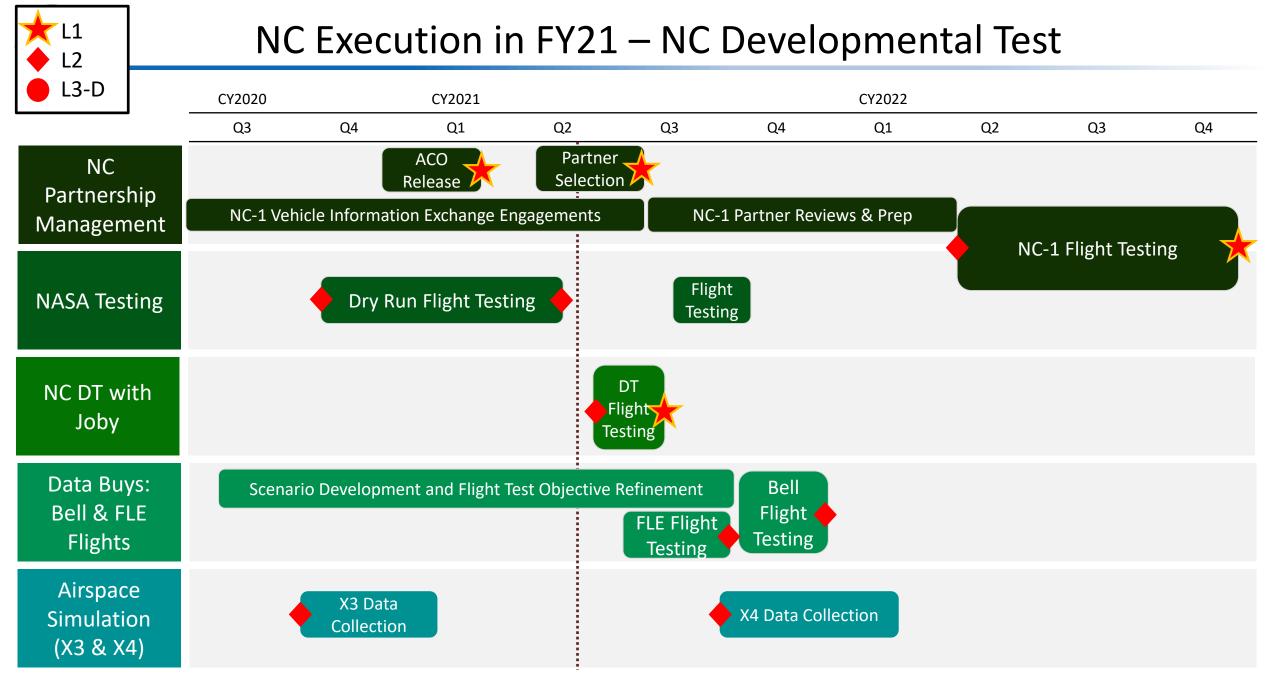


AAM National Campaign Developmental Testing (NC-DT) Virtual Dry Run June 29, 2021



Crosscutting Working Group: AAM NC-DT Virtual Dry Run - Agenda

	June 29, 2021									
TIME (PT)	TOPIC	PRESENTER								
11:00AM - 11:15AM	NC Developmental Test	Starr Ginn								
	Objectives	National Campaign Lead								
11:15AM - 11:30AM	NC Dry Run Overview	Jeff Leigh								
		National Campaign Chief								
		Engineer								
11:30AM - 11:50AM	Pre-recorded Live Feed with	Starr Ginn								
	Narration	National Campaign Lead								
		David Zahn								
		National Campaign Airspace PI								
		Rick Simmons								
		Rotorcraft Test Pilot								
11:50AM – 12:00PM	Airspace Procedure Overview	David Zahn								
	During Pre-recorded Live Feed	National Campaign Airspace PI								
	Q&A (20 minutes)									
12:20PM – 12:35PM	NC Flight Test Infrastructure	Shivanjli Sharma								
	Overview	National Campaign Deputy Lead								
12:35PM – 12:50PM	Airspace Core Services for UAM	Spencer Monheim								
		ATM-X UAM Tech Lead								
	Q&A (10 minutes)									
1:00PM - 1:20PM	Flight Test Plan Overview	Dave Webber								
		FAA Vehicle PI								
1:20PM – 1:35PM	Data Products and Process with	Bryan Brown/Sarah Eggum								
	FAA	FAA Data Coordinator								
		Mohana Gurram								
		NASA Data Manager								
Q&A (20 minutes)										
1:55PM – 2:00PM	Closing	Starr Ginn								
4 		National Campaign Lead								

* This agenda may be subject to modification.

<u>Accelerate Certification and Approval:</u> Develop and assess an integrated approach to vehicle certification, pilot licensing, and operational approval. <u>Aircraft</u> <u>Operations</u>

<u>Develop Flight Procedure Guidelines:</u> Develop preliminary guidelines for flight procedures and related airspace design criteria. Aircraft Airspace Infrastructure Operations

Evaluate the Communication, Navigation, and Surveillance (CNS) Trade Space: Explore and evaluate CNS requirements, options, and trade-offs.

<u>Demonstrate an Airspace Management Architecture:</u> Demonstrate and document an airspace system architecture capable of safely managing scalable AAM operations without burdening the current air traffic management system.

Identify Community Integration Needs: Conduct initial characterization of the community noise of AAM vehicles through measurements of vehicle ground noise.

NC-DT Goal: Ensure that NASA is fully prepared to execute NC-1 event in a manner maximizing benefits to the AAM community

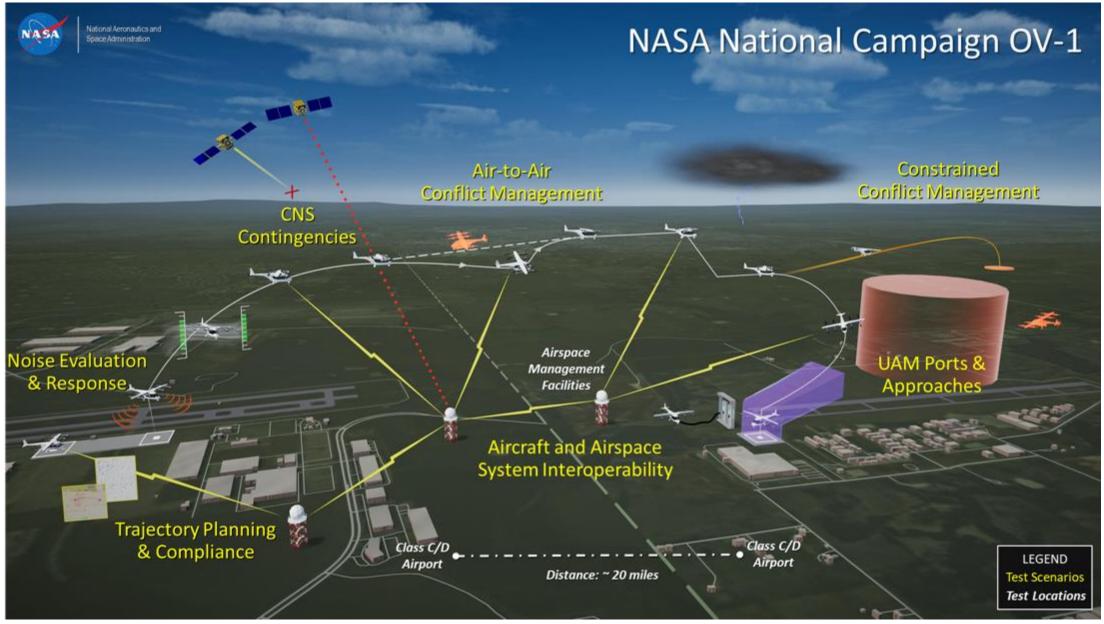
DTO-1: Assess Maturity and Robustness of NASA Proving Ground

Full Success: Collect data to support analysis of the flight test and simulation infrastructure for Scenarios 1-4.

DTO-2: Assess Effectiveness of NC Testing Processes, Logistics, and Data Collection

Full Success: Guide one partner organization through technology readiness, test readiness, flight and simulation execution, and data collection processes.

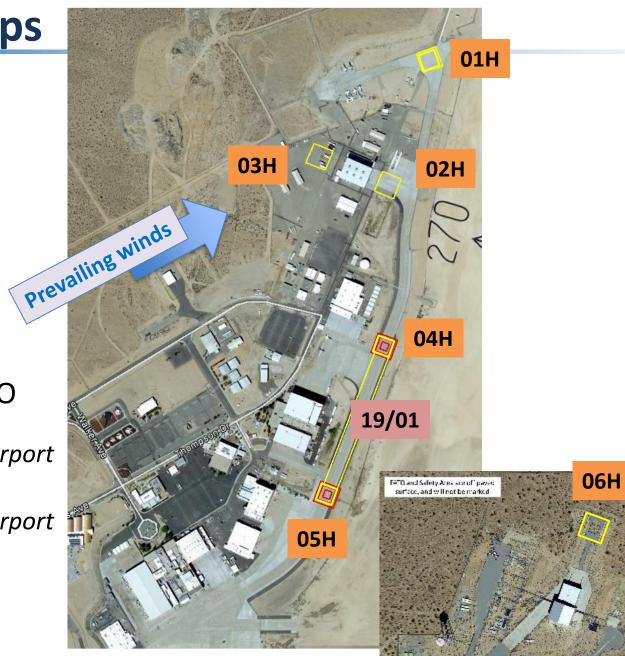
DTO-3: Preliminary Assessment of Partner Capabilities and Systems Performance


Full Success: Conduct flight test and simulation for at least one partner aircraft/airspace system to collect vehicle, airspace, and connectivity/communication performance data against the requirements for Scenarios 1-4.

