ChemRxiv[™]

Ab Initio Prediction of High-Temperature Magnetic Relaxation Rates in Single-Molecule Magnets

Daniel Reta, Jon G. C. Kragskow, Nicholas Chilton

Submitted date: 19/01/2021 • Posted date: 20/01/2021

Licence: CC BY-NC-ND 4.0

Citation information: Reta, Daniel; Kragskow, Jon G. C.; Chilton, Nicholas (2021): Ab Initio Prediction of High-Temperature Magnetic Relaxation Rates in Single-Molecule Magnets. ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.13606556.v1

Organometallic molecules based on $[Dy(Cp^R)_2]^+$ cations have emerged as clear front-runners in the search for high-temperature single-molecule magnets. However, despite a growing family of structurally-similar molecules, these molecules show significant variations in their magnetic properties, demonstrating the importance of understanding magneto-structural relationships towards developing more efficient design strategies. Here we refine our ab initio spin dynamics methodology and show that it is capable of quantitative prediction of relative relaxation rates in the Orbach region. Applying it to all reported $[Dy(Cp^R)_2]^+$ cations allows us to tease out differences in their relaxation dynamics, highlighting that the main discriminant is the magnitude of the crystal field splitting. We subsequently employ the method to predict relaxation rates for a series of hypothetical organometallic sandwich compounds, revealing an upper limit to the effective barrier to magnetic relaxation of around 2200 K, which has been reached. However, we show that further improvements to single-molecule magnets can be made by moving vibrational modes off-resonance with electronic excitations.

	12.11	$\langle \mathbf{O} \rangle$
ΗI	list	(2)
	not	(-)

Long_Layfield.docx (1.12 MiB)	view on ChemRxiv • download file
Long_Layfield_SI.docx (5.82 MiB)	view on ChemRxiv • download file

Ab initio prediction of high-temperature magnetic relaxation rates in single-molecule magnets

Daniel Reta, Jon G. C. Kragskow and Nicholas F. Chilton*

Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

Abstract

Organometallic molecules based on $[Dy(Cp^R)_2]^+$ cations have emerged as clear frontrunners in the search for high-temperature single-molecule magnets. However, despite a growing family of structurally-similar molecules, these molecules show significant variations in their magnetic properties, demonstrating the importance of understanding magnetostructural relationships towards developing more efficient design strategies. Here we refine our *ab initio* spin dynamics methodology and show that it is capable of quantitative prediction of relative relaxation rates in the Orbach region. Applying it to all reported $[Dy(Cp^R)_2]^+$ cations allows us to tease out differences in their relaxation dynamics, highlighting that the main discriminant is the magnitude of the crystal field splitting. We subsequently employ the method to predict relaxation rates for a series of hypothetical organometallic sandwich compounds, revealing an upper limit to the effective barrier to magnetic relaxation of around 2200 K, which has been reached. However, we show that further improvements to single-molecule magnets can be made by moving vibrational modes off-resonance with electronic excitations.

Introduction

The ultimate miniaturisation of classical memory devices lies in the use of atoms or molecules to store binary data.¹ Single-molecule magnets (SMMs), molecules that exhibit slow magnetic relaxation and memory effects, provide a flexible platform for realising high-density data storage. The first single-molecule magnet { Mn_{12} } was shown to display magnetic hysteresis and a magnetic reversal (or magnetic relaxation) rate that is exponentially dependent on temperature above 2.5 K,² which is the hallmark of thermally-activated relaxation over an intrinsic energy barrier (U_{eff}).³ The relaxation process was theoretically elaborated and confirmed as a concatenated series of single spin-phonon transitions known as the Orbach process (often called a multi-phonon process) allowing the SMM to traverse its

excited spin states and reverse its magnetization.⁴⁻⁶ The operation of SMMs is thus inextricably linked to their electronic structure, highlighting the crucial role of magnetic anisotropy in producing an energy barrier for magnetic relaxation. With the discovery that monometallic lanthanide complexes could also show SMM behaviour,^{7,8} a conceptual shift in SMM design took place. Owing to the radially-contracted 4f orbitals and nearly unquenched orbital momentum of the trivalent lanthanides, simple electrostatic considerations gave design criteria to achieve large anisotropy;⁹⁻¹² for instance linear coordination geometry for Dy(III), or equatorial coordination geometries for Er(III). This has driven a huge increase in $U_{\rm eff}$ barriers¹³ and pushed the single-phonon-driven Orbach process to higher temperatures, often replaced by a two-phonon Raman process dominating below *ca*. 50 K.¹⁴ An important component of larger $U_{\rm eff}$ barriers is the presence of larger energy gaps between electronic excited states (i.e. stronger crystal field splitting), making it is far from obvious that the same low-energy phonons (lattice acoustic modes) should be responsible for effecting magnetic relaxation as was proposed for {Mn₁₂}.² Fortunately, recent theoretical efforts have begun to establish robust and systematic methodologies to treat these problems,¹⁵⁻²¹ targeting a new approach of engineering spin-phonon coupling.

The most successful class of SMMs thus far have converged to a series of Dy(III)-based metallocenium cations^{19,22,23} (Figure 1, left): $[Dy(Cp^{iPr4})_2][B(C_6F_5)_4]$ (1),²² $[Dy(Cp^{ttt})_2]$ $[B(C_6F_5)_4]$ (2),¹⁹ $[Dy(Cp^{iPr5})_2][B(C_6F_5)_4]$ (3),²² $[Dy(Cp^{iPr4Et})_2][B(C_6F_5)_4]$ (4),²² $[Dy(Cp^{iPr4Me})_2]$ $[B(C_6F_5)_4]$ (5)²² and $[Dy(Cp^{iPr5})(Cp^*)][B(C_6F_5)_4]$ (6).²³ These complexes are chemically very similar to one-another as they only differ in the cyclopentadienyl (Cp) substituents and even share the same $[B(C_6F_5)_4]^-$ counterion, though they do crystallise in different space groups: P_{2_i} , P_1 , $P_{2_i/n}$, $P_{2_i/n}$, $P_{2_i/c}$ and $P_{2_i/c}$, for **1-6** respectively. Despite their similarity, these compounds display a significant variation in their magnetic relaxation rates (Figure 1, right). Our numbering scheme is chosen to reflect the ordering of their 100 s blocking temperatures (the temperature at which the relaxation time is 100 s, herein T_{B.100s}), and while there are some crossovers in different temperature regimes, overall **1** is the fastest, **6** is the slowest, and 2-5 are very similar. Indeed, considering estimated standard deviations (ESDs) for the experimental relaxation rates shows that, within error, the relaxation rates in the Orbach region for **3-5** cannot be distinguished (Figure S1).²⁴ Due to their differing relaxation rates, their $T_{B,100s}$ values span almost 50 K; $T_{B,100s}$ lies well within the Raman regime for 1, while it falls at the intersection between the Raman and Orbach regimes for 2-5, and is at the start of the Orbach regime for 6. Thus, 1-6 are an ideal set of compounds to unpick how subtle

chemical differences result in such different magnetic relaxation rates, and, ideally, to establish the route forward to even better performing SMMs.

In this paper we refine our *ab initio* method for spin-dynamics^{19,21,25} and calculate the relaxation dynamics of **1-6** to determine what causes the differences in their dynamic magnetic properties. We show that our methodology is capable of quantitative prediction of relative rates of magnetic relaxation, subject to a *ca*. ten-fold overestimation with respect to experiment, giving us confidence in using the approach to compare the underlying spinphonon coupling in the Orbach region. Using a vibrational-mode-weighted-decomposition of the relaxation rate matrices, we find that the largest discriminant in the magnetic relaxation rates between **1** and **6** is their static electronic structures; that is, the energy gaps are largest for **6** and smallest for **1**. This confirms initial suggestions that the shorter Dy-Cp distances in **6** are responsible for its record-breaking properties. However, there is a limit to how large the CF splitting can be, and hence, we perform spin-dynamics calculations on theoretical bis- Cp^{R}/Cb^{R} -Dy(III) SMMs (where Cb is cyclobutadienyl) to show that *i*) energy barriers are unlikely to be increased much beyond $U_{\text{eff}} = 2217(16)$ K for **6**, and *ii*) yet slower relaxation rates can be achieved by reducing the resonance between vibrational modes and electronic states; for instance, an isolated $[Dy(C_5Me_5)_2]^+$ cation is predicted to have relaxation rates four orders of magnitude slower than **6**, despite having a smaller $U_{\rm eff}$ barrier.

Figure 1. (Left) Schematic representation of the cations in **1-6**. (Right) Magnetic relaxation rates for **1-6** ordered by $T_{B,100s}$.

Methods

Our approach for modelling the spin dynamics of Dy(III)-based SMMs has been given in detail in our recent works,^{19,21,25} and is explained in the Supporting Information Section S4. Generally, it consists of three steps: *i*) calculation of the molecular vibrational modes in the gas-phase using density-functional theory (DFT); *ii*) calculation of spin–phonon coupling (note: our calculations are in the gas phase and hence are not truly phonons, but nonetheless we use the common terminology to reflect the experimental situation) using complete active space self-consistent field spin-orbit (CASSCF-SO) calculations; and iii) simulation of spin-dynamics. Unlike the first iteration of our method¹⁹ we no longer calibrate atomic displacements (as this effect is largely due to acoustic modes which are not currently included in our model), we now use a resolution of the identity method for approximation of two electron integrals in CASSCF-SO,²⁵ and have revised our definition of zero-point displacement (Eq. S1). We also herein explore three different definitions of the spin-phonon coupling, including temperature-dependent spin-phonon coupling *via* temperature-dependent displacements (Eq. S2)²¹ and a first order Taylor expansion, and compare the choice of Boltzmann or Bose-Einstein phonon statistics; see Supporting Information Section S4. Calculating the relaxation rates for compound **2** to assess these options, we find that the rates show no dependence on the choice of spin-phonon coupling or phonon statistics (Figures S19 and S20), and henceforth we employ Bose-Einstein statistics and a first-order Taylor expansion to calculate the spin-phonon coupling.

The gas-phase normal modes of the cations in **1-6** are calculated with PBE^{26,27} and PBE0²⁸ density-functionals in conjunction with Grimme's empirical dispersion correction²⁹ within the Gaussian09d³⁰ suite of programs (Section S2 in the SI). We determine the maximal displacement along each normal mode using Boltzmann statistics of each harmonic oscillator at 100 K, and subsequently calculate the spin-phonon couplings using CASSCF-SO within the OpenMolcas³¹ package (Section S4 in the SI). At the crystalline and optimised geometries, we determine the electronic structure with a state-average CASSCF calculation for the 21 *S* = 5/2 states of Dy(III) followed by non-perturbative SO coupling, and the lowest 16 states (⁶H_{15/2} multiplet) of the molecule are projected onto a crystal field (CF) Hamiltonian acting in the 2*J* + 1 $|m_J\rangle$ basis.³² Improving the quality of the CASSCF method to include

more spin states (see Table S5) makes a negligible difference to the results (Tables S6-S9 and Figures S13-S14), and indeed there is also negligible difference using the PBE0-optimised geometries (Figure S17-18).

The spin-phonon coupling for each vibrational mode is determined from the CF decomposition of a CASSCF-SO calculation for distorted structures in the positive and negative directions along normal mode coordinates, with reference to the CF decomposition at the equilibrium geometry. The dependence of the CF parameters (CFPs) with distortion is fitted to a third-order polynomial (Eqn. S18), which can be used to interpolate the CFPs at a given temperature according to a temperature-dependent displacement (Eqns. S11, S16), or to determine the first derivative of the CFPs in a Taylor expansion (Eqn. S12). With this information, the perturbing CF matrices for each mode are determined in the equilibrium electronic eigenbasis and used to calculate the transition rates between all CF states. It is here that the only free parameter in our model is introduced, as a single fixed Gaussian linewidth parameter for each normal mode. In the final step, the master equation is constructed and solved to obtain the relaxation rates.¹⁹

Results

The DFT-optimised structures obtained for **1-6** are very similar to the experimentally determined crystal geometries (Table S3), where the largest RMSD (Dy atom, Cp rings, and Cp-bound C atoms) is 0.358 Å for **4**. Comparing the electronic structures between optimised and crystalline geometries, we find that the optimised geometries always show smaller energy gaps between the electronic states than the crystal geometries (Figure S15) and that the optimised geometries show overall CF splittings that correlate well with the ordering of T_B (Figure 2 and S15), but that this does not hold for all compounds when considering the crystal geometries (Figure S16). We find that the main anisotropy axis of the ground Kramers doublet is well-approximated by the average Dy-Cp_{centroid} vector, and that the ground doublet is $|\pm 15/2\rangle$, followed sequentially by $|\pm 13/2\rangle$, $|\pm 11/2\rangle$, $|\pm 9/2\rangle$, $|\pm 7/2\rangle$ and $|\pm 5/2\rangle$ excited doublets, while the two most energetic doublets are mixed m_J functions (Table S6), in agreement with previous works.^{19,23} The energy gaps between the ground and first excited doublets (optimised geometries) are 414, 461, 478, 479, 476 and 530 cm⁻¹ for **1-6**, respectively, in good correlation with the ordering of the experimental relaxation rates; **1** is the smallest, **6** is the largest, and **2-5** are very similar. Our results for **6** are in good agreement

with the original XMS-CASPT2 calculations performed for a similar optimized structure (Table S10).²³

Figure 2. Comparison of the electronic structure of compounds **1-6** calculated with the crystal field parameters obtained from CASSCF-SO calculations at the PBE-optimised gas-phase geometries.

Employing our *ab initio* spin-dynamics approach (see Methods and Supporting Information), we calculate the magnetic relaxation rates for **1-6**, where the only free parameter is a constant vibrational linewidth for all modes. Here we compare full-width-half-maximum (FWHM) linewidths of 6, 10 and 20 cm⁻¹ for all compounds, which are consistent with the IR spectra (FWHM *ca*. 6 – 26 cm⁻¹, Figures S8-S12). Calculation of the spin-dynamics for **1-6** using the PBE vibrational modes (Figure 3; results using PBE0 are nearly identical, Figure S21, hence we will only consider the PBE results further) show that calibration of the normal mode energies to IR spectra (linear calibration: slopes of 0.94 – 1.04 and intercepts of -9 – +70 cm⁻¹, Figures S8-S12, Table S4 and reference 19) is not crucial: we see the largest influences in **2**, however overall the changes are modest. For larger FWHM values, more modes come into resonance for more transitions and thus relaxation rates generally increase with linewidth (Figures 3 and S21). Crucially, however, for FWHM = 6, 10 or 20 cm⁻¹, our method predicts the correct ordering of the calculated rates: **1** is always fastest, **6** is always slowest, and **2-5** are very similar (Figure 4). Interestingly, in all cases we overestimate the relaxation rates by about a factor of *ca*. 10 (τ_c/τ_{exp} at 100 K with FWHM =

10 cm⁻¹ ranges from 5 – 40 for **1-6**). It is tempting to decrease the linewidth in order to match the experimental rates as closely as possible, and this would require FWHM values of *ca*. 1 – 4 cm⁻¹ for **1-6** (Figures S22). However, for FWHM < 6 cm⁻¹ the calculated rates no longer show the experimental ordering (*e.g.* for FWHM = 2 cm⁻¹ Figure 4) and the profiles start to deviate significantly from those obtained with larger linewidths; thus, we suggest that results with FWHM < 6 cm⁻¹ are not reliable (indeed such narrow linewidths are not consistent with the experimental IR spectra). While mode-energy- and temperature-dependent linewidths based on finite phonon lifetimes have been proposed by Lunghi et al., ¹⁵ we have found that this is not appropriate for modelling the magnetic relaxation in bis-alkoxide Dy(III) SMMs,³³ and this conclusion remains unchanged for the present $[Dy(Cp^R)_2]^+$ cations (see Figure S23 and S24). Hence, we identify that our method using the PBE density-functional without calibration and a single linewidth parameter of *ca*. 10 cm⁻¹ is capable of quantitative prediction of the relative Orbach relaxation rates, subject to an overestimation of approximately one order of magnitude in comparison to experiment.

Figure 3. Comparison of experimental (circles) and *ab initio* calculated (lines, PBE density-functional) relaxation rates for **1-6**. Solid and dashed lines are obtained without and with IR calibration, respectively. Fixed FWHM linewidths of 6 (blue), 10 (orange) and 20 cm⁻¹ (green) are employed. Experimental error bars are estimated standard deviations derived from the generalised Debye model.²⁴ Note: solid blue line for compound **1** is obscured by the solid orange line.

Figure 4. Comparison of calculated rates for **1-6**, obtained without IR calibration using the PBE density-functional. Experimental data for **1** and **6** is shown in circles. Experimental error bars are estimated standard deviations derived from the generalised Debye model.²⁴

Discussion

With the results from our *ab initio* spin-dynamics calculations in hand, and confidence that the relative relaxation rates of **1-6** are well described, we are now in a position to investigate the differences in magnetic relaxation between these compounds, and specifically why it is so slow for **6**. This is challenging because the calculated magnetic relaxation rate at a given temperature is the smallest magnitude non-zero eigenvalue of the 16×16 rate matrix, $\hat{\gamma}$, and there is no analytical solution that maps the matrix elements of $\hat{\gamma}$ onto its eigenvalues. In our first publication on this topic, we simply considered that the "first step in magnetic relaxation" (the $|\pm 15/2\rangle \rightarrow |\pm 13/2\rangle$ elements of $\hat{\gamma}$) would be most important,¹⁹ but later found

that this is not always the most probable first step in relaxation across different Dy(III) SMMs.^{25,21} Our second approach was to employ a "knockout" procedure, where the various $|\pm 15/2\rangle \rightarrow |\pm x\rangle$ elements of $\hat{\gamma}$ are set to zero one-by-one, and the transition responsible for the largest reduction to the overall relaxation rate when removed is determined.²¹ While this gave useful information for bis-alkoxide complexes,²¹ performing this analysis here (extending to all elements of $\hat{\gamma}$, not just those starting in $|\pm 15/2\rangle$) shows that no single element of $\hat{\gamma}$ has a decisive effect on the overall relaxation rates for any of **1-6** (Figure S25 – S31). Furthermore, analysing the spin phonon coupling strength³⁴ for all available modes and comparing them to the electronic energy gaps of **1-6** does not provide a clear answer either (Figure S32-S37).

Therefore, we have devised a new method for unpicking the differences in the relaxation dynamics between these molecules, and herein we focus on the differences between **1** and **6** which show the greatest disparity in their properties. Firstly, we compare the $\acute{\gamma}$ matrices between the two compounds to assess which transitions are different. The difference map of $\log_{10}[\acute{\gamma}_6] - \log_{10}[\acute{\gamma}_1]$ (Figure S38) shows that the average difference between the lower-triangular elements is $10^{0.7} \approx 5$ times slower for **6** than **1**, in reasonable correlation with the overall magnetic relaxation rates (calculated to be 11 times slower). However, there is a significant spread of differences, and indeed some intriguing features such as elements in $\acute{\gamma}_6$ that are 10^{10} times faster than in $\acute{\gamma}_1$ (dark purple square). Whilst comparing individual elements of $\acute{\gamma}$ provides some insight, there is no clear answer as to the root-cause of these differences. This is because each element in $\acute{\gamma}$ is the sum over all vibrational modes (273 and 237 modes for **1** and **6**, respectively) of the product (Eqn. 1) of the spin-phonon coupling

 $\left|\left\langle f \left| \widehat{H}_{SP_j} \right| i \right\rangle \right|^2$, which reports on how strongly vibrational mode *j* couples electronic states *i* and

f), the vibrational occupation $|\langle n_j - 1 | Q_j | n_j \rangle|^2$ or $|\langle n_j + 1 | Q_j | n_j \rangle|^2$, which is the probability of absorption or emission of a vibrational quantum, respectively), and the vibrational density of states (DOS, $\rho_j (|E_f - E_i|)$, which reports the proximity of the vibrational mode energy $\hbar \omega_j$ to the electronic transition).

$$\gamma_{fi} = \sum_{j}^{3N-6} \gamma_{fi,j} = \begin{cases} \sum_{j}^{3N-6} \frac{2\pi}{\hbar} \left| \left\langle f \left| \widehat{H}_{SPj} \right| i \right\rangle \right|^2 \left| \left\langle n_j - 1 \left| Q_j \right| n_j \right\rangle \right|^2 \rho_j \left(\left| E_f - E_i \right| \right) E_f > E_i \\ \sum_{j}^{3N-6} \frac{2\pi}{\hbar} \left| \left\langle f \left| \widehat{H}_{SPj} \right| i \right\rangle \right|^2 \left| \left\langle n_j + 1 \left| Q_j \right| n_j \right\rangle \right|^2 \rho_j \left(\left| E_f - E_i \right| \right) E_f < E_i \end{cases}$$

$$(1)$$

Although every transition is the sum over all modes, due to the conservation of energy and relatively sharp vibrational DOS (ρ_i is a Gaussian function centered at $\hbar \omega_i$ with FWHM discussed above), between one and four vibrational modes tend to dominate any given element of $\acute{\gamma}$. Thus, we calculate the mode-weighted spin-phonon coupling ($\langle \hat{H}_{SP} \rangle_{\vec{p}}$), vibrational occupation ($\langle Q_i \rangle_{\vec{p}}$), and vibrational DOS ($\langle \rho \rangle_{\vec{p}}$) for each element of $\acute{\gamma}$ (Eqns. 2 – 4); the effective number of modes associated with each transition ($\langle n \rangle_{\vec{p}}$) can then be determined simply (Eqn. 5). Hence, the total rate matrix $\acute{\gamma}$ can be exactly decomposed into matrix representations of each component (Eqn. 6), where \circ indicates the element-wise (Hadamard) product. This decomposition allows us to pick-and-mix the individual components of the relaxation rate matrix from any compound in order to generate a fictional relaxation rate matrix $\acute{\gamma}_{fict}$, and hence assess the contributing factors to the overall magnetic relaxation rates after diagonalization.

$$\left\langle \widehat{H}_{SP} \right\rangle_{fi} = \sum_{j}^{3N-6} \frac{\gamma_{fi,j}}{\gamma_{fi}} \left| \left\langle f \left| \widehat{H}_{SPj} \right| i \right\rangle \right|^2 \tag{2}$$

$$\langle \mathbf{Q} \rangle_{fi} = \begin{cases} \sum_{j}^{N} \frac{Y_{fi,j}}{Y_{fi}} |\langle n_j - 1 | Q_j | n_j \rangle|^2 E_f > E_i \\ \sum_{j}^{3N-6} \frac{Y_{fi,j}}{Y_{fi}} |\langle n_j + 1 | Q_j | n_j \rangle|^2 E_i > E_f \end{cases}$$
(3)

$$\langle \rho \rangle_{fi} = \sum_{j}^{3N-6} \frac{\gamma_{fi,j}}{\gamma_{fi}} \rho_{j} \left(\left| E_{f} - E_{i} \right| \right)$$
(4)

$$\langle n \rangle_{fi} = \frac{\gamma_{fi}}{\frac{2\pi}{\hbar} \langle \widehat{H}_{SP} \rangle_{fi} \langle Q \rangle_{fi} \langle \rho \rangle_{fi}}$$
(5)

$$\dot{\gamma} = \frac{2\pi}{\hbar} \langle \dot{H}_{SP} \rangle \circ \langle \dot{Q} \rangle \circ \langle \dot{\rho} \rangle \circ \langle \dot{n} \rangle$$
(6)

Starting from a base $\dot{\gamma}$ matrix of either **1** or **6**, the simplest test is to swap out the individual components one-by-one and determine the relaxation rates of $\dot{\gamma}_{fict}$ (Table 1). We find that by swapping either the spin-phonon coupling, the vibrational DOS or the effective number of modes, the relaxation rates are only altered by a factor of 1 - 3 times faster or slower (but note some of these shifts are counterintuitive, owing to the non-trivial

relationship between matrix elements and eigenvalues). However, when we swap the vibrational occupation between the two molecules, relaxation in **6** becomes 12 times faster, and relaxation in **1** becomes 10 times slower. Because magnetic relaxation in the Orbach regime depends on absorption of vibrational quanta, which must be near-resonant with the CF energy gaps (Eqn. 4), the dominance of vibrational occupation found here is direct evidence that the main discriminant in relaxation dynamics between best-in-class **6** versus worst-in-class **1** is the size the CF splitting, as previously suggested.²³

Table 1. Breakdown of relaxation rates between **1** and **6** *via* a mode-averaging procedure. Relaxation rates are calculated using the PBE density-functional, without IR calibration, at 100 K with FWHM = 10 cm⁻¹. Top portion corresponds to a base $\dot{\gamma}$ matrix of **1**, while bottom portion corresponds to a base matrix of **6**. Rows are ordered by increasing rate.

$\left< \acute{H}_{SP} \right>$	$\left< \dot{oldsymbol{Q}} \right>$	$\langle \dot{oldsymbol{q}} angle$	$\left< m{ extsf{n}} \right>$	$ au^{-1}$	$ au^{-1}/ au^{-1}_{1}$
1	6	1	1	1.32×10^{3}	0.10
1	1	1	1	1.37×10^{4}	1
6	1	1	1	142×10 ⁴	1.04
1	1	1	6	1.80×10^{4}	1.31
1	1	6	1	3.27×10^{4}	2.39
$\left< {{{{ \acute{H}}_{SP}}}} \right>$	$\left< \dot{oldsymbol{Q}} \right>$	$\langle \dot{oldsymbol{q}} angle$	$\langle {oldsymbol{\acute{n}}} angle$	$ au^{-1}$	$ au^{-1}/ au^{-1}_{6}$
$\left< \dot{H}_{SP} \right>$ 6	$\langle \acute{oldsymbol{Q}} angle$ 6	(مُ) 6	$\langle \acute{m{n}} angle$ 1	τ^{-1} 9.71×10 ²	$ au^{-1}/ au^{-1}_{6}$ 0.78
$\frac{\left< \acute{H}_{SP} \right>}{6}$	(<i>ģ</i>) 6 6	⟨ <i>'n</i> ⟩ 6 6	<pre>('n) 1 6</pre>	$ au^{-1}$ 9.71×10 ² 1.25×10 ³	$\frac{\tau^{-1}/\tau^{-1}_{6}}{0.78}$
$ \begin{array}{c} \left\langle \acute{H}_{SP} \right\rangle \\ \hline 6 \\ \hline 6 \\ \hline 6 \\ \hline 6 \end{array} $	⟨ <i>Q́</i> ⟩ 6 6 6	⟨𝔅⟩ 6 6 1	<pre>('n) 1 6 6</pre>	$ au^{-1}$ 9.71×10 ² 1.25×10 ³ 1.43×10 ³	
$ \begin{array}{c} \left\langle \acute{H}_{SP} \right\rangle \\ \hline 6 \\ \hline 6 \\ \hline 6 \\ \hline 1 \end{array} $	⟨ <i>Q́</i> ⟩ 6 6 6 6 6	(ṕ) 6 6 1 6 1 6 1	<pre>('n) 1 6 6 6 6</pre>	$ au^{-1}$ 9.71×10 ² 1.25×10 ³ 1.43×10 ³ 4.52×10 ³	$\frac{\tau^{-1}/\tau^{-1}_{6}}{0.78}$ 1 1.14 3.62

In order to assess whether the original proposal for removal of the C-H groups in **2** in order to improve magnetic memory (*i.e.* engineering the spin-phonon coupling) is indeed behind the increased performance of the **6** (calculated to be 1.4 times slower than **2** at 100 K), or if the changes are simply due to an increased CF splitting as it is for **1**, we have performed the mode-weighted analysis comparing **2** with **6** (Table S11). Starting from the base $\acute{\gamma}$ matrix of **2** and swapping the vibrational occupation component for that found in **6** decreases the rate by a factor of 5.3, and swapping out the spin-phonon coupling decreases the rate by a factor of 1.3, while swapping out the vibrational DOS or the effective number of modes from **6** actually increase the rate by factors of 1.1 and 1.5, respectively (and vice versa, the inverse is true). Hence, it seems that both an increased CF splitting in **6** (*via* the vibrational occupation terms) and a reduced spin-phonon coupling are responsible for slowing down relaxation in **6**

compared to **2**, but that the former effect is dominant. Hence, this analysis suggests that the enhancements achieved in slowing magnetic relaxation in $[Dy(Cp^R)_2]^+$ cations has not come about *via* engineering the spin-phonon coupling, but rather by enlarging the CF splitting.

