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EXPERIMENTAL INVESTIGATION OF A FIN-CONE INTERFERENCE FLOW FIELD
AT MACH 5

This report documents a fin-body aerodynamic interference study
conducted at the Naval Surface Weapons Center, White Oak Laboratory.
Experimental results were ontained at Mach 5 for several Reynolds
numbers and several fin-cone geometries.
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SYMBOLS

d fin leading-edge diameter, fin thickness

h heat-transfer coefficient+

M free-stream Mach number

p static pressure

PO total or supply pressure

p• free-stream static pressure

ReJft free-stream unit Reynolds number (per foot)

TO total or supply temperature

x distance along cone ray

z distance along cone surface normal

L i
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INTRODUCTION

Advanced high-speed flight vehicles which utilize fins as
control surfaces may be subject to loss of ccntrol effectiveness due
to flow separation or to possible loss of structural integrity as
the result of fin-body interference heating. Depending on
such geometrical factors as fin leading-edge sweep and bluntness,
the bow shock of a control fin will interact strongly with the
centerbody surface boundary layer, which is typically turbilent.
The fin shock may cause the boundary layer to separate well upstream
of the fin leading edge, resulting in an extensive separated flow
region. Areas of substantially increased surface pressures
accompanied by corresponding regions of high heat transfer may
occur in the separated flow region. Designing around these problems
usually results in overdesign with its consequential weight
penalties. It would, therefore, be helpful to the designer to have
information necessary to-make reasonable estimates of peak pressure
levels, peak heating rates, and the extent of flow separation.

References (1) and (2) cite over 900 studies of problems re-
lated to separated flow phenomena. Most investigations of the fin-
body problem to date have dealt with fin-flat-plate configurations;
for examples, see References (3)-(5). More recently, Bramlette (6)
and Coleman and Lemmon (7) have investigated aeroheating phenomena
associated with small roll-control fins on conical vehicles. In
spite of these numerous studies, the ability to predict separated

Ryan, B. M., "Summary of the Aerothermodynamic Interference
Literature," Naval Weapons Center TN 4061-160, Apr 1969

( 2 )Korkegi, R. H., "Survey of Viscous Interactions Associated with
High Mach Number Flight," AIAA Journal, Vol. 9, No. 5, May 1971,
p. 771

(3)Kaufman, L. G., II, Korkegi, R. H., and Morton, L. C., "Shock
Impingement Caused by Boundary Layer Separation Ahead of Blunt
Fins," ARL Report 72-0118, Aug 1972, and AIAA Paper 73-236

(4)Winkelmann, A. E., "Experimental Investigations of a Fin
Protuberance Partially Immersed in a Turbulent Boundary Layer
at Mach 5,"' NOLTR 72-33, Jan 1972

(5)Winkelmann, A. E., "Flow Visualization Studies on a Fin
Protuberance Partially Immersed in a Turbulent Boundary Layer
at Mach 5," NOLTR 70-93, May 1970
Bramlette, T. T., "A Study of Fin-Induced Laminar Interactions
on Sharp and Spherically Blunted Cones," AIAA Paper 73-235,
Jan 1973

( 7 )Coleman, H. W., and Lemmon, E. C., "Prediction of Turbulent Heat
Transfer and Pressure on Swept Leading Edges," Journal of
Spacecraft and Rockets, Vol. 11, No. 6, Jun 1974, pp. 376-381
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flow phenomena either by mears of analytical solutions or on the basis
of subscale tests is still very limited.

The general purpose of this investigation was to study the
separated flow field associated with a general fin-body or wing-body
juncture. Specific objectives included: (a) determining the severity
and extent of interference heating, (b) providing flow visualization
experiments to illustrate the flow structure, and (c) gathering a

data base of heat-transfer and surface-pressure measurements upon
which to develop future analytical relations to predict peak inter-
ference heating and peak pressure levels. A fin-cone configuration
was tested at Mach 5 over a range of several Reynolds numbers. Heat
transfer in the interference flow field was measured using the phase-
change paint technique. Surface pressures were measured on the fin
leading edge and on the cone ahead of th fin. These quantitative
measurements were used in conjunction with both schlieren and oil-
flow photographs in an effort to characterize the fin-cone inter-
ference flow field.