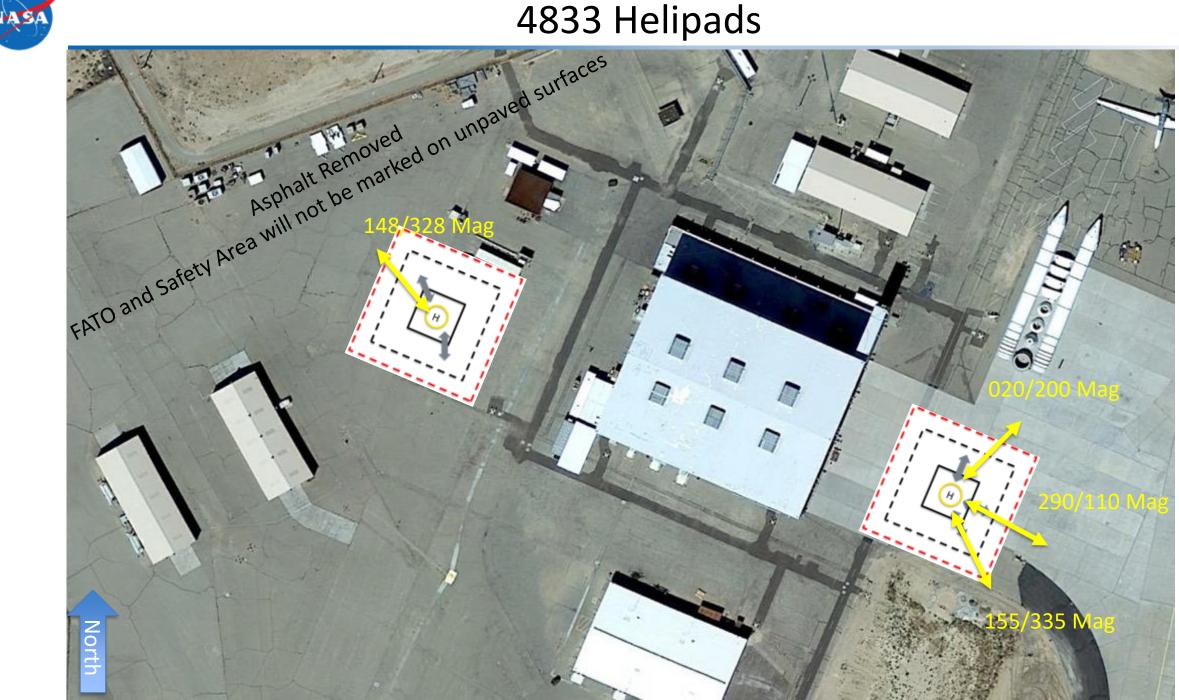
DTO-4: Assess the Suitability of NC-1 Scenarios

Full Success: Assess the applicability of the scenarios through the execution of at least three of the NC-1 scenarios with at least one vehicle and one airspace partner.

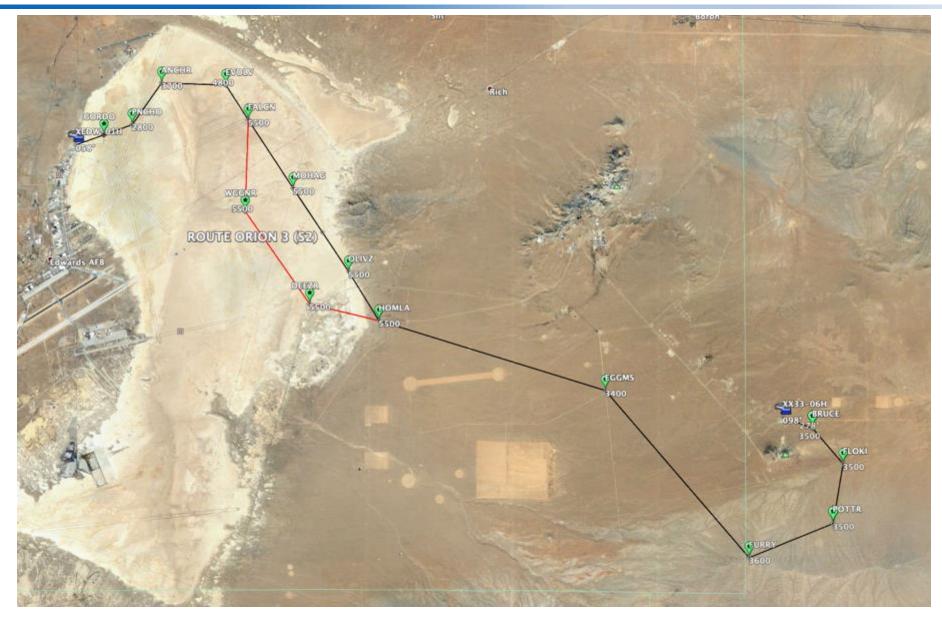
National Campaign OV-1



AAM NC Terminal Ops


6 AAM NC "UAM Heliports"

- 40x40ft TLOF
- Northern Heliports suitable for wind/controllability studies
- All Heliport design/placement IAW AC 150/ 5390-2C Heliport Design
- 1 AAM NC "UAM Vertiport"
- 1090ft length x 120ft width TLOF/FATO
- 01H + 02H + 03H = XEDW
 - Research Airport
 - 04H + 05H + 19/01 = XVPT Research Airport
 - обн = XX33 Research Airport



4833 Helipads

ORION 3 Scenario 2 In-flight Re-route

Video Playback

Dance Card

Live Flight

Aircraft		Seri	ial No:	Flight No		Date:	OTE TED	Revisio	n:		Card No.
OH-58			73FR	ab to a			0001	Fri	3/12,	R1	HA1
Event INC	Build	z	FIL	gnts,	Ma	rcn	2021				
SEQ	CARD				22	CON	IMENT			LC	DCATION
					-		Az Veh	Char			
-				inds <							
1	ST1, U	11	St	artu	р, Т	ake	eoff			1	04H
2	C1		Ho	over	IGE						NB
3	C2		Ho	over	OG	E					NB
4	C10.	1	Cr	it Az	, 09	9 0					NB
5	C10.	2	Cr	it Az	, 13	35					NB
6	C10.	3	Cr	it Az	, 18	30					NB
7	C10.4	4	Cr	it Az	, 21	L5					NB
8	C10.	5	Cr	it Az	, 27	70					NB
9	C16		Cn	tl Re	esp,	, He	eave			. (01H
10	C17		Lo	ng C	ntl	Re	sp			(01H
11	C20.	1	Lo	ng D	yn	Sta	b, Sh	ort		(01H
12	C21		Cn	Cntl Resp, Yaw				01H			
13	U20		Dy	nam	nic I	nte	erface			03	H/02H
14	U6		Pir	Pirouette (C10 is prereq)				01H			
15	SH1		La	ndin	g/S	hu	tdowr	n			
			NE	3, 01	н, (02H	1, 03H	I, 04I	Н,		
			05	Н							

OH-58 Event: NO		N173FR	ahts, M	farch 2021	Sat 3	3/13,	R1	HA
SEQ	CARD			COMMENT	1000		LO	CATION
		De	eck: So	cenarios				
1	ST1,U	1 Sta	artup,	Takeoff		-		
2	R12	S2	- Orio					
3	R15	\$3	A - Atl					
4	R7	S1	- Mer					
5	R19	S3	C - Uly	sses 1				
6	R26	OT	R - Ul	ysses 2 R	(2H)			
7	R17	S3	B - Ge	mini 1 F				
8	SH1	La	nding/	Shutdow/	n			
9	U8	HP	App (Char, Con	st Spe	ed		
10	U9	VP	App (Char				
11	U20	Dy	namic	Interface	9			
		Ар	proac	hes Used:	;	_		