To explore how far performance of Dy(III) SMMs can be enhanced, we have made a selection of homoleptic *bis*-persubstituted-aromatic sandwich complexes of the $[Dy(C_5R_5)_2]^+$ (R = H, Me) and $[Dy(C_4R_4)_2]^ (C_4R_4$ is a persubstituted cyclobutadienyl dianion, R = H, Me, ⁱPr, ^tBu) varieties, in addition to three proposed SMM candidates from the literature (viz. $[Dy(C_5I_5)_2]^+$, ²⁰ {DyFloureneⁱPr} = $[Dy(3,6,9-tri-iso-propyl-flourenide)_2]^+$, ²⁰ and $[Dy(N_5)_2]^+$, ³⁵), and used our *ab initio* spin-dynamics methodology to predict their magnetic relaxation rates (Figure 5a). Compared to references 20 and 35, here we have performed a full spin-dynamics calculation to arrive at predicted magnetic relaxation rates, rather than assessing the spinphonon coupling and/or electronic states alone. This allows us to predict that $[Dy(C_5I_5)_2]^+$ would have relaxation rates 1-2 orders of magnitude faster than **6**, and {DyFloureneⁱPr} would be 3-6 orders of magnitude faster than 6. Hence, these results broadly confirm the analysis of Ullah *et al.*, who concluded that $[Dy(C_5I_5)_2]^+$ would be a good SMM and that {DyFloureneⁱPr} would not be a good SMM, however we doubt whether $[Dy(C_5I_5)_2]^+$ would surpass the performance of **6** based on our results. Following a different strategy, Kotrle and Herchel proposed a series of inorganic sandwich complexes, predicting $[Dy(N_5)_2]^+$ to be a good SMM candidate with $U_{\rm eff}$ = 1475 K.³⁵ Using our methodology, we find that $[Dy(N_5)_2]^+$ would indeed have a significant energy barrier to relaxation, $U_{\text{eff}} = 1292 \text{ K}$ with $\tau_0 = 6.43 \times 10^{-10}$ ¹² s (the difference in predicted energy barrier is likely due to our use of CASSCF-SO vs. the inclusion of dynamic correlation in ref. 35), but that its relaxation dynamics are 2-4 orders of magnitude faster than for **6**.

Examining the cyclobutadienyl and cyclopendadienyl compounds, we find that all dianionic cyclobutadienyl ligand sets generate a total splitting of the $J = \pm 15/2$ multiplet that is equal to or larger than compound **6** with two monoanionic Cp^R ligands, but interestingly, only $[Dy(C_4'Bu_4)_2]^-$ shows a comparable gap between the ground and first excited doublets (Figures 5b and 5c); thus, it seems that while dianionic ligands do generally increase the CF splitting, the effect is non-trivial when considering individual m_J components. Indeed, we find that $[Dy(C_4'Bu_4)_2]^-$ has a very similar relaxation rate to **6**, but that both $[Dy(C_4H_4)_2]^-$ and $[Dy(C_5Me_5)_2]^+$, which have smaller energy gaps between the ground and first excited doublets, show relaxation rates orders of magnitude smaller than **6**; all other compounds examined here are predicted to have faster relaxation than **6**. Fitting the calculated relaxation

rates above 100 K to an Arrhenius law for the Orbach mechanism shows that the predicted $U_{\rm eff}$ barriers are a maximum of around 2100 K for this class of compound (Table S12): specifically for the two compounds predicted to have slower relaxation than **6**, we find $U_{\rm eff}$ = 2093 K and $\tau_0 = 2.48 \times 10^{-11}$ s for $[Dy(C_4H_4)_2]^-$ and $U_{eff} = 1549$ K and $\tau_0 = 8.90 \times 10^{-8}$ s for $[Dy(C_5Me_5)_2]^+$, compared to $U_{eff} = 2048$ K and $\tau_0 = 1.03 \times 10^{-12}$ s for **6** (*cf.* $U_{eff} = 2217(16)$ K and $\tau_0 = 4.2(6) \times 10^{-12}$ s found experimentally²³). While $[Dy(C_4H_4)_2]^-$ has a similar U_{eff} barrier to **6**, the τ_0 pre-factor is an order of magnitude larger and hence its relaxation is an order of magnitude slower. Analysis using a mode-weighted decomposition (Table S13) shows that the phonon DOS is the dominant term leading to a slower relaxation rate in $[Dy(C_4H_4)_2]^-$ as compared to 6. For $[Dy(C_5Me_5)_2]^+$, the U_{eff} barrier is significantly lower than 6 due to a considerably smaller Cp_{centroid}-Dy-Cp_{centroid} angle of 144° vs. 160° (and despite shorter Dy-Cp_{centroid} distances, Table S12), however, the τ_0 pre-factor is four orders of magnitude larger than for **6**: this is clearly the decisive difference in the relaxation dynamics. Using a modeweighted decomposition, we again find that the phonon DOS is the origin of the far larger τ_0 in $[Dy(C_5Me_5)_2]^+$ than for **6** (Table 2). For both $[Dy(C_4H_4)_2]^-$ and $[Dy(C_5Me_5)_2]^+$ this is confirmed by comparing the vibrational mode distributions with the electronic energy levels (Figures S39 and S40 cf. S37), showing that in addition to there being far fewer vibrational modes than in 6, they are also less frequently on-resonance with electronic transitions. Hence, it seems that while $U_{\rm eff}$ barriers may have reached their limit in such sandwich compounds, engineering molecular vibrational modes can play a significant role in increasing the relaxation times of SMMs.

Figure 5. (a) Comparison of calculated rates for theoretical SMMs compared to **6**, obtained using the PBE density-functional. (b) Energy of highest (top) and first excited (bottom) doublet in the ⁶H_{15/2} multiplet.

Table 2. Breakdown of relaxation rates between $[Dy(C_5Me_5)_2]^+$ and **6** *via* a mode-weighting procedure. Relaxation rates are calculated using the PBE density-functional, without calibration, at 100 K with FWHM = 10 cm⁻¹. Top portion corresponds to a base $\acute{\gamma}$ matrix of $[Dy(C_5Me_5)_2]^+$, while bottom portion corresponds to a base matrix of **6**. Rows are ordered by increasing rate.

$\langle \acute{H}_{SP} angle$	$\langle \acute{oldsymbol{Q}} angle$	$\langle \dot{oldsymbol{q}} \rangle$	$\langle \acute{m{n}} angle$	$ au^{-1}$	$\tau^{-1}/\tau^{-1}_{[Dy[C_5Me_5]_2]^{*}}\dot{c}$
$[Dy(C_5Me_5)_2]^+$	6	$\left[\mathrm{Dy}(\mathrm{C}_{5}\mathrm{Me}_{5})_{2}\right]^{+}$	$\left[\mathrm{Dy}(\mathrm{C}_{5}\mathrm{Me}_{5})_{2}\right]^{+}$	1.48×10^{0}	0.01
$[Dy(C_5Me_5)_2]^+$	$\left[\mathrm{Dy}(\mathrm{C}_{5}\mathrm{Me}_{5})_{2}\right]^{+}$	$\left[\mathrm{Dy}(\mathrm{C}_{5}\mathrm{Me}_{5})_{2}\right]^{+}$	6	$2.37 \times 10^{\circ}$	0.01
6	$\left[\mathrm{Dy}(\mathrm{C}_{5}\mathrm{Me}_{5})_{2}\right]^{+}$	$\left[\mathrm{Dy}(\mathrm{C}_{5}\mathrm{Me}_{5})_{2}\right]^{+}$	$\left[\mathrm{Dy}(\mathrm{C}_{5}\mathrm{Me}_{5})_{2}\right]^{+}$	$5.02 \times 10^{\circ}$	0.02
$\left[\mathrm{Dy}(\mathrm{C}_{5}\mathrm{Me}_{5})_{2}\right]^{+}$	$\left[\mathrm{Dy}(\mathrm{C}_{5}\mathrm{Me}_{5})_{2}\right]^{+}$	$\left[\mathrm{Dy}(\mathrm{C}_{5}\mathrm{Me}_{5})_{2}\right]^{+}$	$\left[\mathrm{Dy}(\mathrm{C}_{5}\mathrm{Me}_{5})_{2}\right]^{+}$	2.19×10 ²	1
$\left[\mathrm{Dy}(\mathrm{C}_{5}\mathrm{Me}_{5})_{2}\right]^{+}$	$\left[\mathrm{Dy}(\mathrm{C}_{5}\mathrm{Me}_{5})_{2}\right]^{+}$	6	$\left[\mathrm{Dy}(\mathrm{C}_{5}\mathrm{Me}_{5})_{2}\right]^{+}$	1.83×10 ³	8.36
$\left< m{\acute{H}}_{S\!P} ight>$	$\langle oldsymbol{\acute{Q}} angle$	$\langle \dot{oldsymbol{\phi}} angle$	$\langle {oldsymbol{\acute{n}}} angle$	$ au^{-1}$	$ au^{-1}/ au^{-1}_{6}$
6	6	$[\mathrm{Dy}(\mathrm{C}_{5}\mathrm{Me}_{5})_{2}]^{+}$	6	3.35×10^{0}	0.003
6	6	6	$[\mathrm{Dy}(\mathrm{C}_{5}\mathrm{Me}_{5})_{2}]^{+}$	9.24×10 ²	0.74

$[Dy(C_5Me_5)_2]^+$	6	6	6	9.57×10 ²	0.77
6	6	6	6	1.25×10^{3}	1
6	$[Dy(C_5Me_5)_2]^+$	6	6	3.00×10 ³	2.40

Conclusion

Design criteria for increasing magnetic anisotropy in Dy(III)-based SMMs have been produced and verified, leading to dramatic increases in effective energy barriers to magnetic relaxation and vast improvements in SMM performance. However, the route towards further improvements is unclear. By developing an *ab initio* methodology for calculating spindynamics with relative quantitative accuracy, along with a new analysis technique, we are now able to probe the origins of differing SMM performance directly. This has allowed us to prove that the current best-performing SMM $[Dy(Cp^{iPr5})(Cp^*)][B(C_6F_5)_4]$ (**6**) is better than both the worst in its class $[Dy(Cp^{iPr4})_2][B(C_6F_5)_4]$ (**1**) and the original dysprosocenium SMM $[Dy(Cp^{tt})_2][B(C_6F_5)_4]$ (**2**) because it has a larger CF splitting. Subsequently, we have predicted that further enhancements to U_{eff} seem minimal and that progress in slowing magnetic relaxation in the Orbach regime could be obtained by moving vibrational modes off-resonance with electronic transitions, even if U_{eff} barriers are adversely affected.

Acknowledgements

We thank the European Research Council (ERC-2019-STG-851504), EPSRC (PhD scholarship to J.G.C.K.), The Royal Society (University Research Fellowship to N.F.C.) and The University of Manchester (Presidential Fellowship to N.F.C.) for support. We thank Daniel Corbett and the Computational Shared Facility at The University of Manchester for assistance.

References

- ¹ Sessoli, R. *Nature*, **548**, 400–401 (2017).
- ² Sessoli, R., Gatteschi D., Caneschi, A., & Novak, M., *Nature*, **365** (6442), 141–143, (1993).
- ³ Orbach, R., *Proc. Roy. Soc. A.*, **264**, 458–484, (1961).
- ⁴ Gatteschi, D., Sessoli, R. & Villain, J., *Molecular Nanomagnets*. (Oxford University Press, 2006).
- ⁶ Bartolomé, J., Luis, F. & Fernández, J. F., *Molecular Magnets. Physics and Applications*. (NanoScience and Technology; Springer Berlin Heidelberg: Berlin, Heidelberg, 2014).
- ⁷ Naoto, I., Miki, S., Tadahiko, I., Shin-ya, K. & Kaizu, Y., J. Am. Chem. Soc., **125** (29), 8694–8695 (2003).
- ⁸ Ishikawa, N., Miki, S., Tomoko, O., Naohiro, T., Tomochika, I. & Kaizu, Y., *Inorg. Chem.*, **42** (7), 2440–2446 (2003).
- ⁹ Sievers, J., Zeitschrift für Phys. B Condens. Matter, **45** (4), 289–296 (1982).
- ¹² Aravena, D. & Ruiz, E., *Inorg. Chem.*, **52** (23), 13770–13778 (2013).
- ¹³ Giansiracusa, M. J., Kostopoulos, A. K., Collison, D., Winpenny, R. E. P. & Chilton, N. F., *Chem. Commun.*, **55**, 7025 (2019).
- ¹⁴ Shrivastava, K. N., *Phys. status solidi*, **117** (2), 437–458 (1983).
- ¹⁵ Lunghi, A., Totti, F., Sessoli, R. & Sanvito, S., Nat. Commun., 8, 14620, (2017).
- ²¹ Yu, K.-X., Kragskow, J. G. C., Ding, Y.-S., Zhai, Y.-Q., Reta, D., Chilton, N. F. & Zheng, Y.-Z. *Chem*, **6**, 1777-1793 (2020).
- ²² McClain, K. R.; Gould, C. A.; Chakarawet, K.; Teat, S. J.; Groshens, T. J.; Long, J. R.; Harvey, B. G. *Chem. Sci.*, **9**, 8492-8503 (2018).
- ²³ Guo, F.-S.; Day, B. M.; Chen, Y.-C.; Tong, M.-L.; Mansikkamäki, A. & Layfield, R. A. *Science*, **362**, 1400, (2018).
- ²⁴ Reta, D. & Chilton, N. F., Phys. Chem. Chem. Phys., 21, 23567-23575 (2019).
- ²⁵ Evans, P., Reta, D., Whitehead, G. F.S., Chilton, N. F. & Mills, D. P. *J. Am. Chem. Soc.*, **141**, 19935–19940 (2019).
- ²⁶ Perdew, J. P., Burke, K. & Ernzerhof, M. Phys. Rev. Lett., 77 (18), 3865–3868, (1996).
- ²⁷ Perdew, J. P., Burke, K. & Ernzerhof, M. Phys. Rev. Lett., 78 (7), 1396–1396 (1997).
- ²⁸ Adamo, C. & Varone, V., J. Chem. Phys., **110**, 6158-69 (1999).
- ²⁹ Grimme, S. Wiley Interdiscip. Rev. Comput. Mol. Sci., **1** (2), 211–228 (2011).
- ³⁰ Frisch, M. J. et al. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2016
- ³¹ Aquilante, F. et al. J. Comput. Chem., **37**, 506–541 (2016).
- ³² Ungur, L. & Chibotaru, L. F., *Chemistry A European Journal*, **23**, 3708–3718 (2017).
- ³³ Ding, Y-S., Han, T., Zhai, Y. Q., Reta, D., Chilton, N. F., Winpenny, R. E. P. & Zheng, Y. Z., *Chem. Eur. J.*, 26, 5893–5902 (2020).
- ³⁴ Chang, N. C., Gruber, J. B., Leavitt, R. P. & Morrison, C. A., J. Chem. Phys., 76, 3877–3889, (1982).
- ³⁵ Kotrle, K. & Herchel, R. Inorg. Chem., 58, 20, 14046–14057 (2019).

SUPPLEMENTARY INFORMATION

Ab initio prediction of high-temperature magnetic relaxation rates in single-molecule magnets

Daniel Reta, Jon G. C. Kragskow and Nicholas F. Chilton^{*}

Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

Contents

- S1. Experimental relaxation rates
- S2. Density Functional Theory calculations: Geometry optimization and normal modes
- S3. CASSCF-SO calculations: Electronic structure
- S4. Spin-dynamics approach

S4.1. Effect of linewidth model

S4.2. Understanding the origin of different relaxation rates

- S5. Survey of hypothetical compounds
- S6. References

S1. Experimental relaxation rates

Figure S1. Comparison of relaxation rates in the Orbach region for **1-6**. Experimental error bars are estimated standard deviations derived from the generalised Debye model.¹

S2. Density Functional Theory calculations: Geometry optimization and normal modes

Gas-phase molecular geometry optimizations on the **1-6** cations were performed with Gaussian09d² suite of programs using PBE^{3,4} exchange-correlation and PBE0⁵ hybrid functionals with cc-pVTZ⁶ basis set for all coordinating atoms, cc-pVDZ⁶ for the rest of non-metal atoms, the Stuttgart RSC 1997⁷ effective core potential (ECP) for the 28 core electrons of yttrium and the corresponding valence basis set for the remaining valence electrons, and Grimme's dispersion corrections.⁸⁻¹⁰ To facilitate convergence, dysprosium is substituted by yttrium (where the isotopic mass is set to 162.5, that of the naturally abundant dysprosium), which is justified by their similar ionic radii and the fact that these derivatives are widely found to be structural analogues. Calculation of normal modes was performed by explicit calculation of the Hessian at the optimized

geometry, making sure that the forces and displacements are zero and that all frequencies are positive. The coordinates and normal modes energies of compounds **1-6** can be found in Table S1 and Table S2, respectively.

Table S3 compares the structural results between crystal and optimised geometries for **1-6**. The RMSD values are calculated following the Kabsch algorithm^{11,12} as implemented by Kroman and Bratholm,¹³ against the crystal structure. In order to have a transferable RMSD value across **1-6**, the structures were trimmed and the RMSDs were obtained considering only the metal atom, the 10 carbon atoms from the two cyclopentadienyl (Cp) rings and the directly bonded carbon atoms of the corresponding substituents. We observe a very good agreement between the optimised and crystal structures, with the maximum RMSD value of 0.358 Å for **3**.

	1								
		PBE			PBE0				
Dy	-0.000003	0.00001	-0.258916		Dy	-0.000089	-0.000378	-0.242488	
С	-2.50515	-0.376571	-0.743551		С	1.845444	0.612342	1.443009	
С	-2.158845	-1.340476	0.263676		Η	1.619017	1.058801	2.40003	
С	2.505131	0.376552	-0.743599		С	2.150356	1.333188	0.265629	
С	2.158869	1.34048	0.26362		С	2.489556	0.381198	-0.738328	
С	-2.412753	0.931142	-0.146581		С	2.402296	-0.919314	-0.150393	
С	2.018107	-0.777077	1.222325		С	2.018473	-0.771665	1.210066	
С	-2.018092	0.777099	1.222338		С	2.253229	2.839601	0.212568	
С	-1.844246	-0.61783	1.449205		Η	2.290869	3.153765	-0.841519	
С	1.844291	0.617859	1.44917		С	3.557347	3.28669	0.881626	
С	2.412727	-0.931149	-0.146604		Η	4.431145	2.799386	0.426809	
С	-1.609018	2.54977	-1.923567		Η	3.686634	4.376385	0.798662	
С	-1.786357	-1.320898	-3.000842		Η	3.549386	3.024469	1.951118	
С	1.608808	-2.54975	-1.923509		С	1.059042	3.534733	0.864134	
С	-2.91261	-0.659465	-2.184186		Η	0.106308	3.265974	0.37837	
С	-2.646702	2.276606	-0.816151		Η	0.972441	3.273014	1.930097	
С	2.646589	-2.276628	-0.816173		Η	1.159853	4.628006	0.800519	
С	1.786337	1.320948	-3.000867		С	2.896814	0.671551	-2.168867	
С	2.912561	0.65942	-2.184247		Η	3.088876	-0.2989	-2.644935	
С	-2.271222	-2.854202	0.207639		С	4.203308	1.461042	-2.260333	
С	2.271289	2.854201	0.207556		Η	4.996437	0.97194	-1.676168	
С	2.052998	-1.855226	2.291087		Η	4.539934	1.525885	-3.306071	
С	-2.052923	1.855267	2.291081		Η	4.09333	2.487824	-1.883938	
С	-1.081579	-3.567355	0.871892		С	1.781049	1.334601	-2.978951	
С	1.081638	3.567396	0.871748		Η	0.862507	0.714456	-3.007319	
С	1.288385	-1.480026	3.566504		Η	1.509339	2.324759	-2.583532	
С	-1.288227	1.480073	3.566448		Η	2.076062	1.471607	-4.03029	

Table S1. Cartesian coordinates of the optimised structures for 1-6.

С	-4.090883	2.479713	-1.31074	С	2.637442	-2.253745	-0.823691
С	-4.228879	-1.450778	-2.289737	Η	2.461057	-3.020925	-0.053051
С	4.228891	1.450627	-2.289821	С	4.07516	-2.447813	-1.309476
С	-3.594485	-3.296305	0.86762	Η	4.225294	-3.478519	-1.664403
С	4.090725	-2.479797	-1.310871	Η	4.334204	-1.771993	-2.137299
С	3.594541	3.296285	0.86757	Η	4.790993	-2.260189	-0.49639
С	3.524759	-2.175643	2.633089	С	1.613773	-2.517074	-1.932281
С	-3.52466	2.175699	2.633173	Н	1.738043	-3.518705	-2.371216
Η	1.61232	1.070295	2.410124	Н	0.576059	-2.499898	-1.543326
Н	2.302739	3.168833	-0.855505	Н	1.682329	-1.789437	-2.755899
Η	4.466925	2.799184	0.401829	С	2.042232	-1.850832	2.266827
Η	3.731172	4.392661	0.780234	Η	1.566101	-2.759648	1.862187
Η	3.595845	3.034453	1.945345	С	3.498858	-2.198176	2.596309
Η	0.114464	3.298152	0.397101	Н	3.54662	-2.996443	3.352133
Н	1.004403	3.314485	1.948777	Н	4.049657	-2.538299	1.707975
Н	1.189705	4.667171	0.797142	Н	4.022239	-1.315653	2.996403
Н	3.102717	-0.322358	-2.657702	С	1.296884	-1.463642	3.538297
Н	5.028851	0.963291	-1.698717	Н	1.298478	-2.299776	4.252038
Н	4.564594	1.503357	-3.344804	Н	1.777777	-0.608595	4.039249
Η	4.122364	2.48958	-1.922377	Н	0.252502	-1.189284	3.337572
Η	0.856543	0.701356	-3.011442	С	-1.845859	-0.612259	1.443081
Η	1.520864	2.326108	-2.616049	Н	-1.619618	-1.058682	2.400159
Η	2.072952	1.439853	-4.065078	С	-2.018527	0.771789	1.210018
Н	2.471338	-3.043871	-0.033629	С	-2.402227	0.919439	-0.15046
Η	4.239358	-3.522406	-1.655967	С	-2.489792	-0.38111	-0.738302
Н	4.348147	-1.810255	-2.155088	С	-2.150901	-1.333096	0.265742
Η	4.816372	-2.28098	-0.498327	С	-2.042218	1.851021	2.266709
Η	1.715805	-3.569885	-2.344268	Η	-1.56578	2.759689	1.862096
Η	0.564643	-2.50962	-1.528925	С	-3.498807	2.198713	2.595951
Η	1.68477	-1.836053	-2.769129	Η	-4.049408	2.538936	1.707535
Η	1.595097	-2.782192	1.882963	Η	-4.022448	1.316325	2.996003
Η	3.583356	-2.977279	3.395975	Η	-3.54648	2.997011	3.351744
Η	4.093342	-2.508382	1.743257	С	-1.297162	1.463696	3.538314
Η	4.031525	-1.275915	3.038175	Η	-0.252822	1.189035	3.337762
Η	1.308663	-2.31926	4.288318	Η	-1.298614	2.299865	4.252019
Η	1.748008	-0.605169	4.070982	Η	-1.778359	0.608807	4.039244
Η	0.23037	-1.231095	3.360852	С	-2.637074	2.253857	-0.823868
Η	-1.612238	-1.070247	2.410157	Η	-2.460601	3.021065	-0.053273
Η	-1.595044	2.782222	1.88291	С	-4.074671	2.448225	-1.309864
Η	-4.093296	2.508434	1.743374	Η	-4.224512	3.478983	-1.664765
Η	-4.031408	1.27598	3.038301	Η	-4.333729	1.772534	-2.137789
Η	-3.583201	2.977344	3.396055	Η	-4.790688	2.260718	-0.496909
Η	-0.230258	1.231033	3.360694	С	-1.613191	2.516839	-1.932349
Η	-1.308363	2.319342	4.288224	Η	-1.737093	3.518471	-2.371394
Η	-1.747876	0.605278	4.071011	Η	-0.575554	2.499393	-1.543196
Η	-2.471423	3.043861	-0.033625	Η	-1.681843	1.789167	-2.755936
Η	-4.239579	3.52231	-1.65585	С	-2.896787	-0.671469	-2.168908
Η	-4.348347	1.810142	-2.15492	Η	-3.088891	0.298962	-2.645005
Η	-4.816462	2.280891	-0.498136	С	-4.20316	-1.461129	-2.260609

