from the information given.

63. Angular velocity is defined by the equation ω = θ/t, where θ is usually expressed in radians and t represents time. Find the angular velocity in radians per second of a point on a bicycle tire if it completes 2 revolutions in 3 seconds. D

₩

O

2. What is the number of degrees in an angle whose radian massure is $7\pi \circ D$ 180

$$D = 105$$

$$\frac{D}{12} = \frac{180}{7}$$

$$\frac{D}{12} = \frac{180}{7}$$

$$TD = 105.77$$

3. Find, to the nearest minute, the angle whose measure is 2.75 radians.

$$\frac{D}{R} = \frac{130}{T}$$

$$\frac{D}{R} = \frac{130}{T}$$

$$\frac{D}{R} = \frac{130}{T}$$

$$\frac{D}{2.75} = \frac{130}{T}$$

$$\frac{D}{7.75} = \frac{130}{T}$$

4. An art student wants to make a string collage by connecting six equally spaced points on the circumference of a circle to its center with string. What would be the radian measure, in terms of π , of the angle between two adjacent pieces of string?

$$\frac{360^{\circ} \text{ in a circle}}{6 \text{ equal shies}}$$

$$\frac{360^{\circ} \text{ in a circle}}{6 \text{ equal shies}}$$

$$\frac{6 \text{ equal shies}}{6 \text{ equal shies}}$$

$$\frac{0}{6} = \frac{360}{6} = 60^{\circ}$$

$$\frac{0}{6} = \frac{360}{17}$$

$$\frac{180R = 60T}{R} = \frac{180}{17}$$

$$\frac{60}{R} = \frac{180}{17}$$

$$\frac{R = \frac{T}{3}}{R}$$

5. A sprinkler system is set up to water the sector shown in the accompanying diagram, with angle ABC measuring 1 radian and radius AB = 20 feet.

6. In a circle of radius 8, find the length of the arc intercepted by a central angle of 1.5 radians.

7. Cities *H* and *K* are located on the same line of longitude and the difference in the latitude of these cities is 9°, as shown in the accompanying diagram. If Earth's radius is 3,954 miles, how many miles north of city *K* is city *H* along arc *HK*? Round your answer to the nearest tenth of a mile.

A

$$3.954 \text{ mi}$$

(Not drawn to scale)
 $S = \Gamma \Theta$
 $\Theta \text{ must be in redicts}!$
 $S = (3954)(\frac{T}{20})$
 $S = 621.0928676$
 $S = 621.1$
 $R = \frac{180}{T}$
 $180R = 9T$
 $180R = 9T$
 $R = \frac{180}{T}$
 $180R = 9T$
 $R = \frac{170}{T}$

Find the exact values of the six trigonometric functions of θ if the terminal side of θ in standard position contains the given point.

Suppose θ is an angle in standard position whose terminal side is in the given quadrant. For each function, find the exact values of the remaining five trigonometric functions of θ .

A

14.
$$\cos \theta = -\frac{1}{2}$$
, Quadrant II
 $\cos \theta = -\frac{1}{2}$, Quadrant II
 $\cos \theta = -\frac{1}{2}$, Quadrant IV
 $\cos \theta = -\frac{\sqrt{2}}{2}$, Quadrant IV
 $\sin \theta = -\frac{\sqrt{2}}{2}$, \sin

6 trigonometric functions.

$$\begin{array}{l} & \text{Unit-circle} \rightarrow (X,Y) = (\sin\theta,\cos\theta) \\ & \text{Sind} = Y = \boxed{1} \\ & \text{Sind} = Y = \boxed{1} \\ & \text{Sind} = X = \boxed{13} \\ & \text{Sec} \Theta = \sqrt{3} = \boxed{2} \\ & \text{Sec} \Theta = \sqrt{3} = \boxed{2} \\ & \text{Sec} \Theta = \sqrt{3} = \boxed{3} \\ & \text{Sec} \Theta = \sqrt{3} \\ & \text{Sec} \Theta = \sqrt{3} = \boxed{3} \\ & \text{Sec} \Theta = \sqrt{3} \\ & \text{Sec}$$

