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CHAPTER 10 
              ELEMENTS OF POTENTIAL FLOW 
___________________________________________________________________________________________________________ 

 

10.1 INCOMPRESSIBLE FLOW 

Most of the problems we are interested in involve low speed flow about wings and 
bodies. The equations governing incompressible flow are 

Continuity 

                                                               !iU = 0                                                  (10.1) 

Momentum 
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The convective term can be rearranged using  !iU = 0  and the identity 
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The viscous term in (10.2) can be rearranged using the identity 

                                         ! " ! "U( ) = ! !iU( ) # !2U                                       (10.4) 

Using these results and  !iU = 0  the momentum equation can be written in terms of the 
vorticity. 

                                                         ! = " #U                                                     (10.5) 

in the form 
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If the flow is irrotational, ! = 0 , and the velocity can be expressed in terms of a velocity 
potential. 
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                                                          U = !"                                                        (10.7) 

The continuity equation becomes Laplace’s equation 

                                             !iU = !i!" = !2" = 0                                            (10.8) 

and the momentum equation is fully integrable. 
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The quantity in parentheses is at most a function of time 
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The expression (10.10) is called the Bernoulli integral and can be used to determine the 
pressure throughout the flow once the velocity potential is known from a solution of 
Laplace’s equation (10.7).  

Generally the flow is specified within a volume V  surrounded by surface A (Figure 
10.1). A solid body defined by the function G x ,t( ) = 0  may be imbedded inside V . 

                               

        Figure 10.1 Flow volume V  with surface A  and imbedded solid body G x ,t( ) = 0 . 

The solid body has the outward normal  

                                                           n̂Body =
!G
!G

                                             (10.11) 

Laplace’s equation is second order in the spatial derivatives and two conditions must be 
known to construct a solution. Generally the value of !  is known on the boundary 
(Derichlet condition) as well as the derivative of !  normal to the boundary !" / !n  
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(Neumann condition). If the fluid is inviscid the velocity at the surface of the body is not 
zero and cannot penetrate the body. The velocity vector at the solid surface must be 
tangent to the surface and the velocity component normal to the surface must be zero. 
This is expressed by 

                                                                  Ui!G = 0                                             (10.12) 

In other words, the flow satisfies the Neumann condition !" / !n = 0  on the portion of 
A  coincident with the surface of the body. The value of the potential and normal 
derivative are usually known on the rest of the boundary. Virtually all of the flows we 
will deal with are external flows such as that depicted schematically in Figure 10.1 and 
will involve potentials that decrease with distance from the body such that 
! = "! / "n = 0  on the outer boundary. 

10.2 POTENTIALS 

If !1  and !2  are solutions of Laplace’s equation then so is 

                                                           !3 = !1 +!2  

The linearity of Laplace’s equation allows solutions to be constructed from the 
superposition of simpler, elementary, solutions. This is the key feature of the equation 
that makes it a powerful tool for analyzing fluid flows. In this approach the requirement 
that the flow be divergence free and curl free everywhere is relaxed to permit isolated 
regions to exist within the flow where mass and vorticity can be created. 

One can view an unsteady, incompressible flow as a field constructed from a scalar 
distribution of mass sources, Q x ,t( ) and a vector distribution of vorticity sources, 
! x ,t( ) . In this approach the velocity field is generated from the linear superposition of 
two fields. 

                                                 U =Usources +Uvortices                                         (10.13) 

The velocity field generated by the mass sources is irrotational and that generated by the 
vorticity sources is divergence free. The continuity equation for such a flow now has a 
source term. 

                                              !iU = !iUsources = Q x ,t( )                                     (10.14) 

The curl of the velocity is 

                                            ! "U = ! "Uvortices = # x ,t( )                                 (10.15) 

The velocity field is constructed from the superposition of the velocities generated by a 
scalar potential !  generated by the mass sources and a vector potential A  generated by 
the vorticity sources. 
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                                                 U = !" +! # A                                                 (10.16) 

The potentials satisfy a system of Poisson equations, a single equation for the scalar 
potential 

                                              !i!" = !2" = Q x ,t( )                                           (10.17) 

and three equations for the Cartesian components of the vector potential. 

                                                  !2A = "# x ,t( )                                                  (10.18) 

where the identity  ! "! " A = ! !iA( ) # !2A  has been used with the choice of a 

Coulomb gauge on the vector potential  !iA = 0 . This choice has no effect on the 
velocity field generated by the vector potential since to any vector potential we can add 
the gradient of a scalar. Let A = !A +"s . Clearly ! " A = ! " #A . Choose s  so that 
 !iA = !i "A + !2s = 0 . 

This approach allows one to construct fairly complex flow fields that can be rotational 
while retaining the simplicity of working in terms of potentials governed by linear 
equations and the associated law of superposition. The flow is determined once the 
distribution of mass sources and vorticity sources are specified. Notice that this theory of 
potential flow is exactly analogous to the theory of potentials in electricity and 
magnetism. The mass sources coincide with the distribution of electric charges and the 
vorticity coincides with the electric currents. 

10.3 USEFUL SPECIAL FUNCTIONS 

A function that is highly useful in the development of potential theory is the smooth 
version of the Heavyside-theta function 

                                           h x;!( ) = 1
2
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where !  is a small parameter that determines the steepness of the smooth transition from 
0 to 1. The Heavyside function is dimensionless. The small parameter has the same units 
as the argument x , !̂ = 1 / x̂  and the Heaviside-theta function is dimensionless. 

The first derivative of h x;!( ) is a smooth version of the Dirac delta function 

                                                 ! x;"( ) = e
#
x2
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The integral of ! x;"( )  is 
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Integrating the product of the Dirac delta function and some function f x( )  is 
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In three dimensions 
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where r2 = x2 + y2 + z2 . The units of the Dirac delta function are !̂ = 1 / x̂  and its 
derivative is 
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The derivative satisfies 
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                                                                                                                                  (10.25) 

In the limit ! " 0  

                                        f x( ) !" x( )
!x#$

$

% dx = #
!f
!x

" x( )
#$
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% dx                                     (10.26) 

The result (10.26) can be used to convert integrals involving derivatives of the Dirac 
delta function to the basic form (10.22). 

10.4 POINT SOURCE SOLUTION OF THE POISSON EQUATION 

The figure below shows a smooth spherically symmetric source of mass centered at the 
origin of a set of spherical polar coordinates. 
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                                          Figure 10.2 Mass source at the origin. 