H -0.564822 2.50965 -1.529068 H -4.093181 -2.47816 -1.88394 H -1.685032 .183609 -2.769197 H -4.996491 -0.971985 -1.676754 H -4.564621 -1.503487 -3.344708 H -2.075143 -1.470385 -4.030444 H -4.122251 -2.48974 -1.922349 H -0.861945 -0.714565 -3.006152 H -5.02865 -0.701242 -3.011418 H -2.25149 -2.339514 0.212536 H -1.530687 -3.355751 -3.286967 0.427004 -2.618394 H -5.02622 -3.011418 H -2.25149 -3.286736 0.427004 H -4.46864 -2.79921 0.401854 H -3.56473 -3.34673 0.42704 H -0.114391 -3.298109 0.37274 H -0.105433 -3.265455 0.378303 H -1.13862 -0.66714 0.797311 H -0.97614 -3.265	Η	-1.716076	3.569911	-2.344295	Η	-4.539504	-1.526229	-3.306423
H -1.685032 1.83609 -2.769197 H -4.996491 -0.971985 -1.676754 H -3.10286 0.3223 -2.557626 C -1.780775 -1.33435 -2.978794 H -4.52621 -2.503487 -3.23478 H -0.76143 -1.470385 -4.030444 H -4.12251 -2.48974 -1.922349 H -0.861945 -2.33937 -2.533997 H -2.072885 -0.903536 -1.698678 H -1.509687 -2.23102 -2.315386 -0.845576 H -1.52081 -2.326627 -3.616446 -0.8455416 H -4.431377 -2.79951 0.421757 H -3.59582 -3.034466 -9.43944 H -0.16343 -3.265455 0.378033 H -1.104387 -3.31417 1.94917 H -0.17643 -3.27291 0.930005 H -1.118962 -4.667134 0.797311 H -1.15967 -4.62776 0.80183 H -1.04037<	Η	-0.564822	2.50965	-1.529068	Η	-4.093181	-2.487816	-1.883954
H -3.10286 0.3223 -2.657626 C -1.70775 -1.33435 -2.978794 H -4.564621 -1.503487 -3.344708 H -2.075143 -1.470385 -4.0304444 H -5.028856 -0.963536 -1.698578 H -0.861945 -2.232493 -2.25399 H -2.07282 -1.4398 -4.0505 C -2.23494 -2.839514 0.212536 H -0.856605 -0.01242 -3.011418 H -2.355751 -3.285967 0.88156 H -4.306864 -2.799231 0.427004 H -4.466864 -2.799531 0.427004 H -3.59522 -3.034466 1.945394 C -1.059147 -3.25147 0.864001 H -1.11391 -3.298109 0.397274 H -0.105433 -3.26545 0.378303 H -1.103967 -3.27949 H -0.17643 -3.27947 H D 0.000001 0.220419 0.000008 Dy <td< td=""><td>Η</td><td>-1.685032</td><td>1.83609</td><td>-2.769197</td><td>Η</td><td>-4.996491</td><td>-0.971985</td><td>-1.676754</td></td<>	Η	-1.685032	1.83609	-2.769197	Η	-4.996491	-0.971985	-1.676754
H -4.564621 -1.503487 -3.344708 H -2.075143 -1.470385 -4.030444 H -4.122251 -2.48974 -1.922349 H -0.861945 -0.714565 -3.006152 H -2.072982 -1.4398 -4.06505 C -2.25349 -2.328951 0.212536 H -0.856605 -0.701242 -3.01649 C -3.557512 -3.286967 0.88156 H -3.20622 -3.16886 -0.855416 H -4.431377 -2.79531 0.427004 H -4.466864 -2.799221 0.401854 H -3.666736 -3.731095 -1.05147 -3.53447 0.864001 H -0.114391 -3.29109 0.397274 H -0.106433 -3.265455 0.378303 H -1.004387 -3.31417 1.948917 H -0.16933 -0.19042 -0.001139 C 2.467909 0.866749 -0.34529 C -2.43001 0.027258 -0.375155 C 2.46799<	Η	-3.10286	0.3223	-2.657626	С	-1.780775	-1.33435	-2.978794
H -4.122251 -2.48974 -1.922349 H -0.861945 -0.714565 -3.006152 H -5.028856 -0.963536 H -1.509687 -2.32493 -2.323937 H -0.856605 -0.701242 -3.011418 H -2.291102 -3.153588 -0.841575 H -1.52081 -2.30622 -3.16866 -0.855712 -3.286967 0.88156 H -4.466864 -2.799221 0.401854 H -4.366736 -4.376638 0.798186 H -3.731095 -4.392684 0.780289 H -3.549472 -3.025154 1.951152 H -0.104397 -3.314417 1.949917 H -0.076414 -3.27291 1.930005 H -1.189626 -4.667134 0.797311 H -1.159674 -4.62776 0.801133 C 2.467909 0.866749 0.345257 C -2.43086 -0.866571 -0.375155 C 2.46790 0.866749 0.345252 C -2.0	Η	-4.564621	-1.503487	-3.344708	Η	-2.075143	-1.470385	-4.030444
H -5.028856 -0.963536 -1.698578 H -1.509687 -2.32493 -2.583991 0.212536 H -0.856605 -0.701242 -3.011418 H -2.22102 -3.153588 -0.841575 H -1.52081 -2.326047 -2.616049 C -3.557512 -3.266967 0.88156 H -2.302622 -3.16886 -0.855416 H -4.431377 -2.799531 0.427004 H -4.466864 -2.799221 0.401854 H -3.686736 0.378186 H -3.59582 -3.034466 1.945394 C -1.059147 -3.326447 0.860001 H -0.114391 -3.298109 0.397274 H -0.106433 -3.265455 0.378303 H -1.004387 -3.314417 1.948917 H -0.972614 -3.27291 1.930005 H -1.060473 0.220419 0.007038 -0.10728 0.776748 C 2.467909 0.866749 -0.345529 C 2.4	Η	-4.122251	-2.48974	-1.922349	Η	-0.861945	-0.714565	-3.006152
H -2.072982 -1.4398 -4.06505 C -2.25349 -2.839514 0.212536 H -0.85605 -0.701242 -3.011418 H -2.291102 -3.153588 -0.841575 H -1.52081 -2.326047 -2.616049 C -3.557512 -3.266967 0.88156 H -3.731095 -4.392648 O.855416 H -4.3666736 -4.376638 0.798186 H -3.55952 -3.034466 1.945394 C -1.05147 -3.54471 0.864001 H -0.104387 -3.314417 1.948917 H -0.106433 -3.265455 0.378303 H -1.04387 -3.314417 1.948917 H -0.972614 -3.27291 1.930005 H -1.169626 4.667134 0.797311 H -1.159674 -4.62776 0.80183 C 2.427455 -0.02327 0.814951 C -2.43006 0.90028 0.756748 C 2.063428 -1.320555 0.322722	Η	-5.028856	-0.963536	-1.698578	Η	-1.509687	-2.32493	-2.583997
H -0.856605 -0.701242 -3.011418 H -2.291102 -3.153588 -0.841575 H -1.52081 -2.326047 -2.616049 C -3.557512 -3.286967 0.88156 H -2.302622 -3.16886 -0.855416 H -4.431377 -2.799531 0.427004 H -3.731095 -4.392684 0.780289 H -3.549472 -3.025154 1.951152 H -3.53952 -3.034466 1.945394 C -1.059147 -3.265455 0.378303 H -1.004387 -3.314417 1.948917 H -0.106433 -3.265455 0.378303 H -1.189626 -4.667134 0.797311 H -1.159674 -4.62776 0.800183 C 2.467909 0.866749 -0.345529 C -2.43086 -0.866571 -0.375155 C 2.063428 -1.325559 0.322722 C -2.08039 1.31246 0.261181 H 1.996091 -2.27827 0.383	Η	-2.072982	-1.4398	-4.06505	С	-2.25349	-2.839514	0.212536
H -1.52081 -2.326047 -2.616049 C -3.557512 -3.286967 0.88156 H -2.302622 -3.16886 -0.855416 H -4.431377 -2.795531 0.427004 H -3.566646 -2.799221 0.401854 H -3.666736 4.376638 0.798186 H -3.59582 -3.034466 1.945394 C -1.059147 -3.53447 0.864001 H -0.114391 -3.298109 0.397274 H -0.106433 -3.27291 1.930005 H -1.189626 -4.667134 0.797311 H -1.159674 -4.62776 0.800183 C 2.467909 0.866749 -0.345529 C -2.43086 -0.866571 -0.375155 C 2.467909 0.866749 -0.345529 C -2.43001 0.027288 0.756748 C 2.063428 -1.325559 0.322722 C -2.08039 1.312146 0.261181 H 1.996091 -2.227827 0.938389 </td <td>Η</td> <td>-0.856605</td> <td>-0.701242</td> <td>-3.011418</td> <td>Η</td> <td>-2.291102</td> <td>-3.153588</td> <td>-0.841575</td>	Η	-0.856605	-0.701242	-3.011418	Η	-2.291102	-3.153588	-0.841575
H -2.302622 -3.16886 -0.855416 H -4.431377 -2.799531 0.427004 H -3.731095 -4.392684 0.780289 H -3.686736 -4.376638 0.798186 H -3.59582 -3.034466 1.945394 C -1.059147 -3.53447 0.864001 H -0.114391 -3.298109 0.397274 H -0.106433 -3.265455 0.378303 H -1.004387 -3.314417 1.948917 H -0.972614 -3.27291 1.930005 H -1.189626 -4.667134 0.797311 H -0.972614 -3.27291 0.30005 C 2.467909 0.866749 -0.345529 C -2.43086 -0.866571 -0.375155 C 2.467909 0.866749 -0.345529 C -2.43081 0.201283 0.756748 C 2.063428 -1.325959 0.322722 C -2.08039 1.312146 0.261181 H 1.996051 -2.27827 0.38389 <td>Η</td> <td>-1.52081</td> <td>-2.326047</td> <td>-2.616049</td> <td>С</td> <td>-3.557512</td> <td>-3.286967</td> <td>0.88156</td>	Η	-1.52081	-2.326047	-2.616049	С	-3.557512	-3.286967	0.88156
H -4.466864 -2.799221 0.401854 H -3.686736 -4.376638 0.798186 H -3.731095 -4.392684 0.780289 H -3.549472 -3.025154 1.951152 H -0.114391 -3.298109 0.397274 H -0.105433 -3.265455 0.378303 H -1.189626 -4.667134 0.797311 H -0.972614 -3.27291 1.930005 H -1.189626 -4.667134 0.797311 H -0.175974 -4.62776 0.800183 C 2.467909 0.866749 -0.345529 C -2.43086 -0.866571 -0.375155 C 2.467909 0.866749 -0.345529 C -2.43086 -0.866571 -0.375155 C 2.427455 -0.02327 0.814951 C -2.43010 0.027258 0.756748 H 1.996091 -2.227827 0.38389 H -2.04461 2.21523 0.853899 C 2.160367 0.043297 -1.486352 </td <td>Η</td> <td>-2.302622</td> <td>-3.16886</td> <td>-0.855416</td> <td>Η</td> <td>-4.431377</td> <td>-2.799531</td> <td>0.427004</td>	Η	-2.302622	-3.16886	-0.855416	Η	-4.431377	-2.799531	0.427004
H -3.731095 -4.392684 0.780289 H -3.549472 -3.025154 1.951152 H -3.59582 -3.034466 1.945394 C -1.059147 -3.265455 0.378303 H -0.014387 -3.314417 1.948917 H -0.106433 -3.265455 0.378303 H -1.189626 -4.667134 0.797311 H -0.106433 -3.265457 0.800183 C -1.189626 -4.667134 0.797311 H -1.159674 -4.62776 0.800183 C 2.467909 0.866749 -0.345529 C -2.43086 -0.866571 -0.375155 C 2.467909 0.866749 -0.345529 C -2.43001 0.027258 0.756748 C 2.063428 -1.3255959 0.322722 C -2.08461 2.21523 0.853899 C 1.99568 -1.305651 -1.101779 C -1.00822 1.272644 -1.140475 C 2.160367 0.043297 -1.486352<	Η	-4.466864	-2.799221	0.401854	Η	-3.686736	-4.376638	0.798186
H -3.59582 -3.034466 1.945394 C -1.059147 -3.53447 0.864001 H -0.114391 -3.298109 0.397274 H -0.106433 -3.265455 0.378303 H -1.004387 -3.314417 1.948917 H -0.972614 -3.27291 1.930005 H -1.189626 -4.667134 0.797311 H -1.159674 -4.62776 0.800183 V -1.189626 -4.667134 0.797311 H -1.159674 -4.62776 0.800183 C 2.467909 0.202019 0.000008 Dy 0.00333 -0.190402 -0.001139 C 2.467909 0.866749 -0.345529 C -2.43006 -0.866571 -0.375155 C 2.063428 -1.325959 0.322722 C -2.43001 0.027258 -5.58184 L 1.996091 -2.27827 0.938389 H -2.04461 2.212523 0.853899 C 1.92568 -1.305651 -1.101779	Η	-3.731095	-4.392684	0.780289	Η	-3.549472	-3.025154	1.951152
H -0.114391 -3.298109 0.397274 H -0.106433 -3.265455 0.378303 H -1.004387 -3.314417 1.948917 H -0.972614 -3.27291 1.930005 H -1.189626 -4.667134 0.797311 H -1.159674 -4.62776 0.800183 D 0.000001 0.220419 0.00008 Dy 0.000383 -0.190402 -0.001139 C 2.467909 0.866749 -0.345529 C -2.43086 -0.866571 -0.375155 C 2.427455 -0.023327 0.814951 C -2.43001 0.027258 0.56748 T 1.996091 -2.227827 0.938389 H -2.04461 2.21523 0.853899 C 1.95568 -1.305651 -1.101779 C -1.06822 1.272644 -1.140475 C 2.160367 0.43297 -1.486352 C -2.11062 -0.065659 -1.508418 H 2.175704 0.339131 -2.52255	Η	-3.59582	-3.034466	1.945394	С	-1.059147	-3.53447	0.864001
H -1.004387 -3.314417 1.948917 H -0.972614 -3.27291 1.930005 H -1.189626 -4.667134 0.797311 H -0.972614 -3.27291 1.930005 H -1.189626 -4.667134 0.797311 H -1.159674 -4.62776 0.800183 Dy 0.000001 0.220419 0.00008 Dy 0.000383 -0.190402 -0.001139 C 2.467909 0.866749 -0.345529 C -2.43001 0.027258 0.756748 C 2.427455 -0.023327 0.814951 C -2.43001 0.027258 0.756748 C 2.466790 0.866749 -0.345529 C -2.43001 0.027258 0.756748 C 2.467370 0.33327 0.314951 C -2.43001 0.027258 0.756748 C 2.46367 0.43297 -1.486352 C -2.11062 -0.066569 -1.508418 H 2.175704 0.393131 -2.52252 H -2.0893 -0.426553 -2.525118 C 2.85685	Η	-0.114391	-3.298109	0.397274	Η	-0.106433	-3.265455	0.378303
H -1.189626 -4.667134 0.797311 H -1.159674 -4.62776 0.800183 V PBE V PBE PBE PBE PBE Dy 0.000001 0.220419 0.000088 Dy 0.000383 -0.190402 -0.001139 C 2.467909 0.866749 -0.345529 C -2.43086 -0.866571 -0.375155 C 2.427455 -0.023327 0.814951 C -2.43086 -0.866571 -0.375155 C 2.467309 0.866749 -0.345529 C -2.43080 0.027258 0.756748 C 2.467453 -0.023327 0.814951 C -2.43001 0.027258 0.756748 C 2.46376 0.30327 0.38389 H -2.04461 2.212523 0.853899 C 1.996091 -2.27787 0.938389 H -2.04461 2.212523 0.5568418 H 1.996091 -2.277827 0.938352 C -2.04933 0.426553 -2.525118 C 2.160367 0.393131 -2.52252	Η	-1.004387	-3.314417	1.948917	Η	-0.972614	-3.27291	1.930005
PBE PBE0 Dy 0.00001 0.220419 0.00008 Dy 0.000383 -0.190402 -0.001139 C 2.467909 0.866749 -0.345529 C -2.43086 -0.866571 -0.375155 C 2.427455 -0.023327 0.814951 C -2.43086 -0.866571 -0.375155 C 2.467909 0.227287 0.938389 H -2.04461 2.212523 0.838399 C 1.92568 -1.305651 -1.101779 C -1.90882 1.272644 -1.140475 C 2.160367 0.043297 -1.486352 C -2.11062 -0.066569 -1.508418 H 2.175704 0.393131 -2.522952 H -2.0893 -0.426553 -2.525118 C 2.150034 3.319144 0.431544 C -2.15102 -3.289442 0.462953 H 1.039481 3.246958 0.352115 H -1.04621 -3.220103 0.451535 H 2.405489	Η	-1.189626	-4.667134	0.797311	Η	-1.159674	-4.62776	0.800183
PBE PBE0 Dy 0.00001 0.220419 0.00008 Dy 0.000383 -0.190402 -0.001139 C 2.467909 0.866749 -0.345529 C -2.43086 -0.866571 -0.375155 C 2.427455 -0.023327 0.814951 C -2.43001 0.027258 0.756748 C 2.063428 -1.325959 0.322722 C -2.08039 1.312146 0.261181 H 1.996091 -2.227827 0.938389 H -2.04461 2.212523 0.853899 C 1.92568 -1.305651 -1.101779 C -1.90882 1.272644 -1.140475 C 2.160367 0.043297 -1.486352 C -2.15102 -3.289442 0.462953 H 2.175704 0.393131 -2.522952 H -2.0893 -0.426553 -2.525118 C 2.85685 2.353278 0.545463 C -2.79337 -2.348722 -0.564543 C 2.1500					2			
Dy0.000010.2204190.00008Dy0.000383-0.190402-0.001139C2.4679090.866749-0.345529C-2.43086-0.866571-0.375155C2.427455-0.0233270.814951C-2.430010.0272580.756748C2.063428-1.3259590.322722C-2.080391.3121460.261181H1.996091-2.2278270.938389H-2.044612.2125230.853899C1.92568-1.305651-1.101779C-1.908821.272644-1.40475C2.1603670.043297-1.486352C-2.11062-0.066569-1.508418H2.1757040.393131-2.52952H-2.0893-0.426553-2.525118C2.856852.353278-0.545463C-2.79337-2.348722-0.564543C2.1500343.3191440.431544C-2.15102-3.2894420.462953H1.0394813.2469580.352115H-1.04621-3.2201030.451535H2.4059674.3683790.182677H-2.39289-4.3341670.21713H2.4243473.1596941.4887H-2.48779-3.1146591.490178C2.4624892.825377-1.96652C-2.31218-2.838926-1.940805H3.0097162.281767-2.760367H-2.81875-2.32722-2.770445H3.399166-2.079755			PBE		2		PBE0	
C 2.467909 0.866749 -0.345529 C -2.43086 -0.866571 -0.375155 C 2.427455 -0.023327 0.814951 C -2.43001 0.027258 0.756748 C 2.063428 -1.325959 0.322722 C -2.08039 1.312146 0.261181 H 1.996091 -2.227827 0.938389 H -2.04461 2.212523 0.853899 C 1.92568 -1.305651 -1.101779 C -1.90882 1.272644 -1.140475 C 2.160367 0.043297 -1.486352 C -2.11062 -0.066569 -1.508418 H 2.17574 0.393131 -2.522952 H -2.0893 -0.426553 -2.525118 C 2.85685 2.353278 -0.545463 C -2.79337 -2.34872 -0.665433 C 2.15004 3.319144 0.431544 C -2.15102 -3.29142 0.462953 H 1.039481 3.246958 0.352115 H -1.04621 -3.20103 0.451535 H 2.405967	Dy	0.000001	0.220419	0.000008	Dy	0.000383	-0.190402	-0.001139
C 2.427455 -0.023327 0.814951 C -2.43001 0.027258 0.756748 C 2.063428 -1.325959 0.322722 C -2.08039 1.312146 0.261181 H 1.996091 -2.227827 0.938389 H -2.04461 2.212523 0.853899 C 1.92568 -1.305651 -1.101779 C -1.90882 1.272644 -1.140475 C 2.160367 0.043297 -1.486352 C -2.11062 -0.066569 -1.508418 H 2.175704 0.393131 -2.522952 H -2.0893 -0.426553 -2.525118 C 2.85685 2.353278 -0.545463 C -2.15102 -3.248722 -0.564543 C 2.15003 3.319144 0.431544 C -2.15102 -3.289442 0.42953 H 1.039481 3.246958 0.352115 H -1.04621 -3.220103 0.451535 H 2.402489 2.825377 -1.966652 C -2.31218 -2.84879 -1.400178 L 2.462489	Ċ	2.467909	0.866749	-0.345529	C	-2.43086	-0.866571	-0.375155
C 2.063428 -1.325959 0.322722 C -2.08039 1.312146 0.261181 H 1.996091 -2.227827 0.938389 H -2.04461 2.212523 0.853899 C 1.92568 -1.305651 -1.101779 C -1.90882 1.272644 -1.140475 C 2.160367 0.043297 -1.486352 C -2.11062 -0.066569 -1.508418 H 2.175704 0.393131 -2.522952 H -2.0893 -0.426553 -2.525118 C 2.85685 2.353278 -0.545463 C -2.15102 -3.289442 0.462953 H 1.039481 3.246958 0.352115 H -1.04621 -3.220103 0.451535 H 2.405967 4.368379 0.182677 H -2.32729 -4.334167 0.21713 H 2.405967 4.368379 0.182677 H -2.48779 -3.114659 1.490178 C 2.462489 2.825377 -1.966652 C -2.31218 -2.387826 -1.940805 H 3.099716	С	2.427455	-0.023327	0.814951	С	-2.43001	0.027258	0.756748
H1.996091-2.2278270.938389H-2.044612.2125230.853899C1.92568-1.305651-1.101779C-1.908821.272644-1.140475C2.1603670.043297-1.486352C-2.11062-0.066569-1.508418H2.1757040.393131-2.522952H-2.0893-0.426553-2.525118C2.856852.353278-0.545463C-2.79337-2.348722-0.564543C2.1500343.3191440.431544C-2.15102-3.2894420.462953H1.0394813.2469580.352115H-1.04621-3.2201030.451535H2.4059674.3683790.182677H-2.39289-4.3341670.21713H2.4243473.1596941.4887H-2.48779-3.1146591.490178C2.4624892.825377-1.966652C-2.31218-2.838926-1.940805H3.0097162.281767-2.760367H-2.81875-2.32722-2.770445H3.0097162.81767-2.60367H-2.81875-2.32722-2.770445H1.3736422.714604-2.162249H-1.2239-2.495126-0.539812H1.3736422.198770.565711H-4.75602-2.1845310.418163H4.6986983.545002-0.613839H-4.61072-3.542464-0.721837H4.8947631.85389-	С	2.063428	-1.325959	0.322722	С	-2.08039	1.312146	0.261181
C 1.92568 -1.305651 -1.101779 C -1.90882 1.272644 -1.140475 C 2.160367 0.043297 -1.486352 C -2.11062 -0.066569 -1.508418 H 2.175704 0.393131 -2.522952 H -2.0893 -0.426553 -2.525118 C 2.85685 2.353278 -0.545463 C -2.79337 -2.348722 -0.564543 C 2.150034 3.319144 0.431544 C -2.15102 -3.289442 0.462953 H 1.039481 3.246958 0.352115 H -1.04621 -3.220103 0.451535 H 2.405967 4.368379 0.182677 H -2.48779 -3.114659 1.490178 C 2.462489 2.825377 -1.966652 C -2.31218 -2.838926 -1.940805 H 3.009716 2.281767 -2.760367 H -2.81875 -2.32722 -2.770445 H 3.73642 2.714604 -2.162249 H -1.2239 -2.70988 -2.074797 C 4.393644 <td>Η</td> <td>1.996091</td> <td>-2.227827</td> <td>0.938389</td> <td>Η</td> <td>-2.04461</td> <td>2.212523</td> <td>0.853899</td>	Η	1.996091	-2.227827	0.938389	Η	-2.04461	2.212523	0.853899
C 2.160367 0.043297 -1.486352 C -2.11062 -0.066569 -1.508418 H 2.175704 0.393131 -2.522952 H -2.08933 -0.426553 -2.525118 C 2.85685 2.353278 -0.545463 C -2.79337 -2.348722 -0.564543 C 2.150034 3.319144 0.431544 C -2.15102 -3.289442 0.462953 H 1.039481 3.246958 0.352115 H -1.04621 -3.220103 0.451535 H 2.405967 4.368379 0.182677 H -2.39289 -4.334167 0.21713 H 2.424347 3.159694 1.4887 H -2.48779 -3.114659 1.490178 C 2.462489 2.825377 -1.966652 C -2.31218 -2.838926 -1.940805 H 3.009716 2.281767 -2.760367 H -2.281875 -2.32722 -2.770445 H 3.73642 2.714604 -2.162249 H -1.2239 -2.709888 -2.074797 C 4.393644 <td>С</td> <td>1.92568</td> <td>-1.305651</td> <td>-1.101779</td> <td>С</td> <td>-1.90882</td> <td>1.272644</td> <td>-1.140475</td>	С	1.92568	-1.305651	-1.101779	С	-1.90882	1.272644	-1.140475
H2.1757040.393131-2.522952H-2.0893-0.426553-2.525118C2.856852.353278-0.545463C-2.79337-2.348722-0.564543C2.1500343.3191440.431544C-2.15102-3.2894420.462953H1.0394813.2469580.352115H-1.04621-3.2201030.451535H2.4059674.3683790.182677H-2.39289-4.3341670.21713H2.4243473.1596941.4887H-2.48779-3.1146591.490178C2.4624892.825377-1.966652C-2.31218-2.838926-1.940805H3.0097162.281767-2.760367H-2.81875-2.32722-2.770445H3.7088733.899166-2.079755H-2.52855-3.911918-2.044462H1.3736422.714604-2.162249H-1.2239-2.709888-2.074797C4.3936442.494454-0.429279C-4.32313-2.495126-0.539812H4.7695092.198770.565711H-4.76602-2.1845310.418163H4.6986983.545002-0.613839H-4.61072-3.542464-0.721837H4.6986983.545002-0.613839H-4.61072-3.84264-0.221837H4.8947631.85389-1.181824H-4.77675-1.874594-1.326839C2.5171780.244497	С	2.160367	0.043297	-1.486352	С	-2.11062	-0.066569	-1.508418
C 2.85685 2.353278 -0.545463 C -2.79337 -2.348722 -0.564543 C 2.150034 3.319144 0.431544 C -2.15102 -3.289442 0.462953 H 1.039481 3.246958 0.352115 H -1.04621 -3.220103 0.451535 H 2.405967 4.368379 0.182677 H -2.39289 -4.334167 0.21713 H 2.424347 3.159694 1.4887 H -2.48779 -3.114659 1.490178 C 2.462489 2.825377 -1.966652 C -2.31218 -2.838926 -1.940805 H 3.009716 2.281767 -2.760367 H -2.81875 -3.911918 -2.044462 H 3.73642 2.714604 -2.162249 H -1.2239 -2.709888 -2.074797 C 4.393644 2.494454 -0.429279 C -4.32313 -2.495126 -0.539812 H 4.698698 3.545002 -0.613839 H -4.61072 -3.542464 -0.721837 H 4.698698 <td>Η</td> <td>2.175704</td> <td>0.393131</td> <td>-2.522952</td> <td>Η</td> <td>-2.0893</td> <td>-0.426553</td> <td>-2.525118</td>	Η	2.175704	0.393131	-2.522952	Η	-2.0893	-0.426553	-2.525118
C2.1500343.3191440.431544C-2.15102-3.2894420.462953H1.0394813.2469580.352115H-1.04621-3.2201030.451535H2.4059674.3683790.182677H-2.39289-4.3341670.21713H2.4243473.1596941.4887H-2.48779-3.1146591.490178C2.4624892.825377-1.966652C-2.31218-2.838926-1.940805H3.0097162.281767-2.760367H-2.81875-2.32722-2.770445H2.7088733.899166-2.079755H-2.52855-3.911918-2.044462H1.3736422.714604-2.162249H-1.2239-2.709888-2.074797C4.3936442.494454-0.429279C-4.32313-2.495126-0.539812H4.7695092.198770.565711H-4.75602-2.1845310.418163H4.6986983.545002-0.613839H-4.61072-3.542464-0.721837H4.8947631.85389-1.181824H-4.77675-1.874594-1.326839C2.5171780.2444972.335545C-2.58184-0.2111412.264974C3.7366071.094022.743513C-3.82904-1.022872.62544H3.7179392.1171852.331134H-3.81543-2.0429212.227846H4.674830.6090882.4	С	2.85685	2.353278	-0.545463	С	-2.79337	-2.348722	-0.564543
H1.0394813.2469580.352115H-1.04621-3.2201030.451535H2.4059674.3683790.182677H-2.39289-4.3341670.21713H2.4243473.1596941.4887H-2.48779-3.1146591.490178C2.4624892.825377-1.966652C-2.31218-2.838926-1.940805H3.0097162.281767-2.760367H-2.81875-2.32722-2.770445H2.7088733.899166-2.079755H-2.52855-3.911918-2.044462H1.3736422.714604-2.162249H-1.2239-2.709888-2.074797C4.3936442.494454-0.429279C-4.32313-2.495126-0.539812H4.7695092.198770.565711H-4.75602-2.1845310.418163H4.6986983.545002-0.613839H-4.61072-3.542464-0.721837H4.8947631.85389-1.181824H-4.77675-1.874594-1.326839C2.5171780.2444972.335545C-2.58184-0.2111412.264974C3.7366071.094022.743513C-3.82904-1.022872.62544H3.7179392.1171852.331134H-3.81543-2.0429212.227846H4.674830.6090882.409131H-4.73305-0.5247042.245211H3.7770421.1857683.8	С	2.150034	3.319144	0.431544	С	-2.15102	-3.289442	0.462953
H2.4059674.3683790.182677H-2.39289-4.3341670.21713H2.4243473.1596941.4887H-2.48779-3.1146591.490178C2.4624892.825377-1.966652C-2.31218-2.838926-1.940805H3.0097162.281767-2.760367H-2.81875-2.32722-2.770445H2.7088733.899166-2.079755H-2.52855-3.911918-2.044462H1.3736422.714604-2.162249H-1.2239-2.709888-2.074797C4.3936442.494454-0.429279C-4.32313-2.495126-0.539812H4.7695092.198770.565711H-4.75602-2.1845310.418163H4.6986983.545002-0.613839H-4.61072-3.542464-0.721837H4.8947631.85389-1.181824H-4.77675-1.874594-1.326839C2.5171780.2444972.335545C-2.58184-0.2111412.264974C3.7366071.094022.743513C-3.82904-1.022872.62544H3.7179392.1171852.331134H-3.81543-2.0429212.227846H4.674830.6090882.409131H-4.7305-0.5247042.245211H3.7770421.1857683.847546H-3.92103-1.0994153.719381C2.633645-1.0881473.1	Η	1.039481	3.246958	0.352115	Η	-1.04621	-3.220103	0.451535
H2.4243473.1596941.4887H-2.48779-3.1146591.490178C2.4624892.825377-1.966652C-2.31218-2.838926-1.940805H3.0097162.281767-2.760367H-2.81875-2.32722-2.770445H2.7088733.899166-2.079755H-2.52855-3.911918-2.044462H1.3736422.714604-2.162249H-1.2239-2.709888-2.074797C4.3936442.494454-0.429279C-4.32313-2.495126-0.539812H4.7695092.198770.565711H-4.75602-2.1845310.418163H4.6986983.545002-0.613839H-4.61072-3.542464-0.721837H4.8947631.85389-1.181824H-4.77675-1.874594-1.326839C2.5171780.2444972.335545C-2.58184-0.2111412.264974C3.7366071.094022.743513C-3.82904-1.022872.62544H3.7179392.1171852.331134H-3.81543-2.0429212.227846H4.674830.6090882.409131H-4.73305-0.5247042.245211H3.7770421.1857683.847546H-3.92103-1.0994153.719381C2.633645-1.0881473.111494C-2.705811.1291153.004821H1.750994-1.7431282	Η	2.405967	4.368379	0.182677	Η	-2.39289	-4.334167	0.21713
C2.4624892.825377-1.966652C-2.31218-2.838926-1.940805H3.0097162.281767-2.760367H-2.81875-2.32722-2.770445H2.7088733.899166-2.079755H-2.52855-3.911918-2.044462H1.3736422.714604-2.162249H-1.2239-2.709888-2.074797C4.3936442.494454-0.429279C-4.32313-2.495126-0.539812H4.7695092.198770.565711H-4.75602-2.1845310.418163H4.6986983.545002-0.613839H-4.61072-3.542464-0.721837H4.8947631.85389-1.181824H-4.77675-1.874594-1.326839C2.5171780.2444972.335545C-2.58184-0.2111412.264974C3.7366071.094022.743513C-3.82904-1.022872.62544H3.7179392.1171852.331134H-3.81543-2.0429212.227846H4.674830.6090882.409131H-4.73305-0.5247042.245211H3.7770421.1857683.847546H-3.92103-1.0994153.719381C2.633645-1.0881473.111494C-2.705811.1291153.004821H1.750944-1.7431282.974257H-1.811081.7590442.894141H2.71885-0.879692	Η	2.424347	3.159694	1.4887	Η	-2.48779	-3.114659	1.490178
H3.0097162.281767-2.760367H-2.81875-2.32722-2.770445H2.7088733.899166-2.079755H-2.52855-3.911918-2.044462H1.3736422.714604-2.162249H-1.2239-2.709888-2.074797C4.3936442.494454-0.429279C-4.32313-2.495126-0.539812H4.7695092.198770.565711H-4.75602-2.1845310.418163H4.6986983.545002-0.613839H-4.61072-3.542464-0.721837H4.8947631.85389-1.181824H-4.77675-1.874594-1.326839C2.5171780.2444972.335545C-2.58184-0.2111412.264974C3.7366071.094022.743513C-3.82904-1.022872.62544H3.7179392.1171852.331134H-3.81543-2.0429212.227846H4.674830.6090882.409131H-4.73305-0.5247042.245211H3.7770421.1857683.847546H-3.92103-1.0994153.719381C2.633645-1.0881473.111494C-2.705811.1291153.004821H1.75094-1.7431282.974257H-1.811081.7590442.894141H2.71885-0.8796924.196094H-2.839640.9439394.080592	С	2.462489	2.825377	-1.966652	С	-2.31218	-2.838926	-1.940805
H2.7088733.899166-2.079755H-2.52855-3.911918-2.044462H1.3736422.714604-2.162249H-1.2239-2.709888-2.074797C4.3936442.494454-0.429279C-4.32313-2.495126-0.539812H4.7695092.198770.565711H-4.75602-2.1845310.418163H4.6986983.545002-0.613839H-4.61072-3.542464-0.721837H4.8947631.85389-1.181824H-4.77675-1.874594-1.326839C2.5171780.2444972.335545C-2.58184-0.2111412.264974C3.7366071.094022.743513C-3.82904-1.022872.62544H3.7179392.1171852.331134H-3.81543-2.0429212.227846H4.674830.6090882.409131H-4.73305-0.5247042.245211H3.7770421.1857683.847546H-3.92103-1.0994153.719381C2.633645-1.0881473.111494C-2.705811.1291153.004821H1.750994-1.7431282.974257H-1.811081.7590442.894141H2.71885-0.8796924.196094H-2.839640.9439394.080592	Η	3.009716	2.281767	-2.760367	Η	-2.81875	-2.32722	-2.770445
H1.3736422.714604-2.162249H-1.2239-2.709888-2.074797C4.3936442.494454-0.429279C-4.32313-2.495126-0.539812H4.7695092.198770.565711H-4.75602-2.1845310.418163H4.6986983.545002-0.613839H-4.61072-3.542464-0.721837H4.8947631.85389-1.181824H-4.77675-1.874594-1.326839C2.5171780.2444972.335545C-2.58184-0.2111412.264974C3.7366071.094022.743513C-3.82904-1.022872.62544H3.7179392.1171852.331134H-3.81543-2.0429212.227846H4.674830.6090882.409131H-4.73305-0.5247042.245211H3.7770421.1857683.847546H-3.92103-1.0994153.719381C2.633645-1.0881473.111494C-2.705811.1291153.004821H1.750994-1.7431282.974257H-1.811081.7590442.894141H2.71885-0.8796924.196094H-2.839640.9439394.080592	Η	2.708873	3.899166	-2.079755	Η	-2.52855	-3.911918	-2.044462
C4.3936442.494454-0.429279C-4.32313-2.495126-0.539812H4.7695092.198770.565711H-4.75602-2.1845310.418163H4.6986983.545002-0.613839H-4.61072-3.542464-0.721837H4.8947631.85389-1.181824H-4.77675-1.874594-1.326839C2.5171780.2444972.335545C-2.58184-0.2111412.264974C3.7366071.094022.743513C-3.82904-1.022872.62544H3.7179392.1171852.331134H-3.81543-2.0429212.227846H4.674830.6090882.409131H-4.73305-0.5247042.245211H3.7770421.1857683.847546H-3.92103-1.0994153.719381C2.633645-1.0881473.111494C-2.705811.1291153.004821H1.750994-1.7431282.974257H-1.811081.7590442.894141H2.71885-0.8796924.196094H-2.839640.9439394.080592	Η	1.373642	2.714604	-2.162249	Η	-1.2239	-2.709888	-2.074797
H4.7695092.198770.565711H-4.75602-2.1845310.418163H4.6986983.545002-0.613839H-4.61072-3.542464-0.721837H4.8947631.85389-1.181824H-4.77675-1.874594-1.326839C2.5171780.2444972.335545C-2.58184-0.2111412.264974C3.7366071.094022.743513C-3.82904-1.022872.62544H3.7179392.1171852.331134H-3.81543-2.0429212.227846H4.674830.6090882.409131H-4.73305-0.5247042.245211H3.7770421.1857683.847546H-3.92103-1.0994153.719381C2.633645-1.0881473.111494C-2.705811.1291153.004821H1.750994-1.7431282.974257H-1.811081.7590442.894141H2.71885-0.8796924.196094H-2.839640.9439394.080592	С	4.393644	2.494454	-0.429279	С	-4.32313	-2.495126	-0.539812
H4.6986983.545002-0.613839H-4.61072-3.542464-0.721837H4.8947631.85389-1.181824H-4.77675-1.874594-1.326839C2.5171780.2444972.335545C-2.58184-0.2111412.264974C3.7366071.094022.743513C-3.82904-1.022872.62544H3.7179392.1171852.331134H-3.81543-2.0429212.227846H4.674830.6090882.409131H-4.73305-0.5247042.245211H3.7770421.1857683.847546H-3.92103-1.0994153.719381C2.633645-1.0881473.111494C-2.705811.1291153.004821H1.750994-1.7431282.974257H-1.811081.7590442.894141H2.71885-0.8796924.196094H-2.839640.9439394.080592	Η	4.769509	2.19877	0.565711	Η	-4.75602	-2.184531	0.418163
H4.8947631.85389-1.181824H-4.77675-1.874594-1.326839C2.5171780.2444972.335545C-2.58184-0.2111412.264974C3.7366071.094022.743513C-3.82904-1.022872.62544H3.7179392.1171852.331134H-3.81543-2.0429212.227846H4.674830.6090882.409131H-4.73305-0.5247042.245211H3.7770421.1857683.847546H-3.92103-1.0994153.719381C2.633645-1.0881473.111494C-2.705811.1291153.004821H1.750994-1.7431282.974257H-1.811081.7590442.894141H2.71885-0.8796924.196094H-2.839640.9439394.080592	Η	4.698698	3.545002	-0.613839	Η	-4.61072	-3.542464	-0.721837
C2.5171780.2444972.335545C-2.58184-0.2111412.264974C3.7366071.094022.743513C-3.82904-1.022872.62544H3.7179392.1171852.331134H-3.81543-2.0429212.227846H4.674830.6090882.409131H-4.73305-0.5247042.245211H3.7770421.1857683.847546H-3.92103-1.0994153.719381C2.633645-1.0881473.111494C-2.705811.1291153.004821H1.750994-1.7431282.974257H-1.811081.7590442.894141H2.71885-0.8796924.196094H-2.839640.9439394.080592	Η	4.894763	1.85389	-1.181824	Η	-4.77675	-1.874594	-1.326839
C3.7366071.094022.743513C-3.82904-1.022872.62544H3.7179392.1171852.331134H-3.81543-2.0429212.227846H4.674830.6090882.409131H-4.73305-0.5247042.245211H3.7770421.1857683.847546H-3.92103-1.0994153.719381C2.633645-1.0881473.111494C-2.705811.1291153.004821H1.750994-1.7431282.974257H-1.811081.7590442.894141H2.71885-0.8796924.196094H-2.839640.9439394.080592	С	2.517178	0.244497	2.335545	С	-2.58184	-0.211141	2.264974
H3.7179392.1171852.331134H-3.81543-2.0429212.227846H4.674830.6090882.409131H-4.73305-0.5247042.245211H3.7770421.1857683.847546H-3.92103-1.0994153.719381C2.633645-1.0881473.111494C-2.705811.1291153.004821H1.750994-1.7431282.974257H-1.811081.7590442.894141H2.71885-0.8796924.196094H-2.839640.9439394.080592	С	3.736607	1.09402	2.743513	С	-3.82904	-1.02287	2.62544
H4.674830.6090882.409131H-4.73305-0.5247042.245211H3.7770421.1857683.847546H-3.92103-1.0994153.719381C2.633645-1.0881473.111494C-2.705811.1291153.004821H1.750994-1.7431282.974257H-1.811081.7590442.894141H2.71885-0.8796924.196094H-2.839640.9439394.080592	Н	3.717939	2.117185	2.331134	Н	-3.81543	-2.042921	2.227846
H3.7770421.1857683.847546H-3.92103-1.0994153.719381C2.633645-1.0881473.111494C-2.705811.1291153.004821H1.750994-1.7431282.974257H-1.811081.7590442.894141H2.71885-0.8796924.196094H-2.839640.9439394.080592	Η	4.67483	0.609088	2.409131	Н	-4.73305	-0.524704	2.245211
C2.633645-1.0881473.111494C-2.705811.1291153.004821H1.750994-1.7431282.974257H-1.811081.7590442.894141H2.71885-0.8796924.196094H-2.839640.9439394.080592	Н	3.777042	1.185768	3.847546	Н	-3.92103	-1.099415	3.719381
H1.750994-1.7431282.974257H-1.811081.7590442.894141H2.71885-0.8796924.196094H-2.839640.9439394.080592	С	2.633645	-1.088147	3.111494	С	-2.70581	1.129115	3.004821
H 2.71885 -0.879692 4.196094 H -2.83964 0.943939 4.080592	Н	1.750994	-1.743128	2.974257	Н	-1.81108	1.759044	2.894141
	Η	2.71885	-0.879692	4.196094	Η	-2.83964	0.943939	4.080592