MODELS AND TEST PROCEDURES

Tests were conducted in the NAVSURFWPNCEN, White Oak Laboratory,
Hypersonic Tunnel (Ref. (8)) at a nominal free-stream Mach number of
5 over a range of free-stream unit Reynolds numbers of about 4.5, 13,
and 26 million per foot. Two geometrically identical fin-cone models
were fabricated from existing conical models, one made of Teflon
with a metal insert and a stainless-steel tip and the other of stain-
less steel. Both models consisted of a sharp, five-degree half-
angle cone with two aft-mounted, cylindrically blunted fins 180
degrees apart, one unswept and one swept 60 degrees with respect to
the cone surface normal. A schematic diagram of the models is shown
in Figure 1. Photographs of both models are provided in Figures 2
and 3. The fins are adjustable by means of setscrews in a direction
normal to the cone surface to simulate a control hinge configuration.
For all test conditions, the cone was maintained at zero angle of
attack and zero yaw and the fins were at zero cant. In all of the
tests the models were injected into the flow rapidly using the
hydraulic ram feature of the Hypersonic Tunnel after the desired test
conditions had been established in the test cell. The Teflon model
was utilized in the phase-change paint heat-transf3r tests and in
the oil-flow visualization experiments. The extension and fins were
made of dark gray Teflon to provide better contrast with the paints,
many of which dry to a light opaque color. The stainless-steel model
was used in the pressure distribution tests. Further details of both
models are included in Appendix A.

S(8) Baltakis, F. P., "Performance Capability of the NOL Hypersonic
Tunnel," NOLTR 68-187, Oct 1968
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HEAT-TRANSFER MEASUREMENTS
Heat transfer in the interference flow field was measured by means

of a temperature-sensitive paint method, specifically the phase-change
paint technique pioneered by Jones and Hunt (Ref. (9)) at the NASA,
Langley Research Center. In recent years the technique has evolved
into a useful diagnostic tool which is considered capable of providing
reliable quantitative heat-transfer data. It is especially applicable
to complex geometries with interference heating patterns of unknown
severity and extent. The phase-change paint technique and extensions
of the method are well documented; for example, see References (9) and
(10). Use of the technique at NAVSURFWPNCEN, White Oak Laboratory,
is documented in Reference (11). Basically, the method consists of
coating a model with a paint which is rated to change phase, i.e.,
melt, from a dry crystalline opaque solid to a clear liquid irre-
versibly at a specific rated temperature. The model is injected into
the flow and progression of the melt-line location is recorded on
movie film. This time input used in conjunction with the thermo-
physical properties of the model material determines the heat-transfer
coefficient, h, in the data-reduction scheme. The model is assumed
to behave like a semi-infinite slab and to undergo a step increase
in heat transfer to a constant value of heat-transfer coefficient at
any given point on its surface upon being exposed to the flow. The
data reduction is based further on the assumption that the coating
and the model surface are at the sane temperature at the same time.Therefore, only a very thin (0.001 inch or less) coating is necessary.
To achieve this condition, the paints were thinned using a special
thinner specified by the manufacturer (Tempilaq Thinner and Tempilaq
Phase-Change Paints by the Tempil Corporation), and were applied
fairly uniformly to the model by means of an airbrush. These particu-
lar temperature-sensitive paints are considered well suited for short-
duration high-speed wind-tunnel tests. They have been found to be
insensitive to ambient pressures or heating rates in exhibiting their
rated melting temperatures (9). Calibration checks (11) at
NAVSURFWPNCEN, White Oak Laboratory, showed the paints to melt at
temperatures in good agreement with those specified by the
manufacturer.

Another necessary input for the phase-change paint data-
reduction scheme is the initial temperature of the model. This
information was provided by four embedded thermocouples in the Teflon
model, one in each fin and one in the cone ahead of each fin.

(9)Jones, R. A., and Hunt, J. L., "Use of Fusible Temperature
Indicators for Obtaining Quantitative Aerodynamic Hedt-Transfer
Data," NASA TR R-230, Feb 1966

A"10 Hunt, J. L., Pitts, J. I., and Richie, C. B., "Application of

Phase-Change Technique to Thin Sections with Heating on Both
Surfaces," NASA TN D-7193

Gillerlain, J. D., Jr., "Use of Phase-Change Paints to Study
Fin-Body Interference Heating, NSWC/WOL/TR 75-62, Apr 1976

ST8
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Secondarily, these thermocouples provided a check on when the semi-
infinite slab approximation was violated. (See Appendix A, Fig. A-I.)

