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Intervals are sufficient, 
are usually not necessary 

Traditionally, an interval is used to describe incomplete knowledge aba)ut a moment of time "when an 
event oecured. In principle, more general .sets are ~)metim~s needed to describe our knowledge. In this 
paper, we silow that if we are (rely interested in the ordering of events, then intervals are sufficient. 
This result pr(wides (me me)re justification for the use of the intervals. 

AA,~ yl~op,~AOqnBaHmI C06bITnfl AOCTaTOqI-IO 
 TepBaaOB, 6oaee o6m e BHABI MHOJKeCTB, 
KaK npaBnaO, He ayx:m,I 
A .  r '[POBETT~ 

KaK ifpaBiL'lo, ~lJl~ Ilp~2lCTal~dlenll$t HenO.qH~ll'O 3Hall|IS10 MOMeHTe BpeMeml, B KoTopbffl npoll3Otudlo 

.egoTopoe C~itaTIm, ttCHOab3yevca uHTepBa.q. B npttHmme, tlHOI'/ta IUDi npeltcTattnemm 3HaHn~! Tpe6y- 
K}TCYl ~-K}dlee o6[ittle Btt~lbl MHO~KeCTB. B .pat"~lTe IlOga3aHo, tlTo 112114 pellleHII8 3aaa~m yllop~t/tottttBaHltH 
C{~blTIHTI ~lt~TaTOqHO HHTepBa]IOB. *raKllM ek~pa3OM, tlaeTOl enle OllHO (I~)O(~HOBaHHe HCllOJlb3(}l~eTInH~t 
ImTCpBa.'IOB. 

1B Informal introduction 

I .I .  Complete knowledge about the dating of events can be 
described by real numbers 

In physics, real numbers  a re  used to describe the moments  of  t ime when different  events occur. 
Real numbers  correspond to the  case when we have a complete  knowledge about the da t ing  
of  an event. 

12. To describe partial knowledge, we need sets of real numbers 
In real-life situations, our  informat ion about the  t ime of  different  events comes from two 
sources: from measurements  and  f rom exper t  estimates. Measurements a re  never absolutely 
precise; therefore,  af ter  each measurement ,  there  are  usually many different  moments  of  t ime 

that are consistent with it. For  example,  if  the measured t ime is I5  see, and  the accuracy of  

the measurement  is 4-1 see, this means that the actual t ime could take any value from the 

interval [14, 16]. Similarly, exper t  estimates a re  also not precise, and therefore ,  instead of  a 
single moment  of  time, they describe a set of possible values of  time. 

(~) A. Pn~vetti, 1996 
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1.3.  Intervals are most frequently used to describe partial knowledge 
As we have just mentioned, the most natural description of such a set is an interval that 
contains it. The use of intervals for describing time (and other physical quantifies) dates back 
to Norbert Wiener [18, 14]. Intervals are actively used to describe uncertainty in measurements 
(see, e.g., [7-9]). 

In particular, starting from the fundamental papers of J. Allen [1-4], intervals are one 
of the basic formalisms in reasoning about time. In Allen's Interval Logic and in interval 
variations of event calculus (see, e.g., [5]), intervals are used for two different goals: to describe 
duration of *long" events, and to describe uncertainty with which we know the moment of time 
of an instantaneous (*short") event. The basis application of intervals in describing uncertainty 
(i.e., in dating) is as follows: if we know that some *long event" (e.g., an AI class) took place 
during a certain interval of time [t-, t ÷] (e.g., from 9 a.m. to t0 a.m.), and we know that some 
"short event" //7 occured during this long event (e.g., a student turned in her paper during 
that clam), then, if this is the only information we have about the event /!7, we can only say 
that the (unknown) actual time of the event E belongs to the interval [t-, t t] .  

To describe the durat/on of a continuous process, we clearly need an interval. The natural 
question is: for dating *short ~ events (i.e., for describing uncertainty), are intervals sufficient, or we 
need more general sets? 