Η	3.534495	-1.653182	2.80185	Н	-3.57534	1.701302	2.650556
С	1.196859	0.924154	2.777969	С	-1.30765	-0.899551	2.784547
Η	0.315835	0.25638	2.599524	Η	-0.41265	-0.260862	2.626643
Η	1.02499	1.905246	2.287466	Η	-1.13414	-1.887868	2.333403
Η	1.169359	1.116383	3.870944	Η	-1.34074	-1.055411	3.874604
С	1.901064	-2.512457	-2.040523	С	-1.85175	2.463279	-2.079164
С	-2.42746	-0.023298	-0.81495	С	2.431087	0.027431	-0.756275
С	-2.4679	0.866787	0.345523	С	2.431	-0.866624	0.375447
С	-2.16037	0.043338	1.486354	С	2.109994	-0.066797	1.508616
Η	-2.17571	0.393181	2.522951	Н	2.087995	-0.426922	2.525243
С	-1.9257	-1.305617	1.101792	С	1.908743	1.272514	1.140786
С	-2.06345	-1.325932	-0.32271	С	2.081342	1.312288	-0.260743
Η	-1.99611	-2.227803	-0.938371	Н	2.046151	2.212819	-0.853276
С	-2.51719	0.244505	-2.335548	С	2.582273	-0.210974	-2.264588
С	-1.19686	0.924106	-2.778011	С	1.307003	-0.897974	-2.783402
Η	-0.31585	0.256309	-2.599557	Н	0.412656	-0.25828	-2.625299
Н	-1.02495	1.905207	-2.287541	Н	1.13268	-1.886225	-2.332302
Η	-1.16937	1.116302	-3.870992	Н	1.339089	-1.053879	-3.873485
С	-2.63372	-1.08815	-3.11147	С	2.70724	1.129191	-3.00443
Η	-2.71894	-0.879713	-4.196072	Н	2.840751	0.943945	-4.080228
Η	-3.53458	-1.653151	-2.801793	Н	3.577302	1.700607	-2.650237
Η	-1.75109	-1.743156	-2.974243	Н	1.813066	1.75989	-2.893597
С	-3.7366	1.094064	-2.743512	С	3.828318	-1.02407	-2.625863
Η	-3.71789	2.117235	-2.33115	Н	3.813847	-2.044125	-2.228312
Η	-4.67483	0.609169	-2.40911	Н	4.733091	-0.526902	-2.246161
Η	-3.77704	1.185795	-3.847546	Н	3.919552	-1.100658	-3.719864
С	-2.8568	2.353328	0.54544	С	2.792957	-2.34893	0.564665
С	-4.39358	2.494556	0.42925	С	4.322608	-2.496175	0.539021
Η	-4.89473	1.854025	1.181807	Η	4.777	-1.875986	1.325864
Η	-4.6986	3.545118	0.61379	Η	4.609716	-3.543692	0.720782
Η	-4.76946	2.198867	-0.565735	Η	4.755157	-2.185732	-0.41915
С	-2.46242	2.825433	1.966623	С	2.312355	-2.838859	1.941222
Η	-1.37358	2.714638	2.162218	Η	1.224191	-2.709531	2.075785
Η	-3.00966	2.281845	2.760346	Η	2.819521	-2.327142	2.770495
Η	-2.70878	3.899229	2.079714	Η	2.52855	-3.911885	2.044868
С	-2.14994	3.319153	-0.431576	С	2.149378	-3.289264	-0.46245
Η	-1.03939	3.246912	-0.352147	Η	1.044595	-3.219305	-0.450299
Η	-2.40582	4.368403	-0.18272	Η	2.390685	-4.334166	-0.216804
Η	-2.42426	3.159704	-1.488731	Η	2.485595	-3.114703	-1.489899
С	-1.90111	-2.512417	2.040542	С	1.851588	2.462966	2.079687
С	-3.3596	-3.033561	2.118991	С	3.281539	3.026185	2.161508
Η	-3.72466	-3.348685	1.121063	Η	3.632517	3.359258	1.173251
Η	-4.04277	-2.248339	2.50017	Η	3.984375	2.26445	2.53129
Η	-3.42077	-3.906685	2.800235	Η	3.316362	3.887909	2.845867
С	-1.43811	-2.118018	3.455687	С	1.404306	2.046933	3.482033
Η	-0.40086	-1.725188	3.453917	Η	0.390895	1.616864	3.477922
Η	-1.45445	-3.003955	4.120787	Η	1.386265	2.922893	4.146925
Η	-2.09703	-1.353982	3.914512	Η	2.088468	1.312217	3.932334
С	-0.99498	-3.635422	1.508202	С	0.915629	3.55093	1.554196