Let the smooth distribution of sources be 

                       Q x ,t;!( ) = Q t( )" x;!( )" y;!( )" z;!( ) = Q t( )
8! 3# 3/2$

e
%
r2

4!2                    (10.27) 

where the small parameter !  is real and positive and Q  is the total strength of the source 
with units Mass / Sec . The governing equation for the scalar potential is the Poisson 
equation. 

                                                !2" =
Q t( )
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In spherical polar coordinates the equation is 
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with solution 

                                         ! r( ) = C1 "
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At r!" , !" 0  and therefore C1 = 0 . The second constant of integration can be 
determined by integrating the Poisson equation over the control volume. 
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Use Gauss’s theorem on the left hand side. 
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When (10.30) is substituted into (10.31) the result is C2 = 0 . This analysis leads to a 
smooth version of the source solution of the Poisson equation. 

                                                 ! r,t( ) = "
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4#$r
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In the limit ! " 0 , the source distribution reduces to a point and ! 1 / 4"r( )Erf r / 2#( )( )  
becomes the classical Green’s function for the Laplace equation, 
G x , xs( ) = !1 / 4" x ! xs( )  where xs  is the vector position of the source. The 
fundamental point source solution of the Laplace equation for a source located as xs  is 

                                                ! x , xs ,t( ) = "
Q t( )

4#$ x " xs
                                       (10.34) 

10.5 GENERAL SOLUTION OF THE POISSON EQUATION 

Figure 10.3 shows a general smooth distribution of mass sources and vorticity sources in 
a finite region near the origin. The source strength outside the finite region is zero and is 
said to be compact. 

                                  

    Figure 10.3 Smooth, finite distribution of mass and vorticity sources near the origin. 
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We can solve the Poisson equation by using the fundamental point solution (10.33) and 
superposing the scalar potentials produced by an infinite sum of differential sources. The 
incremental scalar potential, !" , produced by the mass source contained in the 
differential volume shown in the figure above is determined from the Poisson equation 
for this source. Namely 

                                      !2 "#( ) = Q xs ,t( )"x"y"z
8$ 3% 3/2&

e
'
x ' xs

2

4$2                                (10.35) 

where now Q  is the source strength per unit volume with units Mass / Sec ! Length3( ) . 

The solution of (10.35) with lim
!"0

Erf x # xs / 2!( ) = 1  is 

                                               !" = #
Q xs ,t( )!xs!ys!zs
4$% x # xs

                                    (10.36) 

In the limit where the differential volume becomes infinitesimally small 

                                                d! = "
Q xs ,t( )
4#$ x " xs

dxsdysdzs                                 (10.37) 

and the general solution to the scalar Poisson equation (10.17) is 

                                    ! x ,t( ) = "
1
4#$

Q xs ,t( )
x " xs

dxs dys dzs"%

%

&"%

%

&"%
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&                  (10.38) 

The Poisson equation for the vector potential 

                                               !2A x, y, z,t( ) = "# x, y, z,t( )                                (10.39) 

is equivalent to three scalar equations relating the Cartesian components of the vector 
potential to the Cartesian components of the vorticity.  

                   !2Ax = "#x                     !2Ay = "#y                 !2Az = "#z          (10.40) 

The same procedure used to derive (10.38) can be applied to each of the Cartesian 
components of the vector potential. The fundamental solution of (10.39) at vector 
position x  due to a point source of vorticity of strength ! xs ,t( )dxsdysdzs  at source point 
xs  is 

                                                 dA =
! xs ,t( )dxsdysdzs

4" x # xs
                                  (10.41) 
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The general solution of (10.39) is 

                                     A x ,t( ) = 1
4!
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Several examples are used to illustrate these ideas. 

Example 1  – Velocity potential due to a finite line of sources along the z-axis. 

The figure below shows a line of sources distributed along the z -axis between a < z < b . 

                                    

                                 Figure 10.4 Finite line distribution of mass sources 

The source distribution is 

                                        
 

Q x ,t( )
!

= !S t( )" x( )" y( )u b # z( )u z # a( )                         (10.43) 

where the units of  !S  are Area /Time . The strength  !S  is the volume generated per unit 
length of the source distribution per unit time (the total volume generated per second is 

 b ! a( ) !S t( ) ). The scalar potential is 
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        (10.44) 

The potential (10.44) of a finite line of sources is 
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The potential (10.45) can be used to generate the potential due to a semi-infinite line of 
sources by expanding (10.45) about the point  a! " # . 
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Taking the limit, a! "#  in (10.46) the potential of a semi-infinite line of sources is 
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The additive constant which goes to infinity as a! "#  is not surprising in view of the 
fact that the source distribution extends to infinity and the potential from any segment of 
this source distribution only dies off like 1 / r  where r is the distance from the segment. 
The singularity in the potential has no effect on the velocity field generated from 
U = !" .  

Let the line of sources extend to plus infinity by setting a = !b  in (10.45). Expand about 
the point b!" . The result is 

    

 

lim
b!"

# x, y, z,t;b( ) =
!S t( )
4$

%2Ln 2( ) + 2Ln 1
b

&
'(

)
*+
+ Ln x2 + y2( )&

'(
)
*+
%
!S t( )
8$b2

x2 + y2 % 2z2( ) +O 1
b4

&
'(

)
*+

     (10.48) 

When the limit b!"  is applied the result is 
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Again there is a logarithmic infinity in the potential when we add up an infinite line of 
sources in a three-dimensional world. Dropping the constant we recover the potential for 
a two-dimensional line source of area Q t( ) . 

                                              ! x, y,t( ) = Q t( )
2"#

Ln x2 + y2( )1/2                                   (10.50) 
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The radial velocity generated by differentiating (10.50) with respect to r  is 

                                                        Ur =
Q t( )
2!"

1
r

#
$%

&
'(                                                 (10.51) 

If the origin is enclosed by a circle and the area flux from the source is integrated the 
result is 

                                                        Ur0

2!

" rd# =
Q t( )
$

                                            (10.52) 

Using the same differential procedure we used in three-dimensions, the circularly 
symmetric source solution (10.50) can be used to generate the general solution of the 
two-dimensional Poisson equation for a compact distribution of sources. The result is 

                              ! x, y,t( ) = 1
2"#

Q xs ,t( )Ln x $ xs
1/2( )dxs dys$%

%

&$%

%

&               (10.53) 

Example 2 – Vector potential of a vortex monopole 

The figure below shows a vortex monopole located at the origin with its counter-
clockwise rotation axis aligned with the z axis. 

