Introduction to Bayesian Learning

Aaron Hertzmann University of Toronto SIGGRAPH 2004 Tutorial

Evaluations: www.siggraph.org/courses_evaluation

CG is maturing ...

... but it's still hard to create

... it's hard to create in real-time

Data-driven computer graphics

What if we can get models from the real world?

Data-driven computer graphics

Three key problems:

- Capture data (from video, cameras, mocap, archives, ...)
- Build a higher-level model
- Generate new data

Ideally, it should be automatic, flexible

Example: Motion capture

Example: character posing

Example: shape modeling

[Blanz and Vetter 1999]

Example: shape modeling

Key problems

- How do you fit a model to data?
- How do you choose weights and thresholds?
- How do you incorporate prior knowledge?
- How do you merge multiple sources of information?
- How do you model uncertainty?

Bayesian reasoning provides solutions

Bayesian reasoning is ...

Probability, statistics, data-fitting

Bayesian reasoning is ...

A theory of mind

PROBABILISTIC MODELS OF THE BRAIN

Perception and Neural Function

Rajesh P. N. Rao, Bruno A. Olshausen, and Michael S. Lewicki

Bayesian reasoning is ...

A theory of artificial intelligence

Figure 1: Instrumented helicopter platform: The system is based on the Bergen Industrial Twin, with a modified SICK LMS laser range finder, a Crossbow IMU, a Honeywell 3-D compass, a Garmin GPS, and a Nikon D100 digital camera. The system is equipped with onboard data collection and processing capabilities and a wireless digital link to the ground station.

Bayesian reasoning is ...

A standard tool of computer vision

and ...

Applications in:

- Data mining
- Robotics
- Signal processing
- Bioinformatics
- Text analysis (inc. spam filters)
- and (increasingly) graphics!

Outline for this course

3:45-4 pm: Introduction
4pm-4:45: Fundamentals

- From axioms to probability theory
- Prediction and parameter estimation

4:45-5:15: Statistical shape models

- Gaussian models and PCA
- Applications: facial modeling, mocap

5:15-5:30: Summary and questions

More about the course

- Prerequisites
- Linear algebra, multivariate calculus, graphics, optimization
- Unique features
-Start from first principles
-Emphasis on graphics problems
-Bayesian prediction
-Take-home "principles"

Bayesian vs. Frequentist

- Frequentist statistics
- a.k.a. "orthodox statistics"
- Probability = frequency of occurrences in infinite \# of trials
- Arose from sciences with populations
- p-values, \boldsymbol{t}-tests, ANOVA, etc.
- Bayesian vs. frequentist debates have been long and acrimonious

Bayesian vs. Frequentist

"In academia, the Bayesian revolution is on the verge of becoming the majority viewpoint, which would have been unthinkable 10 years ago."

- Bradley P. Carlin, professor of public health, University of Minnesota
New York Times, Jan 20, 2004

Bayesian vs. Frequentist

If necessary, please leave these assumptions behind (for today):

- "A probability is a frequency"
- "Probability theory only applies to large populations"
- "Probability theory is arcane and boring"

Fundamentals

What is reasoning?

- How do we infer properties of the world?
- How should computers do it?

Aristotelian logic

- If A is true, then B is true
- A is true
- Therefore, B is true

A: My car was stolen
B: My car isn't where I left it

Real-world is uncertain

Problems with pure logic:

- Don't have perfect information
- Don't really know the model
- Model is non-deterministic

So let's build a logic of uncertainty!

Beliefs

Let $B(A)=$ "belief A is true"

 $B(\neg A)=$ "belief A is false"e.g., $A=$ "my car was stolen"
$B(A)=$ "belief my car was stolen"

Reasoning with beliefs

Cox Axioms [Cox 1946]

1. Ordering exists

- e.g., B(A) > B(B) > B(C)

2. Negation function exists

$$
-\quad \mathbf{B}(\neg \mathbf{A})=\mathbf{f}(\mathbf{B}(\mathbf{A}))
$$

3. Product function exists

$$
-\mathbf{B}(\mathbf{A} \wedge \mathbf{Y})=\mathbf{g}(\mathbf{B}(\mathbf{A} \mid \mathbf{Y}), \mathbf{B}(\mathbf{Y}))
$$

This is all we need!

The Cox Axioms uniquely define a complete system of reasoning: This is probability theory!

Principle \#1:

"Probability theory is nothing more than common sense reduced to calculation."