Teflon was chosen as the model material partly because of its
low thermal diffusivity which enhanced its semi-infinite slab
behavior. In addition, Teflon was strong enough to withstand the
loading associated with rapid injection of the model, and it had a
fairly high melting temperature. Also, lateral condaction effects
were minimized due to its thermophysical properties. Typical values
of the thermophysical properties of Teflon are given in Reference
(11) as determined from other sources. Additional information may
be found in Reference (12).

PRESSURE MEASUREMENTS
The stainless-steel model was instrumented with pressure taps

on the fin leading edges and on the cone ahead of the fins extending
about six fin thicknesses (leading-edge diameters) upstream on the
fin centerline. (See Appendix A, Fig. A-2.) Each tap had its own
strain-gage-ty-e pressure transducer mounted in a multiple transducer
bank. Selected pressure taps were monitored during a test run to
assnre that the data reflected full response of the taps.

OIL-FLOW TESTS
Oil-flow tests in general provide visual data on surface shear

directions on a model surface. A 350-centistokes silicone oil
(Dow 200 dielectric fluid) was used with titanium oxide powder in
suspension to provide white pigmentation. A mixture of one part
silicone oil to one part titanium oxide with five or six drops of
oleic acid was found to be suitable for the range of Reynolds
numbers tested. The oil mixture was applied to the model in a
direction transverse to the free-stream flow direction. The model was
rapidly injected into the flow and photographs were taken with the
tunnel running once the desired patterns had developed.

SCHLIEREN PHOTOGRAPHS
Schlieren photographs were obtained using the flow visualization

system of the Hypersonic Tunnel (Ref. (8)).

EXPERIMENTAL RESULTS AND DISCUSSION

Results are presented for several fin-cone configurations: (a)
the fins mounted flush on the cone, (b) a fin-cone gap of 0.060 inch,
and, (c) a fin-cone gap of 0.125 inch. A free-stream unit Reynolds
number range of about 4.5, 13 and 26 million per foot is represented.
The lowest Reynolds number condition comprises the most complete set
of overall data, mainly because the fin side-heating data are
considered reliable for this case.

(12Wentink, T., Jr., "High Temperature Behavior of Teflon," AFBMD-

TN-59-15, Jul 1959
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SCHLIEREN AND OIL-FLOW PHOTOGRAPHS
Examination of the flow visualization data provides insight to

the heat-transfer and pressure distribution patterns to be presented
subsequently. Schlieren photographs are shown in Figure 4 for the
flush-mounted fins, in Figure 5 for a 0.060-inch fin-cone gap, and
in Figure 6 for the 0.125-inch fin-cone gap. The cone bow shock did
not impinge on the fins in any of the tests, by design. Figure 4
shows that the flush-mounted unswept fin with its strcng bow shock
causes a separation-induced shock wave which impinges on the fin
leading edge. The flush 60-degree-swept fin is sufficiently swept
that very little upstream separation is apparent. When the fins are
gapped off the surface, as they might be in a control-hinge configu-
ration, in both Figures 5 and 6 the flow displays complex inlet flow
patterns in the gap. The unswept fin displays a very complex pattern
of reflected shocks in the gap. The swept fin shows flow attachment
at its leading tip. In all of the schlieren photographs, weak shock
waves are seen to propagate from the interface of the original cone
and the finned extension.

Figure 7 shows a side-view oil-flow tarn pattern. The oil
mixture was brushed on the model transverse to the flow direction.
A side-view oil-flow photograph for the flush-mounted fins is shown
in Figure 8. Recall that the oil is swept away in regions of high
shear and pools along lines of flow separation. The lateral extent
of the separated flow region associated with the unswept fin is
immediately obvious. An oil accumulation line on the side of the
unswept fin indicates flow separation associated with a corner
vortex pattern. Figures 9 and 10 provide additional visual infor-
mation for this fin-cone geometry by showing top views of the unswept
and swept fin, respectively. The viewing angle is along a cone
surface normal. In Figure 9, the existence of two separation lines
is apparent. The primary separation line occurs about 2.2 fin
leading-edge diameters (fin thickness, d) upstream of the unswept
fin's leading edge. This line marks the initial flow separation of
the cone boundary layer due to the adverse pressure gradient caused
by the fin bow shock. This behavior of separation about 2d upstream
appears to be characteristic of turbulent boundary-layer separation
ahead of blunt fins of height and thickness greater than the local
boundary-layer thickness over a Mach number range of about 1.2 to
2.1 independent of Reynolds number (Ref. (13)). The behavior
apparently carries over from fin-plate to fin-cone geometries for
the conditions indicated.