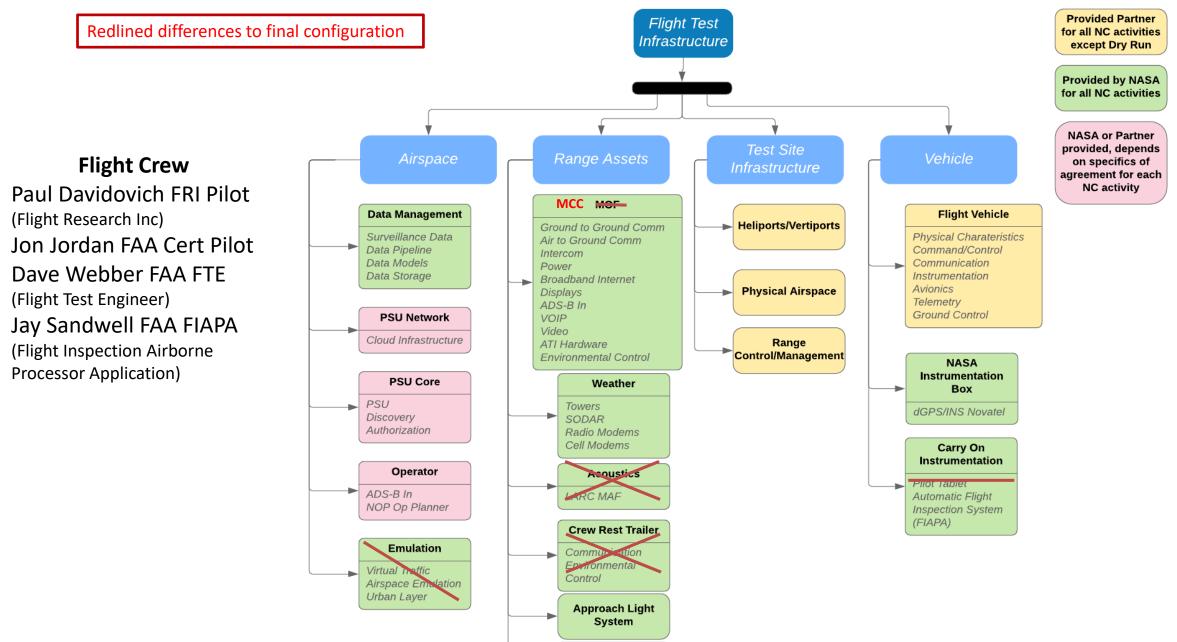
JEFF LEIGH

National Campaign Chief Engineer

Key activities to support Dry Run and DT Flight Objectives

- A series of Performance, Trim, Stability, and Control flight test maneuvers intended to support or validate vehicle flight manual performance, operating characteristics, or operational limitations (Vehicle Characteristics) these classical, proven, test techniques provide data that support compliance findings against current FAA minimum requirements for vertical flight aircraft dependent on the operational use case
- A set of ground and flight tasks that represent the "building blocks" that make up a UAM mission, including simulated IMC approaches to defined "UAM Heliports" and "UAM Vertiports" in controlled, but varied, conditions (UAM Task Elements) these "developmental" test techniques are intended to support FAA civil certification compliance findings for UAM aircraft that utilize highly-augmented flight control systems and/or "simplified vehicle operations." NASA is a key collaborative partner with FAA for development of these so-called "Mission Task Elements."
- Flyability evaluations of research UAM approaches, departures, and enroute procedures utilizing an FAA evaluation application which operates independently from the flight vehicles' avionics (Approach, Departure, Route Flight Checks)
- Flights that are specifically designed to simulate a "real world" urban air taxi mission including pre-flight planning, ground operations, flight operations, air traffic management and contingencies expected in the UAM mission. (Scenarios Testing).

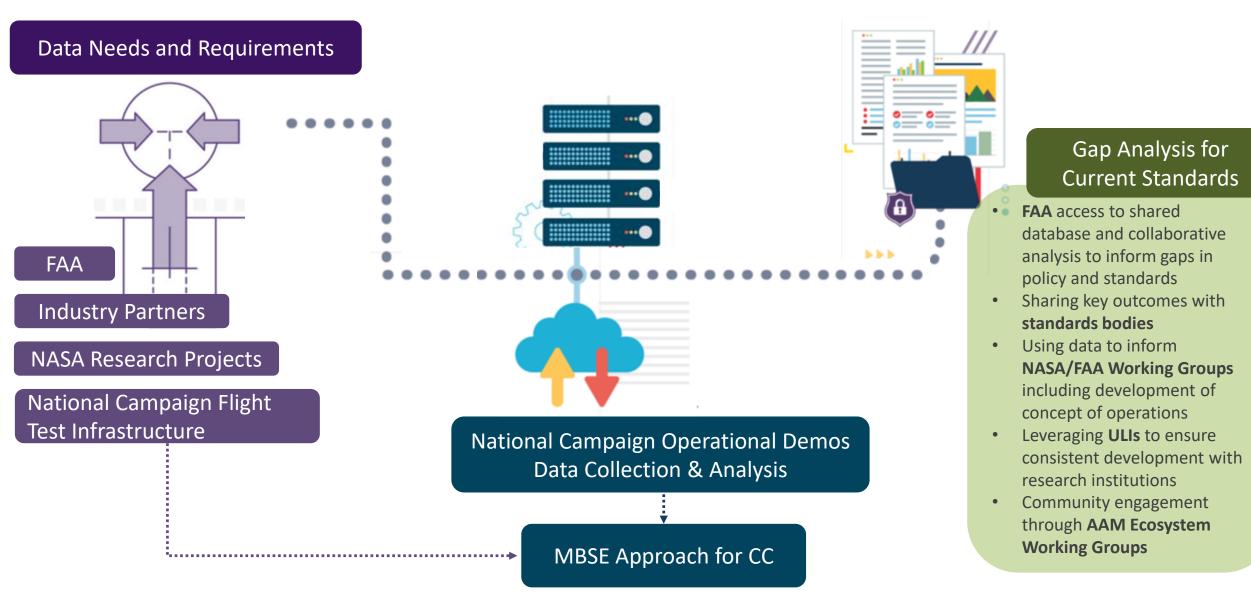
- Purpose
 - Facilitate the development of the data collection systems and mobile range infrastructure required for NC-1;
 - Refine the NC Scenarios, test techniques, and safety assurance processes; and
 - Capture foundational vehicle and operational data to support evolutions in vehicle, infrastructure, and airspace requirements that will enable the advent of UAM in the National Airspace System (NAS).
- Scope
 - Approximately 25 hours of flight activity using a helicopter within the Dry Run Flight Test Infrastructure
 - Meet Flight Test Plan (FTP) objectives
 - Build on the lessons learned during December's Fam Flights.
 - Integrate and test additional infrastructure systems to include PLASI, differential GPS, and additional helipads at building 4833 and X-33



Being the first set of flight tests that support the greater AAM National Campaign (NC) project, the tests contained herein also support the following objectives:

- Provide airborne data to support air traffic management research
- Validate a representative UAM test range construct
- Capture baseline Infrastructure/Terminal environment data
- Determine suitability of current aeronautical procedure development and recommend changes for future AAM/UAM development.
- Determine suitability of current ARINC 424 coding requirements in support of AAM/UAM.
- Look at FAA Flight Inspection Approach Procedures that could be appropriate for UAM operations
- Validate/refine Airspace assumptions for UAM
- Validate GSE design, test site design, and GSE layout
- Exercise the NASA Airworthiness Process in order to prepare for subsequent UAM participant vehicles
- Collect time/space/position data and video data that will support communication of AAM goals, conclusions and concepts

Build 2 Flight Test Infrastructure Overview



SHIVANJLI SHARMA

National Campaign Deputy Lead

Assessment of Flight Test Infrastructure

- Determined maturity and performance requirements of flight test infrastructure components
- Understood integration needs as well as power and connectivity requirements

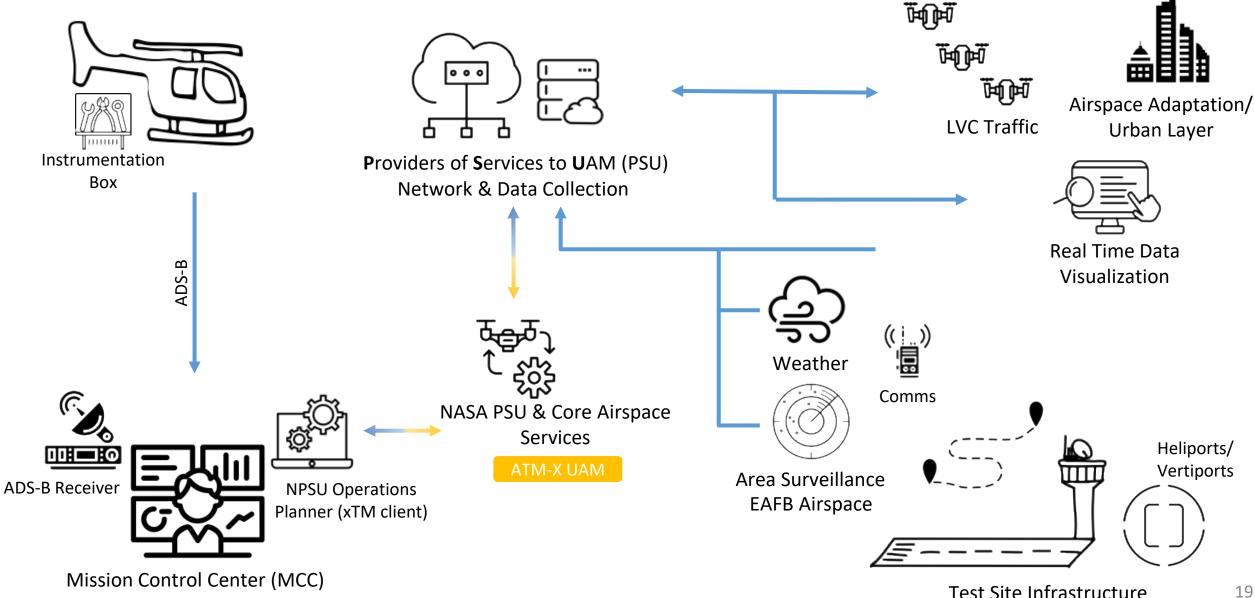
Development of NC Flight Test Plan

- Established flight test points comprised of flight maneuvers and vehicle characteristics expected by UAM vehicles
- Providing Cooper Harper ratings on control margin with FAA Test Pilots and Flight Test Engineers
- Evaluating FAA Subpart B regulatory airworthiness standards