- Pierre-Simon Laplace, 1814

Definitions

$\mathrm{P}(\mathrm{A})=$ "probability A is true"

$$
=\mathrm{B}(\mathrm{~A})=\text { "belief } \mathrm{A} \text { is true" }
$$

$P(A) \in[0 \ldots 1]$
$P(A)=1$ iff " A is true"
$P(A)=0$ iff "A is false"
$P(A \mid B)=$ "prob. of A if we knew B " $P(A, B)=" p r o b . A$ and $B "$

Examples

A: "my car was stolen"
B: "I can't find my car"

$$
\begin{gathered}
\mathrm{P}(\mathrm{~A})=.1 \\
\mathrm{P}(\mathrm{~A})=.5 \\
\mathrm{P}(\mathrm{~B} \mid \mathrm{A})=.99 \\
\mathrm{P}(\mathrm{~A} \mid \mathrm{B})=.3
\end{gathered}
$$

Basic rules

Sum rule:

$$
\mathbf{P}(\mathbf{A})+\mathbf{P}(\neg \mathbf{A})=1
$$

Example:
A: "it will rain today"

$$
\mathrm{p}(\mathrm{~A})=.9 \rightarrow \mathrm{p}(\neg \mathrm{~A})=.1
$$

Basic rules

Sum rule:

$$
\sum_{\mathrm{i}} \mathbf{P}\left(\mathbf{A}_{\mathrm{i}}\right)=\mathbf{1}
$$

when exactly one of A_{i} must be true

Basic rules

Product rule:

$$
\begin{aligned}
\mathbf{P}(\mathbf{A}, \mathbf{B}) & =\mathbf{P}(\mathbf{A} \mid \mathbf{B}) \mathbf{P}(\mathbf{B}) \\
& =\mathbf{P}(\mathbf{B} \mid \mathbf{A}) \mathbf{P}(\mathbf{A})
\end{aligned}
$$

Basic rules

Conditioning

Product Rule

$\mathbf{P}(\mathrm{A}, \mathrm{B})=\mathbf{P}(\mathrm{A} \mid \mathrm{B}) \mathbf{P}(\mathrm{B})$
$\rightarrow \mathbf{P}(\mathrm{A}, \mathrm{B} \mid \mathrm{C})=\mathbf{P}(\mathrm{A} \mid \mathrm{B}, \mathrm{C}) \mathbf{P}(\mathrm{B} \mid \mathrm{C})$

Sum Rule

$$
\sum_{i} P\left(A_{i}\right)=1 \rightarrow \sum_{i} P\left(A_{i} \mid B\right)=1
$$

Summary

Product rule $\mathbf{P}(\mathrm{A}, \mathrm{B})=\mathbf{P}(\mathrm{A} \mid \mathrm{B}) \mathbf{P}(\mathrm{B})$ Sum rule $\quad \sum_{i} \mathbf{P}\left(A_{i}\right)=1$

All derivable from Cox axioms; must obey rules of common sense Now we can derive new rules

Example

$A=y o u$ eat a good meal tonight
$B=$ you go to a highly-recommended restaurant
$\neg \mathrm{B}=$ you go to an unknown restaurant

Model: $\mathrm{P}(\mathrm{B})=.7, \mathrm{P}(\mathrm{A} \mid \mathrm{B})=.8, \mathrm{P}(\mathrm{A} \mid \neg \mathrm{B})=.5$

What is $\mathrm{P}(\mathrm{A})$?

Example, continued

Model: $\mathrm{P}(\mathrm{B})=.7, \mathrm{P}(\mathrm{A} \mid \mathrm{B})=.8, \mathrm{P}(\mathrm{A} \mid \neg \mathrm{B})=.5$

$$
\begin{aligned}
& 1=P(B)+P(\neg B) \\
& 1=P(B \mid A)+P(\neg B \mid A) \\
& \text { Sum rule } \\
& \text { Conditioning } \\
& \mathbf{P}(\mathrm{A})=\mathbf{P}(\mathrm{B} \mid \mathrm{A}) \mathbf{P}(\mathrm{A})+\mathbf{P}(\neg \mathrm{B} \mid \mathrm{A}) \mathbf{P}(\mathrm{A}) \\
& =P(A, B)+P(A, \neg B) \\
& \text { Product rule } \\
& =\mathbf{P}(\mathbf{A} \mid \mathrm{B}) \mathbf{P}(\mathrm{B})+\mathbf{P}(\mathrm{A} \mid \neg \mathrm{B}) \mathbf{P}(\neg \mathrm{B}) \quad \text { Product rule } \\
& =.8 .7+.5(1-.7)=.71
\end{aligned}
$$

Basic rules

Marginalizing

$\mathbf{P}(\mathbf{A})=\sum_{\mathbf{i}} \mathbf{P}\left(\mathbf{A}, \mathbf{B}_{\mathbf{i}}\right)$
 for mutually-exclusive B_{i}

$$
\text { e.g., } \mathbf{p}(\mathbf{A})=\mathbf{p}(\mathbf{A}, \mathbf{B})+\mathbf{p}(\mathbf{A}, \neg \mathbf{B})
$$

Principle \#2:

Given a complete model, we can derive any other probability

Inference

Model: $\mathrm{P}(\mathrm{B})=.7, \mathrm{P}(\mathrm{A} \mid \mathrm{B})=.8, \mathrm{P}(\mathrm{A} \mid \neg \mathrm{B})=.5$
If we know A, what is $P(B \mid A)$? ("Inference")
$\mathbf{P}(\mathbf{A}, \mathrm{B})=\mathbf{P}(\mathrm{A} \mid \mathrm{B}) \mathbf{P}(\mathrm{B})=\mathbf{P}(\mathrm{B} \mid \mathrm{A}) \mathbf{P}(\mathrm{A})$
$\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\frac{\mathrm{P}(\mathrm{A} \mid \mathrm{B}) \mathrm{P}(\mathrm{B})}{\mathrm{P}(\mathrm{A})}=.8 .7 / .71 \sim .79$
Bayes' Rule

Inference

Bayes Rule Likelihood

Posterior

Principle \#3:

Describe your model of the world, and then compute the probabilities of the unknowns given the observations

Principle \#3a:

Use Bayes' Rule to infer unknown model variables from observed data

Discrete variables

Probabilities over discrete variables

C \in \{ Heads, Tails \}
$$
\mathrm{P}(\mathrm{C}=\text { Heads })=.5
$$

$P(C=$ Heads $)+P(C=$ Tails $)=1$

Continuous variables

Let $\mathrm{x} \in \mathbb{R}^{\mathrm{N}}$

How do we describe beliefs over x ? e.g., x is a face, joint angles, ...

Continuous variables

Probability Distribution Function (PDF) a.k.a. "marginal probability"

$$
\mathbf{P}(\mathbf{a} \leq \mathbf{x} \leq \mathbf{b})=\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{p}(\mathbf{x}) \mathbf{d x}
$$

Notation: $\mathbf{P}(\mathbf{x})$ is prob $p(x)$ is PDF

Continuous variables

Probability Distribution Function (PDF)
Let $x \in \mathbb{R}$
$p(x)$ can be any function s.t.

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \mathbf{p}(\mathbf{x}) \mathbf{d x}=1 \\
& \mathbf{p}(\mathbf{x}) \geq \mathbf{0}
\end{aligned}
$$

Define $\mathbf{P}(\mathbf{a} \leq \mathbf{x} \leq \mathbf{b})=\int_{\mathbf{a}} \mathbf{b} \mathbf{p}(\mathbf{x}) \mathbf{d x}$

Uniform distribution

$$
\begin{array}{rlrl}
\mathbf{x} \sim \mathcal{U}\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) & & \\
\mathbf{p (x)} & =1 /\left(\mathbf{x}_{0}-\mathbf{x}_{1}\right) & & \text { if } \quad \mathbf{x}_{0} \leq \mathbf{x} \leq \mathbf{x}_{1} \\
& =\mathbf{0} & & \text { otherwise }
\end{array}
$$

Gaussian distributions

$\mathbf{x} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$
$\mathbf{p}\left(\mathbf{x} \mid \mu, \sigma^{2}\right)=\exp \left(-(x-\mu)^{2} / 2 \sigma^{2}\right) / \sqrt{2 \pi \sigma^{2}}$

Why use Gaussians?

- Convenient analytic properties
- Central Limit Theorem
- Works well
- Not for everything, but a good building block
- For more reasons, see
[Bishop 1995, Jaynes 2003]

Rules for continuous PDFs

Same intuitions and rules apply
"Sum rule": $\int_{-\infty}{ }^{\infty} \mathbf{p}(\mathbf{x}) \mathbf{d x}=1$
Product rule: $\mathbf{p}(\mathbf{x}, \mathbf{y})=\mathbf{p}(\mathbf{x} \mid \mathbf{y}) \mathbf{p}(\mathbf{x})$
Marginalizing: $\mathbf{p}(\mathbf{x})=\int \mathbf{p}(\mathbf{x}, \mathrm{y}) \mathrm{d} \mathbf{y}$
... Bayes' Rule, conditioning, etc.

Multivariate distributions

Uniform: $\mathrm{x} \sim \mathcal{U}$ (dom)

Gaussian: $\mathbf{x} \sim \mathcal{N}(\mu, \Sigma)$

Inference

How do we reason about the world from observations?

Three important sets of variables:

- observations
- unknowns
- auxiliary ("nuisance") variables

Given the observations, what are the probabilities of the unknowns?

Inference

Example: coin-flipping
$\mathbf{P}(\mathbf{C}=$ heads $\mid \theta)=\theta$
$\mathbf{p}(\theta)=\mathcal{U}(0,1)$

Suppose we flip the coin 1000 times and get 750 heads. What is θ ?