In Figure 9 a secondary separation line occurs about 0.7d up-
stream. The region between the primary and secondary separation lines
is usually called "separated flow" while the region between the

(1 3 )Westkaemper, J. C., "Turbulent Boundary-Layer Separation Ahead
of Cylinders," AIAA Journal, Vol. 6, No. 7, Jul 1968, pp. 1352-
1355

10
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secondary separation line and the fin is called "reattached flow"
((5), (14)). A local spot from which there is apparent outward flow
occurs about ld upstream. A similar flow attachment point was
observed by Winkelmann ((4), (5)) and will be noted later in the
heat-transfer data. Lastly, in Figure 9 there is evidence of
"herringbone" oil-flow patterns outboard of the fin. These patterns
are indicative of vortical patterns trailing off downstream from the
fin centerline interaction region which includes horseshoe vortices

• ((3), (4)).

In Figure 10 both primary and secondary separation occur within
about 0.3d upstream of the swept fin. (Evident in the figure is an
epoxy-plaster plug in the fin leading edge, which was necessitated
by loss of a Teflon plug in an earlier test. The plug had originally
provided access to the fin thermocouple.) The reduced lateral extent
of outboard disturbance is evident by merely sweeping the fin a
sufficient amount.

I Figure 11 shows the oil-flow side view for the 0.060-inch gap.
The flow is beginning to interact with the fin-hinge corner. The
flow has moved into the gap somewhat, because Figure 12, which is a
top view of the gapped unswept fin, shows primary separation to
occur now about 1.7d. Secondary separation occurs about 0.5d up-
stream. The herringbone patterns from the fin hinge are most evident.
The top-view oil-flow photograph for the swept fin in Figure 13 shows
clearly how the flow in the gap begins to interact with the fin
hinge. Primary separation still occurs ahead of the leading tip.

Figure 14 shows the oil-flow side view for the 0.125-inch gap.
The flow interacts strongly with fin-hinge corner resulting in
pronounced regions of high shear on the sides of both fins. In
Figure 15, which is a top view of the gapped unswept fin, primary
separation now occurs only about ld upstream. The secondary
separation line is not well defined near the fin leading edge due to
the complex flow pattern associated with the gap. When the flow in
the gap interacts with the fin hinge, a separation line appears which
has a very interesting and unusual changing curvature as it moves
outboard. The changing curvature is probably the result of its
interaction with the vortical patterns from the upstream separation
regions. Once again the "herringbone" patterns are very evident. The
top-view oil-flow photograph for the gapped swept fin, Figure 16,
shows clearly how the flow now interacts with the fin hinge, creating
an outboard disturbance region comparable to that of the unswept
flush-mounted fin. Also note that primary separation does not occur
until the flow is in the gap.

.4 (14)
Young, F. L., Kaufman, L. G., and Korkegi, R. H., "Experimental
Investigation of Interactions Between Blunt Fin Shock Waves and
Adjacent Boundary Layers at Mach Numbers 3 and 5," ARL Report
68-0214, Dec 1968

ai
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4.

HEAT-TRANSFER MEASUREMENTS
Keeping in mind the oil-flow patterns, consider now the heat-

transfer results. The reduced phase-change paint data are presented
as lines of constant heat-transfer coefficient, h, so-called iso-
heating contours. Figures 17 and 18 show side and top views,
respectively, of the flush-mounted unswept fin for the lowest
Reynolds number. Figures 19 and 20 show top views for the higher
Reynolds numbers. The amount of detail is somewhat a function of the
rated melting temperature of the paint used. Side-view data are not
presented for the two higher Reynolds numbers. These data are
considered not to be as reliable because the fins generally are
believed not to have behaved as semi-infinite slabs based on the
embedded thermocouple temperature indications. Note that in Figures
"18-20 the viewing angle is about 10 degrees forward of a normal to

the cone surface at the fin leading edge. (This angle view was
used in an attempt to obtain more detail about the leading-edge
heating. The slight inclination was a physical constraint of the
tunnel windows and model position. The additional leading-edge
detail was not achieved due to the rapid heating rates.) Regions
of high heating comparable to that near the leading edge are shown
to occur in a crescent-shaped region at the fin "foot" and at the
flow reattachment point about ld upstream. High heating at this
point ld upstream identifies it as a high-shear region, or as a
point where flow is entrained and brought into contact with the cone
surface. This appears to be contrary to Winkelmann's conclusion (5)
that this reattachment point is a low-shear or "dead air" region.