H 1.03774 4.51475 2.181293 H 0.92796 4.422957 2.22485 H 0.060573 -3.30377 1.447113 H -0.12082 3.186648 1.491385 C 1.438033 -2.118068 -3.45566 C -1.40463 2.047566 -3.481666 H 0.400784 -1.725244 -3.453868 H -0.39102 1.617338 -3.477866 H 1.2050642 -3.303596 -2.119 C -3.28167 3.02605 -2.160682 H 3.09542 -3.33596 -2.119 C -3.38458 2.265022 -2.530624 H 3.724644 -3.348709 -1.121076 H -3.63252 3.55056 -1.533564 H 1.037703 -4.514793 -2.18176 H -1.21263 3.90048 -0.524689 H -0.05066 -3.30839 -1.447055 H 0.120769 3.18558 -1.42126 3.90048 -0.57628 H -0.027002 0.2101	Η	-1.30411	-3.975961	0.50062	Η	1.212388	3.900377	0.554853
H 0.060573 -3.30377 1.447113 H -0.12082 3.186648 1.491385 C 1.438033 -2.118068 -3.45566 C -1.40463 2.047566 -3.4816666 H 1.454369 -3.004007 -4.120756 H -1.38708 2.92361 -4.14646 H 2.096942 -1.35403 -3.914503 H -2.0886 1.312638 -3.931922 C 3.359554 -3.033596 -2.119 C -3.28167 3.026605 -2.160682 H 3.420721 -3.906726 -2.800237 H -3.31553 3.888549 -2.844764 H 1.037703 -4.514793 -2.181244 H -0.92779 4.423129 -2.224158 H 1.037703 -5.51568 H 0.120769 3.186588 -1.490732 H 1.304095 -3.97599 -0.81155 Dy -0.21533 0.215381 -0.246892 C -2.200668 1.024105 -0.8115 Dy -	Η	-1.03774	-4.51475	2.181293	Η	0.92796	4.422957	2.22485
C 1.438033 -2.118068 -3.45366 C -1.40463 2.047566 -3.477866 H 0.400784 -1.725244 -3.453868 H -0.39102 1.617938 -3.477866 H 1.45459 -3.00070 -4.120756 H -1.38708 2.92361 -4.14646 H 2.096942 -1.35403 -2.109 C -3.28167 3.026050 -2.100622 H 4.042718 -2.248375 -2.500237 H -3.31553 3.888549 -2.844764 H 3.724644 -3.348709 -1.121076 H -3.63252 3.551056 -1.553564 H 1.03703 -5.15473 2.18124 H 0.12079 3.186538 -1.490732 H -0.03702 0.21135 -0.28115 Dy -0.02534 0.215381 -0.246892 C -2.270493 0.210135 -0.201418 C 2.04170 -0.99141 0.838101 C -2.200668 -1.308663 0.327216 <t< td=""><td>Η</td><td>0.060573</td><td>-3.30377</td><td>1.447113</td><td>Η</td><td>-0.12082</td><td>3.186648</td><td>1.491385</td></t<>	Η	0.060573	-3.30377	1.447113	Η	-0.12082	3.186648	1.491385
H 0.400784 -1.725244 -3.43868 H -0.39102 1.617938 -3.477866 H 1.454369 -3.004007 -4.120756 H -1.38708 2.92361 -4.14646 L 2.096942 -3.335956 -2.119 C -3.28167 3.026605 -2.160682 H 3.420721 -3.306726 -2.80237 H -3.31653 3.888549 -2.844764 H 3.420721 -3.036766 -1.508158 C -0.91562 3.551056 -1.553564 H 1.037703 -4.514793 -2.181244 H -0.22779 4.423129 -2.24158 H 1.0304095 -3.975992 -0.50058 H 0.120769 3.186598 -6.56728 C -2.270493 -0.83526 -1.023418 C 2.201147 -0.38610 C -2.270493 -0.86630 -3.27216 C 2.041707 -0.91471 0.838101 C -2.28142 -1.190134 -0.549164 C <td< td=""><td>С</td><td>1.438033</td><td>-2.118068</td><td>-3.45566</td><td>С</td><td>-1.40463</td><td>2.047566</td><td>-3.481666</td></td<>	С	1.438033	-2.118068	-3.45566	С	-1.40463	2.047566	-3.481666
H 1.454369 -3.04007 -4.120756 H -1.38708 2.92361 -4.14646 H 2.096942 -1.35403 -3.914503 H -2.0886 1.312638 -3.91322 C 3.359554 -3.033596 -2.119 C -3.28167 3.026605 -2.160682 H 3.420721 -3.906726 -2.800237 H -3.31653 3.88549 -2.847764 H 3.3724644 -3.304709 -1.21076 H -3.36523 3.359375 -1.172279 C 0.99499 -3.63546 -1.508158 C -0.91562 3.51056 -1.553564 H 1.037703 -4.514793 -2.181244 H -0.2779 4.423129 -2.24158 H -0.0606 -3.303809 -1.447055 H 0.120769 3.186598 -1.490722 C -2.270493 -0.833526 -1.023418 C 2.203141 -0.246892 C -2.270493 -0.833526 -1.023418 C 2	Η	0.400784	-1.725244	-3.453868	Н	-0.39102	1.617938	-3.477866
H 2.096942 -1.35403 -3.914503 H -2.0886 1.312638 -3.931922 C 3.359554 -3.033596 -2.119 C -3.28167 3.026605 -2.160682 H 4.042718 -2.248375 -2.500211 H -3.38453 2.265022 -2.530624 H 3.72464 -3.348709 -1.121076 H -3.63526 3.551056 -1.72279 C 0.994949 -3.63546 -1.508158 C -0.91562 3.551056 -1.508158 H -0.0606 -3.30309 -1.447055 H 0.120769 3.186598 -1.490732 H 1.304095 -3.975992 -0.50058 H -1.21236 3.90048 -0.54682 C -2.270493 0.833526 -1.023418 C 2.01131 -0.246892 C -2.270493 0.833526 -1.023418 C 2.041707 -0.91471 0.838101 C -2.280462 -1.190134 -0.549164 C 2	Η	1.454369	-3.004007	-4.120756	Н	-1.38708	2.92361	-4.14646
C 3.359554 -3.033596 -2.119 C -3.28167 3.026605 -2.160682 H 4.042718 -2.248375 -2.500201 H -3.3653 3.888549 -2.844764 H 3.420721 -3.906726 -2.800237 H -3.31553 3.888549 -2.844764 H 3.724644 -3.348709 -1.121076 H -3.63252 3.551056 -1.553564 H 1.037703 -4.514793 -2.181244 H -0.92779 4.423129 -2.224188 H -0.0606 -3.303809 -1.447055 H 0.120769 3.186598 -1.490732 H 1.304095 -3.975992 -0.5058 H -1.21236 3.9048 -0.56762 C -2.270493 -0.833526 -1.023418 C 2.20194 -1.183 -0.567628 C -2.200668 -1.39663 0.327216 C 2.196755 0.406732 1.122578 C 2.230342 -0.996512 0.863133	Η	2.096942	-1.35403	-3.914503	Н	-2.0886	1.312638	-3.931922
H 4.042718 -2.248375 -2.500201 H -3.98458 2.265022 -2.330624 H 3.420721 -3.906726 -2.800237 H -3.31653 3.888549 -2.844764 H 3.724644 -3.36354 -1.508158 C -0.91562 3.551056 -1.553564 H 1.037703 -4.514793 -2.181244 H -0.92779 4.42129 -2.224158 H -0.0606 -3.303809 -1.447055 H 0.120769 3.186598 -1.490732 H 1.304095 -3.975992 -0.50058 H 0.120769 3.186598 -1.490732 C -2.270493 0.833526 -1.023418 C 2.02117 -0.991471 0.838101 C 2.208142 -1.190134 -0.549164 C 2.196755 0.406732 1.122578 C 2.203042 -0.996512 0.863133 C 2.441026 1.09437 -1.19171 C -2.481227 0.100247 -1.137521	С	3.359554	-3.033596	-2.119	С	-3.28167	3.026605	-2.160682
H 3.420721 -3.906726 -2.800237 H -3.31653 3.888549 -2.844764 H 3.724644 -3.348709 -1.121076 H -3.63252 3.359375 -1.172279 C 0.994949 -3.63764 -1.508158 C -0.91562 3.551056 -1.553564 H 1.030703 -4.514793 -2.181244 H -0.92779 4.42120 -2.224158 H -0.6066 -3.303809 -1.447055 H 0.120769 3.86598 -1.490732 H 1.304095 -3.975992 -0.5058 H -1.21236 3.9048 -0.554208 C -2.200668 1.308663 0.22716 C 2.041707 -0.991471 0.838101 C -2.200668 -1.308663 0.327216 C 2.441026 1.079437 -1.19171 C -2.450142 0.599512 0.63133 C 2.441026 1.079437 -1.19171 C -2.450142 0.59173 1.102218	Η	4.042718	-2.248375	-2.500201	Н	-3.98458	2.265022	-2.530624
H 3.724644 -3.348709 -1.121076 H -3.63252 3.359375 -1.172279 C 0.994949 -3.63546 -1.508158 C -0.91562 3.551056 -1.553564 H 1.03703 -4.51479 -2.181244 H 0.92779 4.423129 -2.24158 H 1.304095 -3.975992 -0.50058 H -1.21236 3.9048 -0.554208 C -2.270493 -0.833526 -1.023418 C 2.203194 -1.183 -0.567628 C -2.200668 -1.308663 0.327216 C 2.041707 -0.991471 0.838101 C 2.228142 -1.9134 -0.549164 C 2.041707 -0.91471 0.838101 C 2.23042 0.996512 0.863133 C 2.441026 1.079437 -1.119171 C -2.450142 0.591753 -1.00218 C 2.45243 0.095628 -1.154557 C 2.481227 0.10247 -1.137521 <td< td=""><td>Н</td><td>3.420721</td><td>-3.906726</td><td>-2.800237</td><td>Н</td><td>-3.31653</td><td>3.888549</td><td>-2.844764</td></td<>	Н	3.420721	-3.906726	-2.800237	Н	-3.31653	3.888549	-2.844764
C 0.994949 -3.63546 -1.508158 C -0.91562 3.551056 -1.553564 H 1.037703 -4.514793 -2.181244 H -0.92779 4.423129 -2.224158 H 1.304095 -3.975992 -0.50058 H 0.120769 3.186598 -1.490732 H 1.304095 -3.975992 -0.50058 H 0.120769 3.186598 -1.490732 Dy -0.027002 0.21135 -0.28115 Dy -0.220194 -1.1383 -0.567628 C -2.204668 -1.038663 0.327216 C 2.041707 -0.991471 0.838101 C 2.23142 -1.190134 -0.549164 C 2.196755 0.406732 1.122578 C 2.2303042 -0.996512 0.863133 C 2.441026 1.079437 -0.119171 C 2.445127 0.100247 -1.137521 C 2.430663 -2.40409 -1.329286 C -2.172481 0.414774 1.151241	Η	3.724644	-3.348709	-1.121076	Н	-3.63252	3.359375	-1.172279
H 1.037703 -4.514793 -2.181244 H -0.92779 4.423129 -2.224188 H -0.0606 -3.303809 -1.447055 H 0.120769 3.186598 -1.490732 H 1.304095 -3.975992 -0.50058 H -1.21236 3.90048 -0.554208 Dy -0.027002 0.210135 -0.28115 Dy -0.026534 0.215381 -0.246892 C -2.20068 -1.308663 0.327216 C 2.041707 -0.991471 0.838101 C -2.20668 -1.308663 0.327216 C 2.441026 1.079437 -0.119171 C -2.450142 0.591753 -1.000218 C 2.441026 1.079437 -0.119171 C -2.48127 0.100247 -1.137521 C 2.438063 -2.48009 -1.329266 C -2.122555 0.159911 1.194679 H 2.426055 -2.02027 -2.393376 C -2.48128 1.09277 -0.09532 H 4.08369 -3.851156 -1.704006 C -2.475	С	0.994949	-3.63546	-1.508158	С	-0.91562	3.551056	-1.553564
H -0.0606 -3.303809 -1.447055 H 0.120769 3.186598 -1.490732 H 1.304095 -3.975992 -0.5058 H 0.120769 3.186598 -0.554208 Dy -0.027002 0.210135 -0.28115 Dy -0.026534 0.215381 -0.246892 C -2.200668 -1.308663 0.327216 C 2.03194 -1.183 -0.567628 C -2.200668 -1.096512 0.863133 C 2.441026 1.079437 -0.119171 C -2.450142 0.591753 -1.00218 C 2.441026 1.079437 -0.119171 C -2.450142 0.591753 -1.00218 C 2.441026 -0.79437 -0.119171 C -2.450142 0.591753 -1.00218 C 2.441026 -2.02627 -2.39376 C -2.445142 0.591753 -1.00218 C 2.445065 -2.202627 -2.39376 C -2.445142 0.414774 1.151241 C 3.845013 -3.01142 -1.035436 C -2.44718	Н	1.037703	-4.514793	-2.181244	Н	-0.92779	4.423129	-2.224158
H 1.304095 -3.975992 -0.50058 H -1.21236 3.90048 -0.554208 S PBE Dy -0.027002 0.210135 -0.28115 Dy -0.026534 0.215381 -0.246892 C -2.200668 -1.038663 0.327216 C 2.03104 -1.183 -0.567628 C -2.200668 -1.096512 0.863133 C 2.441026 1.079437 -0.119171 C -2.450142 0.591753 -1.000218 C 2.452243 0.095628 -1.154657 C -2.450142 0.591753 -1.00218 C 2.445065 -2.202627 -2.393376 C 2.4481227 0.100247 -1.137521 C 2.438063 -3.01142 -1.035436 C -2.45142 0.414774 1.151241 C 3.8451013 -3.01142 -1.035436 C -2.44786 1.014038 0.322264 H 4.087642 -2.20163 -1.174395 C -2.44786 1.014038 0.382284 H 4.30721	Η	-0.0606	-3.303809	-1.447055	Н	0.120769	3.186598	-1.490732
J PBE PBE0 C -2.270493 -0.833526 -1.023418 C 2.203194 -1.183 -0.567628 C -2.270493 -0.833526 -1.023418 C 2.203194 -1.183 -0.567628 C -2.200668 -1.308663 0.327216 C 2.041707 -0.991471 0.838101 C 2.228142 -1.190134 -0.549164 C 2.196755 0.406732 1.122578 C 2.033042 -0.996512 0.863133 C 2.441026 1.079437 -0.119171 C -2.450142 0.591753 -1.000218 C 2.452243 0.095628 -1.154657 C 2.448127 0.100247 -1.137521 C 2.438063 -2.48009 -1.329286 C 2.172481 0.414774 1.151241 C 3.845013 -3.01142 -1.035436 C 2.445838 1.09277 -0.09532 H 4.088369 -3.62291 -1.240406 <td>Н</td> <td>1.304095</td> <td>-3.975992</td> <td>-0.50058</td> <td>Н</td> <td>-1.21236</td> <td>3.90048</td> <td>-0.554208</td>	Н	1.304095	-3.975992	-0.50058	Н	-1.21236	3.90048	-0.554208
BE PBE0 Dy -0.027002 0.210135 -0.28115 Dy -0.026534 0.215381 -0.246892 C -2.270493 -0.833526 -1.023418 C 2.203194 -1.183 -0.567628 C -2.200668 -1.308663 0.327216 C 2.041707 -0.991471 0.838101 C 2.228142 -1.190134 -0.549164 C 2.196755 0.406732 1.122578 C 2.230304 -0.996512 0.863133 C 2.441026 1.079437 -0.119171 C 2.450142 0.59175 -1.000218 C 2.438063 -2.202627 -2.393376 C 2.44127 0.10247 -1.137521 C 3.845013 -3.01142 -1.035436 C 2.441268 1.09277 -0.09532 H 4.088369 -3.851156 -1.704006 C -2.44538 1.09277 -2.256058 H 3.92312 -3.376582 -0.00079 C <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Dy -0.027002 0.210135 -0.28115 Dy -0.026534 0.215381 -0.246892 C -2.270493 -0.833526 -1.023418 C 2.203194 -1.183 -0.567628 C -2.200668 -1.308663 0.327216 C 2.03177 -0.991471 0.838101 C 2.228142 -1.190134 -0.549164 C 2.196755 0.406732 1.122578 C 2.033042 -0.996512 0.863133 C 2.441026 1.079437 -0.119171 C 2.450142 0.591753 -1.000218 C 2.452243 0.095628 -1.154657 C 2.481227 0.100247 -1.137521 C 2.438063 -2.202627 -2.393376 C 2.172481 0.414774 1.151241 C 3.845013 -3.01142 -1.035436 C 2.47186 1.014038 0.382284 H 4.607642 -2.23163 -1.174995 C -2.47186 1.014038 0.382284			PBE		3		PBE0	
C -2.270493 -0.833526 -1.023418 C 2.203194 -1.183 -0.567628 C -2.200668 -1.308663 0.327216 C 2.041707 -0.991471 0.838101 C 2.228142 -1.190134 -0.549164 C 2.196755 0.406732 1.122578 C 2.033042 -0.996512 0.863133 C 2.441026 1.079437 -0.119171 C -2.450142 0.591753 -1.000218 C 2.452243 0.096528 -1.154657 C -2.48127 0.100247 -1.137521 C 2.438063 -2.48009 -1.32286 C -2.4292565 -0.159911 1.194679 H 2.426065 -2.202627 -2.33376 C 2.445838 1.092727 -0.09532 H 4.088369 -3.851156 -1.704006 C -2.47186 1.014038 0.382284 H 4.607642 -2.23163 -1.174395 C -2.47186 1.014038 0.382284 H 3.92312 -3.376582 -0.00079 C -1.52721	Dy	-0.027002	0.210135	-0.28115	Dy	-0.026534	0.215381	-0.246892
C -2.200668 -1.308663 0.327216 C 2.041707 -0.991471 0.838101 C 2.228142 -1.190134 -0.549164 C 2.196755 0.406732 1.122578 C 2.033042 -0.996512 0.863133 C 2.441026 1.079437 -0.119171 C -2.450142 0.591753 -1.000218 C 2.438063 -2.48009 -1.329286 C -2.492565 -0.159911 1.194679 H 2.426065 -2.02027 -2.393376 C 2.44788 1.092727 -0.09532 H 4.088369 -3.851156 -1.704006 C -2.47186 1.014038 0.382284 H 4.607642 -2.23163 -1.174395 C -2.47186 1.014038 0.382284 H 3.92312 -3.376582 -0.0079 C -2.47186 1.014038 0.382284 H 1.600517 -4.347037 -2.00984 C -2.47186 1.014038 0.382284 H 1.600517 -4.347037 -2.00984 C -2.47186 <td>Ċ</td> <td>-2.270493</td> <td>-0.833526</td> <td>-1.023418</td> <td>Ċ</td> <td>2.203194</td> <td>-1.183</td> <td>-0.567628</td>	Ċ	-2.270493	-0.833526	-1.023418	Ċ	2.203194	-1.183	-0.567628
C 2.228142 -1.190134 -0.549164 C 2.196755 0.406732 1.122578 C 2.033042 -0.996512 0.863133 C 2.441026 1.079437 -0.119171 C -2.450142 0.591753 -1.00218 C 2.438063 -2.48009 -1.329286 C -2.492565 -0.159911 1.194679 H 2.426065 -2.202627 -2.393376 C 2.172481 0.414774 1.51241 C 3.485013 -3.0142 -1.035436 C 2.44538 1.092727 -0.09532 H 4.088369 -3.851156 -1.704006 C -2.47186 1.014038 0.382284 H 4.607642 -2.23163 -1.174395 C -2.47186 1.014038 0.382284 H 3.02312 -3.376582 -0.00079 C -1.42757 -1.723607 -2.256058 H 3.92312 -3.376582 -0.0079 C -1.42757 -1.426575 3.088133 H 1.60517 -4.347037 -2.09844 C -2.494627	С	-2.200668	-1.308663	0.327216	С	2.041707	-0.991471	0.838101
C 2.033042 -0.996512 0.863133 C 2.441026 1.079437 -0.119171 C -2.450142 0.591753 -1.000218 C 2.452243 0.095628 -1.154657 C 2.481227 0.100247 -1.137521 C 2.438063 -2.48009 -1.329286 C -2.292565 -0.159911 1.194679 H 2.426065 -2.202627 -2.393376 C 2.445838 1.092727 -0.09532 H 4.088369 -3.851156 -1.704006 C -2.447186 1.014038 0.382284 H 4.607642 -2.23163 -1.174395 C -2.447186 1.014038 0.382284 H 4.607642 -2.3163 -1.074006 C -2.447186 1.014038 0.382284 H 4.607642 -2.23163 -1.174395 C -2.447186 1.014038 0.382284 H 4.607642 -2.3163 -1.222151 C -2.494627 -2.730508 0.810698 H 1.600517 -4.347037 -2.099841 C -2.50	С	2.228142	-1.190134	-0.549164	С	2.196755	0.406732	1.122578
C -2.450142 0.591753 -1.000218 C 2.452243 0.095628 -1.154657 C 2.481227 0.100247 -1.137521 C 2.438063 -2.48009 -1.329286 C -2.292565 -0.159911 1.194679 H 2.426065 -2.202627 -2.393376 C 2.172481 0.414774 1.151241 C 3.845013 -3.01142 -1.035436 C 2.445838 1.092727 -0.09532 H 4.088369 -3.851156 -1.704006 C -2.47186 1.014038 0.382284 H 4.607642 -2.23163 -1.174395 C -2.47186 1.014038 0.382284 H 3.02312 -3.376582 -0.00079 C -2.47186 1.014038 0.382284 H 3.02312 -3.376582 -0.00079 C -1.527216 -3.865491 0.446966 C 1.408896 -3.602391 -1.222151 C -2.494627 -2.730508 0.810698 H 1.600517 -4.347037 -2.00984 C -1.94192	С	2.033042	-0.996512	0.863133	С	2.441026	1.079437	-0.119171
C 2.481227 0.100247 -1.137521 C 2.438063 -2.48009 -1.329286 C -2.292565 -0.159911 1.194679 H 2.426065 -2.202627 -2.393376 C 2.172481 0.414774 1.151241 C 3.845013 -3.01142 -1.035436 C 2.445838 1.092727 -0.09532 H 4.088369 -3.851156 -1.704006 C -2.47186 1.014038 0.382284 H 4.607642 -2.23163 -1.174395 C -2.47186 1.014038 0.382284 H 3.92312 -3.376582 -0.00079 C -2.47186 1.014038 0.382284 H 3.92312 -3.376582 -0.00079 C -2.47186 1.014038 0.382284 H 3.92312 -3.376582 -0.00079 C -2.494627 -2.730508 0.810698 H 1.600517 -4.347037 -2.09848 C -0.879574 -1.405375 -3.088133 H 1.447164 -4.142628 -0.266269 C 2.501931 </td <td>С</td> <td>-2.450142</td> <td>0.591753</td> <td>-1.000218</td> <td>С</td> <td>2.452243</td> <td>0.095628</td> <td>-1.154657</td>	С	-2.450142	0.591753	-1.000218	С	2.452243	0.095628	-1.154657
C -2.292565 -0.159911 1.194679 H 2.426065 -2.202627 -2.393376 C 2.172481 0.414774 1.151241 C 3.845013 -3.01142 -1.035436 C 2.445338 1.092727 -0.09532 H 4.088369 -3.851156 -1.704006 C -2.47186 1.014038 0.382284 H 4.607642 -2.23163 -1.174395 C -2.47186 1.014038 0.382284 H 4.607642 -2.23163 -1.174395 C -2.47186 1.014038 0.382284 H 4.607642 -2.23163 -1.174395 C -2.142757 -1.723607 -2.256058 H 3.92312 -3.376582 -0.00079 C -1.527216 -3.855491 0.446966 C 1.408896 -3.602391 -1.222151 C -2.494627 -2.730508 0.810698 H 1.600517 -4.347037 -2.09984 C -0.879574 -1.405375 -3.088133 H 1.447164 -4.142628 -0.266269 C 1.9	С	2.481227	0.100247	-1.137521	С	2.438063	-2.48009	-1.329286
C 2.172481 0.414774 1.151241 C 3.845013 -3.01142 -1.035436 C 2.445838 1.092727 -0.09532 H 4.088369 -3.851156 -1.704006 C -2.47186 1.014038 0.382284 H 4.607642 -2.23163 -1.174395 C -2.142757 -1.723607 -2.256058 H 3.92312 -3.376582 -0.0079 C -1.527216 -3.865491 0.446966 C 1.408896 -3.602391 -1.222151 C -2.494627 -2.730508 0.810698 H 1.600517 -4.347037 -2.00984 C -0.879574 -1.405375 -3.088133 H 1.447164 -4.142628 -0.266269 C -0.879574 -1.405375 -3.088133 H 0.383948 -3.235506 -1.357445 C 1.941924 -2.165799 1.84592 C 1.949181 -2.15238 1.817014 C 0.731217 -2.178111 2.795716 H 1.819972 -3.035843 1.817014 C -1.	С	-2.292565	-0.159911	1.194679	Н	2.426065	-2.202627	-2.393376
C 2.445838 1.092727 -0.09532 H 4.088369 -3.851156 -1.704006 C -2.47186 1.014038 0.382284 H 4.607642 -2.23163 -1.174395 C -2.142757 -1.723607 -2.256058 H 3.92312 -3.376582 -0.00079 C -1.527216 -3.865491 0.446966 C 1.408896 -3.602391 -1.222151 C -2.494627 -2.730508 0.810698 H 1.600517 -4.347037 -2.0984 C -0.879574 -1.405375 -3.088133 H 1.447164 -4.142628 -0.266269 C 2.501931 -2.492017 -1.306589 H 0.383948 -3.235506 -1.357445 C 1.941924 -2.165799 1.84592 C 1.949181 -2.152938 1.817014 C 0.731217 -2.178111 2.795716 H 1.819972 -3.035883 1.180102 C -2.491638 1.416663 -2.286467 C 3.240545 -2.388159 2.608869 C 1	С	2.172481	0.414774	1.151241	С	3.845013	-3.01142	-1.035436
C -2.47186 1.014038 0.382284 H 4.607642 -2.23163 -1.174395 C -2.142757 -1.723607 -2.256058 H 3.92312 -3.376582 -0.00079 C -1.527216 -3.865491 0.446966 C 1.408896 -3.602391 -1.222151 C -2.494627 -2.730508 0.810698 H 1.600517 -4.347037 -2.00984 C -0.879574 -1.405375 -3.088133 H 1.447164 -4.142628 -0.266269 C 2.501931 -2.492017 -1.306589 H 0.383948 -3.235506 -1.357445 C 1.941924 -2.165799 1.84592 C 1.949181 -2.152938 1.817014 C 0.731217 -2.178111 2.795716 H 1.819972 -3.035883 1.180102 C -2.491638 1.416663 -2.286467 C 3.240545 -2.388159 2.608869 C 1.479898 -3.636763 -1.229241 H 3.223648 -3.39327 3.057375 C	С	2.445838	1.092727	-0.09532	Н	4.088369	-3.851156	-1.704006
C -2.142757 -1.723607 -2.256058 H 3.92312 -3.376582 -0.00079 C -1.527216 -3.865491 0.446966 C 1.408896 -3.602391 -1.222151 C -2.494627 -2.730508 0.810698 H 1.600517 -4.347037 -2.00984 C -0.879574 -1.405375 -3.088133 H 1.447164 -4.142628 -0.266269 C 2.501931 -2.492017 -1.306589 H 0.383948 -3.235506 -1.357445 C 1.941924 -2.165799 1.84592 C 1.949181 -2.152938 1.817014 C 0.731217 -2.178111 2.795716 H 1.819972 -3.035883 1.180102 C -2.491638 1.416663 -2.286467 C 3.240545 -2.388159 2.608869 C 1.479898 -3.636763 -1.229241 H 3.223648 -3.39327 3.057375 C -2.28656 0.942509 2.582778 H 3.351365 -1.669456 3.432592 C	С	-2.47186	1.014038	0.382284	Н	4.607642	-2.23163	-1.174395
C-1.527216-3.8654910.446966C1.408896-3.602391-1.222151C-2.494627-2.7305080.810698H1.600517-4.347037-2.00984C-0.879574-1.405375-3.088133H1.447164-4.142628-0.266269C2.501931-2.492017-1.306589H0.383948-3.235506-1.357445C1.941924-2.1657991.84592C1.949181-2.1529381.817014C0.731217-2.1781112.795716H1.819972-3.0358831.180102C-2.4916381.416663-2.286467C3.240545-2.3881592.608869C1.479898-3.636763-1.229241H3.223648-3.393273.057375C-1.2008472.228211-2.482858H4.133885-2.3158641.972515C2.2586560.9425092.582778H3.351365-1.6694563.432592C-2.434235-0.2806862.711644C0.751855-2.1496472.768365C2.9996190.292315-2.564883H0.639188-3.139763.236095C-2.914992.3401310.999748H0.860001-1.4234783.586766C2.7838962.55631-0.393346H-0.185164-1.9253222.240209C1.605163.539622-0.289546C2.3303460.9253262.544946C2.1858411.2	С	-2.142757	-1.723607	-2.256058	Н	3.92312	-3.376582	-0.00079
C-2.494627-2.7305080.810698H1.600517-4.347037-2.00984C-0.879574-1.405375-3.088133H1.447164-4.142628-0.266269C2.501931-2.492017-1.306589H0.383948-3.235506-1.357445C1.941924-2.1657991.84592C1.949181-2.1529381.817014C0.731217-2.1781112.795716H1.819972-3.0358831.180102C-2.4916381.416663-2.286467C3.240545-2.3881592.608869C1.479898-3.636763-1.229241H3.223648-3.393273.057375C-1.2008472.228211-2.482858H4.133885-2.3158641.972515C2.2586560.9425092.582778H3.351365-1.6694563.432592C-2.434235-0.2806862.711644C0.751855-2.1496472.768365C2.9996190.292315-2.564883H0.639188-3.139763.236095C-2.914992.3401310.99748H0.860001-1.4234783.586766C2.7838962.55631-0.393346H-0.185164-1.9253222.240209C1.605163.539622-0.289546C2.3303460.9253262.544946C2.1858411.211941-3.495646H1.8498820.1628893.172838C1.5434762.27038	С	-1.527216	-3.865491	0.446966	С	1.408896	-3.602391	-1.222151
C-0.879574-1.405375-3.088133H1.447164-4.142628-0.266269C2.501931-2.492017-1.306589H0.383948-3.235506-1.357445C1.941924-2.1657991.84592C1.949181-2.1529381.817014C0.731217-2.1781112.795716H1.819972-3.0358831.180102C-2.4916381.416663-2.286467C3.240545-2.3881592.608869C1.479898-3.636763-1.229241H3.223648-3.393273.057375C-1.2008472.228211-2.482858H4.133885-2.3158641.972515C2.2586560.9425092.582778H3.351365-1.6694563.432592C-2.434235-0.2806862.711644C0.751855-2.1496472.768365C2.9996190.292315-2.564883H0.639188-3.139763.236095C-2.914992.3401310.999748H0.860001-1.4234783.586766C2.7838962.55631-0.393346H-0.185164-1.9253222.240209C1.605163.539622-0.289546C2.3303460.9253262.544946C2.1858411.211941-3.495646H1.8498820.1628893.172838C1.5434762.2703862.88793C3.7994440.9804882.991158C-2.163063.614876 </td <td>С</td> <td>-2.494627</td> <td>-2.730508</td> <td>0.810698</td> <td>Н</td> <td>1.600517</td> <td>-4.347037</td> <td>-2.00984</td>	С	-2.494627	-2.730508	0.810698	Н	1.600517	-4.347037	-2.00984
C2.501931-2.492017-1.306589H0.383948-3.235506-1.357445C1.941924-2.1657991.84592C1.949181-2.1529381.817014C0.731217-2.1781112.795716H1.819972-3.0358831.180102C-2.4916381.416663-2.286467C3.240545-2.3881592.608869C1.479898-3.636763-1.229241H3.223648-3.393273.057375C-1.2008472.228211-2.482858H4.133885-2.3158641.972515C2.2586560.9425092.582778H3.351365-1.6694563.432592C-2.434235-0.2806862.711644C0.751855-2.1496472.768365C2.9996190.292315-2.564883H0.639188-3.139763.236095C-2.914992.3401310.999748H0.860001-1.4234783.586766C2.7838962.55631-0.393346H-0.185164-1.9253222.240209C1.605163.539622-0.289546C2.3303460.9253262.544946C2.1858411.211941-3.495646H1.8498820.1628893.172838C1.5434762.2703862.88793C3.7994440.9804882.991158C-2.163063.6148760.586952H4.3302971.8257462.537452	С	-0.879574	-1.405375	-3.088133	Н	1.447164	-4.142628	-0.266269
C1.941924-2.1657991.84592C1.949181-2.1529381.817014C0.731217-2.1781112.795716H1.819972-3.0358831.180102C-2.4916381.416663-2.286467C3.240545-2.3881592.608869C1.479898-3.636763-1.229241H3.223648-3.393273.057375C-1.2008472.228211-2.482858H4.133885-2.3158641.972515C2.2586560.9425092.582778H3.351365-1.6694563.432592C-2.434235-0.2806862.711644C0.751855-2.1496472.768365C2.9996190.292315-2.564883H0.639188-3.139763.236095C-2.914992.3401310.999748H0.860001-1.4234783.586766C2.7838962.55631-0.393346H-0.185164-1.9253222.240209C1.605163.539622-0.289546C2.3303460.9253262.544946C2.1858411.211941-3.495646H1.8498820.1628893.172838C1.5434762.2703862.88793C3.7994440.9804882.991158C-2.163063.6148760.586952H4.3434040.0677062.720107C-1.4962980.5912833.562922H4.3302971.8257462.537452	С	2.501931	-2.492017	-1.306589	Н	0.383948	-3.235506	-1.357445
C0.731217-2.1781112.795716H1.819972-3.0358831.180102C-2.4916381.416663-2.286467C3.240545-2.3881592.608869C1.479898-3.636763-1.229241H3.223648-3.393273.057375C-1.2008472.228211-2.482858H4.133885-2.3158641.972515C2.2586560.9425092.582778H3.351365-1.6694563.432592C-2.434235-0.2806862.711644C0.751855-2.1496472.768365C2.9996190.292315-2.564883H0.639188-3.139763.236095C-2.914992.3401310.999748H0.860001-1.4234783.586766C2.7838962.55631-0.393346H-0.185164-1.9253222.240209C1.605163.539622-0.289546C2.3303460.9253262.544946C2.1858411.211941-3.495646H1.8498820.1628893.172838C1.5434762.2703862.88793C3.7994440.9804882.991158C-2.163063.6148760.586952H4.33302971.8257462.537452	С	1.941924	-2.165799	1.84592	С	1.949181	-2.152938	1.817014
C-2.4916381.416663-2.286467C3.240545-2.3881592.608869C1.479898-3.636763-1.229241H3.223648-3.393273.057375C-1.2008472.228211-2.482858H4.133885-2.3158641.972515C2.2586560.9425092.582778H3.351365-1.6694563.432592C-2.434235-0.2806862.711644C0.751855-2.1496472.768365C2.9996190.292315-2.564883H0.639188-3.139763.236095C-2.914992.3401310.999748H0.860001-1.4234783.586766C2.7838962.55631-0.393346H-0.185164-1.9253222.240209C1.605163.539622-0.289546C2.3303460.9253262.544946C2.1858411.211941-3.495646H1.8498820.1628893.172838C1.5434762.2703862.88793C3.7994440.9804882.991158C-2.163063.6148760.586952H4.3434040.0677062.720107C-1.4962980.5912833.562922H4.3302971.8257462.537452	C	0.731217	-2.178111	2.795716	Ĥ	1.819972	-3.035883	1.180102
C1.479898-3.636763-1.229241H3.223648-3.393273.057375C-1.2008472.228211-2.482858H4.133885-2.3158641.972515C2.2586560.9425092.582778H3.351365-1.6694563.432592C-2.434235-0.2806862.711644C0.751855-2.1496472.768365C2.9996190.292315-2.564883H0.639188-3.139763.236095C-2.914992.3401310.999748H0.860001-1.4234783.586766C2.7838962.55631-0.393346H-0.185164-1.9253222.240209C1.605163.539622-0.289546C2.3303460.9253262.544946C2.1858411.211941-3.495646H1.8498820.1628893.172838C1.5434762.2703862.88793C3.7994440.9804882.991158C-2.163063.6148760.586952H4.3434040.0677062.720107C-1.4962980.5912833.562922H4.3302971.8257462.537452	С	-2.491638	1.416663	-2.286467	С	3.240545	-2.388159	2.608869
C-1.2008472.228211-2.482858H4.133885-2.3158641.972515C2.2586560.9425092.582778H3.351365-1.6694563.432592C-2.434235-0.2806862.711644C0.751855-2.1496472.768365C2.9996190.292315-2.564883H0.639188-3.139763.236095C-2.914992.3401310.999748H0.860001-1.4234783.586766C2.7838962.55631-0.393346H-0.185164-1.9253222.240209C1.605163.539622-0.289546C2.3303460.9253262.544946C2.1858411.211941-3.495646H1.8498820.1628893.172838C1.5434762.2703862.88793C3.7994440.9804882.991158C-2.163063.6148760.586952H4.3434040.0677062.720107C-1.4962980.5912833.562922H4.3302971.8257462.537452	С	1.479898	-3.636763	-1.229241	H	3.223648	-3.39327	3.057375
C2.2586560.9425092.582778H3.351365-1.6694563.432592C-2.434235-0.2806862.711644C0.751855-2.1496472.768365C2.9996190.292315-2.564883H0.639188-3.139763.236095C-2.914992.3401310.999748H0.860001-1.4234783.586766C2.7838962.55631-0.393346H-0.185164-1.9253222.240209C1.605163.539622-0.289546C2.3303460.9253262.544946C2.1858411.211941-3.495646H1.8498820.1628893.172838C1.5434762.2703862.88793C3.7994440.9804882.991158C-2.163063.6148760.586952H4.3434040.0677062.720107C-1.4962980.5912833.562922H4.3302971.8257462.537452	С	-1.200847	2.228211	-2.482858	Н	4.133885	-2.315864	1.972515
C-2.434235-0.2806862.711644C0.751855-2.1496472.768365C2.9996190.292315-2.564883H0.639188-3.139763.236095C-2.914992.3401310.999748H0.860001-1.4234783.586766C2.7838962.55631-0.393346H-0.185164-1.9253222.240209C1.605163.539622-0.289546C2.3303460.9253262.544946C2.1858411.211941-3.495646H1.8498820.1628893.172838C1.5434762.2703862.88793C3.7994440.9804882.991158C-2.163063.6148760.586952H4.3434040.0677062.720107C-1.4962980.5912833.562922H4.3302971.8257462.537452	C	2.258656	0.942509	2.582778	H	3.351365	-1.669456	3.432592
C2.9996190.292315-2.564883H0.639188-3.139763.236095C-2.914992.3401310.999748H0.860001-1.4234783.586766C2.7838962.55631-0.393346H-0.185164-1.9253222.240209C1.605163.539622-0.289546C2.3303460.9253262.544946C2.1858411.211941-3.495646H1.8498820.1628893.172838C1.5434762.2703862.88793C3.7994440.9804882.991158C-2.163063.6148760.586952H4.3434040.0677062.720107C-1.4962980.5912833.562922H4.3302971.8257462.537452	Ċ	-2,434235	-0.280686	2.711644	C	0.751855	-2.149647	2.768365
C-2.914992.3401310.999748H0.860001-1.4234783.586766C2.7838962.55631-0.393346H-0.185164-1.9253222.240209C1.605163.539622-0.289546C2.3303460.9253262.544946C2.1858411.211941-3.495646H1.8498820.1628893.172838C1.5434762.2703862.88793C3.7994440.9804882.991158C-2.163063.6148760.586952H4.3434040.0677062.720107C-1.4962980.5912833.562922H4.3302971.8257462.537452	Ċ	2.999619	0.292315	-2.564883	H	0.639188	-3.13976	3.236095
C2.7838962.55631-0.393346H-0.185164-1.9253222.240209C1.605163.539622-0.289546C2.3303460.9253262.544946C2.1858411.211941-3.495646H1.8498820.1628893.172838C1.5434762.2703862.88793C3.7994440.9804882.991158C-2.163063.6148760.586952H4.3434040.0677062.720107C-1.4962980.5912833.562922H4.3302971.8257462.537452	Ċ	-2.91499	2.340131	0.999748	H	0.860001	-1.423478	3.586766
C1.605163.539622-0.289546C2.3303460.9253262.544946C2.1858411.211941-3.495646H1.8498820.1628893.172838C1.5434762.2703862.88793C3.7994440.9804882.991158C-2.163063.6148760.586952H4.3434040.0677062.720107C-1.4962980.5912833.562922H4.3302971.8257462.537452	Ċ	2,783896	2.55631	-0.393346	Н	-0.185164	-1.925322	2.240209
C2.1858411.211941-3.495646H1.8498820.1628893.172838C1.5434762.2703862.88793C3.7994440.9804882.991158C-2.163063.6148760.586952H4.3434040.0677062.720107C-1.4962980.5912833.562922H4.3302971.8257462.537452	č	1.60516	3.539622	-0.289546	C	2.330346	0.925326	2.544946
C 1.543476 2.270386 2.88793 C 3.799444 0.980488 2.991158 C -2.16306 3.614876 0.586952 H 4.343404 0.067706 2.720107 C -1.496298 0.591283 3.562922 H 4.330297 1.825746 2.537452	Č	2.185841	1.211941	-3.495646	H	1.849882	0.162889	3.172838
C -2.16306 3.614876 0.586952 H 4.343404 0.067706 2.720107 C -1.496298 0.591283 3.562922 H 4.330297 1.825746 2.537452	Ċ	1.543476	2.270386	2.88793	C	3.799444	0.980488	2.991158
C -1.496298 0.591283 3.562922 H 4.330297 1.825746 2.537452	Č	-2.16306	3.614876	0.586952	H	4.343404	0.067706	2.720107
	Č	-1.496298	0.591283	3.562922	Н	4.330297	1.825746	2.537452