Development of Infrastructure and UAM Approach and Departure Procedures

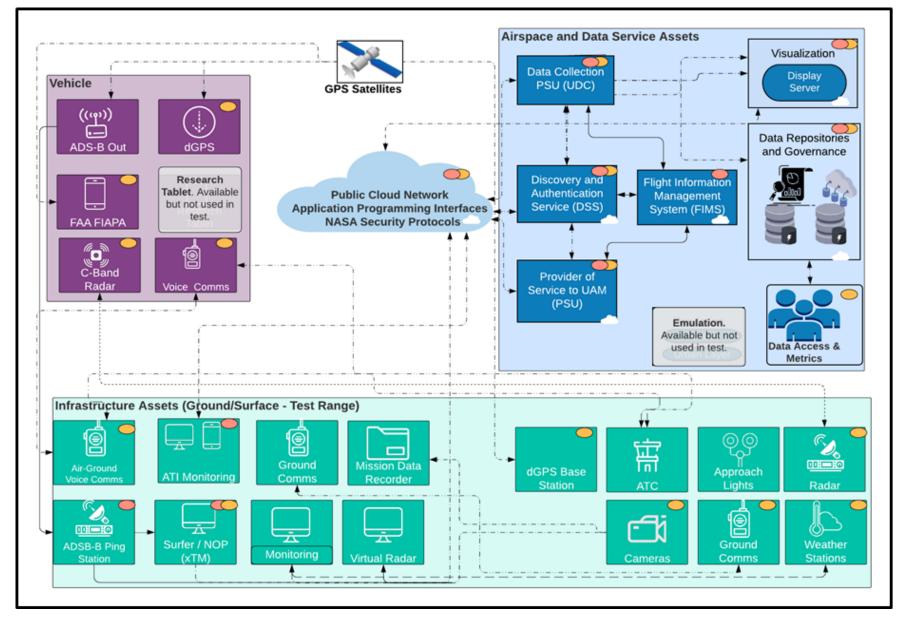
- UAM approach and departure procedure design including iteration on angles and descent rates that incorporate vehicle dynamics as well as passenger ride quality
- Developed infrastructure requirements by establishing vertiport and heliport dimensions and markings

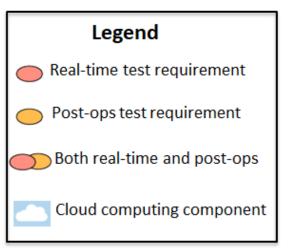
Assessed Data Collection Equipment and Procedures


- Exercised data collection systems including a differential GPS system, instrumentation on board the vehicle, as well as instrumentation provided by the FAA (FIAPA Flight Inspection Airborne Processor Application)
- Developed data models, database schemas, and access controls to facilitate data analysis

Assessment of Integrated Operations and Scenarios

- Simulated future UAM missions including pre-flight planning, ground operations, flight operations, and contingencies
- Real time ADS-B inputs to inform an airspace component (provided by ATM-X UAM) to represent a future third party airspace provider

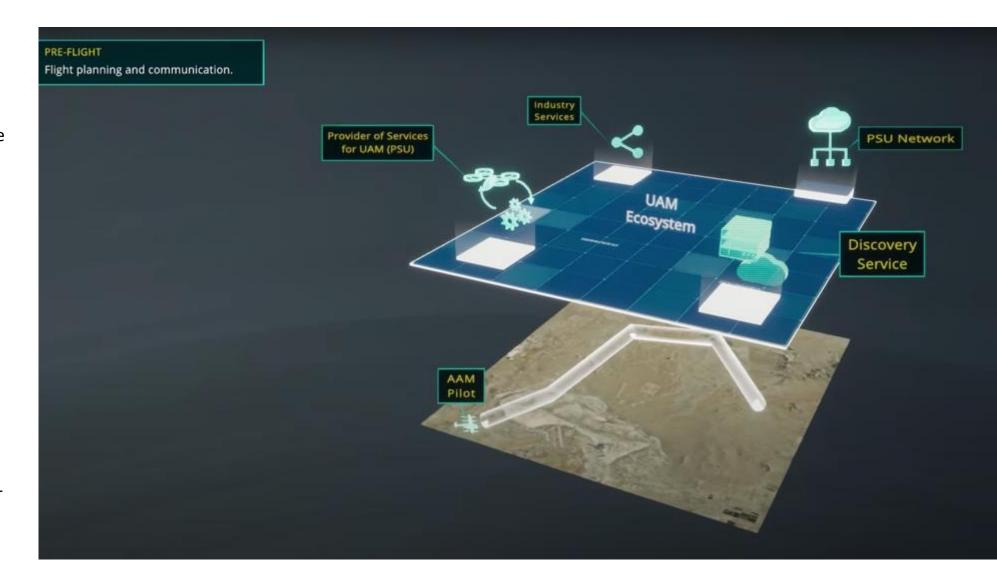



NC Dry Run – Functional Architecture

Build 2 Flight Test Component Diagram

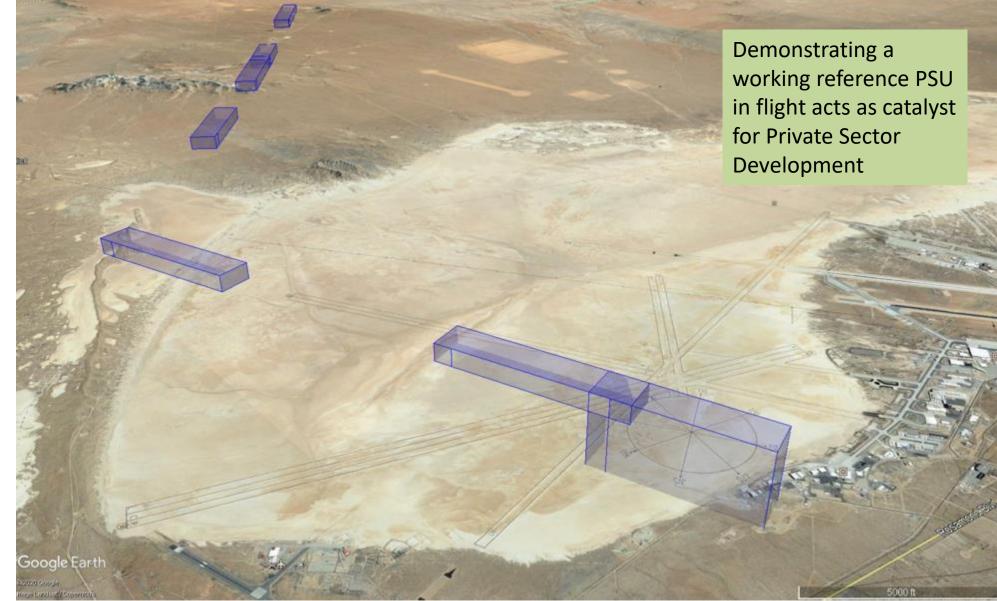
AIRSPACE COMPONENTS

Spencer Monheim

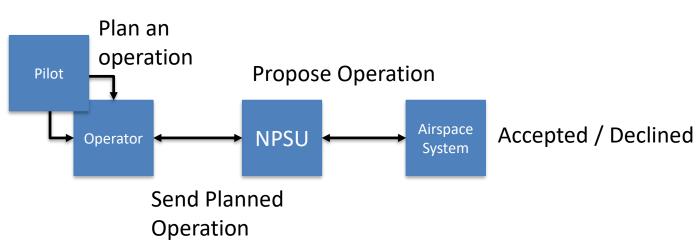

ATM-X UAM Sub-project Airspace Integration Testing & Demonstration Tech Lead

- PSU Provider of Services to UAM:
 - Communication Airspace

Component between Operators

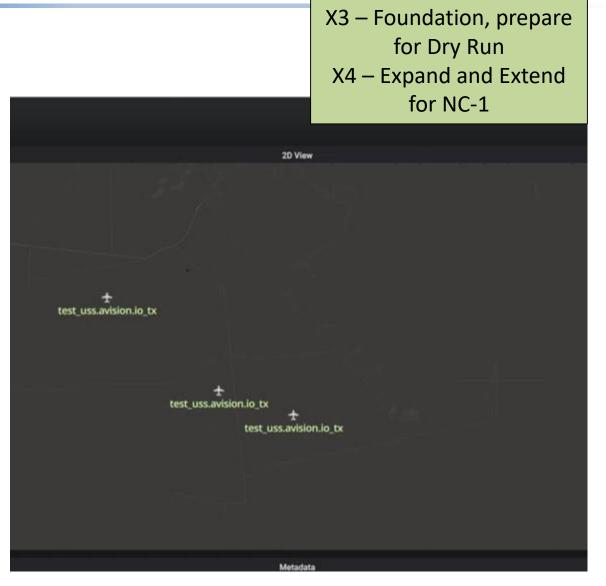

- Discovery Informs a PSU of other PSUs operating in an airspace
- Authorization ANSP-actor component, verifies the authenticity of a PSU/Operator

NPSU (NASA Provider of Services for UAM) High-Level Overview


- Communication standard was collaboratively developed and tested by Industry and Public Stakeholders
- Functionality of PSU is derived from FAA Conops

Flight Demonstration provides opportunity to test data/information flow in a future UAM Airspace System

Future Information Flow


• X3 Simulation and NC Dry Run set foundation through

executing operations in single operator baseline

• X4 Simulation increases complexity and

interconnectivity through interactions between two simultaneous operators, one NASA operator and one Industry operator

• X4 Simulation enables testing concepts and software prior to flight test as preparation and risk reduction for