Isoheating contours for the swept fin are shown in side and top
views in Figures 21 and 22, respectively, for the low Reynolds
number condition. Both the level and extent of interference heating
are greatly reduced. The dotted lines on the leading edge of the
fin in Figure 21 indicate where the plug was located. The maximum
h-value is down about 25 percent on the leading edge and that on the
cone is down about 40 percent from the unswept fin case. This is
purely a sweep effect.

Figure 23 shows a higher Reynolds number case. Only limited
data are available for the highest Reynolds number as shown in
Figure 24.

Figures 25 and 26 show the low Reynolds number case for the
0.060-inch gapped unswept fin. The severity of heating in the fin-
hinge corner begins to approach that of the fin leading edge and fin
foot region. Figures 27 and 28 show top views for the higher
Reynolds numbers for this configuration.

Figure 29 displays the low Reynolds number isoheating contours
for the side of the swept fin gapped at 0.060 inch. The top view is
shown in Figure 30, where it is evident that severe flow interaction
is occurring just under the leading tip and in the vicinity of the
fin-hinge corner. Top views for the higher Reynolds numbers appear
in Figures 31 and 32.

12
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Figures 33 and 34 show isoheating contours for the 0.125-inch
gapped unswept fin. The fin hinge clearly shows up as having an
interaction flow field with heat transfer as severe as that on and
around the fin leading edge. The heating level at primary separation
remains at about the same level as for the flush-mounted fin. Now,
both the fin "foot" region (a misnomer since the fin is gapped here)
and the hinge region are comparable areas of high-interference heating.
The two higher Reynolds numbers cases are shown in Figures 35 and
36.

Heat-transfer dawi for the 0.125-inch gapped swept fin are shown
in Figures 37 and 38. From Figure 37 it may be seen that the immedi-
ate leading-edge segment and the hinge have heating levels comparable
to the unswept fin case. In contrast, however, Figure ':8 indicates
a marked decrease in the interference heating level on the cone to
about 60 percent of that for the gapped unswept fin. This would
indicate that sufficient leading-edge sweep alone produces less
lateral disturbance in the form of a separated flow region and re-
sults in lower interference heating levels in the disturbed region on
the centerbody. Figures 39 and 40 provide data for the two higher
Reynolds numbers.

In Figures 17 through 40 the accuracies of the heat-transfer
coefficients vary according to factors in the data-reduction scheme
as discussed in Reference (11). Generally, the data are considered
to be accurate within a 20 to 30 percent range. The low Reynolds
number data are considered the most reliable.

CONE SURFACE-PRESSURE DISTRIBUTIONS
Again recalling the oil-flow patterns of Figures 8-15, consider

the surface-pressure distributions measured on the cone ahead of the
fins. Figure 41 shows the flush-mounted unswept fin. The surface
pressures are normalized by the undisturbed cone value, which was
sensed generally by several of the most upstream taps. The abscissa

is distance along the fin-centerline cone ray referenced to the fin
leading edge and normalized by the fin leading-edge diameter (fin
thickness, d). Data are shown for three Reynolds numbers. The
pressure begins to rise a little more than 2d upstream, corresponding
to the point where primary separation occurs. It rises to a slight
peak, then dips, and rises again to a high peak in the fin foot
region about 0.25d upstream of the leading edge. The peak pressure
in the fin foot region is about 10 times the undisturbed level.
Winkelmann (4) observed peak pressure ratios only about six times
the undisturbed value for his fin-flat-plate configuration. Lucas
(15) recorded peak pressure levels about 8 to 10 times free-stream
values from his blunt fin-flat-plate tests. The peak pressure region

(15)Lucas, E. J., "Investigation of Blunt Fin-Induced Flow Separation
Region on a Flat Plate at Mach Numbers 2.5 to 4.0," AEDC-TR-70-
265, Jan 1971
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corresponds to the crescent-shaped peak heating region of Figure 13.
The reattachment zone Id upstream, which had earlier been found to
be a high-heating region, corresponds here only to a point where the
pressure dips after the initial rise. The pressure ratios at the
point of separation and the curves in general are not construed to
represent a definite Reynolds number effect. Rather, the differences
are thought to be indicative of flow ursteadinsss and instability
associated with the separated flow region and the likely scavenging
action of the horseshoe vortices ((3), (4)).