С	-3.40529	-1.77634	-3.137555	Η	3.856402	1.101205	4.084071
С	-3.941413	-3.105483	0.420279	С	1.643211	2.249423	2.878676
С	3.917854	-3.010322	-0.97583	Η	1.588259	2.375673	3.970335
С	3.239962	-2.392959	2.65034	Η	2.194759	3.11321	2.485857
С	-3.735751	2.288146	-2.512848	Η	0.612371	2.303835	2.496072
С	-3.898043	-0.15089	3.182243	С	2.75393	2.538696	-0.420755
С	3.719476	1.013009	3.08706	Η	2.995192	2.546186	-1.489088
С	4.501906	0.657288	-2.568081	С	4.000047	3.093758	0.268652
С	-4.442668	2.533175	0.873371	Η	4.309073	4.027357	-0.225954
С	4.028207	3.098622	0.33193	Η	3.828511	3.333117	1.325856
Η	2.517542	-2.210902	-2.379111	Η	4.83915	2.385623	0.210985
Η	4.196297	-3.839368	-1.656884	С	1.566924	3.490751	-0.280357
Η	4.678222	-2.21167	-1.077575	Η	0.727919	3.183318	-0.925051
Η	3.972267	-3.397248	0.060811	Η	1.200643	3.570057	0.750262
Η	1.720921	-4.39682	-1.999513	Η	1.841047	4.505612	-0.607742
Η	1.482177	-4.163569	-0.25552	С	2.952103	0.287854	-2.58019
Η	0.44832	-3.288256	-1.417969	Η	2.909099	-0.702841	-3.052602
Η	1.823618	-3.056179	1.202433	С	4.438425	0.672326	-2.596119
Η	3.233212	-3.409265	3.093175	Η	4.838752	0.591169	-3.618029
Η	4.143394	-2.302798	2.016995	Η	4.617185	1.702119	-2.255145
Η	3.336667	-1.675164	3.487132	Η	5.02393	0.003871	-1.948421
Η	0.629637	-3.174831	3.270491	С	2.119742	1.187465	-3.496575
Η	0.822662	-1.440921	3.617444	Η	2.602916	1.270792	-4.481803
Η	-0.211052	-1.967395	2.255846	Η	1.120746	0.759217	-3.670468
Η	1.75887	0.173428	3.202294	Η	1.988952	2.210331	-3.112539
Η	4.287	0.098982	2.837705	С	-2.258136	-0.832939	-0.992191
Η	4.262658	1.869379	2.649599	С	-2.18239	-1.292138	0.353595
Η	3.733374	1.136592	4.188887	С	-2.271961	-0.144722	1.203255
Η	1.447449	2.404336	3.983808	С	-2.459498	1.011861	0.38681
Η	2.104749	3.143609	2.506524	С	-2.44211	0.580182	-0.980735
Η	0.518623	2.312857	2.465476	С	-2.148742	-1.730563	-2.211117
Η	3.056718	2.555218	-1.462866	Η	-1.993162	-2.742792	-1.816618
Η	4.369333	4.030143	-0.163065	С	-0.914522	-1.420277	-3.069921
Η	3.828481	3.350796	1.390079	Η	0.020224	-1.371631	-2.472277
Η	4.862679	2.371295	0.303978	Η	-0.732903	-2.216079	-3.808154
Η	0.762284	3.234442	-0.943009	Η	-1.006815	-0.478111	-3.629167
Η	1.222415	3.648086	0.741078	С	-3.421015	-1.792539	-3.060692
Η	1.908197	4.54905	-0.634665	Η	-4.295984	-2.028319	-2.439222
Η	2.943816	-0.704726	-3.043895	Η	-3.63457	-0.846487	-3.579185
Η	4.91306	0.570784	-3.593721	Η	-3.32867	-2.574148	-3.830162
Η	4.692819	1.692136	-2.222311	С	-2.47393	-2.701274	0.852461
Η	5.076925	-0.023579	-1.910632	Η	-2.459582	-2.640952	1.949787
Η	2.678973	1.28011	-4.486018	С	-1.518599	-3.83799	0.504346
Η	1.170498	0.804105	-3.674933	Η	-0.484853	-3.600816	0.779944
Η	2.075763	2.247219	-3.115195	Η	-1.811167	-4.741572	1.06055
Η	-1.995237	-2.747909	-1.866884	Η	-1.534835	-4.107203	-0.561524
Η	0.047898	-1.353304	-2.46192	С	-3.911461	-3.073834	0.467928
Η	-0.667244	-2.206752	-3.824113	Η	-4.619366	-2.274446	0.731252
Η	-0.960116	-0.457329	-3.655346	Η	-4.001378	-3.258474	-0.612949

Н	-4.297378	-2.023697	-2.530778	Н	-4.222007	-3.99324	0.986927
Н	-3.61308	-0.816908	-3.651265	С	-2.378565	-0.242313	2.71686
Н	-3.296897	-2.55326	-3.920876	Н	-2.085304	-1.272077	2.964439
Н	-2.479044	-2.682823	1.917581	С	-1.409676	0.627299	3.516536
Н	-0.488277	-3.624087	0.731074	Н	-0.374609	0.469161	3.185676
Н	-1.817582	-4.787039	0.990343	Н	-1.622612	1.704066	3.453575
Н	-1.536822	-4.118553	-0.631651	Н	-1.455129	0.355845	4.582381
Н	-4.657196	-2.305842	0.694233	С	-3.816482	-0.085563	3.221586
Н	-4.0339	-3.279885	-0.670431	Н	-4.514522	-0.714251	2.649572
Н	-4.251206	-4.037882	0.933144	Н	-3.880151	-0.385768	4.278506
Н	-2.132764	-1.319911	2.950056	Н	-4.167606	0.953687	3.155551
Н	-0.443781	0.464769	3.249899	С	-2.908127	2.332657	0.991283
Н	-1.73291	1.672824	3.523759	Н	-2.698751	2.23443	2.062515
Н	-1.562817	0.287753	4.627129	С	-4.429381	2.500328	0.880974
Н	-4.578119	-0.782858	2.578038	Н	-4.765211	3.325727	1.527695
Н	-3.987067	-0.470373	4.23989	Н	-4.748292	2.73051	-0.142279
Н	-4.263406	0.892329	3.122006	Н	-4.955247	1.587689	1.192411
Н	-2.717491	2.225352	2.080267	С	-2.18406	3.603328	0.5552
Н	-4.775832	3.359781	1.533119	Н	-2.489385	4.444179	1.195985
Н	-4.748062	2.785642	-0.15751	Н	-1.091026	3.508642	0.648316
Η	-4.990705	1.618143	1.166967	Η	-2.416727	3.895376	-0.478167
Η	-2.466705	4.458709	1.238234	С	-2.501141	1.388865	-2.266184
Н	-1.064604	3.503585	0.693	Н	-2.521473	0.643866	-3.068651
Н	-2.379512	3.925759	-0.453552	С	-1.22739	2.203178	-2.481407
Η	-2.509481	0.673097	-3.102339	Η	-1.178021	2.634333	-3.493523
Н	-1.135148	2.671232	-3.497756	Н	-1.136717	3.030383	-1.766294
Η	-1.108735	3.053819	-1.753501	Η	-0.304787	1.585125	-2.419655
Η	-0.272442	1.601671	-2.421467	С	-3.746614	2.242654	-2.48449
Н	-4.662636	1.709715	-2.333604	Η	-4.660463	1.662344	-2.293058
Н	-3.75621	3.180931	-1.860597	Η	-3.767085	3.134042	-1.844583
Н	-3.754684	2.648596	-3.561135	Η	-3.77829	2.591324	-3.528133
				4			
		PBE				PBE0	
Dy	0.038732	0.319672	-0.184529	Dy	0.035128	0.29238	-0.184075
С	-2.393705	-0.262879	-1.021265	С	-2.203521	0.658384	1.089607
С	-2.494653	0.954795	-0.265598	С	-1.917999	-0.735472	1.200329
С	2.390364	-0.695407	-0.849049	С	-2.038491	-1.310715	-0.107809
С	2.258369	-1.082279	0.528211	С	-2.386696	-0.271556	-1.016112
С	2.226241	0.114636	1.323249	С	-2.481719	0.946512	-0.281593
С	2.348979	1.239042	0.443771	С	-2.368487	1.652983	2.211787
С	-2.207257	0.648842	1.111967	Η	-1.52516	1.605313	2.914627
С	2.458154	0.740321	-0.895707	Н	-2.344953	2.668114	1.794577
С	-2.032834	-1.319328	-0.120551	С	-3.672218	1.476819	2.991288
C	-1.91027	-0.755141	1.205165	H	-3.793354	2.283867	3.729119
C	-1.890802	0.319864	-3.483896	H	-4.544036	1.490035	2.322423
C	-2.105459	3.489948	-0.75361	H	-3.693306	0.522903	3.5346
C	-2.769549	-0.460363	-2.486898	С	-1.701216	-1.567149	2.452183
С	-3.033625	2.264731	-0.841717	Н	-0.991855	-2.364765	2.174643

С	1.473458	-3.56016	0.774133	С	-2.994573	-2.26244	2.893799
С	2.469997	-2.455921	1.154753	Н	-3.393658	-2.926562	2.116533
С	2.244961	2.707433	0.838899	Н	-2.812355	-2.870029	3.7933
С	0.850859	3.002875	1.422342	Н	-3.777126	-1.528212	3.134448
С	2.633056	-1.651804	-2.01073	С	-1.07298	-0.83922	3.638486
С	-2.368963	1.63319	2.253679	Н	-0.225557	-0.209926	3.335954
С	2.354401	0.145832	2.829663	Н	-1.794944	-0.2028	4.167698
С	-2.07771	-2.817977	-0.406313	Н	-0.699698	-1.572264	4.368912
С	2.59416	1.576408	-2.161964	С	-2.073814	-2.804073	-0.378269
С	-1.153156	-3.336267	-1.522235	Н	-1.74464	-3.289891	0.552647
С	-1.69647	-1.60789	2.453126	С	-3.509998	-3.278158	-0.636448
С	1.628973	-1.535475	-3.175376	Н	-4.204867	-2.906706	0.129909
С	1.30711	2.370395	-2.461731	Н	-3.879881	-2.932301	-1.612797
С	-1.052724	-0.900994	3.656661	Н	-3.556225	-4.377756	-0.637796
С	-4.273318	-0.226897	-2.746435	С	-1.140462	-3.31991	-1.47434
С	-4.434216	2.602895	-0.292204	Н	-0.112432	-2.962441	-1.332014
С	3.920255	-2.941971	0.938584	Н	-1.10672	-4.419818	-1.455953
С	3.367074	3.212581	1.761055	Н	-1.462413	-3.028445	-2.48453
С	3.81494	0.025178	3.305841	С	-2.754767	-0.480891	-2.473374
С	-3.528901	-3.288307	-0.652926	Н	-2.581756	-1.543565	-2.679683
С	4.085446	-1.556094	-2.522248	С	-4.246479	-0.244414	-2.737081
С	3.851675	2.463839	-2.177374	Н	-4.865236	-0.794975	-2.013852
С	-3.678273	1.452774	3.043723	Н	-4.527831	0.816107	-2.673666
С	-3.004243	-2.300944	2.894542	Н	-4.51152	-0.593644	-3.746669
Н	-1.517537	1.571925	2.959115	С	-1.872942	0.283731	-3.463903
Н	-2.343021	2.662237	1.848956	Н	-0.813537	-0.009374	-3.369492
Н	-3.792612	2.259382	3.79474	Н	-2.164368	0.057346	-4.500792
Η	-4.560256	1.475703	2.375332	Н	-1.9364	1.375691	-3.340267
Η	-3.700857	0.487235	3.583194	С	-3.006654	2.246456	-0.871412
Η	-0.992232	-2.415999	2.158869	Η	-3.145537	2.046956	-1.940562
Η	-3.420145	-2.953212	2.105027	С	-4.391414	2.605078	-0.324731
Η	-2.822055	-2.928648	3.789842	Η	-5.066851	1.737728	-0.350767
Η	-3.782198	-1.55599	3.153534	Η	-4.34296	2.965547	0.712124
Η	-0.191226	-0.273923	3.361034	Η	-4.841731	3.407005	-0.929501
Η	-1.77065	-0.258475	4.200932	С	-2.069776	3.453005	-0.803189
Η	-0.685551	-1.654184	4.381622	Η	-1.093035	3.244471	-1.269717
Η	-1.738	-3.316269	0.524171	Η	-2.504753	4.300217	-1.354838
Η	-4.22085	-2.909131	0.123621	Η	-1.89103	3.799712	0.225008
Η	-3.908805	-2.941413	-1.634105	С	2.207347	0.118034	1.316772
Η	-3.580921	-4.395462	-0.650813	С	2.324676	1.233063	0.44223
Η	-0.112525	-2.99171	-1.380895	С	2.443854	0.736188	-0.885365
Η	-1.135063	-4.444575	-1.519064	С	2.385557	-0.688879	-0.83605
Η	-1.479845	-3.023865	-2.533796	С	2.250655	-1.070906	0.530715
Η	-2.590721	-1.528593	-2.704766	С	2.328102	0.151495	2.816646
Η	-4.892876	-0.781103	-2.014789	Η	1.900236	1.081095	3.218411
Η	-4.559052	0.840956	-2.684224	Η	1.739716	-0.660561	3.265934
Η	-4.543315	-0.58104	-3.761562	С	3.777661	0.019322	3.288942
Η	-0.820676	0.034805	-3.391565	Η	3.841137	0.121107	4.382469
Η	-2.184156	0.091878	-4.52839	Η	4.194579	-0.961021	3.019329

Η	-1.965129	1.419079	-3.356767	Η	4.42103	0.785682	2.834602
Η	-3.167274	2.0773	-1.922617	С	2.219766	2.693171	0.835302
Η	-5.104828	1.722567	-0.332494	Η	2.298414	3.280199	-0.088659
Η	-4.394118	2.952091	0.757326	С	3.337655	3.189377	1.750716
Н	-4.894496	3.413561	-0.892155	Н	4.32391	2.945833	1.32965
Н	-1.116814	3.298988	-1.22174	Н	3.277459	4.282334	1.86556
Н	-2.551561	4.345795	-1.298943	Н	3.28135	2.749017	2.755283
Н	-1.933493	3.827139	0.287756	С	0.837266	2.988059	1.419951
Н	1.914077	1.07616	3.239571	Н	0.015413	2.738537	0.715486
Н	1.77072	-0.679487	3.281352	Н	0.653621	2.440756	2.355868
Н	3.875897	0.123507	4.407723	Н	0.694378	4.05984	1.626658
Н	4.246031	-0.956491	3.030804	С	2.599043	1.56614	-2.143539
Н	4.456354	0.805476	2.853421	Н	2.730707	0.859011	-2.970896
Н	2.325744	3.29799	-0.092803	С	3.854171	2.439889	-2.135294
Н	4.361652	2.96618	1.340667	Н	4.74589	1.82543	-1.943613
Н	3.305468	4.313917	1.870934	Н	3.984042	2.934911	-3.109711
Н	3.309302	2.774595	2.775278	Н	3.823738	3.22502	-1.36657
Н	0.023307	2.747958	0.712118	C	1.331344	2.363172	-2.46228
Н	0.663649	2.456635	2.367824	H	0.443321	1.705698	-2.57199
Н	0.699243	4.083131	1.621861	Н	1.107887	3.125842	-1.700095
Н	2.715406	0.864036	-2.997632	Н	1.407183	2.888043	-3.42694
Н	4.756437	1.851969	-1.993491	C	2.63094	-1.642273	-1.98893
Н	3.965496	2.957814	-3.16319	H	2.507877	-2.654481	-1.578859
Н	3.827618	3.259481	-1.407472	C	4.07322	-1.541182	-2.496304
Н	0.408933	1.706558	-2.537085	H	4.792362	-1.655335	-1.673132
Н	1 100144	3 153396	-1 703713	н	4 276727	-2 325254	-3 241393
Н	1.35124	2.879303	-3.445964	Н	4.271675	-0.570556	-2.975173
Н	2.505397	-2.671822	-1.599251	C	1.632347	-1.530404	-3.144756
Н	4.810364	-1.673963	-1.694168	H	0.5917	-1.621258	-2.795816
Н	4.286497	-2.34669	-3.272732	Н	1.721525	-0.585392	-3.700498
Н	4 289415	-0.579596	-3 00559	н	1 788994	-2 343074	-3 870226
Н	0 579162	-1 594441	-2 821429	C	2 463304	-2 436162	1 156465
Н	1 741283	-0 595829	-3 752103	Н	2 349084	-2 281885	2 240186
Н	1 765309	-2 369783	-3 89241	C	3 900047	-2 92296	0.930232
н	2 345711	-2 303709	2 246312	н	4 636426	-2 139581	1 160264
Н	4 658151	-2 150613	1 174234	Н	4.113768	-3 792646	1.100204
н	4 133328	-3 81589	1 586038	н	4.1107.00	-3 235828	-0 11196
н	4.091305	-3 258723	-0 109293	C	1 466815	-3 530341	0.787113
H	0 427485	-3 234655	0 934297	н	0 430113	-3 19990/	0.942229
н	1 572625	_3 8783/17	-0 282297	н	1 565559	-3 856709	-0 258186
H	1.645487	-4.459226	1.399204	H	1.631958	-4.417881	1.416558
				5			
		PBE				PBE0	
Dy	-0.056895	-0.349115	-0.101932	Dy	-0.059286	-0.325235	-0.09164
Č	2.333059	-0.278207	0.94178	Č	-2.158503	0.725708	-1.264377
С	2.425895	-1.127854	-0.214854	С	-2.111855	1.399043	-0.008767
С	-2.408058	-0.671667	-1.036286	С	-2.327181	0.429963	1.016982
С	2.081259	1.06163	0.491037	С	-2.515736	-0.837001	0.389645
-							

С	-2.525388	-0.855544	0.378837	С	-2.404758	-0.653482	-1.014886
С	-2.160202	0.71826	-1.288138	С	-2.248117	1.381936	-2.610778
С	2.229206	-0.310989	-1.378461	Η	-1.805354	2.381464	-2.619925
С	-2.342021	0.422086	1.010451	Н	-3.305501	1.4954	-2.898912
С	-2.122688	1.398302	-0.023882	Н	-1.766695	0.802465	-3.408896
С	2.02079	1.041037	-0.951147	С	-2.161574	2.896004	0.211942
С	1.637396	-1.77913	2.914353	Н	-2.081213	3.057375	1.297803
С	2.587132	-0.684605	2.389148	С	-3.530843	3.441	-0.208608
С	1.919635	-3.601796	-0.818637	Н	-3.681336	3.358731	-1.295254
С	2.892224	-2.580868	-0.198699	Н	-3.62248	4.503942	0.060874
С	-2.420751	-1.77907	-2.082226	Н	-4.346758	2.892357	0.284568
С	-2.785278	-2.169919	1.103519	С	-1.024036	3.705195	-0.405753
С	-1.024493	-1.923895	-2.718508	Н	-0.047991	3.317993	-0.085643
С	2.109407	2.337596	1.32447	Н	-1.089165	4.75483	-0.082094
С	-1.591622	-3.137998	0.980882	Н	-1.039085	3.706443	-1.504295
С	2.396241	-0.766173	-2.806793	С	-2.555978	0.757134	2.479257
С	-2.244729	1.375683	-2.641785	Н	-2.336136	1.828657	2.597094
Ċ	-2.596378	0.757381	2.474891	C	-4.031621	0.577026	2.850213
Ċ	2.080974	2.286583	-1.822965	H	-4.68073	1.146062	2.168852
С	-2.192936	2.901664	0.200074	Н	-4.219234	0.930456	3.875338
С	1.017014	2.444884	2.404156	Н	-4.342612	-0.477415	2.799956
С	-1.684079	0.052154	3.495503	С	-1.632913	0.043731	3.468542
С	-1.078151	3.744191	-0.439358	Н	-1.774478	-1.047078	3.487863
С	1.316462	2.230643	-3.155944	Н	-1.813873	0.407321	4.491353
С	4.065049	-1.050343	2.638776	Н	-0.574821	0.246441	3.243655
С	4.307523	-2.708369	-0.799219	С	-2.786619	-2.143313	1.107716
С	-3.531752	-1.641237	-3.136582	Н	-2.867861	-1.902587	2.174594
С	-4.120148	-2.829455	0.712192	С	-4.122779	-2.777647	0.717923
С	3.506676	2.603786	1.922975	Η	-4.943093	-2.058401	0.856422
С	-4.087776	0.573966	2.825336	Η	-4.328945	-3.655612	1.348778
С	3.556367	2.672577	-2.062491	Η	-4.149803	-3.109724	-0.329602
С	-3.590089	3.425364	-0.195398	С	-1.614078	-3.119603	0.979036
Η	-1.802121	2.384151	-2.649684	Η	-1.437953	-3.435111	-0.061413
Η	-3.307876	1.48684	-2.941382	Η	-1.776365	-4.03544	1.567742
Η	-1.752816	0.794382	-3.443577	Η	-0.67273	-2.689536	1.379539
Η	-2.094464	3.062064	1.293641	С	-2.438746	-1.751466	-2.058101
Η	-3.762259	3.336905	-1.286606	Η	-2.628556	-2.693698	-1.528286
Η	-3.695247	4.494901	0.075176	С	-3.563302	-1.603231	-3.081786
Η	-4.39279	2.860637	0.318425	Η	-4.533418	-1.491951	-2.575674
Η	-0.079038	3.362437	-0.158259	Η	-3.615131	-2.49541	-3.724074
Η	-1.148229	4.793449	-0.08983	Η	-3.424819	-0.732472	-3.736147
Η	-1.129224	3.769521	-1.544917	С	-1.067387	-1.898811	-2.722108
Η	-2.381237	1.839376	2.588252	Η	-0.767097	-0.992279	-3.268657
Η	-4.733833	1.131851	2.119605	Η	-1.039311	-2.7372	-3.434892
Η	-4.296096	0.944425	3.848897	Η	-0.265028	-2.14085	-1.990603
Η	-4.394524	-0.490661	2.786684	С	2.202002	-0.313287	-1.382292
Η	-1.829297	-1.046339	3.527511	С	2.401057	-1.133021	-0.235079
Η	-1.883776	0.431769	4.517577	С	2.330999	-0.296604	0.919251
Η	-0.614247	0.250518	3.284429	С	2.094515	1.038993	0.482624