                                               

                                             Figure 10.5 A vortex monopole 

The vorticity source term is 

                                            ! x ,t( ) =  0,0, !W t( )" x( )" y( )" z( ){ }                          (10.54) 

Insert (10.54) into the general solution A = 0,0,Az( )  where 

                          
  
Az x ,t( ) = 1

4!

!W t( )" xs( )" ys( )" zs( )
x # xs

dxs dys dzs#$

$

%#$

$

%#$

$

%         (10.55) 

The solution is a vector point source 
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where  !W  is the z-component of the volume integrated strength of the vorticity source 
distribution. 
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             (10.57) 

with units 
 
!W!"
#
$ = Volume /Time = Circulation % Length . The corresponding velocity field 

is 
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4" x2 + y2 + z2( )3/2
, 

!Wx
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The circulation about a contour that encircles the z-axis is 

                  
  
! = Uiĉ dC =

C!" #
"Wy

2$r3
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'

(
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,0%
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'

(
)
*
rd+ =
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r

               (10.59) 

The circulation of a monopole decays with radius from the source and there is no net 
circulation at infinity. 

Example 2 – Vector potential of a line of vortex monopoles. 

Shown below is a distribution of counter-clockwise vortex monopoles of uniform 
strength along the z-axis. 

                                

                               Figure 10.6  A line distribution of vortex monopoles 
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The vorticity source distribution for this case is 

                        ! x ,t( ) = 0,0," t( )# x( )# y( )u b $ z( )u z $ a( ){ }                          (10.60) 

and the vector potential is A = 0,0,Az{ }  where 
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%
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%

&$%

%
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*

+
,
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       (10.61) 

The velocity field is U = ! " A . 

           U =
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4#

1
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)

* y,!x,0{ }   (10.62) 

Let the vortex line extend equal distances from the origin, a = !b . The circulation about 
a contour that encircles the z-axis on the plane z = 0  is 

    

 

!circle = Uiĉ dC =
C!"

!
4#

1

x2 + y2 + b2 $b + x2 + y2 + b2( ) $
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0

2#

" d+   (10.63) 

Consider two limits of (10.63). In the first let the radius of the circle of integration 
become large. 

                  !circle = limR"#

!
4$

1

R2 + b2 %b + R2 + b2( ) %
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'
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              (10.64) 
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The circulation of a finite line of circulation decays with radius from the source and there 
is no net circulation at infinity. Now assume the radius of the circle of integration is finite 
and let the length of the line of circulation become infinite. 

                    !circle = limb"#

!
4$

1

R2 + b2 %b + R2 + b2( ) %
1

R2 + b2 b + R2 + b2( )

&

'

(
(
(
(
(

)

*

+
+
+
+
+

R2
0

2$

, d- = !             (10.65) 

The circulation is constant independent of the radius of the circle of integration consistent 
with Helmholtz’ laws for inviscid flow with vorticity. 

Now return to the vector potential (10.61) let a = !b  and take the limit b!" . The 
resulting vector potential for an infinite vortex line is A = 0,0,Az( )  where  

                          lim
b!"

Az x, y, z,t;b( ) = #$ t( )
4%

Ln x2 + y2( ) # $ t( )
2%

Ln
1
2b

&
'(

)
*+               (10.66) 

Drop the singular constant. The fundamental source solution for the two-dimensional 
Poisson equation for the z  component of the vector potential (aka the stream function) is 

                                        ! x, y,t( ) = "# t( )
2$

Ln x2 + y2( )1/2( )                                 (10.67) 

Again we apply the same differential procedure we used in three-dimensions to two 
dimensions. The circularly symmetric source solution (10.67) is used to construct the 
general solution of the two-dimensional Poisson equation for a compact distribution of 
vorticity sources. The result is 

                           ! x, y,t( ) = "1
2#$

% xs , ys ,t( )Ln x " xs
1/2( )dxs dys"&

&

'"&

&

'            (10.68) 

Example 3 – Uniform flow past a sphere 

The velocity potential of a dipole source of volume in a three-dimensional flow is 

                                                   !Dipole =
" x

x2 + y2 + z2( )3/2
                                    (10.69) 

where !  is the strength of the dipole. The dipole added to a uniform flow generates the 
potential flow about a sphere in uniform flow. 
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!Sphere = !Uniform Flow +!Dipole =U"x +

# x
x2 + y2 + z2( )3/2

                (10.70) 

The flow, including the singular flow inside the sphere is shown below. 

 

                                   Figure 10.7 Potential flow past a sphere. 

 The velocity components are 

                                                    

Ux x, y, z( ) =U! "
3# x2

r5
+
#
r3

Uy x, y, z( ) = "
3# xy
r5

Uz x, y, z( ) = "
3# xz
r5

                            (10.71) 

The radius of the sphere is determined from the positions of the stagnation points where 
Ux = 0 . 

                                                      RSphere =
2!
U"

#
$%

&
'(

1/3

                                              (10.72) 

Note that the velocity disturbance at large distances from the sphere decays like 1 / r3 . 
Define the strength of the dipole as 

                                                            ! =
U"

2
RSphere( )3                                        (10.73) 

Now the velocity potential in terms of the radius is 

                                         !Sphere =U"x 1+
RSphere( )3

2 x2 + y2 + z2( )3/2
#

$
%
%

&

'
(
(

                          (10.74) 
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and the velocities are 

                                 

Ux x, y, z( ) =U! 1"
3 RSphere( )3 x2

2r5
+

RSphere( )3
2r3

#

$
%
%

&

'
(
(

Uy x, y, z( ) = "U!

3 RSphere( )3 xy
2r5

Uz x, y, z( ) = "U!

3 RSphere( )3 xz
2r5

                   (10.75) 

10.6 ELEMENTARY 2D POTENTIAL FLOWS 

Any irrotational, incompressible, 2-D flow can be represented by, either the velocity 
potential and/or a stream function.  