Figure 42 shows the corresponding pressure distribution on the
cone ahead of the swept fin. As expected, there is almost no upstream
disturbance.

Figi is 43 and 44 show pressure distributions for the 0.060-inch
gapped uns..ept and swept fins, respectively. Pressure taps existed
in the gap as shown. In Figure 43 the first pressure rise peak occurs
about 1.3d upstream followed by a maximum peak in the fin foot region.
This maximum is less than that in Figure 41. Some abatement must
occur by the flow's being able to move into the fin-cone gap. Sub-
sequently, a peak occurs as the flow begins to interact with the fin
hinge.

Figure 44 indicates that pertubations occur in the gap for the
swept fin while upstream effects are still minimized by sweep.

Figure 45 shows the 0.125-inch gapped unswept fin and Figure 46
shows the corresponding swept fin. In both cases the flow moves
into the gap and displays its peak pressure in the gap. In Figure 45
the peak pressure level, down from 10 to 8, occurs just inside the
gap. In question here is the exact location of the peak with respect
to the tap location. After this first pressure peak, the flow
appears to begin to interact with the hinge, but insufficient data
exist. It may be noted that the initial pressure rise is observed
to begin about ld upstream of the unswept leading edge, corresponding
to the location of the primary separation line in Figure 15.

In Figure 46 an attenuated pressure peak occurs about 2d into
the gap. This lower peak pressure corresponds to the lower peak
heating indicated in Figure 38.

FIN LEADING-EDGE PRESSURE DISTRIBUTIONS
Figure 47 shows the leading-edge pressure distribution for both

of the flush-mounted fins. Distance, z, along the cone surface
normal at the plane of the leading edge is nondimensionalized by the
fin leading-edge diameter, d. The pressures are normalized by the
free-stream static pressure. The relative difference in the pres-
sure levels is explained by oblique shock theory. The bulge in the
pressure distribution on the unswept fin's leading edge corresponds
to impingement of the separation-induced shock wave which appears
in the schlieren photograph of Figure 4 to occur at about z/d 4 0.9.
No pressure tap exists at z/d = 0.5 in the swept fin because of
physical limitations in fabricating the fin.

14
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The fin leading-edge pressure data for the gapped fins are shown

in Figures 48 and 49. Figure 48 is felt to be indicative of the
fluctuating pressures in the immediate shock impingement area for
the unswept fin.

CONCLUDING REMARKS

The interaction flow field on a fin-cone configuration was
stvdied at Mach 5 at unit Reynolds numbers from 4.5 to 26 million per
foot. The interference flow field produced peak interference heating
rates and peak pressures, which are considerably higher than in non-
interference regions on the cone. The problem is a non-trivial one.
In fact, Hains and Keyes (Ref. (16)) have measured peak interference
heating rates up to 17 times the interference-free stagnation point
value and peak pressures up to eight times the freestream pitot
pressure on a hemisphere in a Mach 6 freestream with the extraneous
shock generated by a wedge.

S~The interaction flow field on fin centerline for an unswept,

cylindrically blunted fin flush-mounted on a cone appears to be
qualitativeiy similar to, and not significantly quantitatively
different from, fin-flat-plate results for similar flow conditions.
For example, Winkelmann (Ref. (4)), measured peak heating levels on
the order of five times those outside the interference flow field in
his fin-flat-plate experiments. The fin-cone flow field is also
characterized by peak heating rates about five times those outside
the interference region for a flush-mounted, unswept fin.

Lucas (Ref. (15)) measured peak pressures of about eight - ten
times the non-interference level in the fin foot region of his blunt
fin-flat-plate model. The peak pressures measured here for a flush-
mounted, unswept fin-cone configuration are also about ten times the
non-interference levels on the cone. Winkelmann (Ref. (4)) observed
peak pressures of about six times the non-interfere-ice level on his
flat plate.