1.4. In general, to describe uncertainty, we need sets that are more 
general than intervals. Case study: dedarative planning in 
robotics 

The reason for the above question is as follows: 
Allen introduced Interval Logic as a means of formalizing commonsense reasoning about 

the temporal ordering of different events. The ultimate goal of such a formalization is to 
design a computer-based intelligent agent that would be able to reason about events in time; 
in particular, this agent must be able to do &claralive planning. Usually, planning algorithms 
(described in operat/on r~earch) are procedural in the sense that they assume that the planning 
problem belong to a ce÷tain dass (e.g., a class of graph flow problems), for which the planning 
algorithm is already known. Th e goal of declarative planning is to design a plan in a general 
situation, i.e., design a plan based on the declarative (as opposed to operational) knowledge about 
the possible consequences of different actions. One of the main intended applications of such 
an activity is the design of intelligent robots. 

An efficient robot must not only design a plan and follow it, this robot must constantly 
adapt this plan to the changing environment. For that, the robot must constantly measure the 
(dynamically changing) characteristics of the environment in which it operates. The intelligent 
agent must process these values in order to update the plan. 

Standard data processing algorithms of numerical mathematics simply process the mea- 
sured values as if they were absolutely precise. In reality, however, measurements are never 
absolutely precise; due to the measurement imprecision, the measured value can differ from 
the actual value. For example, if we measure time with an accuracy 1 see, and the measured 
value is 15, then the actual value could be 15.0 or 14.2, or 15.8. It is natural to require that 
the result of processing the measured values should not depend (or at least, depend as little 
as possible) on whether we input 15.0, 14.2, or 15.8. In more general terms, we want a small 
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modification of the input not to lead to a major change in the plan. This requirement is called 
elaboration tolerate (see, e.g., [6, 11]). 

In view of this requirements, it is necessary to take into consideration that after each 
measurement (in particular, after each measurement of time), we know not the exact value of  
the measured quantity, but a set of possible values of this quantity. 

What kind of set can it be? It is definitely true that for a measuring device to be 
meaningful, its manufacture," must guarantee some accuracy of the resulting measurements. In 
other words, the manufacturer must provide us with a value A > 0 such that the difference 
At = t - t  between the measured and the actual times cannot exceed A: tAt[ ( A. Indeed, if 
such a A did not exist, then after "measuring" t, we would not be able to conclude anything 
at all about the actual time t. 

After we have measured time, we know .the measured value t, and we know the accuracy 
of our measurement. Therefore, the set of possible actua/ values of the moment of time 

must be a subset of the interval I t -  A, ~ + A]. In some cases, we also know probabilities of 
different values from this intervals, but for sensors used in robots, probabilities are usually not 
known. 

The fact that the actual values must belong to the interval given above does not mean 
that any number from this interval is a possible actual date of the measured event. It could 
happen that the measuring device that we are using is so designed that it either underestimates 
or overestimates but never gives the precise values. 

Let us illustrate this possibility on an example of a time-measuring device on board of 
a robot. To make robotic movements predictable and sufficiently precise, robots are usually 
equipped with "discrete" (~step') electric motors, i.e., motors that at any given moment of time 
can be in one of the finitely many states; e.g., in the simplest case, ] (~forward'), b (~back'), and 
s (%top'). The magnetic field generated by an engine influences the sensors, and is thus one 
of the potential sources of measurement errors. Since the engine can be in only finitely many 
states, the resulting error can take only finitely many possible values. For example, in case of 
the above-mentioned three states, it can only takes the values e I, eb, and es that correspond to 
these states. Therefore, if this magnetic field is the major source of error, we have only two 
possible values of error. Hence, after having measured t, we conclude that the actual value of 
t can take only three values: t -  el,  t -  eb, and t -  es, but not the values in between. 