                                                         
U =

!"
!x

=
!#
!y

V =
!"
!y

= $
!#
!x

                                            (10.76) 

The relations in (10.76) may be familiar as the Cauchy-Riemann equations from the 
theory of complex variables. Let 

                                                               z = x + iy                                                 (10.77) 

The complex stream function is 

                                                  W z( ) = ! x, y( ) + i" x, y( )                                   (10.78) 

An important representation of a complex variable due to Leonhard Euler is 

                                          z = x + iy = r Cos !( ) + iSin !( )( ) = rei!                         (10.79) 

where 

                                                                 r = x2 + y2( )1/2                                       (10.80) 

and  

                                                                  Tan !( ) = y
x

                                           (10.81) 
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Two-dimensional potential flows can be constructed from any analytic function of a 
complex variable, W z( ) . From the Cauchy-Riemann conditions (10.76) 

                                                 
!2"
!x2

+
!2"
!y2

=
!2#
!x!y

$
!2#
!y!x

= 0                               (10.82) 

                                                 
!2"
!x2

+
!2"
!y2

= #
!2$
!y!x

#
!2$
!x!y

= 0                            (10.83) 

Both the velocity potential and stream function satisfy Laplace’s equation. 

The derivative of the complex potential (the complex velocity) is independent of the path 
along which the derivative is taken. 

                                              

dW
dz

=
!"
!x

dx
dz

+ i
!#
!x

dx
dz

=U $ iV

dW
dz

=
!"
!y

dy
dz

+ i
!#
!y

dy
dz

=
V
i
+ i
U
i
=U $ iV

              (10.84) 

Some Elementary Flows with their streamline patterns 

1) Uniform flow in the x-direction 

                                           W =U!z          ! =U"x            ! =U"y                       (10.85) 

                                                 

2) A mass source at the origin 

Here we solve the Poisson equation in two dimensions for the velocity potential with a 
point source of area at the origin. 

                                                          !2" = Q# x( )                                                  (10.86) 

where Q  is the strength of the area source.Use the Green’s function solution 
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! x( ) = 1

2"
Q# xs( )Ln x $ xs( )

A
% dA =

1
2"

Q# rs( )Ln r $ rs( )
0

r

%0

2"

% drd& =
Q
2"

Ln r( )
                    (10.87) 

The result (10.87) is the same one we derived earlier by taking the limit of a three 
dimensional line distribution of sources. On any circle surrounding the origin 

                                              Ur0

2!

" rd# =
Q
2!r0

2!

" rd# = Q                                        (10.88) 

The potentials are 

                             W =
Q
2!

Ln z( )        ! =
Q
2"

Ln r( )           ! =
Q
2"

#                     (10.89) 

                                               

3) Source at the origin plus uniform flow 

W =U!z +
Q
2"

Ln z( )     ! =U"x +
Q
2#

Ln x2 + y2( )1/2    ! =U"y +
Q
2#

ArcTan
y
x

$
%&

'
() (10.90) 

                                              

4) Uniform flow plus a source at x = !a  and a sink of equal strength at x = a  
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                          ! =U"x +
Q
2#

Ln x + a( )2 + y2( )1/2 $ Q
2#

Ln x $ a( )2 + y2( )1/2          (10.91) 

                             ! =U"y +
Q
2#

ArcTan
y

x + a
$
%&

'
()
*
Q
2#

ArcTan
y

x * a
$
%&

'
()                  (10.92) 

                                               

5) Point vortex 

Here we solve the Poisson equation for the stream function with a point source of 
circulation at the origin. 

                                                            !2" = #$% x( )                                              (10.93) 

where !  is the strength of the source. The Greens function solution is 

! x( ) = "1
2#

$% xs( )Ln x " xs( )
A
& dA =

"1
2#

$% rs( )Ln r " rs( )
0

r

&0

2#

& drd' =
"$
2#

Ln r( ) (10.94) 

This is the same solution we derived earlier through a limiting process of allowing a 
finite vortex line become infinite. The potentials for a point vortex are 

                            W = !
i"
2#

Ln z( )        ! =
"
2#

$         ! = "
#
2$

Ln r( )                    (10.95) 
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For any contour C  surrounding the origin 

                                  
 
!dA

A
" = # $U dA

A
" = U

C
!" ĉdC =

%
2&r0

2&

" rd' = %                  (10.96) 

6) Vortex doublet 

This is constructed from two point vortices of opposite circulation separated by the 
distance a. As they are brought together the strength ! = a"  is held constant. 

            W =
!
2"

i
z

#
$%

&
'(
=

!
2"

i
r

#
$%

&
'(
e) i*       ! =

"
2#

Sin $( )
r

      ! = "
#
2$

Cos %( )
r

         (10.97) 

                                               

7) Stagnation point flow 

                                   W = Az2            ! = A x2 " y2( )          ! = 2Axy              (10.98) 

                                                 

8) Flow in a corner 

The potentials are (n = 2  is the stagnation point flow above). 

                 W = Azn = A rei!( )n         ! = ArnCos n"( )             ! = ArnSin n"( ) (10.99) 
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n = 3  

                                               

n = 3 / 2  

                                               

n = 4  

                                              

9) Stagnation point flow plus vortex flow 

Add together the potentials for a stagnation point flow and a point vortex. 

W = Az2 ! i"
2#

Ln z( )    ! = A x2 " y2( ) + #
2$

%    ! = 2Axy " #
2$

Ln r( ) (10.100) 
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10) Flow past a circular cylinder 

Superpose a uniform flow with a dipole 

W =U!z +
"
2#

1
z

$
%&

'
()    ! =U"x +

#
2$

x
x2 + y2

%
&'

(
)*

   ! =U"y +
#
2$

y
x2 + y2

%
&'

(
)*

(10.101) 

                                              

The radius of the cylinder is 

                                                            R =
!

2"U#

$
%&

'
()

1/2

                                      (10.102) 

and from the Bernoulli constant we get the pressure coefficient on the cylinder 

                                                   
P!
"

+
1
2
U!

2 =
P
"
+
1
2
U 2#

$%
&
'( R= )

2*U!

#
$%

&
'(

1/2
                 (10.103) 
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plotted below. 

                            

                  Fig 10.8 Pressure coefficient for irrotational flow past a circle. 

11) Superpose a uniform flow with a dipole and a vortex.  

Take the circulation of the vortex to be in the clockwise direction. 

                                          

W =U!z +
"
2#

1
z

$
%&

'
()
+
i*
2#

Ln z( )

+ =U!x +
"
2#

x
x2 + y2

$
%&

'
()
,

*
2#

-

. =U!y +
"
2#

y
x2 + y2

$
%&

'
()
+

*
2#

Ln r( )

                        (10.105) 
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Note that the radius of the circle is unchanged by the vortex but the forward and rearward 
stagnation points are moved symmetrically below the centerline. 

10.7 FORCE ON A RIGID BODY TRANSLATING IN AN INVISCID FLUID 

10.7.1 FRAMES OF REFERENCE 

The figure below shows a rigid body translating in an inviscid incompressible fluid. The 
position of the body can be referenced either to coordinates fixed with respect to the body 
or coordinates fixed in space.  