Fin leading-edge sweep alone significantly reduces the severity
and extent of interference heating on the centerbody. However, when
a swept fin design embodies a control hinge in the form of a circular
rod, the flow in the fin-centerbody gap will interact with the control
hinge. This interaction results in peak heating on the centerbody
comparable to that for a flush-mounted unswept fin. Whereas sweeping
the control hinge is not a practical solution, the severity of the
flow interaction may possibly be alleviated by providing a control
hinge fairing.

(16)Hains, F. D. and Keyes, J. W., "Shock Interference Heating in

Hypersonic Flows," AIAA Journal, Vol. 10, 1972, pp 1441-1447
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Separation occurs about two fin leading-edge diameters upstream
of a flush-mounted unswept fin independent of Reynolds number. This
behavior is characteristic of cylindrically blunted fin-flat-plateand cylinder-flat-plate results over a wide Mach number range (1.2 to
21) when the fin height and thickness exceed the local boundary layer
thickness (Refs. (13), (3)).

The complexity of the flow patterns indicated by these pressure,
heat-transfer and flow visualization data are clear indications why
such problems defy analytical treatment. Theoretical attempts at
predicting the plate heating rates and peak pressures have been
limited largely to semiempirical approaches (Refs. (17), (18), (19)).
Recently, a two-dimensional numerical method solution was reported
for blunt body flows with an impinging shock (Ref. (20)). The method
is entirely numerical, and the required computing time makes it some-
what impractical for parametric analysis. Theoretical efforts at
NAVSURFWPNCEN, White Oak Laboratory, included a basic study of shock-
interference heating by Chien (Ref. (21)), which resulted in an
efficient, approximate method for predicting the jet impingement
process in the shock interference heating phenomena. Chien's method,
in addition to being simple, also appears to be more rational thanJ ~the earlier empirical methods.

More experimental studies are required in order to assess these
predictive methods. The information here provides some of the
needed data base.

(1 7 )Edney, B.. "Anomalous Heat Transfer and Pressure Distributions

on Blunt Bodies at Hypersonic Speeds in the Presence of anImpinging Shock," FFA Report 115, The Aeronautical Research
Institute of Sweden, Stockholm, 1968

( 1 8 )Ke~es, J. W. and Hains, F. D., "Analytical and Experimental
Studies of Shock Interference Heating in Hypersonic Flows,"
NASA TN D-7139, May 1973

(19Bertin, J. J., Graumann, B. W. and Goodrich, W. D., "High
Velocity and Real-Gas Effects on Weak Two-Dimensional Shock-
Interaction Patterns," Journal of Spacecraft and Rockets, Vol.
12, 1975, pp 155-161

(20)
Tannehill, J. C., Holst, T. L. and Rakich, J. V., "Numerical
Computation of Two-Dimensional Viscous Blunt Body Flows with an
Impinging Shock," AIAA Journal, Vol. 14, 1976, pp 204-211

( 2 1)Chien, K.-Y., "Normal Shock Impingement of a Supersonic Jet

on a Plane - A Basic Study of Shock Interference Heating,"
NSWC/WOL/TR 75-195, Naval Surface Weapons Center, White Oak
Laboratory, Silver Spring, Maryland, 1976
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SHI O CEE KESIO FIN-CONE GAP

FIG. 5 SCHLIEREN PHOTOGRAPH FOR 0.060-INCH FIN-CONE

tGAP; Mw0 5, Re,,./FT = 4.5 x 106
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moo 5

Re o /FT = 4.5 x 106
GAP = 0.0"

3.0

12.170

5.4 •

7.0 •

5.4--

3.8

3.0

h x 103, BTU/FT 2 -SEC-oR

FIG. 17 ISOHEATING CONTOURS FOR FLUSH-MOUNTED
UNSWEPT FIN. SIDE VIEW
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Moo 5
Re'co/FT =4.5 x 106

~ U' 12.3

7.1

5.5

nx 103, BTU/FT 2 -SEC--;zH

FIG. 18 ISOHEATING CONTOURS FOR FLUSH-MOUNTED UNSWEPT
FIN, TOP VIEW4, ABOUT 100 FORWARD OF LEADING EDGE
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I 1M~==
I Reoo/FT 12.9 x 106

GAP = 0.0"

20.6

11.9

8.4

6.8

r1h x 03 BTU/FT 2 -SEC- OR

FIG. 19 ISOHEATING CONTOURS FOR FLUSH-MOUNTED UNSWEPT FIN. TOP VIEW
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Reoo/FT = 25.6 x 106
GAP =0.0"