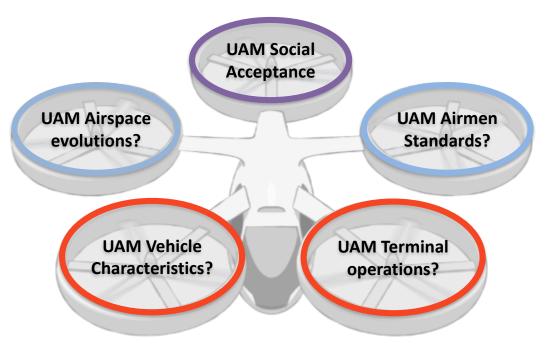
FLIGHT TEST PLAN OVERVIEW

Dave Webber

FAA Vehicle Cert Principal Investigator

The Urban Air Mobility (UAM) *mission*

evolutions in existing aerial mobility/technologies These new operational use cases need to be understood in order to develop appropriate regulatory (minimum airworthiness) requirements for vehicles

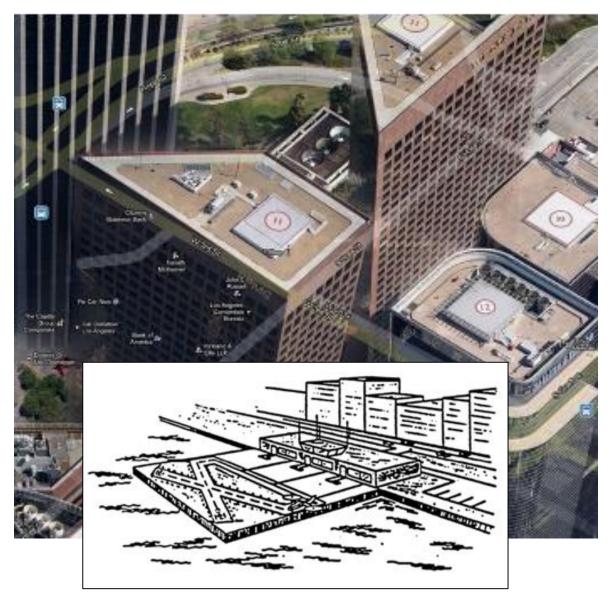


FAA Perspective

FAA recognizes that standards, across lines of business, must evolve to support UAM

FAA Vehicle Certification recognizes the "holistic" inter-dependence of standards

Assumption: If, Vehicle Characteristics standards are Raised/Lowered – Terminal Ops volumes are Increased/Decreased

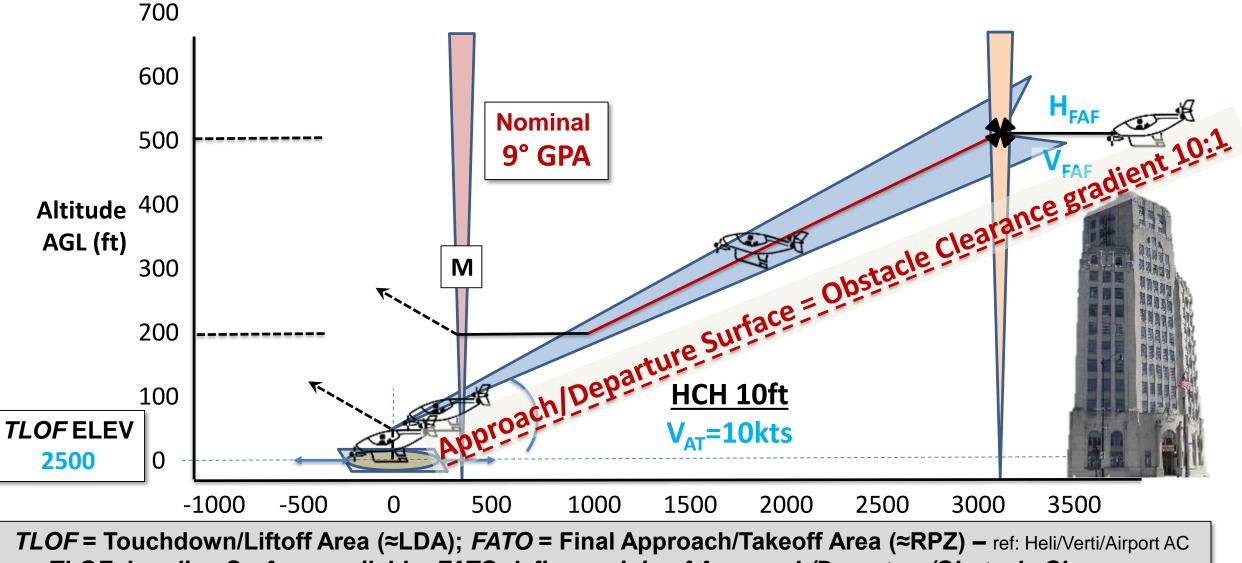

Vehicle technology itself will pace the introduction of new forms of transportation

FAA seeks the proper **balance of standards** that will enable social acceptance of perhaps the most challenging **new operational use case**: **Urban Air Mobility**

Anchoring to today's rotorcraft capabilities/heliport design – The UAM Helicopter Dry Run, captures foundational data to support evolutionary UAM concepts

NASA

Urban Air Mobility operational assumptions



Small urban footprint – *public-use* UAM terminals

- Defined Approach/Departure "surfaces" coincident with obstacle clearance surface (OCS)
- Limited approach/departure paths
- Condensed surface operations
- Little control over urban landscape evolution
 UAM "air taxi" must compete with ground-based
 transportation options
- Instrument Meteorological Conditions
- Limited icing capability
- 9 degree nominal approach angles steeper less disruptive to urban planning
- Lower Altitude final approach fix (FAF) increases efficiency
- Aircraft must be capable of safe operations in urban wind environment
- UAM corridors above cargo delivery drones, but below general aviation traffic

UAM Vertiports can take advantage of urban rivers or other larger urban spaces

Nominal Approach Profile – NC UAM Heliport

TLOF=Landing Surface available; FATO defines origin of Approach/Departure/Obstacle Clearance

Urban Air Mobility (UAM) configurations

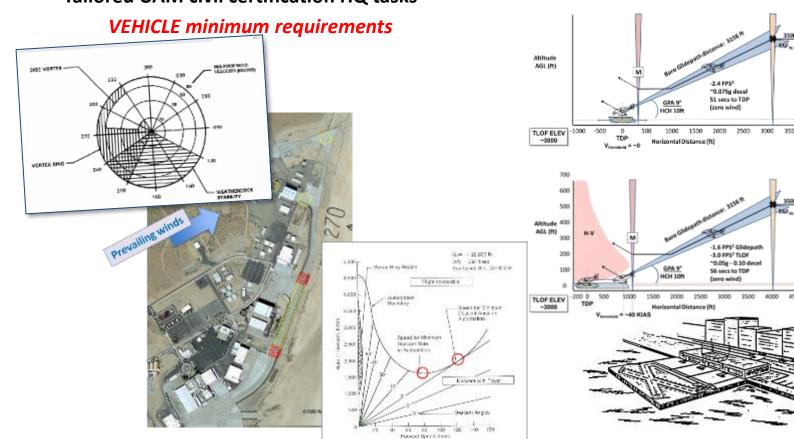
Ref: Vertical Flight Society (VFS) eVTOL aircraft directory

- Lift + Cruise Completely independent thrusters used for cruise vs. for lift without any thrust vectoring
- Electric Rotorcraft An eVTOL aircraft that utilizes a rotor, such as an electric helicopter or electric autogyro
- Wingless (Multicopter) No thruster for cruise/only for lift
- **Vectored Thrust** *An eVTOL aircraft that uses* <u>*any*</u> *of its thrusters for lift* <u>*and*</u> *cruise.*

"UAM" is a subset of Advanced Air Mobility (AAM) – intended for paid passenger-carrying operations (aka: on-demand mobility)

Urban Air Mobility (UAM)

- The UAM economic/operations model (\$\$'s per seat-mile) demands an aviation version of "mass production" and operation that is new to small aircraft
 - 10's of thousands of aircraft operated by a single part 135 operator (in some cases this operator will be the manufacturer)
 -vs-
 - 100's of aircraft purchased by private parties and operated by several operators running a mixed fleet operation
- UAM are expected to exhibit engine and system isolation features similar to transport category rotorcraft (*Cat A flyaway capability*)
- UAM are expected to utilize "Simplified Vehicle Operations"
- UAM operational safety and efficiency will benefit from standardized takeoff and landing operations that:
 - utilize a critical engine/system failure concept, and;
 - assure adequate designated surface area and adequate performance capability for continued safe flight in the event of critical (propulsion or systems) failures.


- Low speed controllability must account for constraints of the urban landscape
 - Urban "pinnacle" takeoffs and landings
 - Constrained approach and departure paths
 - Unpredictable winds associated with "urban canyons" coupled with urban development
- UAM economic model will demand flight characteristics that ۲ enable condensed IMC ops in the urban environment
 - Minimum Trim, Stability and Control, and maneuverability characteristics/limitations must be established for all UAM entrants $(V_{MIN-I}, V_{Y-I}, V_{NE-I}, etc)$
 - Many UAM entrants have highly-augmented, feedback-control, FBW FCS, that will provide 4-axis Stability Augmentation (a key enabler for low-speed Helicopter instrument operations)
- UAM Terminal Procedures (TERPS), Infrastructure and • Airspace standards will need to align with UAM **Category/Class Vehicle Minimum Airworthiness Requirements*** *which have not yet been established – here's where NASA's AAM National Campaign comes in...