Intuitive answer: 750/1000 = 75\%

What is θ ?

$$
\begin{aligned}
& \mathbf{p}(\theta)=\operatorname{Uniform}(0,1) \\
& \mathbf{P}\left(\mathbf{C}_{\mathbf{i}}=\mathbf{h} \mid \theta\right)=\theta, \mathbf{P}\left(\mathbf{C}_{\mathbf{i}}=\mathrm{t} \mid \theta\right)=\mathbf{1 - \theta} \\
& \mathbf{P}\left(\mathbf{C}_{1: \mathrm{N}} \mid \theta\right)=\prod_{\mathrm{i}} \mathbf{P}\left(\mathbf{C}_{\mathbf{i}}=\mathbf{h} \mid \theta\right) \\
& \mathbf{p}\left(\theta \mid \mathbf{C}_{1: \mathrm{N}}\right)=\mathbf{P}\left(\mathbf{C}_{1: \mathrm{N}} \mid \theta\right) \mathbf{p}(\theta) \\
& \mathbf{P}\left(\mathrm{C}_{1: \mathrm{N}}\right) \\
& =\prod_{i} \mathbf{P}\left(\mathbf{C}_{\mathbf{i}} \mid \theta\right) \mathbf{P}(\theta) / \mathbf{P}\left(\mathbf{C}_{1: \mathrm{N}}\right) \\
& \propto \theta^{\mathrm{H}}(1-\theta)^{\mathrm{T}}
\end{aligned}
$$

What is θ ?

$$
\mathbf{p}\left(\theta \mid \mathbf{C}_{1}, \ldots \mathbf{C}_{\mathrm{N}}\right) \propto \theta^{750}(1-\theta)^{250}
$$

θ

Bayesian prediction

What is the probability of another head?

$$
\begin{aligned}
& \mathbf{P}\left(\mathbf{C}=\mathbf{h} \mid \mathbf{C}_{1: \mathrm{N}}\right)=\int \mathbf{P}\left(\mathbf{C}=\mathbf{h}, \theta \mid \mathrm{C}_{1: \mathrm{N}}\right) \mathbf{d} \theta \\
& \quad=\int \mathbf{P}\left(\mathbf{C}=\mathbf{h} \mid \theta, \mathbf{C}_{1: \mathrm{N}}\right) \mathbf{P}\left(\theta \mid \mathrm{C}_{1: \mathrm{N}}\right) \mathbf{d} \theta \\
& =(\mathbf{H}+1) /(\mathrm{N}+2) \\
& =751 / 1002=74.95 \%
\end{aligned}
$$

Note: we never computed θ

Parameter estimation

- What if we want an estimate of θ ?
- Maximum A Posteriori (MAP):

$$
\begin{aligned}
\theta^{*} & =\arg \max _{\theta} \mathbf{p}(\theta \mid \mathrm{O} \\
& =\mathbf{H} / \mathrm{N} \\
& =750 / 1000=\mathbf{7 5 \%}
\end{aligned}
$$

A problem

Suppose we flip the coin once What is $\mathrm{P}\left(\mathrm{C}_{2}=\mathrm{h} \mid \mathrm{C}_{1}=\mathrm{h}\right)$?

MAP estimate: $\theta^{*}=\mathbf{H} / \mathrm{N}=1$ This is absurd! Bayesian prediction:

$$
\mathrm{P}\left(\mathrm{C}_{2}=\mathrm{h} \mid \mathrm{C}_{1}=\mathrm{h}\right)=(\mathrm{H}+1) /(\mathrm{N}+2)=2 / 3
$$

What went wrong?

$\mathbf{p}\left(\theta \mid \mathrm{C}_{1: \mathrm{N}}\right)$

$\mathbf{p}\left(\theta \mid \mathbf{C}_{1}\right)$

Over-fitting

- A model that fits the data well but does not generalize
- Occurs when an estimate is obtained from a "spread-out posterior

- Important to ask the right question: estimate $\mathrm{C}_{\mathrm{N}+1}$, not θ

Principle \#4:

Parameter estimation is not Bayesian. It leads to errors, such as over-fitting.

Advantages of estimation

Bayesian prediction is usually
difficult and/or expensive

$$
\mathbf{p}(\mathbf{x} \mid \mathbf{D})=\int \mathbf{p}(\mathbf{x}, \theta \mid \mathbf{D}) \mathbf{d} \theta
$$

Q: When is estimation safe?

A: When the posterior is "peaked"

- The posterior "looks like" a spike
- Generally, this means a lot more data than parameters
- But this is not a guarantee (e.g., fit a line to 100 identical data points)
- Practical answer: use error bars (posterior variance)

Principle \#4a:

Parameter estimation is easier than prediction. It works well when the posterior is "peaked."