                  

                         Figure 10.9 Rigid body translating in an inviscid fluid 

The relationship between flow variables in the two coordinate systems is 
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!x = x + XB t( )
!y = y +YB t( )
!z = z + ZB t( )
!t = t
!U !x =Ux + "XB t( )
!U !y =Uy + "YB t( )
!Uz =Uz + "ZB t( )
!P
!
=
P
!
" x ""XB t( ) " y ""YB t( ) " z ""ZB t( )

!# = # + x "XB t( ) + y "YB t( ) + z "ZB t( )

                       (10.106) 

The body may be accelerating or decelerating. The transformation of pressure comes 
about because in a frame fixed to the body the observer would see the fluid at infinity 
accelerating.  This acceleration would have to be produced by a uniform pressure 
gradient over the whole flow much like the hydrostatic pressure produced in a fluid 
subject to gravity. The pressure gradient transforms as 

                                                  

 

1
!
" !P
"!x

=
1
!
"P
"x

# ""XB t( )

1
!
" !P
"!y

=
1
!
"P
"y

# ""YB t( )

1
!
" !P
"!z

=
1
!
"P
"z

# ""ZB t( )

                                        (10.107) 

The pressure gradient in the body-fixed frame induced by the motion of the coordinate 
system is  

!!XB , !!YB , !!ZB( ) . 

Our goal is to relate the movement of the body to the force that acts upon it in both the 
space-fixed and body-fixed frame of reference. The force is determined from the 
Bernoulli constant. 

                                                  
 

!"
!t

+
P
#
+
UiU
2

= f t( )                                          (10.108) 

To approach this problem we will use (10.106) to determine how (10.108) transforms 
between frames of reference. First, we need to work out the transformation of the time 
derivative of the potential. To transform partial derivatives one uses the perfect 
differential of !  in tildaed coordinates. 
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d !!"

# !!
#!x

d!x "
# !!
#!y

d!y "
# !!
#!z

d!z "
# !!
#!t

d!t = 0                      (10.109) 

Equation (10.109) is also called the contact condition on the derivatives of ! . From 
(10.106) the differentials are 

                          

 

d !! =
"!
"x

+ "XB t( )#
$%

&
'(
dx +

"!
"y

+ "YB t( )#
$%

&
'(
dy +

"!
"z

+ "ZB t( )#
$%

&
'(
dz +

"!
"t

+ x ""XB t( ) + y ""YB t( ) + z ""ZB t( )#
$%

&
'(
dt

d!x = dx + "XB t( )dt
d!y = dy + "YB t( )dt
d!z = dz + "ZB t( )dt
d!t = dt

 (10.110) 

Substitute (10.110) into (10.109). and gather terms involving like differentials. 

 

d !!"
# !!
#!x

d!x "
# !!
#!y

d!y "
# !!
#!z

d!z "
# !!
#!t

d!t =

#!
#x

+ "XB t( ) " # !!
#!x

$
%&

'
()
dx +

#!
#y

+ "YB t( ) " # !!
#!y

$
%&

'
()
dy +

#!
#z

+ "ZB t( ) " # !!
#!z

$
%&

'
()
dz +

#!
#t

+ x ""XB t( ) + y ""YB t( ) + z ""ZB t( ) " "XB t( ) #
!!

#!x
" "YB t( ) #

!!
#!y

" "ZB t( ) #
!!

#!z
"
# !!
#!t

$
%&

'
()
dt = 0

(10.111) 

Since the differentials dx,dy,dz,dt)( )  are independent, the expressions in parentheses 
must all be zero. This leads to the following transformations of partial derivatives 
between tildaed and untildaed coordinates. 
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! !"
!!x

=
!"
!x

+ "XB t( )

! !"
!!y

=
!"
!y

+ "YB t( )

! !"
!!z

=
!"
!z

+ "ZB t( )

! !"
!!t

=
!"
!t

+ x ""XB t( ) + y ""YB t( ) + z ""ZB t( ) # "XB t( ) !
!"

!!x
# "YB t( ) !

!"
!!y

# "ZB t( ) !
!"

!!z
! !"
!!t

=
!"
!t

+ x ""XB t( ) + y ""YB t( ) + z ""ZB t( ) # "XB t( ) !"
!x

# "YB t( ) !"
!y

# "ZB t( ) !"
!z

#

"XB t( )2 + "YB t( )2 + "ZB t( )2( )

  (10.112) 

Now we can transform the Bernoulli constant using (10.112) and (10.106).  

            

 

! !"
!!t

+
!P
#
+
1
2
!U !x
2 + !U !y

2 + !Uz
2( ) =

!"
!t

+
P
#
+
1
2
Ux

2 +Uy
2 +Uz

2( ) $ 12 "XB t( )2 + "YB t( )2 + "ZB t( )2( )
              (10.113) 

In the space-fixed frame the Bernoulli constant is equal to the pressure at infinity 

                                        
 

! !"
!!t

+
!P
#
+
1
2
!U !x
2 + !U !y

2 + !Uz
2( ) = P$

#
                          (10.114) 

An observer in the body-fixed frame will see a time dependent Bernoulli constant that 
includes the velocities at infinity generated by the motion of the body. 

            
 

!"
!t

+
P
#
+
1
2
Ux

2 +Uy
2 +Uz

2( ) = P$
#

+
1
2
!XB t( )2 + !YB t( )2 + !ZB t( )2( )       (10.115) 

Solve (10.115) for the pressure in the body-fixed frame. 

                       
 

P
!
"
P#
!

=
1
2
!XB t( )2 + !YB t( )2 + !ZB t( )2( ) " $%

$t
"
1
2
UiU             (10.116) 

The transformation of the vector velocity is 

                                                              
!U =U +UB                                          (10.117) 

where  
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                                                      UB = !X t( ), !Y t( ), !ZB{ }                                     (10.118) 

10.7.2 BOUNDARY CONDITION ON THE BODY. 

The body is defined by the function 

                                                       G x, y, z,t( ) = 0                                               (10.119) 

with outward normal  

                                                          n̂ = !F
F

                                                      (10.120) 

A fluid element on the surface of the body remains on the surface except at a point of 
attachment or detachment. This statement can be expressed mathematically as 

                                     
 

DG
Dt

=
!G
!t

+"#i"G = 0    on   G x, y, z,t( ) = 0               (10.121) 

If the flow is inviscid then at every point on the surface of the body the component of the 
fluid velocity normal to the body is equal to the normal component of the body velocity. 
This condition can be stated as 

                                        
 

!"
!n

= #"in̂ =UB in̂    on   G x, y, z,t( ) = 0                     (10.122) 

where  UB = !XB t( ), !YB t( ), !ZB t( )( )  is the velocity of the body. The surface condition can 
also be written as 

                                                    !"i!G =UB i!G                                               (10.123) 

10.7.3 RELATION BETWEEN THE FORCE ACTING ON THE BODY AND THE POTENTIAL 

The force vector acting on the surface of the body is 

 
 

F
!
= "

P
!
"
P#
!