Dy	-0.670579	0.050361	0.28411	Dy	-0.655735	0.02075	0.260937
		PBE		-		PBE0	
				6			
Н	0.310638	1./8534/	-3.036657	Н	0.31038	1./64059	-3.009061
H U	1.858468	1.653/05 1.795247	-3.929468	H U	1.845429 0.21020	1.643992	-3.90060t
H TT	1.102/69	3.25466 1.652705	-3.55/641	H	1.100530	3.2294 1.642002	-3.526//2
H	4.089391		-2.624358	L TT	1.3061/	2.21255	-3.130628
H	4.096871	2.828335	-1.108951	H	4.062587	1.863693	-2.606584
H	3.624367	3.608416	-2.652613	H	4.070929	2.813827	-1.106012
H	1.622312	3.110438	-1.24086	H	3.600244	3.581581	-2.642051
H	1.006216	3.460615	2.848051	C	3.53425	2.654829	-2.052032
H	1.172335	1.730827	3.237633	H	1.615689	3.086878	-1.230106
H	0.008604	2.25853	1.981456	C	2.0/0397	2.270969	-1.809247
H	3.754042	1.889171	2.732533	H	1.051488	3.415328	2.841395
H	3.551463	3.62262	2.356848	Н	1.202394	1.694318	3.216211
H	4.298749	2.524605	1.153133	H	0.048962	2.237648	1.974371
H	1.917134	3.166803	0.613822	C	1.053259	2.409758	2.393946
H	1.811411	-1.968651	3.992674	H	3.763056	1.819167	2./16644
H	1.761541	-2./46751	2.388138	H	3.584442	3.547128	2.363882
H	0.571813	-1.475543	2.825352	H	4.314582	2.461955	1.156888
Н	4.739044	-0.256592	2.262488	С	3.528274	2.541229	1.92119
Η	4.354874	-1.996835	2.142241	Η	1.961132	3.133345	0.623031
Η	4.252314	-1.174584	3.724266	С	2.138523	2.301722	1.321188
H	2.383795	0.213034	3.002887	H	1.849613	-2.004392	3.941616
H	2.305261	-4.632426	-0.685706	Н	1.756873	-2.753484	2.33983
H	1.769916	-3.45206	-1.906212	H	0.59864	-1.486707	2.816755
H	0.922508	-3.57181	-0.330019	C	1.654683	-1./9944	2.87/994
H	5.008951	-2.005664	-0.308232	H	4.735438	-0.299474	2.204662
H	4.322214	-2.490869	-1.884726	H	4.341172	-2.022/31	2.063104
H	4.696048	-3./36949	-0.658211	H	4.266828	-1.230955	3.648341
H	2.984625	-2.865258	0.865/19	C	4.066814	-1.089497	2.575294
H	3.346657	-0.378917	-3.229613	H	2.41095	0.1/3514	2.971802
H	1.590529	-0.409073	-3.4/3397	C	2.597999	-0./13/5	2.352825
H	2.431277	-1.864512	-2.892887	H	2.234069	-4.609383	-0.722534
H	-0.230323	-2.163313	-1.963674	H	1.695101	-3.421646	-1.915878
H	-0.97158	-2.7/331	-3.429404	H	0.880777	-3.542712	-0.336444
H	-0.711843	-1.012685	-3.26/251	C	1.860974	-3.580855	-0.840473
H	-3.383349	-0.768631	-3.799632	H	4.955445	-2.036256	-0.368063
Н	-3.56877	-2.544738	-3.777615	H	4.246238	-2.496632	-1.927342
Η	-4.518979	-1.528648	-2.646936	Н	4.61968	-3.748705	-0.725379
Η	-2.619169	-2.727265	-1.548304	С	4.244186	-2.721773	-0.851496
Η	-0.642716	-2.683674	1.360694	Н	2.95401	-2.872513	0.819503
Η	-1.730395	-4.047605	1.599619	С	2.84908	-2.583338	-0.233439
Η	-1.422708	-3.48019	-0.060857	Η	3.262811	-0.350218	-3.252402
Η	-4.13868	-3.174033	-0.340186	Η	1.512653	-0.427572	-3.447041
Η	-4.319135	-3.71098	1.354079	Н	2.401912	-1.848754	-2.894187
Η	-4.95647	-2.114906	0.841472	С	2.341221	-0.759698	-2.809425
11	-2.870636	-1.924017	2.177688	С	2.016565	1.028244	-0.946907

С	1.603138	-0.718192	1.079878	С	-3.114401	0.188012	0.924128
С	1.627729	0.715977	1.052956	С	-2.929303	1.213392	-0.042314
С	-3.017627	-1.063324	0.262455	С	-2.694282	0.595535	-1.299249
С	-3.158769	0.224063	0.87501	С	-2.736787	-0.814475	-1.110299
С	1.582535	-1.190112	-0.273842	С	-2.997873	-1.064882	0.262917
С	-2.716022	-0.864536	-1.12196	С	-3.474392	0.392516	2.363697
С	-2.950314	1.219102	-0.133914	Н	-2.999057	-0.342638	3.031469
С	1.62765	1.134689	-0.321077	Н	-4.562048	0.291171	2.511861
С	-2.674231	0.548294	-1.36749	Н	-3.200217	1.3958	2.719442
С	1.607101	-0.044149	-1.140957	С	-3.108677	2.680839	0.193472
С	0.013412	-1.439996	2.901442	Η	-2.687436	3.016086	1.153408
С	0.130453	2.374943	2.238757	Η	-4.180203	2.939479	0.213428
С	1.433099	-1.600227	2.311923	Η	-2.651561	3.28463	-0.602106
С	1.479724	1.620942	2.272992	С	-2.6742	1.297578	-2.620434
С	0.400048	-3.463073	-0.394015	Η	-2.064975	2.212002	-2.614005
С	-3.289482	-2.386284	0.924408	Η	-3.696988	1.596416	-2.903604
С	-3.559624	0.483196	2.301424	Η	-2.298756	0.651233	-3.424145
С	1.66201	-2.642672	-0.726723	С	-2.75734	-1.840152	-2.199957
С	-2.714253	-1.935559	-2.175959	Η	-1.993577	-1.666259	-2.96976
С	-3.142482	2.699775	0.039428	Η	-3.735016	-1.831013	-2.709384
С	1.741998	2.579999	-0.791987	Η	-2.613715	-2.856509	-1.809646
С	-2.629705	1.198882	-2.720769	С	-3.248823	-2.407281	0.878047
С	1.824712	-0.05253	-2.648228	Η	-2.569025	-3.18434	0.498143
С	0.708763	-0.736053	-3.456121	Η	-4.273729	-2.747838	0.657226
С	0.575485	3.033968	-1.689563	Η	-3.153624	-2.383977	1.972723
С	2.541828	-1.451174	3.367042	С	1.614556	-0.755599	1.023118
С	2.677677	2.55513	2.517912	С	1.591987	-1.161387	-0.340406
С	2.953883	-3.333032	-0.247181	С	1.602287	0.013736	-1.147642
С	3.118225	2.883873	-1.417626	С	1.621645	1.144847	-0.280869
С	3.22241	-0.597806	-3.009421	С	1.630511	0.667321	1.061378
Η	-3.119921	-0.245379	3.012589	С	1.464075	-1.687364	2.210013
Η	-4.661476	0.408148	2.421603	Η	1.513177	-2.70864	1.813038
Η	-3.276083	1.498868	2.639762	С	2.588157	-1.585013	3.239802
Η	-2.804565	3.06739	1.028975	Η	3.562003	-1.72933	2.749938
Η	-4.218338	2.965013	-0.042094	Η	2.47592	-2.362529	4.010575
Η	-2.61343	3.285261	-0.736495	Η	2.619594	-0.613643	3.752952
Η	-2.081052	2.159931	-2.723334	С	0.067126	-1.551012	2.831726
Η	-3.660847	1.418194	-3.07189	Η	-0.124398	-0.550878	3.257183
Η	-2.167042	0.546316	-3.484065	Η	-0.094466	-2.270637	3.648807
Η	-1.941373	-1.781703	-2.952045	Η	-0.742801	-1.795287	2.106093
Η	-3.694286	-1.958324	-2.698813	С	1.651184	-2.584781	-0.856752
Η	-2.562127	-2.943056	-1.745526	Η	1.703883	-2.515153	-1.95022
Η	-2.61109	-3.190577	0.577292	С	2.925534	-3.310475	-0.418437
Η	-4.323125	-2.727834	0.702891	Η	3.817472	-2.729663	-0.695394
Η	-3.207888	-2.328186	2.027028	Η	2.994186	-4.29457	-0.906128
Η	1.492016	-2.645672	1.958047	Η	2.966869	-3.478365	0.66781
Η	3.534178	-1.602078	2.899098	С	0.383312	-3.387949	-0.553276
Η	2.420654	-2.20903	4.16676	Η	0.217983	-3.536306	0.525307
Η	2.553531	-0.456268	3.853	Η	0.426998	-4.388027	-1.010736

Η	-0.189324	-0.418239	3.29093	Η	-0.507822	-2.887318	-0.970478
Η	-0.17023	-2.13445	3.746172	С	1.780405	0.072158	-2.650725
Η	-0.788494	-1.713308	2.164257	Η	1.776131	1.135512	-2.922113
Η	1.719582	-2.61929	-1.830338	С	3.151631	-0.465398	-3.072629
Η	3.845606	-2.744238	-0.538733	Η	3.957787	0.03734	-2.518238
Η	3.044645	-4.340998	-0.698901	Η	3.316786	-0.292174	-4.146773
Η	2.986591	-3.460387	0.853218	Н	3.250774	-1.545772	-2.893518
Η	0.243214	-3.592299	0.696566	С	0.637759	-0.561954	-3.442787
Η	0.458637	-4.479684	-0.832158	Н	0.538712	-1.642381	-3.261262
Η	-0.508032	-2.982218	-0.816886	Η	0.790227	-0.424439	-4.523908
Η	1.819228	1.006118	-2.967903	Η	-0.321004	-0.089591	-3.179642
Η	4.014027	-0.070687	-2.441353	С	1.714277	2.602304	-0.687441
Η	3.423046	-0.456217	-4.090194	Η	1.667738	3.188575	0.23978
Η	3.320673	-1.679727	-2.793177	С	3.065316	2.94181	-1.323274
Η	0.620346	-1.819471	-3.240706	Η	3.89167	2.629493	-0.667831
Η	0.894224	-0.631601	-4.543781	Η	3.150719	4.026773	-1.486834
Η	-0.271726	-0.269239	-3.235853	Η	3.208122	2.448281	-2.294962
Η	1.682728	3.209962	0.115898	С	0.531413	3.073918	-1.53563
Η	3.935387	2.578567	-0.734731	Η	0.450787	2.535469	-2.490901
Η	3.221935	3.969751	-1.614184	Η	0.61415	4.146939	-1.765252
Η	3.271215	2.355841	-2.378724	Η	-0.424042	2.934837	-0.99823
Η	0.513228	2.461273	-2.635673	С	1.494004	1.510782	2.315133
Η	0.673216	4.105859	-1.953923	Η	1.451919	0.81496	3.162956
Η	-0.401118	2.91733	-1.169049	С	2.689593	2.423651	2.587524
Η	1.431585	0.958847	3.157852	Η	3.61673	1.832889	2.6134
Η	3.614156	1.966042	2.568571	Η	2.577775	2.926265	3.560272
Η	2.559404	3.096465	3.477989	Η	2.816723	3.202411	1.823033
Η	2.804912	3.311892	1.720348	С	0.156198	2.263804	2.324952
Η	0.029737	3.047406	1.362419	Η	0.053213	2.968539	1.485399
Η	-0.02268	2.992284	3.146812	Н	0.01473	2.83759	3.253429
Η	-0.757125	1.684648	2.249418	Η	-0.723986	1.578436	2.308137

 Table S2. Normal mode frequencies (cm-1) of the optimised structures for 1-6.

1	L	7	2		3		
PBE	PBE0	PBE	PBE0	PBE	E PBE0		
33.3385	34.3233	23.1243	22.2299	17.17	67 14.1414		
36.2946	36.5805	26.0275	29.8151	37.62	42 38.241		
40.5996	42.7025	36.2251	35.0399	43.88	42 45.3834		
44.4676	46.6092	39.1615	37.6349	48.76	29 51.604		
45.6114	49.0479	46.703	46.0906	53.15	42 56.9576		
54.8968	56.7669	54.8745	53.8915	60.69	04 61.0615		
60.676	64.4615	58.1584	59.958	67.85	96 69.7844		
69.6708	72.0849	58.3594	61.9804	70.57	32 73.469		
73.5098	78.3309	73.6171	74.9589	75.44	09 77.9084		
79.1293	83.9695	79.8924	84.6071	79.56	52 82.8262		
82.1886	84.6889	89.4375	91.1801	83.17	39 86.4693		
92.2723	94.7567	93.082	95.6007	85.04	32 89.138		

92.3497	96.1069	94.4977	96.9901	95.055	100.0064
100.4738	103.4304	119.1209	126.9998	101.4639	104.1413
102.4837	104.1386	124.178	129.6767	109.2628	113.4891
103.159	111.2537	125.6245	130.0535	109.4528	117.0595
113.3583	120.0041	135.7611	138.0596	115.4662	121.2683
131.3263	135.6426	173.3917	180.2106	122.3568	128.8558
137.7601	145.7535	173,9985	180.6888	126.6593	132.5103
138,9089	147.2805	179,9919	188.7814	131.3536	139.3871
143.5528	151.2924	186.5741	197.5413	133.9566	143,4991
161 0031	166 7778	199 158	207 731	149 5146	152 4821
161 2095	167 5169	202 3212	210 395	153 584	161 8836
166 3545	172 1928	202.0212	210.000	156 5874	163 2312
166 /177	172.1320	202.027	210.7734	162 5403	171 8769
178 1576	196 130	213./10/	225.2054	164 7945	172 0187
100.1370	100.135	217.420	220.0131	175 0651	1/3.210/
101 2001	190.7033	224.3000	230.1312	176 7727	101.0321
191.3991	200.0402	220.2020	200.0900	1/0.//3/	105./020
200.9163	210.4211	228.9092	23/.388/	180.0/2/	105.0494
212.6352	218.6/5/	236.2663	244.5231	181.3115	101 5202
213.3/52	219.3098	244.3911	251.8893	185.9593	191.5303
215.632	225.2804	252.5625	260.3852	186./556	195.0456
219.3983	226.6519	253.1195	262.4456	193.3992	200.5781
224.6121	233.6824	255.0547	264.1894	195.9383	202.608
226.3237	235.1354	255.4407	265.532	196.341	204.5171
227.4995	236.211	266.028	269.4248	205.2257	212.432
230.1655	239.3408	268.4603	276.4689	205.8838	214.5426
231.6553	239.9788	271.0988	280.1786	209.726	216.2489
237.0955	246.2568	272.3114	281.1351	211.4947	221.2638
242.9705	251.0309	285.2831	296.5244	217.8346	225.8599
243.7354	252.9048	285.7375	296.6688	219.5968	227.7744
248.9652	255.8614	291.6681	299.3211	225.0564	233.7336
249.2995	256.7867	292.2347	303.8998	229.1283	238.7547
251.7818	263.6464	296.057	309.2311	229.6034	240.2207
255.8733	266.692	297.0818	310.0887	234.2295	243.6587
257.3761	269.6601	299.7775	311.682	236.163	247.6684
261.0013	274.6875	300.3319	312.825	241.0583	251.5765
263.9753	275.3728	328.8174	346.7889	243.9303	254.2628
267.0222	280.7134	330.1655	347.0753	246.9839	256.9697
270.1006	281.5811	341.2372	357.2126	248.6541	259.9056
272.0479	283.0341	342.6577	358,1709	252.7028	264.2449
285.1209	296.6801	344.3275	359.0178	254.9534	264.6561
285.2117	296.9492	344.9553	359.9855	257.9282	267.9278
309.2754	320.3865	347.4	367.6611	265.3235	273.9212
313 4355	324 2766	348 5788	368 1583	267 4101	276 4992
336 7744	349 3942	359 416	374 6251	269 7005	281 0165
338 798	351 0266	359 494	375 3719	271 599	282 3926
366 8477	379 9731	271 7252	38/ 201/	27 1.333	202.0020
368 183/	381 2725	375 7870	389 907/	275.0775	204.0092
287 1/12	103 7571	383 7757	305.5574	270.0420	207.0049
JU/ 141J	+00./0/4	JUZ1ZZJ/	000.0440	2/0.0/20	200.0313

391.529	407.7572	382.3937	396.024	276.8393	289.4877
418.035	432.1937	388.6941	403.9028	279.3696	291.7093
419.4562	433.8104	388.7945	404.5826	284.3131	299.7639
430.4139	445.3289	413.2102	429.1304	287.8526	301.7537
432.6829	447,7506	417.3926	433.4838	289.8863	305.3537
454.9002	471.2286	425.5473	443.3925	297.1507	309.0669
454.9525	471.2669	426.5022	444.4146	310,7875	321.7333
522 7382	543 7106	452 6678	468 4185	325 1796	336 8089
523 4099	544 8013	455 0405	470 3945	337 7442	352 179
532 1365	551 1179	464 1646	479 8676	347 7893	358 3217
532 6065	551 5082	464 4433	4/9.00/0	350 9404	363 9772
541 4051	563 9574	536 9216	557 3088	376 9549	391 8812
544 7323	566 8806	539 1215	558 7209	383 7734	398 051
560 0781	500.0000	542 3407	567 9414	125 517	<i>11</i> 1 <i>1</i> 377
560 8107	501 6501	542.3437	563 8476	423.317	441.4377
CO0 0421	620 0742	545.4105	505.0470 E9E 16E	420.0303	443.2070
000.0421	629.0742			429.2303	445.9005
008.10/0	629.1368	503./015	587.6792	430.8869	452.2089
669.59/2	696.951	5/9.399/	602.005	450.5063	400.8199
669.6619	697.0151	580.2798	602.7028	455.3588	4/1.1233
6/5./82/	/03.5541	630.3497	655.9905	466.1847	483.2582
676.5595	704.0583	630.4733	656.2982	468.6086	485.6563
/16.25//	749.0575	655.7743	693.2288	490.3376	509.1009
721.308	753.8401	656.8536	693.4041	495.4783	515.0614
744.7059	771.7489	687.9171	726.6784	519.7574	539.2691
745.163	772.3036	694.8971	733.5153	522.1801	540.5072
809.1032	850.2561	793.9587	833.3582	531.864	553.2393
813.4418	854.5774	798.0419	833.4551	535.5162	554.6621
863.0569	896.3709	802.2721	839.0634	539.911	560.2357
864.4271	897.7433	802.3044	840.8117	543.0413	567.7333
866.4641	899.7045	808.2233	853.3991	550.805	573.0739
866.5446	900.0164	808.502	855.1369	556.06	579.7502
875.2705	909.0468	821.2495	855.9714	560.692	581.9375
876.2252	910.4974	821.9383	856.0392	562.6181	585.091
886.1151	918.0699	831.0197	883.2718	668.4104	691.6271
886.61	919.7473	831.3588	883.5916	668.763	692.5572
888.5303	920.7027	896.7522	931.208	684.6219	715.6737
891.0124	923.3114	897.0333	931.5072	688.8738	720.1736
891.3738	924.0449	897.936	933.5857	701.5159	733.9393
891.9135	925.287	898.2167	934.3554	715.1441	747.7655
895.078	927.7824	902.21	938.9114	734.6638	762.2053
895.3103	927.8544	902.2179	939.0215	739.4653	767.8679
897.0674	930.9871	903.7813	939.905	760.0468	787.7526
898.5513	933.0374	904.5978	940.0615	760.6994	788.3701
928.5239	963.0363	908.392	943.6118	862.3093	896.8965
928.5598	963.1639	908.5867	943.708	867.6641	901.378
930.7394	965.8153	910,6894	946,1611	868,8185	902,9101
931,1026	966,1142	910,7896	946.2767	873.1474	906.5351
934.318	968.7064	913.6521	946.6209	877.5444	910.8732
55 HOTO	5 5 5 1 / 5 0 1	J 10,0061	S . S. SECO		J _ J . J / J L
934.4451	968.7776	915.7856	949.6935	882.9383	915.6932
----------------------------	-----------	-----------	------------------------	----------	------------
937.1435	970.8554	915.8378	949.7431	885.612	918.0447
937.7122	971.3985	917.7213	950.4933	886.335	919.0112
966,9874	1004.0695	919,164	953.0994	887.8297	919.5061
967 4322	1004 1312	920 0369	953 342	890 3045	922.18
1012 024	1004,1512	520.0505	555.542	050.50+5	522.10
8	1049 959	938 1722	975 8632	890 4329	922 5358
1012 418	1040.000	550.1722	373.0032	050.4525	522.0000
1012. 4 10 Д	1050 5075	940 2231	977 8843	891 8534	925 668
	1050.5075	540.2251	577.0045	051.0554	525.000
2 2	1071 4778	97/ 7525	101/ 97/	894 2653	926 9956
5	10/1.4//0	574.7525	1014.374	054.2055	520.5550
1036 557	1073 1091	975 8154	6	895 9672	928 6729
1045 044	10/5,1051	575.0154	102/1258	055.5072	520.0725
045.044	1082 1367	085 /21	102 4. 230 5	896 6414	030 0837
1046 502	1002.1307	505.421	J 1024 270	030.0414	330.3037
1040.393	1092 9525	086 4770	1024.370	202 2446	022 1246
9 1060 197	1002.0222	500.4225		050.5440	552.1240
1009.107	1100 6100	004 4172	1051.950	002 2012	020 6024
0 1070 F20	1100.0109	994.41/3	0	905.2012	930.0034
10/0.528	1100 0014	004 7401		004.072	0.40 1100
0 1000 E01	1109.8314	994.7491	1032.151	904.072	940.1108
1089.581	1120.20		1033.182	004 4767	
3	1130.36	995./34/	خ 1024 226	904.4/6/	940.5743
1090.558	1404 4504		1034.226	000 1000	0.45 40.44
5	1131.4521	995.9792	3	909.1908	945.4044
1098.056	4440.0044		1035.186	000 040	004 5054
3	1143.8214	997.5451	8	926.813	961.5851
1098.163		000 0010	1035.779		
6	1144.1067	998.0619	1	930.0395	965.4355
1099.625			1037.062		
2	1145.602	1000.1316	5	932.4657	966.7678
1099.909			1037.770		
8	1146.2768	1000.3676	9	933.7813	968.0552
1103.504			1044.827		
9	1149.7033	1005.9108	6	934.0789	968.377
1103.877			1045.407		
8	1150.2346	1006.414	1	934.4599	968.798
1106.806			1129.126		
8	1154.1502	1077.0709	4	934.9063	969.1616
1107.091			1130.221		
3	1154.6117	1077.989	9	935.325	969.5856
1125.231			1184.346		
6	1168.6247	1129.4444	2	939.0531	973.2931
1128.271			1184.698		
6	1171.4716	1129.8033	8	939.1922	973.6898
1136.416					
2	1179.2487	1146.7894	1192.532	987.9598	1025.1186
1136.744			1195.610		
9	1179.7355	1150.447	7	991.0122	1027.8524
1147.637	1191.9545	1167.3573	1217.255	1002.137	1041.8216