Learning a Gaussian

Learning a Gaussian

$\mathbf{p}\left(\mathbf{x} \mid \mu, \sigma^{2}\right)=\exp \left(-(x-\mu)^{2} / 2 \sigma^{2}\right) / \sqrt{2 \pi \sigma^{2}}$
$\mathbf{p}\left(\mathbf{x}_{1: \mathrm{K}} \mid \mu, \sigma^{2}\right)=\Pi \mathbf{p}\left(\mathbf{x}_{\mathrm{i}} \mid \mu, \sigma^{2}\right)$
Want: $\max p\left(x_{1: K} \mid \mu, \sigma^{2}\right)$

$$
\begin{aligned}
& =\min -\ln p\left(x_{1: K} \mid \mu, \sigma^{2}\right) \\
& =\sum_{i}(x-\mu)^{2} / 2 \sigma^{2}+K / 2 \ln 2 \pi \sigma^{2}
\end{aligned}
$$

Closed-form solution:

$$
\begin{aligned}
& \mu=\sum_{i} x_{i} / \mathbf{N} \\
& \sigma^{2}=\sum_{i}(\mathbf{x}-\mu)^{2} / \mathbf{N}
\end{aligned}
$$

Stereology

[Jagnow et al. 2004 (this morning)]
Model:

PDF over solids
$\mathbf{p}(\theta)$

$\mathbf{p}(\mathbf{S} \mid \theta)$

p(I|S)

Problem: What is the PDF over solids?
Can't estimate individual solid shapes: $\arg \max p(\theta, S \mid I)$ is underconstrained)

Stereology

PDF over solids

$\mathbf{p}(\theta)$
$\mathbf{p}(\mathbf{S} \mid \theta)$

$p(I \mid S)$

Marginalize out S:

$$
\mathbf{p}(\theta \mid \mathbf{I})=\int \mathbf{p}(\theta, \mathbf{S} \mid \mathbf{I}) \mathbf{d} \mathbf{S}
$$

can be maximized

Principle \#4b:

When estimating variables, marginalize out as many unknowns as possible.

Algorithms for this:

- Expectation-Maximization (EM)
- Variational learning

Regression

Regression

Curve fitting

Linear regression

Model:

$\varepsilon \sim \mathcal{N}\left(0, \sigma^{2} \mathbf{I}\right)$
$\mathbf{y}=\mathbf{a x}+\mathbf{b}+\varepsilon$

Or:
$\mathbf{p}\left(\mathbf{y} \mid \mathbf{x}, \mathbf{a}, \mathbf{b}, \sigma^{2}\right)=$ $\mathcal{N}\left(\mathbf{a x}+\mathbf{b}, \sigma^{2} \mathrm{I}\right)$

Linear regression

$$
\begin{aligned}
& \mathbf{p}\left(\mathbf{y} \mid \mathbf{x}, \mathbf{a}, \mathbf{b}, \sigma^{2}\right)=\mathcal{N}\left(\mathbf{a x}+\mathbf{b}, \sigma^{2} \mathbf{I}\right) \\
& \mathbf{p (\mathbf { y } _ { 1 : K } | \mathbf { x } _ { 1 : \mathrm { K } } , \mathbf { a } , \mathbf { b } , \sigma ^ { 2 }) = \prod _ { \mathrm { i } } \mathbf { p } (\mathbf { y } _ { \mathrm { i } } | \mathbf { x } _ { \mathrm { i } } , \mathbf { a } , \mathbf { b } , \sigma ^ { 2 })} \\
& \text { Maximum likelihood: } \\
& \mathbf{a}^{*}, \mathbf{b}^{*}, \sigma^{2^{*}}=\arg \max \prod_{i} \mathbf{p}\left(\mathbf{y}_{\mathrm{i}} \mid \mathbf{x}_{\mathrm{i}}, a, b, \sigma^{2}\right) \\
& =\arg \min -\ln \prod_{\mathrm{i}} \mathbf{p}\left(\mathbf{y}_{\mathrm{i}} \mid \mathbf{x}, \mathbf{a}, \mathbf{b}, \sigma^{2}\right)
\end{aligned}
$$

Minimize:

$$
\sum_{\mathrm{i}}\left(\mathrm{y}_{\mathrm{i}}-\left(\mathrm{ax} \mathrm{i}_{\mathrm{i}}+\mathrm{b}\right)\right)^{2 /\left(2 \sigma^{2}\right)}+\mathrm{K} / 2 \ln 2 \pi \sigma^{2}
$$

$$
1
$$

Sum-of-squared differences: "Least-squares"

Linear regression

Same idea in higher dimensions

$$
\mathbf{y}=\mathbf{A} \mathbf{x}+\mu+\varepsilon
$$

Nonlinear regression

Model:

 $\varepsilon \sim \mathcal{N}\left(0, \sigma^{2} \mathbf{I}\right)$ $\mathbf{y}=\mathbf{f}(\mathbf{x} ; \underset{\uparrow}{\mathbf{w}})+\varepsilon$Curve parameters
Or:
$\mathbf{p}\left(\mathbf{y} \mid \mathbf{x}, \mathbf{w}, \sigma^{2}\right)=$
$\mathcal{N}\left(\mathbf{f}(\mathbf{x} ; \mathbf{w}), \sigma^{2} \mathbf{I}\right)$