$
%&

'
()
n̂ dA

Aw
* =

+,
+t

+
1
2
UiU "

1
2
!XB t( )2 + !YB t( )2 + !ZB t( )2( )$

%&
'
()
n̂ dA

Aw
*  (10.124) 

Since the body is not moving in the body-fixed frame 

                                              
!"
!tAw

# n̂dA =
d
dt

"
Aw
# n̂dA                                             (10.125) 

Also note that 
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                                                             n̂ dA
Aw
! = 0                                                  (10.126) 

The force on the body (10.124) reduces to 

                                               
 

F
!
=
d
dt

"
Aw
# n̂dA +

UiU
2

$
%&

'
()
n̂ dA

Aw
#                              (10.127) 

Let the velocity vector in the space-fixed coordinates be denoted  !U = u . From (10.106) 

                                                            U = u ! !XB                                                   (10.128) 

Substitute (10.128) into (10.127). The force on the body (10.127) becomes 

 

                              
 

F
!
=
d
dt

"
Aw
# n̂dA +

u iu
2

$
%&

'
()
n̂ dA

Aw
# * UB t( )iu( ) n̂ dA

Aw
#                 (10.129) 

The identity  A ! B ! C( ) = AiC( )B " AiB( )C  can be used to rearrange the second term 
on the right of (10.129). Let 

                                         UB iu( ) n̂ = UB in̂( )u +UB ! n̂ ! u( )                                 (10.130) 

Now 

      
 

F
!
=
d
dt

"
Aw
# n̂dA +

u iu
2

$
%&

'
()
n̂ dA

Aw
# * UB t( )in̂( )u dA

Aw
# *UB t( ) + n̂ + u( )dA

Aw
#      (10.131) 

Consider the control volume shown below 



 30 

                         

Figure 10.10 Control volume surrounding a rigid body translating in an inviscid fluid. 

The surface area of the control volume comprises the surface far from the body A! , the 
surface of the solid body Aw  and a narrow tube along the x-axis that makes the volume 
simply connected. The velocity vector coming at the body is U! t( ) . Note that on the 
body the outward normal of the control volume, n̂CV , points into the body and is opposite 
to the direction of n̂ .  

Consider the second term on the right of (10.131) which is the volume integral of the 
kinetic energy in the space-fixed frame. 

                
 
!

u iu
2
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#$

%
&'

V
( dV =

u iu
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%
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A)
( n̂CVdV      (10.132) 

The last integral in (10.132) vanishes as r!"  because  u ! 1 / r3 . Now 
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               (10.133) 

where  !iu = 0  has been used. 

Now consider the third term on the right of (10.131), the integral 
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UB t( )in̂( )u dA
Aw
!                                            (10.134) 

The boundary condition on the surface of the body is  Uin̂ = 0 . Using (10.128) this 
becomes 

                                        Uin̂ = u !UB( )in̂ = 0"UB in̂ = u in̂                              (10.135) 

Using (10.135) the surface integral (10.134) can be expressed as 

                                 
  

UB t( )in̂( )u dA
Aw
! = u in̂( )u dA

Aw
! = u u( )in̂ dA

Aw
!                     (10.136) 

Now consider the volume integral 

                  
  
!

V
" i u u( )dV = u u( )

A
" in̂CVdA = u u( )

Aw
" in̂CVdA + u u( )

A#
" in̂CVdA         (10.137) 

Again, since  u ! 1 / r3  the integral on the right of (10.137) vanishes as r!"  so 

                                                  
  

u u( )
Aw
! in̂dA = " #

V
! i u u( )dV                                 (10.138) 

where n̂ = !n̂CV  has been used. Expand the volume integral in (10.138) using  !iu = 0  
again.  

                  
  

UB t( )in̂( )u dA
Aw
! = u u( )

Aw
! in̂dA = " #

V
! i u u( )dV = " u i#

V
! u( )dV        (10.139) 

Using (10.133) and (10.139) we can state that  

             
 

u iu
2

!
"#

$
%&
n̂ dA

Aw
' ( UB t( )in̂( )u dA

Aw
' = ( u i)

V
' u( )dV + u i)

V
' u( )dV = 0        (10.140) 

The force on the body is 

                                        F
!
=
d
dt

"
Aw
# n̂dA $UB t( ) % n̂ % u( )dA

Aw
#                            (10.141) 

The velocity vector of the body motion is opposite to the velocity vector of the fluid 
approaching the body. 

                                                     UB t( ) = !U" t( )                                                   (10.142) 
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 and so we can finally express the force on the body in the body-fixed frame. 

                                    F
!
=
d
dt

"
Aw
# n̂dA +U$ t( ) % n̂ % u( )dA

Aw
#                                (10.143) 

The second term on the right of (10.143) can be expressed in terms of the velocity in the 
body fixed frame using u =U +UB =U !U" . 
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#

       (10.144) 

where (10.126) has been used to eliminate the rightmost term in the middle relation 
(10.144). Finally the force on the body by the flow in the body-fixed frame is 

                                   F
!
=
d
dt

"
Aw
# n̂dA $U% t( ) & '" & n̂( )dA

Aw
#                            (10.145)  

There are a couple of interesting features of this result. The first is that, if the flow is 
steady, the force by the flow on the body is perpendicular to the free stream velocity 
vector; there can be lift but no drag. The second is that if the flow is unsteady so that the 
first integral on the right of (10.145) is nonzero then there can be a drag force on the 
body. 

 

10.8 FORCE ON A 2-D RIGID BODY  

Let the body be a two dimensional cylinder where Aw ! Cw . 

                    
 

F
! oneunitofspan( ) =

d
dt

"
Cw
# n̂dC $U% t( ) & '" & n̂( )dC

Cw
!#               (10.146) 
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Figure 10.11 Circulation about a two-dimensional rigid body translating in an inviscid 
fluid. 