This is not a typical situation in measurements, because, as shown in [10], under some 
reasonable assumptions, possible values of  the measured quantity do form an interval. However, 
in several realistic situations, the set of possible values is different from an interval. 

Similarly, evidential knowledge can also lead to sets that are different from intervals: e.g., 
we may say that a murder occured either between 9 and 10, or between 11 and 12, excluding 
the time when the witness was passing by and saw nothing suspicious. 

1.5. Do we need sets different from intervals when desdribing 
ordering of events? 

Of course, if we are interested in the actual date of each event, then we have to consider 
the actual set of possible date of each event, and thus, the answer to the above questions is a 
trivial ~yes': yes, we have to consider sets that are more general than intervals (e.g., the set 
[9, 10] U [1t, 12] from the above example). 
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tn many situations, however, we are only interested in the order of the events (e.g., these 
were the situations analyzed by Alien in his pioneer work). For this situations, the above 
question is not so trivial: /f we are only interested in describing the ordering of events, are intennls 
suffi~at, or we need more general sets to date events? In this paper, we will show that, in contrast 
to the general case, for orderings, intervals are sufficient. 

2" Definitions and the main result 
Denotations. 

• In this paper, we will consider arbitrary dosed bounded sets as representing our uncer- 
tainty. These sets wilt be denoted by capitol letters (A, B , . . . ) ,  and their elements (ile., real 
numbers that describe the dates) by lowercase letters (a, b, . . . ) .  

• The  supremum supA of  a set A will be denoted by A'% and its int~mum infA by A-.  

Motivation of the following definition. In order to formulate our main result, we will 
describe what we mean by ordering of events A and B. This description will be done is three 
steps: 

• If we know the exact dates of both events, i.e., when the moment of  time that corresponds 
to each event is a real number: A - {a} and B = {b}, then we have the following basic 
ordering relations a ® b: a < b, a < b, a > b, or a _> b. 

• If we know the exact timing of one of the events, i.e., if A = {a}, then, for each of 
the four ordering relations ® between numbers, we can describe two different ordering 
relations G between a and B, by postulating either of the two: 

1)/t /s possible that a is in relation ® with the actual moment b E B, i.e., that 3b E 
B (a 0 b); 

2)/ t  /s necessary that a is in relation Q with the actual moment b E B,  i.e., that Vb E 

B (a O b). 

• Similarly, for each of the eight possible ordering relations Q between a number a and a 
set B, we can describe two different ordering relations C) between A and B, again by 
postulating either of  the two: 

I ) / t / s  passible that the actual moment of time a E A is in relation Q with the set B, i.e., 
that 3a E A ( a G B ) ;  

2) / t / s  necea~ary that a is in relation (~ with B, i.e. that Va E A (a Q B). 

We have thus defined sixteen bask ordering relations between the sets. tt can so happen 
that our knowledge consists of severo2 basic relations; in this case, we can define a generk ordering 
relation A o B between the sets as a propositional combination of basic ordering relations. 

Let us describe this idea as a precise mathematical definition. 

Definition I, 

• A Msic ordering relation a ® b between real numbers a and b is one o f  the following four 
relations: a < b, a < b, a > b, a > b. 
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• A basic ordering relation a Q)B between a real number a and a set B is a relation o f  the 
type 3b E B (a ® b) or Vb E B (a 63 b), where 63 is a basic ordering relation between real 
numbers. 

• A basic ordering relation A 0 B between sets A and B,  is a relation of  the type 3a E 
A ( a Q ) B )  or Va E A ( a Q ) B ) ,  where Q) is a basic ordering relation between a real 
number and a set. 

• An ordering relation A o B between sets A and B,  is an arbitrary propositional combination 
of  basic ordering relations, i.e., any relation that can be obta/ned from basic ordering 
relations A 0 B by using propositional connectives & (~and"), V (%r"), and -, (~not"). 