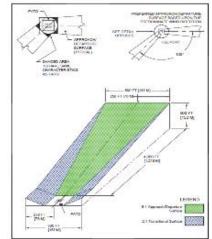
UAM key enablers

Minimum Flight Characteristics required for Urban Operations

- All Azimuth Capability
- Windward/Leeward effects on controllability
- Tailored UAM civil certification HQ tasks

Condensed UAM Approaches/Airspace

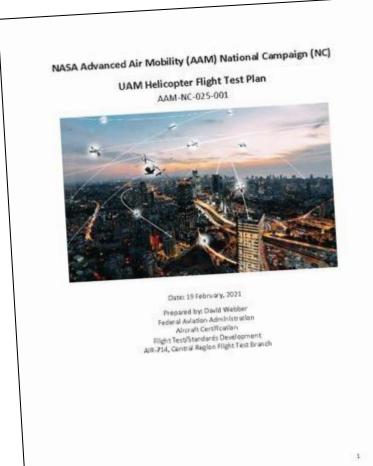
- Viable UAM IMC approaches
- Heliport and Vertiport operations


AIRSPACE constraints

Required evolutions to existing standards to enable UAM

- Terminal/Instrument
 Procedures (TERPS)
- Urban Planning

INFRASTRUCTURE needs



UAM Research Questions

Using a "Surrogate UAM" vehicle, the initial flight test plan endeavors to answer several UAM research questions:

- Are existing Airplane and/or Rotorcraft FAA Subpart B (stability, control, trim, and performance) airworthiness requirements appropriate for the UAM operational use case (aka, mission)?
- Can UAM vehicle designs deliver an aircraft that exhibits stability, control and performance that enables condensed, steep (nominal 9°), approaches, in Instrument Meteorological Conditions, into the expected UAM terminal environments?
- Are existing Heliport Design Criteria (dimensions, proximity to structures, and approach/departure surfaces) appropriate for the UAM mission? Can this criteria be reduced to further enable UAM goals?

UAM Helicopter Flight Test Plan

FAA "Subpart B" Vehicle Characteristics

Performance

- Hover Power Margin (IGE/OGE) free flight method
- Level Flight
- Climb/Descent/Glide

Flight Characteristics

- Trimmed Flight Control Positions Forward Flight
- Critical All Azimuth Controllability
- Maneuverability
- Static Longitudinal Stability
- Static Lateral/Directional Stability
- Dynamic Stability

Approach/Departure Routes FIAPA

(Flight Inspection Airborne Procedure Automation)

Integrated Scenarios Testing (Ops evaluation of an assumed UAM operation)

Other

PLASI Checkout VIP sortie

Compare Results*

Ground and Hover Tasks

- Ground Handling/Taxi
- Precision Hover

UAM Task Elements

- Lateral Reposition and Hold
- Hover Turn and Hold
- Pirouette
- Vertical Reposition and Hold

Takeoff and Landing Tasks

- Takeoff
- Heliport and Vertiport Approach
- Terminal Hover
- Landing
- Urban Landscape/Dynamic Interface
- Decelerating Turn (RESERVED)

Transition Tasks

- Deceleration IGE (Varied V_{AT})
- Acceleration IGE/OGE (RESERVED)
- Depart and Abort (RESERVED)
- Simulated Failure (Approach/Departure) (RESERVED)
- Balked Landing to Go-around

*OH-58C acts as an "experiment control"

- known flying qualities deficiencies can help "tune" developmental UAM (Handling Qualities) Task Elements

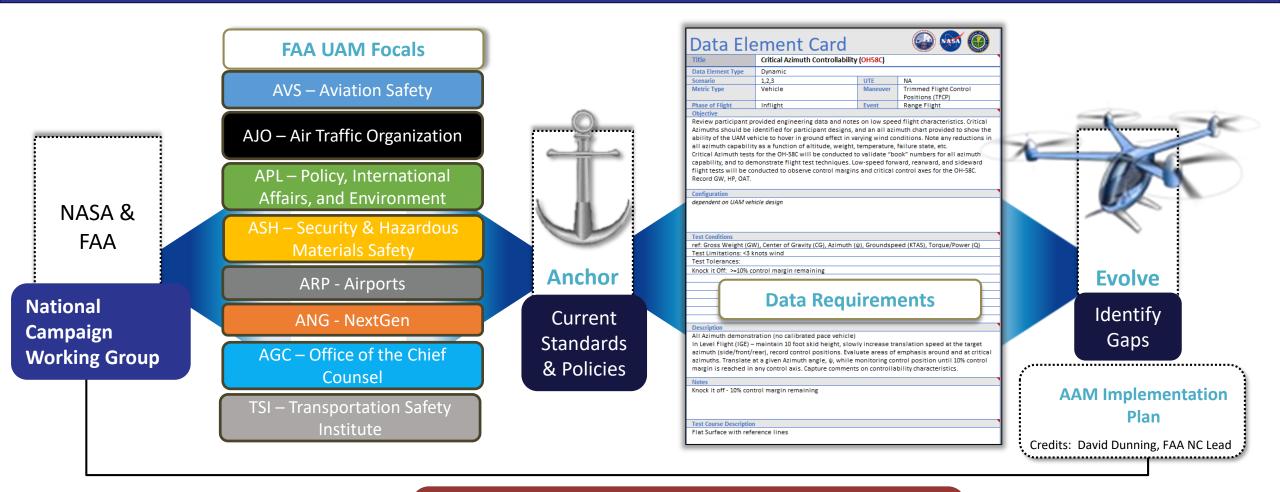
~25 hours -

assuming ~1 hr

sortie length

 Aircraft provides all the necessary parameters for basic Flight Characteristics (S&C&P) evaluations

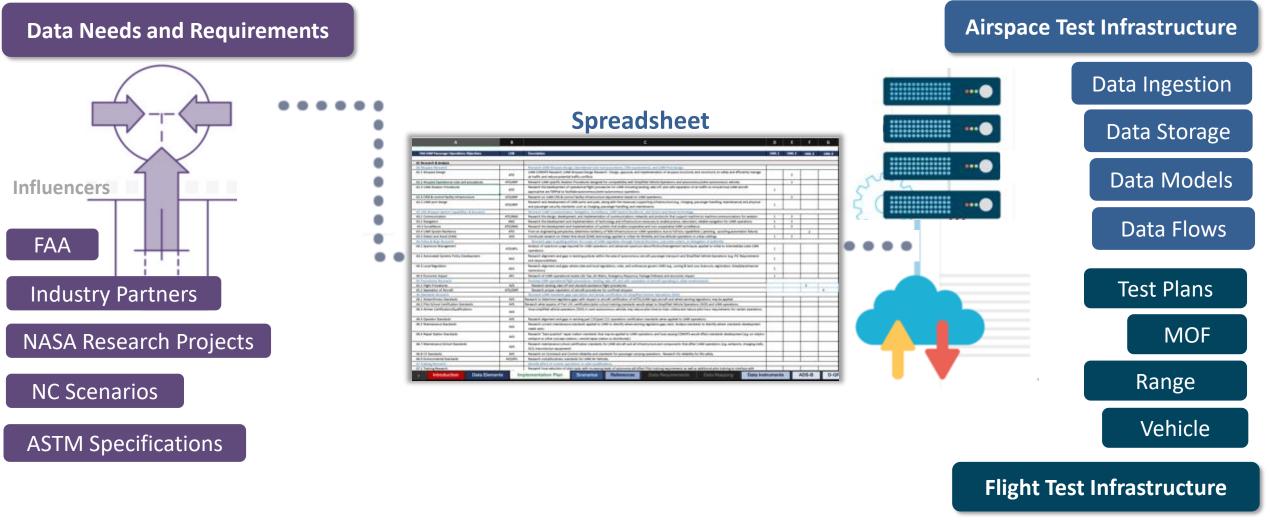
Parameter	Range	Units
Airspeed	0 to 120	KIAS
Altitude	0 to 20,000	ft
N ₁	0 to 100	%
N _R (Rotor RPM)	0 to 100	%
φ, Roll	+/-80	0
O , Pitch Attitude	+/-90	0
Ψ, Heading	0 to 360	0
P, Roll Rate	+/-50	°/s
Q, Pitch Rate	+/-50	°/s
R, Yaw Rate	+/-50	°/s
Nx, fwd accel	+/-8	g
Ny, side accel	+/-8	g
Nz, normal accel	+/-8	g
Static Pressure	0 to 15	PSI
Dynamic Pressure	+/-2	PSI
Collective Control		
Position	0 to 100	%
Lateral Control Position	0 to 100	%
Longitudinal Position	0 to 100	%
Directional Control		
Position	0 to 100	%
Throttle Position	0 to 100	%
Torque	0 to 100	%
β, sideslip	+/-90	0
OAT	0 to 100	°C