Typical curve models

Line

$f(x ; w)=w_{0} x+w_{1}$
B-spline, Radial Basis Functions
$\mathbf{f}(\mathbf{x} ; \mathbf{w})=\sum_{\mathrm{i}} \mathbf{w}_{\mathbf{i}} \mathbf{B}_{\mathbf{i}}(\mathbf{x})$
Artificial neural network
$\mathbf{f}(\mathbf{x} ; \mathbf{w})=\sum_{\mathrm{i}} \mathbf{w}_{\mathrm{i}} \tanh \left(\Sigma_{\mathrm{j}} \mathbf{w}_{\mathrm{j}} \mathbf{x}+\mathbf{w}_{\mathbf{0}}\right)+\mathbf{w}_{\mathbf{1}}$

Nonlinear regression

$\mathbf{p}\left(\mathbf{y} \mid \mathbf{x}, \mathbf{w}, \sigma^{2}\right)=\mathcal{N}\left(\mathbf{f}(\mathbf{x} ; \mathbf{w}), \sigma^{2} \mathbf{I}\right)$
$\mathbf{p}\left(\mathbf{y}_{1: K} \mid \mathbf{x}_{1: K}, \mathbf{w}, \sigma^{2}\right)=\prod_{i} \mathbf{p}\left(\mathbf{y}_{\mathrm{i}} \mid \mathbf{x}_{\mathrm{i}}, \mathbf{a}, \mathrm{b}, \sigma^{2}\right)$
Maximum likelihood:

$$
\begin{aligned}
\mathbf{w}^{*}, \sigma^{2^{*}}= & \arg \max \Pi_{i} p\left(y_{i} \mid \mathbf{x}_{i}, \mathbf{a}, \mathbf{b}, \sigma^{2}\right) \\
& =\arg \min -\ln \prod_{i} p\left(y_{i} \mid x, a, b, \sigma^{2}\right)
\end{aligned}
$$

Minimize:

$$
\sum_{\mathrm{i}}\left(\mathrm{y}_{\mathrm{i}}-\mathrm{f}\left(\mathrm{x}_{\mathrm{i}} ; \mathbf{w}\right)\right)^{2 /\left(2 \sigma^{2}\right)+\mathrm{K} / 2 \ln 2 \pi \sigma^{2} .}
$$

t

Sum-of-squared differences: "Least-squares"

Principle \#5:

Least-squares estimation is a special case of maximum likelihood.

Principle \#5a:

Because it is maximum likelihood, least-squares suffers from overfitting.

Overfitting

Smoothness priors

Assumption: true curve is smooth

Bending energy:

$$
\mathbf{p}(\mathbf{w} \mid \lambda) \sim \exp \left(-\int\|\nabla \mathbf{f}\|^{2} / 2 \lambda^{2}\right)
$$

Weight decay:

$$
\mathbf{p}(\mathbf{w} \mid \lambda) \sim \exp \left(-\|\mathbf{w}\|^{2} / 2 \lambda^{2}\right)
$$

Smoothness priors

MAP estimation: $\arg \max p(w \mid y)=p(y \mid w) p(w) / p(y)=$ $\arg \min -\ln p(y \mid w) p(w)=$ $\left.\sum_{i}\left(\mathbf{y}_{\mathrm{i}}-\mathbf{f}\left(\mathbf{x}_{\mathrm{i}} ; \mathbf{w}\right)\right)^{2 /\left(2 \sigma^{2}\right.}\right)+\|\mathbf{w}\|^{2 / 2} \lambda^{2}+K \ln \sigma$ 4

Sum-of-squares differences

Smoothness

Underfitting

Underfitting

Principle \#5b:

MAP estimation with smoothness priors leads to under-fitting.

Applications in graphics

Two examples:

Shape interpolation

Approximate physics

[Grzeszczuk et al. 1998]
[Rose III et al. 2001]

Choices in fitting

- Smoothness, noise parameters
- Choice of basis functions
- Number of basis functions

Bayesian methods can make these choices automatically and effectively

Learning smoothness

Given "good" data, solve
$\lambda^{*}, \sigma^{2^{*}}=\arg \max p\left(\lambda, \sigma^{2} \mid \mathbf{w}, \mathbf{x}_{1: K}, y_{1: K}\right)$
Closed-form solution
Shape reconstruction in vision [Szeliski 1989]

Learning without shape

Q: Can we learn smoothness/noise without knowing the curve?
A: Yes.