1.
$$\tan(\frac{150}{3}) + \cos(180)$$

+ $\tan(60) + -1$
 $\sqrt{3} - 1$
 $-1 + \sqrt{3}$

3.
$$co+60 = \frac{1}{tan60} = \frac{1}{53} = \frac{53}{3}$$

2. $\cos 30^\circ \cos 45^\circ - \sin 30^\circ \sin 45^\circ$

5. If θ is an angle in standard position and its terminal side passes through the point $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ on a unit circle, a possible value of θ is $(\chi, \chi) = (cos\theta, sin\theta)$ ($cos\theta = \chi$ $sin\theta = \frac{1}{2}$ ($cos\theta = \frac{\sqrt{3}}{2}$ $sin\theta = \frac{1}{2}$ $\theta = 130^{\circ}$ $\theta = 30^{\circ}$

7.
$$\theta \quad 0^{\circ} \quad 30^{\circ} \quad 45^{\circ} \quad 60^{\circ} \quad 90^{\circ} \quad 180^{\circ} \quad 270^{\circ} \quad 360^{\circ}$$
Radians
$$0 \quad \frac{T}{6} \quad \frac{T}{4} \quad \frac{T}{3} \quad \frac{T}{2} \quad TT \quad \frac{3T}{3} \quad 2TT$$
Sin $\theta \quad 0 \quad \frac{1}{3} \quad \frac{72}{3} \quad \frac{73}{3} \quad 1 \quad 0 \quad -1 \quad 0$
Cos $\theta \quad 1 \quad \frac{73}{3} \quad \frac{72}{3} \quad \frac{1}{3} \quad 0 \quad -1 \quad 0 \quad 1$
Tan $\theta \quad 0 \quad \frac{73}{3} \quad 1 \quad \sqrt{3} \quad undefine \quad 0 \quad undefine \quad 0$

$$8. \ \frac{\left(\frac{\sqrt{3}}{2}\right)^2 + \frac{1}{2}}{2} = \frac{\frac{3}{4} + \frac{1}{2}}{2} = \frac{\frac{5}{4}}{\frac{1}{2}} = \frac{5}{8}$$

9. csc $60 = \frac{2\sqrt{3}}{3}$

10.
$$\sin 2\pi + \cos \pi = \sin 360 + \cos 180 = 0 + -1 = -1$$

11.
$$\sin \theta = \frac{\sqrt{2}}{2}$$
 and $\cos \theta = \frac{\sqrt{2}}{2}$; $\theta = 45^{\circ}$

12.
$$\sin \theta = \frac{\sqrt{3}}{2}$$
 and $\cos \theta = \frac{1}{2}$; $\theta = 60^{\circ}$

Find the exact value of each trigonometric function.

1)
$$\sin 765^{\circ} \frac{\sqrt{2}}{2}$$

3) $\csc 930^{\circ}$
-2
5) $\csc -480^{\circ} -\frac{2\sqrt{3}}{3}$
7) $\csc -\frac{\pi}{6}$
9) $\sin -210^{\circ} \frac{1}{2}$
2) $\tan 315^{\circ}$
-1
4) $\csc 600^{\circ} -\frac{2\sqrt{3}}{3}$
6) $\tan -990^{\circ}$
Undefined
8) $\cot \frac{14\pi}{3} -\frac{\sqrt{3}}{3}$
10) $\sec \frac{\pi}{6} \frac{2\sqrt{3}}{3}$

Find the reference angle.

11) $\frac{13\pi}{4} \frac{\pi}{4}$	12) $-\frac{7\pi}{9} \frac{2\pi}{9}$
13) $\frac{28\pi}{9} \frac{\pi}{9}$	14) 640° 80°
15) –430° 70°	16) 335° 25°

17) 120°	18) 225°
----------	----------