Theorem 1. I f  A and B are bounded dosed sets, and o is an ordering relation (in the sense 
of  the above definition), then 

A o B +-.-v [A-, A +1 o [B-, B+]. 

Comments. 

1. This theorem shows that for a given ordering relation o, and for any two sets A and B, 
A and B are in a given ordering relation if and only if the same relation holds between 
the two intervals: the smallest interval [.4-, A +] that contains A and the smallest interval 
[B-, B +] that contains B. Therefore, if we are only interested in ordering of the events, 
we can consider intervals [A-, A +] and [B-, B +] instead of the sets A and B. In other 
words,/f we are only interested in describing the ordering of eve~, then interr~ are sufficient, and 
we do not need more general sets to date events. 

2. If we are interested not only in ordering, but also in other relations between events, 
then intervals may no longer be sufficient. For example, describing equality leads to the 
following relations: 

- a = b ;  

- 3b E B (a = b) (meaning a E B); and 

- Va E A 3b E B (a = b) that is equivalent to Va E A (a E B), i.e., to A C B. 

The final relation is no longer equivalent to a similar relation between intervals [A-, A +] 
and [B-, B+]; e.g., for A = [0,1] a n d / 3  = {0,1}: 

- A = [0,1]  B = {o ,  1} ,  whi le  

- [A- ,  A +] = [0, t] C [0, 1] = [ B - ,  B+] .  

3. Proof 

To prove our theorem, let us show that all basic ordering relations between a number and a 
set and between two sets can be reformulated in terms of the infimum and supremum of these 
se[~. 

1 °. Let us first prove that 3b E B (a < b) is equivalent to a < B +. 
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Indeed, since we only consider closed bounded sets, our set B contains its own supremum 
and infimum (B-  E B  and B + E B). So, i f a < B  +, then, due r o B  ~" E B ,  we have 
3b E B (a < b). 

Vice versa, if there exists a b E B such that a < 5, then due to b <: B +, we can conclude 
t h a t a < b ~ B  + a n d a < B  +. 

2 °. ~b ~ B ( a <  b) ~ a _< B +. 

Indeed, if a _< B +, then due to B + E B, we get 3b E B (a ~ b). 

Vice versa, if there exist a b E B such that a _~ b, then from a _( b _~ B ÷, we can conclude 
that a _~ B +. 

Similarly, we can prove the following equivalences 3 ° -  8°: 

3 ° . 3 b E  B ( a >  b) ~ a >  B - .  

4 ° . 3bE B ( a  ~_ b) ~-~ a ~_ B - .  

5 ° . VbE B ( a  < b) ~ a <  B - .  

6 ° . V b E B ( a < _ b )  ~ a < _  B - .  

7 ° . VbE B ( a  > b )  ~ a > B +. 

8°. VbE B ( a  ~ b ) ~ . - , a ~ _ B * .  

9 °. Similarly, when we add a quantifier over a E A to one of these relation, we can replace 
the rehtion with an equivalent one that connects B ± with A ± and does not contain any 
quantifier. 

For example, to describe 3a  E A 3b E B (a < b) in this manner, we proceed to: 

- represent 3b E B ( a  < b) in terms of the bounds, obtaining a < B +, and, by 
substitution into the inidal formula,  3a E A (a < B+);  

- invert a < B* to B + > a, thus getting 3a E A (B + > a), and use one of the above 
formulas (actually, formula 3 °) to represent this relation as B + > A- .  

I0% Since each basic ordering relation is described only in terms of the bounds A ± and B -~, 
an arbitrary ordering relation o, defined as a propositional combination of the basic ones, 
can also be expressed solely in terms of the bounds. Therefore, for any other two sets .4 
and /~ with the same bounds (i.e., with .~- = A - ,  -4+ = A + , / ~ -  = B - ,  and /~+ = B+), 
we obtain A o B iff .4 o B. In particular, this is true for the intervals .4 = [A-,  A +] and 

= B+I. [] 
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