DATA PRODUCTS AND PROCESS WITH FAA

Sarah Eggum – FAA Data Manager

Mohana Gurram– NASA Data Manager

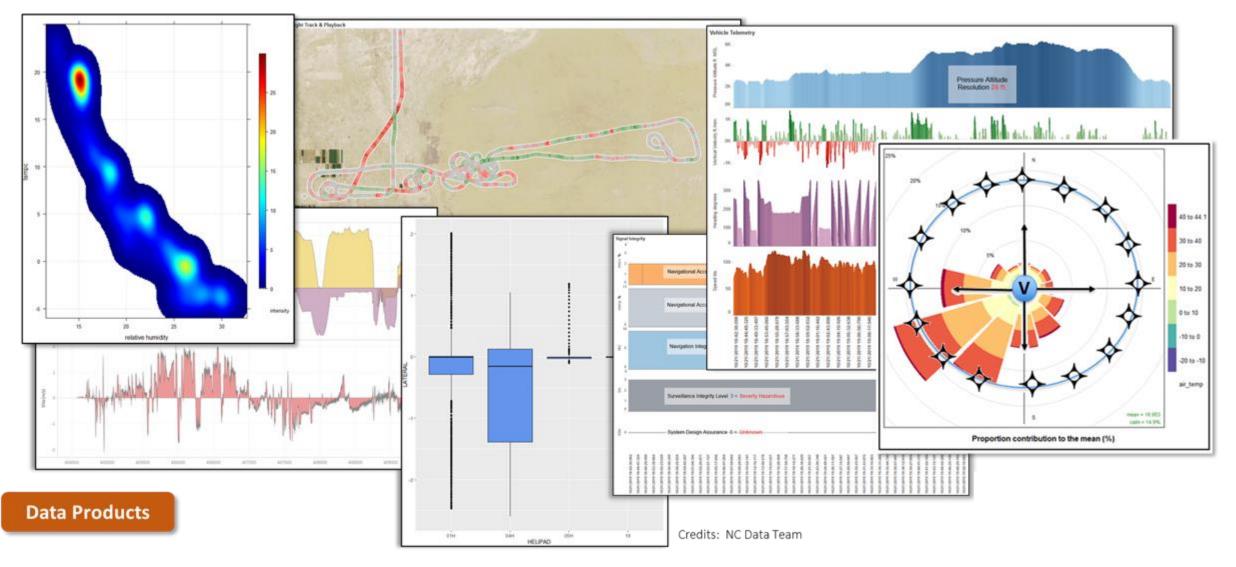
Data Products & Processes with FAA


NASA I FAA Collaboration

Collaborative gap analysis for existing standards & policies across all FAA lines of business to enable UAM operations

Data Products & Processes with FAA

Approach to Data



Credits: NASA Ames ATI

Data Products & Processes with FAA

Collections of Data

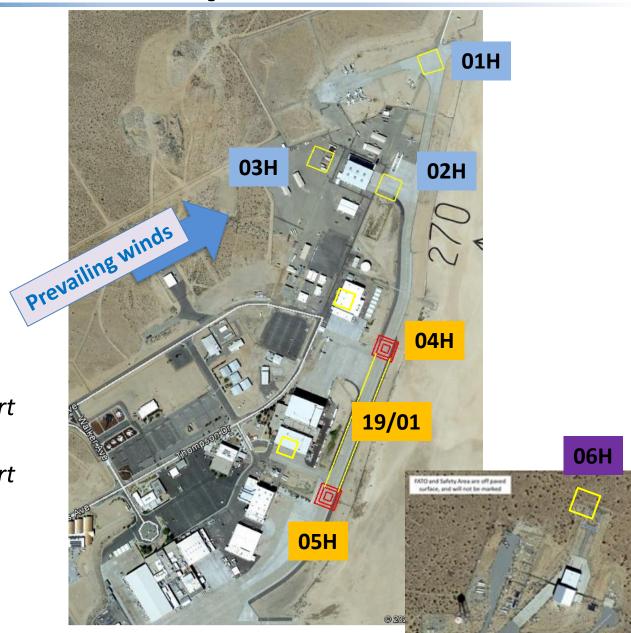
Performance Graphs | Conformance Graphs | Flight Track | Signal Validation | Atmospheric Graphs | Deviations | Messaging | ARINC Coding

QUESTIONS & WRAP UP

BACKUP

DAVID ZAHN

National Campaign Scalable UAM Operations Principal Investigator


AAM NC Terminal Ops

6 AAM NC "UAM Heliports"

- 40x40ft TLOF
- Northern Heliports suitable for wind/controllability studies
- All Heliport design/placement IAW AC 150/ 5390-2C Heliport Design

1 AAM NC "UAM Vertiport"

- 1090ft length x 120ft width TLOF/FATO
- **01H** + **02H** + **03H** = **XEDW** Research Airport
- **04H** + **05H** + **19/01** = **XVPT** *Research Airport*
 - **06H** = **XX33** Research Airport

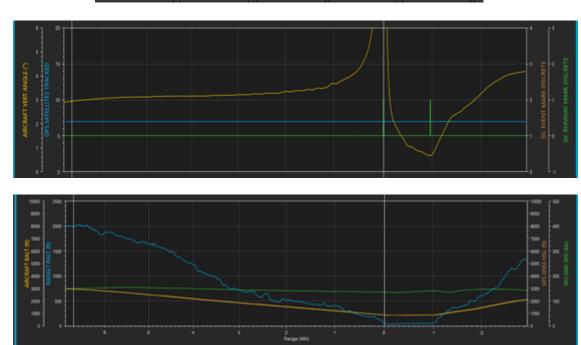
XEDW - 01H

RNAV - XEDW (01H) **Facility Search AIRNAV Data** Identifier Airport Runway XEDW 01H (A) AIRPORT ID XEDW Helipad General STATE LANDING LENGTH LATITUDE CA 96 FT N34° 57' 32.8320" COUNTRY TRUE BEARING LONGITUDE US 250.35° W117° 52' 54.1200" PUB DATE ELEVATION MVAR E12 09/28/2020 2276.0 FT STATUS **FI RWY LENGTH** ELLIPSOID ELEV. 2170.7 FT Active **FI RWY HEIGHT** MODEL / SOURCE WGS84/E HORZ. DATUM WGS84 VERT. DATUM EGM_96 CALC ELLIP HT 2170.8 FT IS DISPLACED

XVPT RWY 19

RNAV - XVPT (19)

Facility Search Identifier XVPT


Airport	Runway				
AIRPORT ID		✓ 19 (A) ▼ ►			
XVPT	General	Threshold	End		
STATE CA	LANDING LENGTH 1094 FT	LATITUDE N34° 57' 03.8880"	LATITUDE N34° 57' 13.6440"		
Country US	TRUE BEARING 21.01°	LONGITUDE W117° 53' 02.4000"	LONGITUDE W117° 52' 57.7200		
MVAR E12	PUB DATE 09/16/2020	ELEVATION 2276.0 FT	ELEVATION 2279.0 FT		
STATUS Active	FI RWY LENGTH 1124.0 FT	ELLIPSOID ELEV. 2170.7 FT	ELLIPSOID ELEV. 2173.7 FT		
	FI RWY HEIGHT 2302.8 FT	MODEL / SOURCE WGS84 / E HORZ. DATUM WGS84 VERT. DATUM EGM_96	MODEL / SOURCE WGS84 / E HORZ. DATUM WGS84 VERT. DATUM EGM_96		
		CALC ELLIP HT 2170.8 FT IS DISPLACED	CALC ELLIP HT 2173.8 FT IS DISPLACED		

Flight Inspection Airborne Processor Application

- Ingests FAA AIRNAV data
- Ingests ARINC 424 for RNAV
 procedures
- Performs data quality checks
- Collects detailed data over runway threshold and runway end (e.g. HP Lat/Long, Rad Alt, IRU, air data, GNSS)
- Estimates the North, East, Up errors of the spatial data used for the procedure
- Logs all data for replay and/or analysis

Identifier KOKC	Airport	Airport Runway				
NONC	AIRPORT ID KOKC	35R (A) ▼ ▶				
	KOKO	General	Threshold	End		
	STATE	LANDING LENGTH	LATITUDE	LATITUDE		
	ОК	9803 FT	N35° 22' 41.6296"	N35° 24' 18.5752"		
	COUNTRY	TRUE BEARING	LONGITUDE	LONGITUDE		
	US	359.96°	W097° 35' 20.1309"	W097° 35' 20.207		
	10/0 0		ELEVATION.	ELEVATION.		
	MVAR E4	PUB DATE 03/01/2018	ELEVATION 1283.0 FT	ELEVATION 1286.8 FT		
	E4	03/01/2018	1283.0 FT	1280.8 FT		
	STATUS	FI RWY LENGTH	ELLIPSOID ELEV.	ELLIPSOID ELEV.		
	Active	9802.3 FT	1195.3 FT	1198.9 FT		
		FI RWY HEIGHT	MODEL / SOURCE	MODEL / SOURCE		
		1286.8 FT	NAVD88 / S	NAVD88 / S		
			HORZ. DATUM	HORZ. DATUM		
			NAD83	NAD83		
			VERT. DATUM	VERT. DATUM		
			NAVD88	NAVD88		
			CALC ELLIP HT	CALC ELLIP HT		
			1194.9 FT	1198.6 FT		

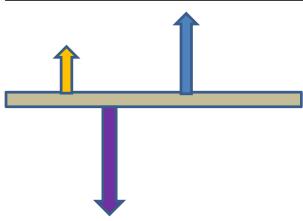
NC Data Element Card

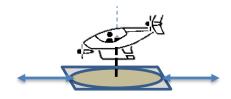
Example UTE Test Sheet : Static

- Research areas Airspace, Flight, and Infrastructure
- Assign POC's from NASA and FAA for Data Exchange
- FAA POC's delegated in areas of responsibility
 - Technical
 - Policy
- Identify gaps in current criteria, standards, and regulations
- Summarize suggestions for change

