

Topic 10 - AASHTO Rigid Pavement Design

2. General Design Variables

- Design Period
- Traffic - what changes? (EALF Table 6.7)
- Reliability
- Based on functional classification
- Overall standard deviation $\left(\mathrm{S}_{0}=0.25-0.35\right)$
- Performance criteria
- $\quad \triangle$ PSI $=$ PSI $_{0}-$ PSI $_{t}$

3. Material Properties
3.1 Effective Modulus of Subgrade Reaction (k)

Need to convert subgrade M_{R} to k :

1. Without Subbase
2. With Subbase
3. Shallow bedrock

Topic 10 - AASHTO Rigid Pavement Design

1. Introduction

Empirical design based on the AASHO road test:

- Over 200 test sections JPCP (15^{\prime} spacing) and JRPC (40^{\prime} spacing)
- Range of slab thickness: 2.5 to 12.5 inches
- Subbase type: untreated gravel/sand with plastic fines
- Subbase thickness; 0 to 9 inches
- Subgrade soil: silty-clay (A-6)
- Monitored PSI w/ load applications - developed regression eqn's
- Number of load applications: 1,114,000

Use Nomograph (Figures 12.17a\&b) or solve equation

Topic 10 - AAS	
5. Other Design Features	
5.1 Slab Length (8) What does this (length) depend on?	
5.1.1 Jointed Plain Concrete Pavement (JPCP)	
- Governed by joint opening$\delta=\mathrm{C} \cdot \mathrm{~L}\left(\alpha_{\mathrm{t}} \cdot \Delta \mathrm{~T}+\varepsilon\right)$	
Where:	
$\delta=$ Joint opening	
$\begin{aligned} & \alpha_{\mathrm{t}}=\text { Coefficient of thermal contraction } \\ & \varepsilon=\text { Drying shrinkage coefficient } \end{aligned}$	
For NO dowels, determine L for $\delta=0.05^{\prime \prime}$	
$L=\frac{}{C\left(\alpha_{t} \times \Delta T+\varepsilon\right)}=\frac{}{0.65\left(5.5 \times 10^{-6} \times 60+1.0 \times 10^{-4}\right)}=179^{\prime \prime}$	
$L \cong 15 f t$	USE DOWELS

Topic $10-$ AASHTO Rigid Pavement Design
5.2 JPCP Design
$\underline{5.2 .1 \text { Slab Length for no Dowels }\left(\delta<0.05^{\prime \prime}\right)}$
$\delta=\mathrm{C} \cdot \mathrm{L}\left(\alpha_{\mathrm{t}} \cdot \Delta \mathrm{T}+\varepsilon\right) \quad \mathrm{L}=\frac{\delta}{\mathrm{C}\left(\alpha_{\mathrm{t}} \Delta \mathrm{T}+\varepsilon\right)}$
$\delta=0.05$
$\alpha_{\mathrm{t}}=3.8 \times 10^{-6} /{ }^{\circ} \mathrm{F}($ Table 12.23, Limestone $)$
$\varepsilon=0.00045$ (Table 12.22, Indirect Tensile Strength $=500 \mathrm{psi})$
$\mathrm{C}=0.65($ Cement Treated $)$
$\mathrm{L}=\frac{\delta}{\mathrm{C}\left(\alpha_{\mathrm{t}} \times \Delta \mathrm{T}+\varepsilon\right)}=\frac{0.05}{0.65\left(3.8 \times 10^{-6} \times 55+4.5 \times 10^{-4}\right)}=116.7^{\prime \prime}$
$\mathrm{L} \cong 9.7 \mathrm{ft}$
Use SLAB LENGTH=9 ft
(2)

Topic 10 - AASHTO Rigid Pavement Design	
5.3 JRCP Design	
5.3.1 Slab Thickness	
Declare the variables:	
$\mathrm{W}_{18}:=37900000 \quad \mathrm{E}_{\mathrm{c}}:=4500000 \quad \triangle \mathrm{PSI}:=1.5 \mathrm{k}:=480 \quad \mathrm{~S}_{\mathrm{c}}:=725$	
$\mathrm{C}_{\mathrm{d}}:=1.0 \quad \mathrm{p}_{\mathrm{t}}:=3.0 \quad \mathrm{z}_{\mathrm{R}}:=-1.282 \quad \mathrm{~S}_{0}:=0.4$	
$\mathrm{J}:=2.8$ (Table 12.19, With Dowels)	
Give an initial estimate:	
D : $=4.5$	
Solver iteration:	
$\log \left(W_{18}\right)=\left(\mathrm{Z}_{\mathrm{R}} \cdot \mathrm{S}_{0}\right)+7.35 \cdot \log (\mathrm{D}+1)-0.06+\frac{1}{1+\frac{1.624 \cdot 10^{7}}{(\mathrm{D}+1)^{8.46}}}+\left(4.22-0.32 \cdot \mathrm{p}_{\mathrm{t}}\right) \cdot 10 \mathrm{~g}$	$\left.215.63 \cdot \mathrm{~J} \cdot\left[\mathrm{D}^{0.75}-\frac{18.42}{\left(\frac{\left.\mathrm{E}_{\mathrm{c}}\right)^{0.25}}{\mathrm{k}}\right)^{0}}\right]\right]$
$\begin{aligned} & \text { Find(D) }=11.11 \\ & 020 \end{aligned}$	Enowi

Topic 10 - AASHTO Rigid Pavement Design

5.3.2 Reinforcement

Longitudinal:
$A_{s}=\frac{(0.0868)(11)(35 \times 12)(1.5)}{2 \times 43000}=0.0070 \cdot \frac{\mathrm{in}^{2}}{\mathrm{in}} \quad A_{\mathrm{s}}=0.0839 \cdot \frac{\mathrm{in}^{2}}{\mathrm{ft}}$
Transverse: $\mathbf{1 2}^{\prime}$ (lane) $\mathbf{+ 1 2}$ '(lane) $+\mathbf{1 0}$ '(shoulder)
$A_{s}=\frac{(0.0868)(11)(34) \times 12)(1.5)}{2 \times 43000}=0.0068 \cdot \frac{\mathrm{in}^{2}}{\text { in }} \quad A_{s}=0.0816 \cdot \frac{\mathrm{in}^{2}}{\mathrm{ft}}$
Fabric: 6×12 - W4.5 x W8.5