31.5

25.7

h x 103, BTU/FT 2 -SEC- OR

FIG. 20 ISOHEATING CONTOURS FOR FLUSH-MOUNTED UNSWEPT FIN. TOP VIEW
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Rem /FT = 4.5 x 106
GAP = 0.0"
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I
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31.9
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h x 103 BTU/FT2 -SEC-OR

FIG. 21 ISOHEATING CONTOURS FOR FLUSH-MOUNTED 600 -SWEPT
FIN. SIDE VIEW.
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FIG. 22 ISOHEATING CONTOURS FOR FLUSH-MOUNTED 600-SWEPT
FIN. TOP VIEW
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h x 103 , BTU/FT 2 -SEC-OR

FIG. 24 ISOHEATING CONTOURS FOR FLUSH-MOUNTED 600 -SWEPT FIN. TOP VIEW
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M =,5
Re. /FT 4.5 x 106

GAP = 0.060"

12.4•
6.2•

3.1

h x 1o3 , BTU/FT2 -SEC- °R

FIG. 25 ISOHEATING CONTOURS FOR UNSWEPT FIN WITH 0.060-INCH
FIN-CONE GAP. SIDE VIEW

41

I6.2



, NSWC/WOLi*Tf 75-63

Mo =5
Reoo/FT = 4.5 x 106
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h x 103, BTU/FT 2 -SEC-OR

FIG. 26 ISOHEATING CONTOURS FOR UNSWEPT FIN WITH 0.060-INCH
FIN-CONE GAP. TOP VIEW
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h x 103, BTU/FT 2 -SEC- OR

FIG. 28 ISOHEATING CONTOURS FOR UNSWEPT FIN WITH 0.060-INCH
FIN-CONE GAP., TOP VIEW
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6.6

3.1/

h x 103 , BTU/FT 2 -SEC- OR

FIG. 29 ISOHEATING CONTOURS FOR 600 -SWEPT FIN WITH 0.060-INCH
FIN-CONE GAP. SIDE VIEW
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FIG. 30 ISOHEATING CONTOURS FOR 600 -SWEPT FIN WITH 0.060-INCH
FIN-CONE GAP. TOP VIEW
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FIG. 32 ISOHEATING CONTOUR8 FOR 600 -SWEPT FIN WITH 0,060-INCH
FIN-CONE GAP. TOP VIEW
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FIG. 33 ISOHEATING CONTOURS FOR UNSWEPT FIN WITH 0.125-INCHFIN-CONE GAP. SIDE VIEW
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h x 103, BTU/FT 2-SEC-oR

FIG. 34 ISOHEATING CONTOURS FOR UNSWEPT FIN WITH 0.125-INCH
FIN-CONE GAP. TOP-VIEW, ABOUT 100 FORWARD OF LEADING EDGE
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FIG. 36 ISOHEATING CONTOURS FOR UNSWEPT FIN WITH 0.125-INCH
FIN-CONE GAP. TOP VIEW
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FIG. 37 ISOHEATING CONTOURS FOR 600 -SWEPT FIN WITH
0.125-INCH FIN CONE GAP. SIDE VIEW
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FIG. 39 ISOHEATING CONTOURS FOR 600 -SWVEPT FIN WITH 0.125-INCH
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FIG. 40 ISOHEATING CONTOURS FOR 600 -SWEPT FIN WITH 0.125-INCH FIN-CONE GAP. TOP VIEW
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APPENDIX A

DETAILS OF FIN-CONE EXTENSIONS

The Teflon firn-cone extension is shown schematically in
Figure A-I with details of the location of embedded thermocouples
and adjustment of the fins.

Figure A-2 shows schematically the locations of the pressure

taps in the stainless-steel model.

A1

IA-

A-
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2.0

TEFLON
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0.2

STEEL SHAFT INSERT7 1 $ THERMOCOUPLES

DETAILS OF
ATTACHMENT
TO CONE AND 

25STING OMITTED 32 ESRW

ALL LENGTHS IN INCHES

FIG. A - 1 SCHEMATIC DIAGRAM OF FINNED EXTENSION
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FIG. A-2 PRESSURE TAP LOCATIONS ON STAINLESS-STEEL MODEL
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