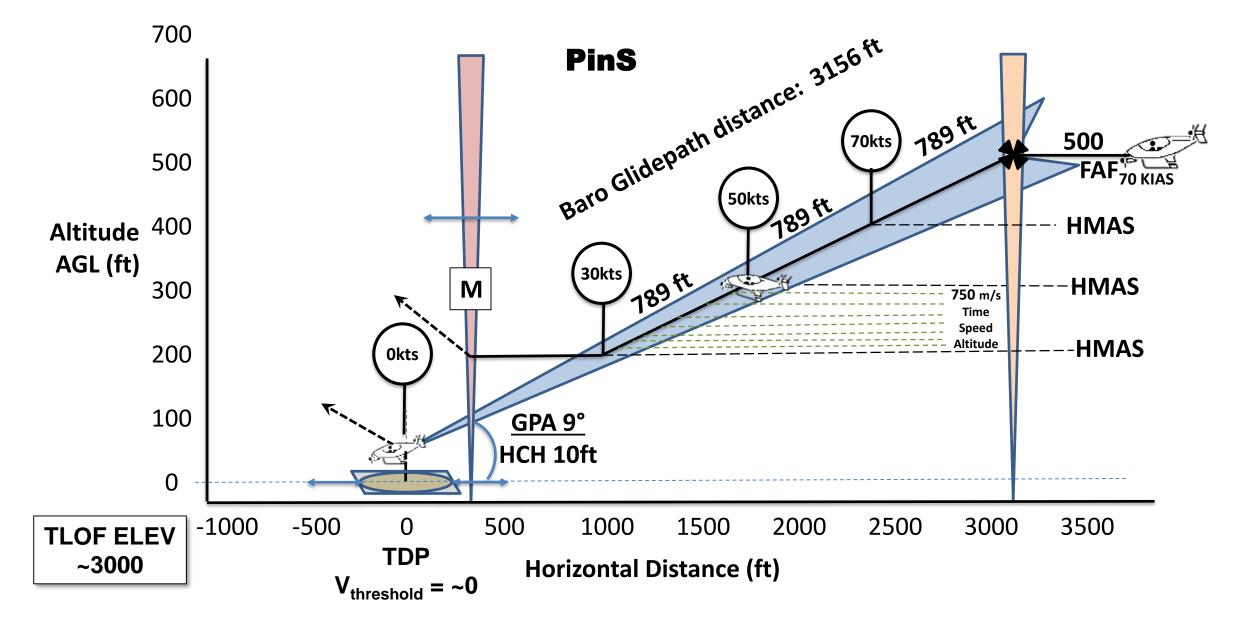
	Post-flight Weather	Post-flight Weather Data & Study			
Data Element Type	Static				
cenario	All	UTE	All		
Vetric Type	Infrastructure	Maneuver	N/A		
hase of Flight	Post-Flight	Event	Weather		
Objective					
N/A					
est Conditions					
rest Conditions	1				
. Conduct site survey 2. Deploy weather-sen	nsing equipment				
I. Conduct site survey 2. Deploy weather-sen 3. Perform operations	nsing equipment ; check on equipment				
L. Conduct site survey 2. Deploy weather-sen 3. Perform operations 4. Measure and record	nsing equipment ; check on equipment d weather data				
Conduct site survey 2. Deploy weather-sen 3. Perform operations 4. Measure and record 5. Perform quality con	nsing equipment ; check on equipment				
L. Conduct site survey 2. Deploy weather-sen 3. Perform operations 4. Measure and record	nsing equipment ; check on equipment d weather data				
Conduct site survey 2. Deploy weather-sen 3. Perform operations 4. Measure and record 5. Perform quality con	nsing equipment ; check on equipment d weather data				
Conduct site survey 2. Deploy weather-sen 3. Perform operations 4. Measure and record 5. Perform quality con	nsing equipment ; check on equipment d weather data				
Conduct site survey 2. Deploy weather-sen 3. Perform operations 4. Measure and record 5. Perform quality con	nsing equipment ; check on equipment d weather data				
Conduct site survey Deploy weather-sen Perform operations Measure and record Perform quality con	nsing equipment ; check on equipment d weather data				

between 20-250m (65-820ft) AGL. All data will be tagged with UTC time

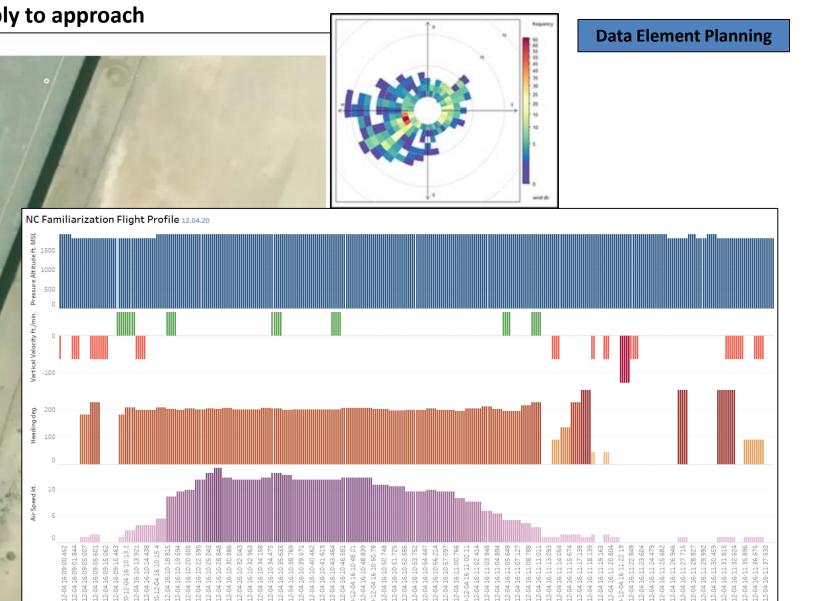



Spatial Data Integrity

Spatial Data Position Errors Area A – XEDW – 01H


Instrument	Location	Elevation	Vertical Error (from Garmin)	Lateral Error (from Garmin)
Garmin Handheld Survey	(34 57 32.88 N, 117 52 54.07 W)	2274 ft.	Most Accurate	Most Accurate
Google Earth	(34 57 32.84 N, 117 52 54.20 W)	2276 ft.	+2 ft.	(-0.04 degrees, .+0.13 degrees) 11.55 ft. 249.50 True Bearing
TARGETS	(34 57 32.69 N, 117 52 53.29 W)	2241 ft.	-33 ft.	(-0.19 degrees, - 0.78 degrees) 67.71 ft. 106.48 degrees True Bearing
Surveillance Broadcast Services Monitor	(34 57 33.01 N, 117 52 53.97 W)	2280 ft.	+6 ft.	(+0.13 degrees, -0.10 degrees) 15.56 ft. 32.34 True Bearing
FIAPA	Pending Flight Data			

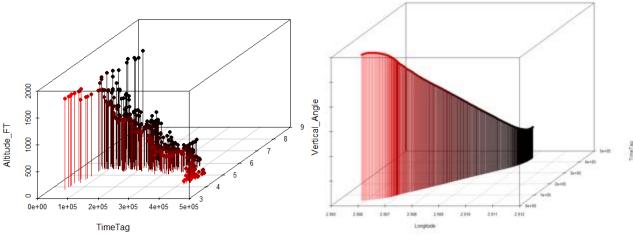
Quad Zero Approach



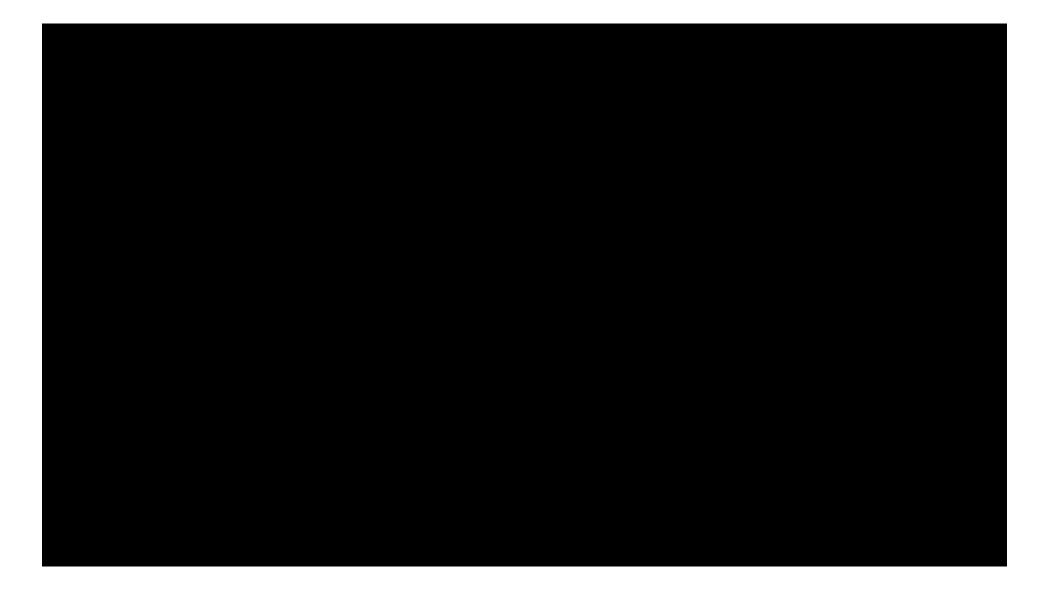
UAM Dep/App Theory

Work Underway: Fusing data to apply to approach

2020-12-04 16:09:01.871



UAM Dep/App Theory


- NASA/FAA Flight following collaboration:
- Real time (1 sec refresh rate)
- Pilot deviations
- Route tracking and conformance
- Enforcement/Contingency Management
- Post flight data analysis

FAA's Surveillance Broadcast Service Monitor Tool