The flow splits as it negotiates the body and so the integral breaks up into two parts 

F
! oneunitofspan( ) =

d
dt

"
Aw
# n̂dl $U% t( ) & U & n̂( )Lower dl + U & n̂( )Upper dlc

d

#a

b

#( )    (10.147) 

The surface normal vector is also normal to the surface velocity vector. The cross 
products on the upper and lower surfaces are 

                                                        U ! n̂( )Upper = U k̂                                           (10.148) 

                                                       U ! n̂( )Lower = " U k̂                                         (10.149) 

Now 

                        F
! oneunitofspan( ) =

d
dt

"
Aw
# n̂dl $U% t( ) & U dl $ U dl

c

d

#a

b

#( ) k̂     (10.150) 

The integral of the absolute velocity in (10.150) is the same as the cyclic integral of the 
velocity, the circulation, where the positive direction along the contour is in the 
counterclockwise direction as shown in the figure above. 

                                                 

 

U dl ! U dl
c

d

"a

b

" = Uiĉ dC
C
!"

# t( ) = Uiĉ dC
C
!"

                                (10.151) 

In two dimensions the force by the flow on the body is 
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                                    F
! oneunitofspan( ) =

d
dt

"
Aw
# n̂dl $U% t( ) & ' t( ) k̂                 (10.152) 

This is the sought after relationship between the force that acts on a body and the 
circulation about the body. 

10.9 VIRTUAL MASS 

Let’s take a look at a case where the first term in the force equation (10.141) plays an 
important role. Recall the solution for the flow past a sphere discussed in section 10.5. 
The flow, is shown again below. 

 

                                   Figure 10.12 Potential flow past a sphere. 

The force on the sphere is 

                                        F
!
=
d
dt

"
Aw
# n̂dA $U% t( ) & '" & n̂( )dA

Aw
#                       (10.153) 

There is no circulation about any contour that surrounds the sphere and so the second 
term in (10.153) is zero. If the flow past the sphere is steady then the first term in 
(10.153) is also zero.  Now let the free stream velocity to be a function of time. The 
potential is  

                                !Sphere =U" f t( )x 1+
RSphere( )3

2 x2 + y2 + z2( )3/2
#

$
%
%

&

'
(
(

                             (10.154) 

The radius of the sphere is constant which implies that the strength of the dipole in 
(10.72) is also proportional to the same function of time. According to (10.153) there will 
be a force in the x-direction on the sphere. 
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Fx
!

=
d
dt

"
Aw
# nxdA                                          (10.155) 

where nx = Cos !( ) . Carry out the integration in (10.155). 
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       (10.156) 

Now consider the rest frame of the fluid with the sphere translating to the left with 
velocity  

!XB t( ) = !U" f t( ) . The velocity potential in the space-fixed (tildaed) frame is 
related to the velocity potential in the body-fixed (untildaed) frame by 

                            

 

!! !x, !y, !z, !t( ) = ! x, y, z,t( ) + x "XB t( )
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The force on the body in the space-fixed frame is 
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Use the vector potential of the sphere flow in (10.157) and substitute into (10.158). The 
x-component of the force on the sphere in the space-fixed frame is 
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Now integrate (10.159) with 
 
!nx = Cos !!( )  and 

 
!x ! XB

!t( ) = RSphereCos !"( ) .  
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2
df
dt

Cos2
0

2#

$ !%( )
0

#

$ Sin !%( )d&d% =
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3

RSphere( )3U"
df
dt

          (10.160) 

In the body-fixed frame the force on the sphere is 

                                                  
Fx
!

= 2" RSphere( )3U#
df
dt

                                       (10.161) 

Whereas, in the space-fixed frame the force on the sphere is 

                                                 
 

!Fx
!

=
2"
3

RSphere( )3U#
df
dt

                                       (10.162) 

or 

                                                    

 

!Fx

U!
df
dt

"
#$

%
&'
=
2(
3

) RSphere( )3                                  (10.163) 

The quantity on the right of (10.163) is called the virtual mass of the sphere. It is equal to 
one-half of the mass of fluid displaced by the sphere. 

Why the discrepancy between (10.161) and (10.162)? To understand the difference we 
need to go back to the transformation of the pressure and velocity potential in (10.106). 

                                              

 

!P
!
=
P
!
" x ""XB t( ) " y ""YB t( ) " z ""ZB t( )

!# = # + x "XB t( ) + y "YB t( ) + z "ZB t( )
                         (10.164) 

In the rest frame of the fluid the pressure at infinity is a constant P! . Whereas in the rest 
frame of the sphere there is a pressure gradient in the free stream (10.107) that produces 
an effective buoyancy force on the sphere that has been included in (10.164) and the 
resultant force (10.161). But is this force real?  

Consider the experiment depicted below. 
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                      Figure 10.13 Accelerated sphere versus accelerated fluid 

A sphere is inside a rigid container filled with an incompressible, inviscid fluid. A cable 
attached to the sphere can be used to accelerate the sphere or the sphere can be held at 
rest while the container and the fluid inside is accelerated. Pressure sensors on the sphere 
can be used to measure the force exerted by the fluid on the sphere. In the top diagram 
the system is all is at rest, the fluid is at pressure P!  and there is no net force on the 
sphere. In the middle figure the sphere is accelerated to the left at  !U!  and the force 
required to maintain the acceleration (the tension in the cable) is given by (10.162). In the 
bottom figure the sphere is held in place by the cable while the container and fluid is 
accelerated to the right at  !U! . The leftward force exerted by the cable to maintain the 
position of the sphere is given by (10.161).  

When the whole fluid is accelerated a pressure gradient develops similar to the pressure 
gradient that would be developed in a gravitational field. If the sphere is detached from 
the cable and free to move, the buoyancy force would accelerate the sphere. If the density 
of the sphere is lower than the surrounding fluid then it would accelerate to the right 
faster than the container. If the density of the sphere is higher than the fluid then it would 
drift to the left relative to the container. If the sphere density is exactly the same as the 
fluid then the buoyancy force would balance exactly with the inertia of the sphere and the 
net force on the sphere would be given by (10.162) 

10.10 FLOW DUE TO FORCE APPLIED TO A VISCOUS, INCOMPRESSIBLE FLUID  

Now we would like to use some of the concepts from potential theory to understand the 
flow created by a system of forces acting on a viscous flow. Figure 10.8 depicts a 
localized system of forces F x ,t( )  acting on a viscous, incompressible fluid in a three-
dimensional, unbounded region.  
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           Figure 10.14  System of forces acting on an infinite viscous incompressible fluid 

There are no mass sources, Q x ,t( ) = 0 . The forces are initiated at time t = 0  and after a 
finite time has elapsed, a finite region of non-zero vorticity ! x ,t( )  has grown out from 
the origin through convection and diffusion. The flow may be laminar or turbulent. 
Beyond this region the vorticity is zero. The momentum equation for incompressible flow 
with an applied force is 

                                
 

!U
!t

+"i UU( ) +" P
#

$
%&

'
()
+ * " +,( ) = F x ,t( )

#
                 (10.165) 

Let’s work out the volume integral of the momentum generated since the onset of the 
distribution of forces. 