Learning without shape

$\lambda^{*}, \sigma^{2 *}=\arg \max p\left(\lambda, \sigma^{2} \mid \mathbf{x}_{1: K}, \mathbf{y}_{1: K}\right)$
(2 unknowns, K measurements)

$$
\begin{aligned}
\mathbf{p}\left(\lambda, \sigma^{2} \mid \mathbf{x}_{1: \mathrm{K}}, \mathbf{y}_{1: \mathrm{K}}\right) & =\int \mathbf{p}\left(\lambda, \sigma^{2}, \mathbf{w} \mid \mathbf{x}_{1: \mathrm{K}}, \mathbf{y}_{1: \mathrm{K}}\right) \mathbf{d w} \\
& \propto \int \mathbf{p}\left(\mathbf{x}_{1: \mathrm{K}}, \mathbf{y}_{1: \mathrm{K}} \mid \mathbf{w}, \sigma^{2}, \lambda\right) \mathbf{p}\left(\mathbf{w} \mid \lambda, \sigma^{2}\right) \mathbf{d w}
\end{aligned}
$$

Bayesian regression

don't fit a single curve, but keep the uncertainty in the curve:
$\mathbf{p}\left(\mathbf{x} \mid \mathbf{x}_{1: \mathrm{N}}, \mathrm{y}_{1: \mathrm{N}}\right)$

Bayesian regression

MAP/Least-squares
(hand-tuned λ, σ^{2}, basis functions)

Gaussian Process regression (learned parameters λ, σ^{2})

Bayesian regression

Principle \#6:

Bayes' rule provide principle for learning (or marginalizing out) all parameters.

Prediction variances

More info: D. MacKay's Introduction to Gaussian Processes

NIPS 2003 Feature Selection

 Challenge- Competition between classification algorithm, including SVMs, nearest neighbors, GPs, etc.
- Winners: R. Neal and J. Zhang
- Most powerful model they could compute with (1000's of parameters) and Bayesian prediction
- Very expensive computations

Summary of "Principles"

1. Probability theory is common sense reduced to calculation.
2. Given a model, we can derive any probability
3. Describe a model of the world, and then compute the probabilities of the unknowns with Bayes' Rule

Summary of "Principles"

4. Parameter estimation leads to over-fitting when the posterior isn't "peaked." However, it is easier than Bayesian prediction.
5. Least-squares estimation is a special case of MAP, and can suffer from over- and underfitting
6. You can learn (or marginalize out) all parameters.

Statistical shape and

 appearance models with PCA
Key vision problems

- Is there a face in this image?
- Who is it?
- What is the 3D shape and texture?

Turk and Pentland 1991

Key vision problems

- Is there a person in this picture?
- Who?
- What is their 3D pose?

Key graphics problems

- How can we easily create new bodies, shapes, and appearances?
- How can we edit images and videos?

The difficulty

- Ill-posed problems
- Need prior assumptions
- Lots of work for an artist

Outline

- Face modeling problem
- Linear shape spaces
- PCA
- Probabilistic PCA
- Applications
- face and body modeling

Background: 2D models

- Eigenfaces
- Sirovich and Kirby 1987, Turk and Pentland 1991
- Active Appearance Models/Morphable models
- Beier and Neely 1990
- Cootes and Taylor 1998

Face representation

- 70,000 vertices with (x, y, z, r, g, b)
- Correspondence precomputed

[Blanz and Vetter 1999]

Data representation

$$
\begin{aligned}
& \mathbf{y}_{\mathbf{i}}=\left[x_{1}, y_{1}, z_{1}, \ldots, x_{70,000}, y_{70,000}, z_{70,000}\right]^{\mathrm{T}} \\
& \text { Linear blends: }
\end{aligned}
$$

a.k.a. blendshapes, morphing

Linear subspace model

$$
\begin{aligned}
& \mathbf{y}=\sum_{i} \mathbf{w}_{\mathbf{i}} \mathbf{y}_{\mathbf{i}} \quad\left(\text { s.t., } \sum_{i} \mathbf{w}_{\mathbf{i}}=\mathbf{1}\right) \\
&=\sum_{\mathbf{i}} \mathbf{x}_{\mathbf{i}} \mathbf{a}_{\mathbf{i}}+\mu \\
&=\mathbf{A x}+\mu \\
& \therefore \therefore \therefore \therefore
\end{aligned}
$$

Problem: can we learn this linear space?

Principal Components Analysis (PCA)

Same model as linear regression Unknown x

Conventional PCA (Bayesian formulation)

$\mathbf{x}, \mathbf{A}, \mu \sim$ Uniform, $\mathbf{A}^{\mathbf{T}} \mathbf{A}=\mathbf{I}$
$\varepsilon \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
$\mathbf{y}=\mathbf{A} \mathbf{x}+\mu+\varepsilon$
Given training $y_{1: \mathrm{K}}$, what are $\mathrm{A}, \mathrm{x}, \mu, \sigma^{2}$?
Maximum likelihood reduces to:
$\sum_{i}\left\|y_{i}-\left(A x_{i}+\mu\right)\right\|^{2} / 2 \sigma^{2}+K / 2 \ln 2 \pi \sigma^{2}$

Closed-form solution exists

PCA with missing data

Problems:

- Estimated point far from data if data is noisy
- High-dimensional y is a uniform distribution
- Low-dimensional x is overconstrained

Why? Because $x \sim \mathcal{U}$

Probabilistic PCA

$\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
$\mathbf{y}=\mathbf{A} \mathbf{x}+\mathbf{b}+\varepsilon$

[Roweis 1998, Tipping and Bishop 1998]

Fitting a Gaussian

$\mathbf{y} \sim \mathcal{N}(\mu, \Sigma)$
easy to learn, and nice properties
... but Σ is a $70,000^{2}$ matrix

PPCA vs. Gaussians

However...

 PPCA: $p(y)=\int p(x, y) d x$$$
=\mathcal{N}\left(\mathbf{b}, \mathbf{A} \mathbf{A}^{\mathrm{T}}+\sigma^{2} \mathbf{I}\right)
$$

This is a special case of a Gaussian!
PCA is a degenerate case ($\sigma^{2}=0$)

Face estimation in an image

$\mathbf{p}(\mathbf{y})=\mathcal{N}(\mu, \Sigma)$
p(Image $\mid y)=\mathcal{N}\left(I_{s}(y), \sigma^{2} I\right)$

[Blanz and Vetter 1999]
$-\ln p(S, T \mid$ Image $)=\|$ Image $-I_{s}(y) \|^{2} / 2 \sigma^{2}+(y-\mu)^{T} \Sigma^{-1}(y-\mu) / 2$

Image fitting term
Face likelihood

Use PCA coordinates for efficiency Efficient editing in PCA space

Comparison

PCA: unconstrained latent space not good for missing data
Gaussians: general model, but impractical for large data
PPCA: constrained Gaussian - best of both worlds

Estimating a face from video

[Blanz et al. 2003]

The space of all body shapes

[Allen et al. 2003]

The space of all body shapes

Non-rigid 3D modeling from video

What if we don't have training data?

[Torresani and Hertzmann 2004]

Non-rigid 3D modeling from video

- Approach: learn all parameters
- shape and motion
- shape PDF
- noise and outliers
- Lots of missing data (depths)
- PPCA is essential
- Same basic framework, more unknowns

Results

Lucas-Kanade tracking

Tracking result

3D reconstruction

Reference frame

Results

Robust algorithm

3D reconstruction
[Almodovar 2002]

Inverse kinematics

[Grochow et al. 2004 (tomorrow)]

Problems with Gaussians/PCA

Space of poses may is nonlinear, non-Gaussian

Non-linear dimension reduction

$$
\mathrm{y}=\mathrm{f}(\mathrm{x} ; \mathbf{w})+\varepsilon
$$

Like non-linear regression w/o x

NLDR for BRDFs: [Matusik et al. 2003]

Problem with Gaussians/PPCA

Style-based IK

Walk cycle:

Details: [Grochow 2004 (tomorrow)]

Discussion and frontiers

Designing learning algorithms for graphics

Write a generative model p(data | model)
Use Bayes' rule to learn the model from data
Generate new data from the model and constraints
(numerical methods may be required)

What model do we use?

- Intuition, experience, experimentation, rules-of-thumb
- Put as much domain knowledge in as possible
- model 3D shapes rather than pixels
- joint angles instead of 3D positions
- Gaussians for simple cases; nonlinear models for complex cases (active research area)

Q: Are there any limits to the power of Bayes' Rule?

 http://yudkowsky.net/bayes/bayes.html:A: According to legend, one who fully grasped Bayes' Rule would gain the ability to create and physically enter an alternate universe using only off-the-shelf equipment. One who fully grasps Bayes' Rule, yet remains in our universe to aid others, is known as a Bayesattva.

Problems with Bayesian methods

1. The best solution is usually intractable

- often requires expensive numerical computation
- it's still better to understand the real problem, and the approximations
- need to choose approximations carefully

Problems with Bayesian methods

2. Some complicated math to do

- Models are simple, algorithms complicated
- May still be worth it
- Bayesian toolboxes on the way (e.g., VIBES, Intel OpenPNL)

Problems with Bayesian methods

3. Complex models sometimes impede creativity

- Sometimes it's easier to tune
- Hack first, be principled later
- Probabilistic models give insight that helps with hacking

Benefits of the Bayesian approach

1. Principled modeling of noise and uncertainty
2. Unified model for learning and synthesis
3. Learn all parameters
4. Good results from simple models
5. Lots of good research and algorithms

Course notes, slides, links:

http://www.dgp.toronto.edu/~hertzman/ibl2004
Course evaluation
http://www.siggraph.org/courses_evaluation
Thank you!