                                                     H t( ) = U x ,t( )dV
V!                                    (10.166) 

Integrate (10.165) and use Gauss’ theorem to convert volume integrals to surface 
integrals. 

        
 

dH t( )
dt

+ UU( )in̂ dA +
P
!

"
#$

%
&'
n̂ dA + ( n̂ ) *dA =

F x ,t( )
!V++A+A+ dV          (10.167) 

The viscous term is clearly zero since the vorticity at the surface of the control volume is 
zero. The only contributions to the integrated momentum come from the convective and 
pressure terms. To progress further we need to determine the nature of the velocity and 
pressure terms in the inviscid region at large radius from the sources. Use Gauss’ theorem 
to write (10.166) as a surface integral of the vector potential. 
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                   H t( ) = U x ,t( )dV
V! = " # A x ,t( )dV =

V! n̂ # A x ,t( )dA
A!              (10.168) 

Over the spherical control volume shown in figure 10.8 

                                   H t( ) = R2 x
R
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( ) A x ,t( )Sin *( )d*d+                      (10.169) 

where the outward normal vector at the radius R  is 

                                n̂ =
x
R
= îSin !( )Cos "( ) + ĵSin !( )Sin "( ) + k̂Cos !( )             (10.170) 

and î , ĵ, k̂( )  are unit vectors in the x, y, z( )  respectively. Substitute into (10.169) the 

expression for A x ,t( )  from the general integral solution of the Poisson equation and 
exchange the order of integration. 
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Note that 

                                          x
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                          (10.172) 

This result can be demonstrated by recognizing that we can choose to rotate the 
coordinate axes to align the source vector xs  with the z  axis, x̂s = î 0( ) + ĵ 0( ) + k̂zs . 

Now 

                                                           H t( ) = 2
3
I t( )                                                (10.173) 

where 

                                    I t( ) = 1
2

x ! " x ,t( )dxdydz
#$

$

%#$

$

%#$

$

%                                  (10.174) 

is called the impulse of the vorticity distribution. Notice that the integral of the 
momentum is fully converged over just the vorticity distribution. Potential flow motions 
beyond the vortical region do not contribute to the total momentum of the fluid! 

10.11 MULTIPOLE EXPANSION OF THE POISSON EQUATION IN THE FAR 
FIELD 
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Return to the Poisson equation solution for the vector potential. 
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4!

" xs ,t( )
x # xs

dxs dys dzs#$

$

%#$

$

%#$

$

%                        (10.175) 

We are interested in the far field disturbance caused by the vorticity distribution. To this 
end we can expand the Green’s function in (10.175) for xs << x . The result is 
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                                                                                                                             (10.176) 

where r = x2 + y2 + z2( )1/2 . The limiting behavior of the vector potential can now be 
expressed as 
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where 
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are the vector monopole, tensor dipole and third order tensor quadrapole moments of the 
vorticity distribution. In index notation the far field vector potential is 
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                                                                                                                             (10.181) 

where ! jk  is the Kronecker unit tensor. Note that the order of terms left-to-right is 
important. Now we can use the expansion of the vector potential to determine the 
integrated momentum. 
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When the integration is carried out the monopole and quadrapole terms are zero. The 
dipole term integrates as follows. 
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Recall n̂ =
x
R
= îSin !( )Cos "( ) + ĵSin !( )Sin "( ) + k̂Cos !( ) . The dipole term can be 

related to the vortex impulse. 

  
 
M1ix = !i xsj x j( )dxs dys dzs"#

#

$"#

#

$"#

#

$ = "
1
2

x % xs % !( )( )
iV$ dxs = "x % I t( )     (10.184) 

Now the far-field vector potential is 
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and the volume integral of the momentum is 
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The far field velocity from the multi-pole expansion of the vector potential is 
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                                                                                                                               (10.187) 

The first term in (10.187) is the velocity field generated by vortex monopoles, zero in this 
case. The velocity generated by the dipole term can also be written 
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In the far field, the convective term in (10.165) behaves as 
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As R!"  the integral of the convective term in (10.167) goes to zero. Now 
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At large values of r  the vorticity is zero, the convective term is vanishingly small, and 
the equations of motion reduce to  
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Equation (10.191) can be used with (10.188) to solve for the pressure field. 
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and so the far field pressure is 
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Now we can complete the integration of the momentum equation (10.190). The pressure 
integral is 
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Finally 
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and 
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dt

=
F x ,t( )

!
"
#$

%
&'V( dV                                         (10.196) 

which is the mechanical definition of impulse. The applied forces generate the impulse, 
2/3 is contained in the directed motion of the fluid and 1/3 is removed by the pressure 
field at infinity that opposes the motion. 

Example – A point force located at the origin pointed in the z - direction.  

Let 
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The time derivative of the impulse: 
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the impulse: 
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The pressure in the far field: 
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and the velocity in the far field: 

 U x ,t( ) = !
1
4"#

J t '( )dt '
0

t

$
%
&'

(
)*
+

z
r3

%
&'

(
)*
=

1
4"#

J t '( )dt '
0

t

$
%
&'

(
)*
3xz
r5
, 3yz
r5
, 2z

2 ! x2 ! y2

r5
,
-
.

/
0
1

  

                                                                                                                               (10.201) 

The force creates a viscous jet with its main flow directed along the positive x-axis. The 
jet can be used to study the Reynolds number dependence of the starting vortex that 
forms when the force is turned on.  
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Figure 10.15 Numerical calculation of the starting vortex generated by an impulsively 
started viscous jet at a Reynolds number of 25. 

Figure 10.15 depicts a computation of the unsteady flow generated when a point force at 
the origin is turned on and held constant in a viscous fluid. The figure shows the particle 
paths in a cut passing through the axis of the jet. The computation is carried out at a jet 
Reynolds number Re = J / !"( ) = 25.  