3			5		
1148.493					
7	1192.9251	1168.217	1217.89	1003.694	1042.7131
1156.850			1227.749		
1	1201.6684	1173.7643	5	1038.584	1076.0099
1159.961			1228.923		
3	1205.2196	1176.4931	6	1040.751	1078.2652
1169.196			1231.714		
9	1214.8125	1178,1497	6	1060.007	1099.455
1171.280	11110110	11,011,07	1232.269	1000000	10001.00
1	1216.8546	1179.5295	6	1060.789	1100.7644
1253.403			1234.162		
4	1304.6929	1181.0769	3	1067.124	1106.9591
1254.245	100	1101107.00	1234.603	100/11	110000001
5	1305.4899	1181.4173	6	1070.881	1110.1209
1267,999	10000	110101110	1238.689	1070001	111011200
6	1320.6423	1185,4478	1	1081.277	1122.3655
1268 826	102010120	11001170	1238 855	1001.277	1122.0000
8	1321 4743	1185 7803	7	1082 153	1122 9515
1273 839	1021.4740	1105.7005	, 1253 723	1002.100	1122.0010
9	1325 8048	1200 8105	4	1092 694	1137 86
1274 422	1020.0040	1200.0105	1253 816	1052.054	110/.00
5	1326 228	1200 9561	5	1096 064	1141 9111
1285 488	1020.220	1200.5501	1261 221	1050.004	1141.0111
7	1335 0/157	1208 6889	יבטו.בבו כ	1098 /93	1144 2276
1286 645	1000.0407	1200.0005	1262 507	1050.455	1144.2270
1200.045	1336 3713	1209 445	1202.507	1102 318	11/18 2952
1786 658	1336 5388	1203,443	1765 53	1102.010	1150 0505
1200.000	10000000	1213.0312	1203.33	1105.520	1130.0333
1207.299 5	1227 2085	1214 6240	1207.210 Q	1105 407	1150 8506
1204 697	1007.2002	1214.0249	0 1215 77 <i>1</i>	1105.457	1120.0200
1234.007	1242 9421	1760 2208	1313.//4	1106.06	1152 0162
	1343.0421	1209.3390	ט 1016 קד	1100.00	1132.0102
1295.050 E	1244 1524	1070 0171	1310.//S C	1100 021	
5 1206 060	1544.1524	12/0.21/1	0 1265 101	1100.951	1152.0559
1290.909 E	10 <i>4</i> 7 60EE	1010 5100	1305.101	1100 606	1152 7064
כ 1007 000	1347.0355	1310.3133	1 1265 206	1109.000	1155./904
0	1740 OF 41	1210 6020	1303.390	1110 525	1156 0077
0	1340.0341	1310.0039	4	1110.555	1150.9077
1300./39	1250 2002	1774 7010	1775 011	1112 402	1101 2220
4	1356.3003	1324.3816	13/5.011	1113.463	1161.2236
1308.019		1004 4404	13/6.361		
8 1000 414	1357.5592	1324.4434	4	1115.01/	1163.546/
1326.414	1050 1105	1000 0100	13/7.375	1100 040	
9 1000 000	13/8.1135	1326.0166	9	1126.646	11/0.6545
1328.260	4000 0000	4005 000	13/9.512	4400.000	44540004
3	1380.8998	1327.283	6	1130.888	11/4.9331
1329.212		1000.00	1380.216	1140.000	1105 0 105
1000.000	1301.5413	1328.69	2	1143.286	1187.8495
1330.328	1000 400 4	1000 0500	1380./31	1140.000	1100 000-
6	1382.4324	1329.0703	3	1143.963	1188.8005

1330.720			1380.972		
5	1382.9764	1329.2264	5	1151.386	1197.3568
1331.997			1382.569		
7	1383.55	1330.3518	8	1153.675	1199.8747
-			1387 204		
1332 /01	1383 9806	1331 8198	8	1159 118	1205 5115
1002.401	1202.2000	1551.0150	0 1007 700	1155,110	1205.5115
1555.504	1205 0410	1000 0000	1307.209	1150.00	1000 0400
6	1385.8416	1332.2809	3	1159.82	1206.6438
1335.644			1391.904		
7	1387.9732	1337.8424	2	1192.726	1242.9593
1336.873			1393.229		
1	1390.021	1338.5244	2	1193.468	1244.1288
1349.250					
6	1399.4506	1354.7858	1406.786	1263.011	1312.9988
1349.349			1406.806		
3	1399 5072	1355 0578	8	1265 406	1315 7502
1350 574	1000.0072	1000.0070	1/00 883	1203.400	1010.7002
1330.374	1400 0407	1250 0142	1405.005	1065 016	1016 0050
4	1400.5407	1359.0142	/	1205.010	1310.0259
1350.598			1412.006		
4	1400.5642	1360.4654	6	1268.026	1318.1953
1354.079			1415.319		
9	1404.1166	1362.8347	9	1269.906	1322.3953
1354.892			1416.564		
2	1404.8286	1364.9398	5	1274.27	1324.8057
			1418.918		
1355.721	1406.1366	1367.9983	8	1276.764	1328.8864
1357 734			1420 483		
3	1/08 22/5	1369 2182	1	1278 738	1330 2555
1292 027	1400,2245	1505.2102	1/27 971	12/0./50	1000,2000
1302.027	1 407 0010	1207 000	1437.071	1000 000	
6	1437.8019	1387.806	5	1282.832	1333./54
1384.916					
6	1441.6427	1389.178	1439.11	1284.05	1336.0392
1387.506			1439.707		
3	1442.9019	1389.8307	3	1288.232	1339.6014
1389.703			1443.897		
3	1444.3851	1393.9032	3	1289.036	1339.8047
1395.423			1444.955		
4	1446.4181	1395.6392	7	1292.37	1347.0012
1398 305			1447 932		
4	1449 8538	1398 1721	<u>л (100</u>	1297 309	1348 6931
1200 258	1445.0550	1000.1721	1448 367	1207.000	1040.0001
1399.230	1450 6007	1200 7442	1440.307	1201 200	1256 2674
9 1200 011	1450.0027	1390./443		1301.200	1350.30/4
1399.811			1449.353		
5	1450.7261	1398.8569	4	1302.862	1357.2194
1400.480			1449.540		
5	1453.7582	1399.5115	8	1306.218	1360.7312
1401.627			1451.036		
7	1454.4781	1401.0972	2	1307.79	1361.0671
1404.248			1452.113		
7	1456.722	1401.4774	6	1313.294	1362.4168
•			-		

			1452.695		
1404.786 1406.550	1457.698	1402.1898	9	1313.776	1363.2675
4 1406.713	1459.062	1402.5989	1452.699 1454.264	1326.928	1378.822
1	1459.2921	1403.3834	6 1454.468	1329.678	1381.4537
1409.176	1461.2106	1404.6457	9 1459.159	1330.423	1381.9623
1410.164 1410.303	1461.7587	1408.7147	2 1460.712	1331.002	1382.2752
3 1411.516	1461.9675	1409.2357	3 1462.570	1331.091	1382.6734
1	1462.7844	1411.1613	4 1464.250	1332.709	1384.023
1411.763 1412.690	1463.1913	1412.3823	8	1334.619	1386.2277
1 1413.973	1464.6092	1413.1108	1464.947 1471.645	1336.011	1387.9367
4 1414.694	1467.0064	1420.3567	3 1473.242	1337.326	1389.8551
4 1419.952	1468.6329	1422.2109	6 1474.437	1338.137	1391.461
5 1422.240	1470.8958	1423.092	3 1474.469	1340.631	1393.673
1 1422.308	1473.0523	1423.4373	7 1476.252	1344.469	1395.231
6 1424.306	1473.3749	1425.329	8 1476.497	1346.461	1399.5005
7 1424.453	1475.4355	1426.0087	1 1480.937	1347.842	1401.6142
9 1426.033	1475.5262	1429.5298	8 1481.184 _	1349.617	1402.5754
2 1426.146	1477.1118	1429.5928	5 1483.086	1351.401	1404.7949
9 1426.754	14/7.39/5	1432.5131	9 1484.798	1353.334	1405./698
8 1428.920	14/8.3339	1433.7299	1 1486.371	1354.934	1400.0452
1429.055	1400.0034	1435.0044	o 1490.091	1350,104	1407.0201
1431.840	1400.3322	1430.7495	9 1491.542	1262 705	1400.0003
1433.056	1405.7500	1440.0000	1493.124 5	1364 186	1410.0874
4 1/22 252	1400.0440	1442.0243	3 1495.675 7	1272 750	1413,0024
1435.487 g	1/97 0/36	1444 6072	, 1495.984 ₅	1375 655	1/27 122/
U	1492.0490	1777,00/2	5	TO/ 0.000	1704.1004

1437.244			1502.965		
3	1493.0886	1450.4548	4	1387.955	1439.5994
1438.338			1503.516		
4	1494.2503	1451.0293	8	1391.558	1444.7819
1464,480			1543.069		
6	1531 3951	1481 2706	1	1392 597	1444 9518
1465 272	1001,0001	1401.2700	1544 470	1002.007	1444,0010
1403.372	1500 1501		1344.472	1205 070	1440 2500
9	1532,1581	1483.135	0	1395.078	1449.3586
2901.143	2992.5671	2884.2812	2980.118	1396.105	1449.7605
2903.622			2982.677		
3	2997.514	2887.5381	6	1399.308	1451.1509
2909.562			3010.919		
6	3001.2285	2920.3288	6	1400.792	1452.6796
2911.853			3018.143		
7	3004.9174	2924.226	5	1402.919	1454.3035
2957.703			3040.950		
6	3047 3438	2958 0746	9	1403 122	1456 2187
2957 726	0047.0400	2550.0740	30/1 178	1400,122	1400.2107
6	2047 4557	2058 1280	7	1404 72	1456 5165
	2056 6006	2930.1209		1404.72	1450.5105
2963.58	3026.6906	2967.489	3051.08/	1405.056	1457.2587
2963.656			3051.154		
5	3056.7533	2967.5287	3	1406.817	1458.2948
2972.462			3055.519		
2	3057.3908	2970.424	8	1407.036	1459.0909
2972.545			3056.284		
7	3057.4628	2971.0603	8	1408.21	1459.4579
2973.152			3059.451		
1	3058.1948	2976.1207	4	1408.694	1460.8794
2973.195			3059.624		
7	3058.254	2976.4155	2	1409.759	1461.6754
2975.853			3060.272		
8	3064 0417	2976 4303	9 9	1410 026	1463 0299
2975 861	5004.0417	2070.4000	3061 376	1410.020	1400.0200
2373.001	2064 1057	0000 0000	5001.570	1/11 220	1462 4460
	5004.1057	29/0.0330	/ 2062 270	1411.225	1403.4403
29/0.952	2004 1270		2002.279	1410 404	
	3064.1278	29/9.5/92	2	1412.464	1465.0815
2979.250					
5	3064.412	2979.6275	3063.426	1413.013	1465.9383
2979.288			3069.545		
1	3065.413	2985.0393	6	1414.208	1466.794
			3069.589		
2979.579	3065.4471	2985.0808	4	1414.89	1467.8148
			3095.280		
2979.757	3071.0521	2998.8025	5	1415.49	1468.9956
2979 837	00/10011		3095 704	1.101.10	1.0000000
9	3071 0716	2000 230	2 2	1/16 16/	1/69 9189
2082 102	30/1.0/10	2000,200	3116 030	1410,104	1402.2103
2002 ,4 02 2	2081 0402	2026 70E	E 2110.320	1/16 710	1/71 5010
ט רחם בסחב	3001.0403	3020./03	ט דרר 110	1410./19	14/1.0019
2902.501			5110.33/		1 470 0000
9	3081.1872	3027.7424	5	1417.748	14/2.6098

3006.986			3130.001		
8	3099.0582	3036.1958	6	1422.759	1474.0436
3008.612			3130.366		
7	3099.8755	3036.2288	3	1424,121	1476.3207
3009 223		505012200	3142 475		1
3	3102 668	2012 2022	2172.77 2	1/25 000	1476 5286
2000 052	5102.000	5042.5572	ט 1 10 ד ב 1 ב	1425.055	14/0.5200
3009.852	2102 0 422		3142.784		1 455 2001
5	3103.9422	3042./5/6	2	1425./3	14//.2061
3015.997			3142.859		
1	3114.06	3052.8048	9	1426.336	1478.2373
3016.505			3143.088		
6	3114.1389	3052.8432	3	1427.351	1479.8725
3040.535			3143.608		
3	3129.5814	3054.5512	6	1427.668	1480.8171
3040 604	012010011	000	3143 962	1.2/10000	1.00001/1
7	3129 699	3054 6311	7	1/29/195	1/181 8836
7 2040 EE2	5125.055	5054.0511	7 2144 EGE	1425,455	1401.0050
3049.552	21 41 022		5144.505	1 400 60	1400 4117
4	3141.822	3055.4766	6	1429.63	1483.411/
3049.648			3144.942		
4	3141.9201	3056.7348	1	1432.626	1483.8323
3053.455			3145.436		
4	3143.1667	3057.006	8	1433.828	1485.4991
3053.522			3145.452		
9	3143.2093	3057.0575	7	1434.097	1488.15
3054 814			3145 749		
7	3144 2971	3057 3153	4	1434 856	1489 1681
, 3054 826	5144.2571	5057.5155	31/5 9/3	1404.000	1405.1001
1	2144 2052	2057 224	0	1476 00	1402.26
	5144.5052	5057.524		1430.00	1492.30
3055.827			3148.05/		4 400 0400
6	3147.7576	3059.6713	8	1438.676	1493.0136
			3148.083		
3055.875	3147.7769	3059.966	1	1440.437	1494.3947
3057.900			3148.802		
8	3148.6034	3060.0727	7	1440.669	1496.2694
3057.967			3148.916		
5	3148.6198	3060.5319	5	1443.129	1497.7067
3059 340	51 1010100	00000010	3148 937	11101120	1 10/1/00/
3	31/0 6803	3060 5408	8	1111 391	1/08 8013
2050 404	5145.0005	5000.5400	21/0 207	1444,004	140.0010
5059.404	21 40 7001	2000 0100	5149.207	1445 202	1500 0001
/	3149./691	3060.9188	4	1445.392	1500.6861
3060.966			3155.008		
5	3151.8187	3063.9686	5	2864.541	2964.8254
3061.033			3156.696		
6	3151.8385	3066.429	8	2875.45	2979.8325
3061.836					
4	3152.8424	3066.6243	3156.763	2969.136	3055.6919
3061.839			3156.866		
8	3152.9522	3067.2101	8	2969.646	3058.5905
3067 386			3157 282		
Q	3158 2457	3068 2260	9	2971 56	3059 3777
5	0100.440/	2000.2003	5	20/1.00	///0.0000

3067.489			3157.480		
7	3158.3475	3068.2763	2	2973.974	3059.8943
			3189.147		
3068.78	3160.0791	3093.6295	9	2975.093	3060.6195
3068.812			3189.196		
9	3160.1016	3093.7526	4	2975.212	3060.7507
3070.915			3191.113		
8	3160.9988	3099.4055	3	2976.133	3062.1757
3070.928			3191.305		
9	3161.0474	3099.4202	5	2977.303	3062.9335
3074.703			3202.321		
3	3166.5185	3104.4991	3	2977.749	3064.373
3074.737			3202.337		
1	3166.5462	3104.5131	5	2978.502	3064.6321
3075.881			3256.597		
5	3166.5536	3181.2154	4	2978.822	3064.7576
3078.736			3256.698		
8	3169.5471	3181.2559	2	2979.847	3065.9075
3152.884			3259.366		
2	3242.6346	3181.324	2	2980.253	3066.2883
3152.932			3259.512		
7	3242.6575	3181.4157	8	2980.34	3066.5112

2980.253	3066.2883
2980.34	3066.5112
2980.466	3069.1538
2981.185	3071.0395
2982.96	3072.2603
2986.08	3075.7754
2987.109	3078.7819
2990.434	3087.4585
2990.706	3097.5485
2990.852	3099.3156
3007.47	3099.8372
3008.413	3101.0018
3008.846	3108.3248
3021.605	3118.7876
3028.047	3127.9074
3036.136	3129.5874
3036.977	3134.7557
3037.038	3136.6135
3041.897	3137.322
3044.414	3137.9527
3046.112	3139.258
3047.915	3140.026
3049.536	3142.5956
3051.571	3143.6156
3051.629	3145.2093
3053.602	3146.0074
3055.203	3147.0422
3056.118	3147.9386
3058.118	3148.193

3058.56	3149.146
3058.682	3149.5736
3058.797	3149.7454
3059.332	3149.9259
3060.11	3151.8843
3060.956	3152.3351
3061.801	3155.566
3064.263	3156.0188
3065.53	3157.6442
3068.067	3158.9664
3069.276	3162.426
3069.975	3162.7413
3071.111	3163.7388
3072.802	3164.5477
3073.337	3165.3992
3073.866	3166.6559
3076.615	3168.5835
3079.037	3169.8964
3080.608	3170.6772
3081.594	3175.8613
3082.253	3177.75
3084.376	3180.4862
3085.484	3181.9945
3093.272	3187.3812
3097.364	3191.2898
3099.521	3194.4406
3103.371	3196.5566

	4	Į	5	(6	
PBE	PBE0	PBE	PBE0	PBE	PBE0	
33.0309	36.2052	34.9896	35.8665	28.266	25.7439	
43.2	44.2261	37.5414	40.0426	31.9309	32.3455	
47.5954	48.9191	43.4185	45.5047	57.8908	55.7236	
51.5542	53.9195	49.9304	51.4876	58.7828	60.1034	
56.8148	59.6007	57.026	60.7497	62.3133	61.7285	
61.3809	63.3088	61.9631	62.7774	65.3495	63.7971	
61.9203	65.7519	67.6729	70.2074	68.1294	68.7646	
68.5572	69.8008	69.5367	70.7477	83.7339	82.9846	
75.921	79.4191	73.4234	74.4879	93.6018	90.8727	
80.8416	83.0048	79.0534	81.9443	99.7946	98.857	
89.7547	92.6624	89.5717	94.5667	102.7626	101.5878	
96.1474	98.1177	93.2145	96.5351	105.9669	109.7365	
101.0309	105.0812	95.3669	98.2723	114.698	119.7494	
108.229	112.0068	102.4047	105.0184	118.6672	122.4174	
109.357	113.2489	104.9673	109.7109	125.7277	130.5669	
117.5448	125.5068	117.5681	123.1123	126.7035	133.7591	
127.8701	134.3517	124.1503	133.7837	129.6112	135.4443	
132.7823	138.2439	128.8243	135.1498	132.7371	138.1357	

139.0245	146.8371	136.2269	143.6004	138.5881	144.112
143.5955	150.1602	148.2446	155.5876	142.3175	150.1432
144.9438	152.1991	152.8735	161.9217	154.3017	160.8871
151.6991	160.1111	159.282	166.9211	159.2412	165.1961
154.597	162.8447	167.2993	172.5701	164.606	172.1261
165.0711	172.1786	171.0163	177.3077	169.767	174.4127
169.2389	176.1964	172,888	180,1067	171,1999	177.4328
170 1087	178 2614	174 5604	183 1777	178 7352	184 1434
177 106	183 1937	183 1412	189 7847	183 4165	189 6623
179 7558	187 2072	184 8943	193 3542	189 4323	199 2967
182 / 906	189 2179	187 9837	196 / 783	196 5192	202 8199
185 5464	193 6158	188 2586	197 8834	206 7114	202.0133
188 2121	197 6139	193 0986	204 5625	200.7114	211.07.52
100.2151	201 2717	100 0863	204.3023	203.3701	214.0100
107 7995	201.2717	200 8800	200.7403	212./00/	217.4331
192.2003	201.3335	203.0033	210.2404	214.4370	220.0714
197.5520	200.3400	211.9003	210.300	222.5415	220.0359
201./504	210.9816	214.8608	221.892	224.5477	228.6212
203.9886	213.8455	221.052	228.8408	225.3238	229.94//
210.1403	217.4482	222.328	228.9514	228./92/	235.8192
213.1659	219.1105	225.4147	234.5035	231./169	236.6181
218.0466	225.8	227.2789	236.1382	236.8126	248.2635
220.2188	227.5336	228.8565	236.8857	244.0524	252.8619
224.0084	232.1328	229.9014	239.0734	252.6667	261.3697
229.008	235.8574	232.5427	241.0722	271.61	280.6829
230.4971	237.3232	234.9573	244.6545	274.4029	282.3052
235.0913	242.8721	235.8487	247.0894	276.2482	284.7581
239.3247	249.1141	240.4316	250.3243	277.8817	285.8687
242.4807	251.5757	241.0642	251.5254	278.4008	286.2794
245.7466	254.861	247.7536	258.1855	281.1461	289.0125
246.3691	257.383	251.3879	262.1769	292.1433	304.3968
251.7684	261.1113	252.7172	263.6008	300.5767	310.5668
252.2749	264.1397	254.6673	266.6368	322.3705	336.6762
254.9786	265.465	258.0804	269.5505	339.1566	350.306
257.5958	270.2735	260.9186	273.9169	341.143	351.2627
266.1894	276.0362	263.8044	277.6414	372.1508	384.4438
270.0206	281.3638	269.1317	279.8288	386.3197	404.9259
272.4395	284.8298	282.2183	290.0797	390.0236	408.1184
274.7026	287.6841	284.5437	297.1019	413.9322	427.3337
276.1201	290.272	289.2919	298.9306	416.0278	429.5729
283.7727	296.8473	304.0533	312.7163	464.4655	480.4336
286.7423	300.43	316.0792	327.1891	464.7876	481.3202
291.3465	304.9037	317.1521	327.5043	492.2529	512.3529
291.8595	305.7703	321.9798	333.7704	507.3152	526,1252
296.7492	312.757	334.9689	345.4409	536.0017	553.7054
311.958	323.3546	339.6666	351.6395	536.6641	554.0927
320.0107	333,2457	371.0348	383,9053	538.0789	555,1745
328,8368	340.5243	376.3215	388.875	539,0056	559,6819
341.4118	353.0709	408,8167	425.9236	543,6059	563.3086
				2 10,0000	200000

346.9399	360.0182	419.3169	434.6848	557.0937	580.7211
386.6428	399.6187	421.0166	435.478	568.518	591.1757
392.5992	405.9294	426.1532	442.6675	586.3802	606.1804
418.8727	433.5823	438.6544	454.2678	611.0263	638.0429
422.8304	437.249	439.0939	454.6895	623.2965	649.7212
435.5777	450.8658	448.0141	463.6826	703.3257	736.2417
438.4445	454.1941	451.1671	467.2364	716.6105	742.1151
448.3786	464.6602	510.7776	530.0412	722.2632	756.0514
465.3707	482.1409	515.4199	536.9125	743.4186	771.1179
481.8886	499.828	521.9767	541.0757	744.1079	772.4035
491.1271	510.3269	528.4464	549.6433	791.2337	818.1751
506.8056	526.9573	537.3443	559.481	791.5532	818.503
510.0198	529.9085	547.3539	566.7689	853.8667	887.4441
526.1207	546.3418	548.4753	568.5378	863.8632	896.889
529.9616	551.0665	555.3472	577.7702	871.1364	903.8664
537.947	558.0229	564.3835	584.7044	882.4286	914.5117
545.1683	564.7976	568.2897	589.982	884.5528	918.1654
550.2455	572.0751	669.7999	699.4506	892.2751	923.5075
554.2275	575.7221	675.6203	702.3473	893.8741	926.9006
561.7516	584.5478	679.5284	703.3239	896.8396	930.9253
569.819	592.4858	680.0484	707.5927	898.8549	934.25
667.4801	692.9095	699.9922	732.2841	900.3552	935.1107
668.9988	693.8337	712.0082	745.231	918.6807	953.7198
685.3016	712.7467	738.7553	765.973	922.8642	955.9791
691.5397	721.5868	741.0055	768.869	925.2625	960.9081
705.6262	737.641	774.6672	802.5062	928.4308	964.1562
716.5448	749.558	775.871	804.244	933.3713	967.8361
723.6981	751.2878	862.6081	896.6288	935.3366	969.9661
737.1688	764.6255	867.6355	901.3723	937.0866	972.1325
758.9596	786.8589	869.3571	903.2964	983.5657	1021.7404
767.1774	795.3419	875.7846	909.6885	984.1484	1022.3256
787.2749	813.4606	885.0462	916.9083	989.1858	1025.7246
788.4513	816.4873	885.8872	918.6177	991.3682	1028.2334
862.7287	896.7857	889.4431	921.6444	993.8174	1031.1817
868.3626	902.3226	890.0767	923.2773	994.1709	1033.3892
870.3354	904.7029	891.0224	923.6783	995.1437	1034.2268
				1040.129	
876.9291	910.5448	892.6177	925.1278	5	1077.1471
883.233	916.1922	893.1524	926.074	1040.806	1077.6149
885.2644	917.672	893.9173	927.2366	1060.686	1099.5608
				1062.325	
888.2271	920.5369	895.052	930.4053	9	1100.5552
				1071.208	
888.8169	921.7523	897.1433	931.3072	2	1110.3676
000 00		000	00 / == 0=	1078.537	
890.4563	922.951	899.4557	934.7505	6	1118.61
891.6628	924.8283	901.4457	935.4136	1086.252	1126.9824
892.925	926.0158	927.4236	962.6705	1089.487	1130.2113

			8	
			1102.665	
926.7441	929.6972	965.2599	1	1150.2834
			1105.353	
929.094	931.3991	965.8037	3	1153.6811
525105	00110001	000.0000	1108 916	1100.0011
931 6262	932 7571	967 1005	7	1156 836
020.0440	002.7071	907.1005	/	1150.050
938.0449	933.0481	967.4075	1110.1/1	1158.6841
	0040000		1113.024	
938.523	934.0938	968.7598	7	1162.2914
			1126.911	
962.2863	937.0702	971.1427	7	1170.3791
			1141.802	
965.5693	937.2226	971.1732	4	1186.2357
			1142.880	
966.3908	963.8523	998.6045	4	1186.5944
		1001.494	1145.543	
966.8534	966.4412	5	2	1187.4717
		1017 486	_	
968 2122	981 9087	5	1148 216	1188 8399
500.2122	501.5007	1023 274	1167 692	1100.0000
060 8717	985 2204	1020.274 2	בנוי, 1107 2	1715 1150
303.0712	505.2204	J 1020 007	J 1171 0 <i>4</i> 1	1215,1155
070 5010	1001 0057	1039.007	11/1.941	1010 000
970.5216	1001.6257	0 1040.000	1077000	1218.6285
0	4000 4040	1040.003	12/7.922	1000 5055
972.1014	1002.1912	3	5	1329.5357
		1057.104	1279.463	
990.9205	1019.3071	7	8	1330.9535
		1057.674	1281.092	
995.6274	1019.8854	2	4	1334.3001
1029.6781	1065.4593	1104.984	1287.428	1338.3977
		1106.738	1289.038	
1034.5684	1067.5427	3	8	1339.9044
		1118.333		
1044.4554	1078.0837	4	1289.87	1340.7818
101111001	10,00000,	1119 184	1291 901	10.000.010
1045 7665	1079 1799	3	8	1342 333
1040.7000	10/ 5.1/ 55	5	0	1042.000
1069 0719	1007 8002	11/1 000	1200 201	1252 1922
1000.9710	1097.0995	1141.025	1300.201	1999'1099
1000 7000	1000 4001	1142022	1304.941	1250 0770
1082./026	1099.4661	1143.033	4	1356.9779
		1147.491	1311.266	
1083.8684	1100.6622	8	4	1357.5536
		1148.193	1325.658	
1089.3924	1101.8808	7	3	1377.4128
		1150.624	1331.720	
1106.6264	1104.2937	9	2	1383.606
		1151.467	1333.518	
1108.034	1105.2718	7	1	1386.155
1114.9931	1106.0843	1152.672	1335.185	1387.7726
	926.7441 929.094 931.6262 938.0449 938.523 962.2863 965.5693 966.3908 966.3908 966.8534 968.2122 969.8712 969.8712 970.5216 970.5216 972.1014 970.5216 972.1014 990.9205 995.6274 1029.6781 1034.5684 1044.4554 1045.7665 1068.9718 1082.7026 1083.8684 1089.3924	926.7441929.6972929.094931.3991931.6262932.7571938.0449933.0481938.523934.0938962.2863937.0702965.5693937.2226966.3908963.8523966.8534966.4412968.2122981.9087969.8712985.2204970.52161001.6257972.10141002.1912990.92051019.3071995.62741067.54271034.56841067.54271045.76651079.17991068.97181097.89931082.70261099.46611083.86841100.66221089.39241101.88081106.62641104.29371108.0341105.27181108.0341105.2718	926.7441 929.6972 965.2599 929.094 931.3991 965.8037 931.6262 932.7571 967.1005 938.0449 933.0481 967.4075 938.523 934.0938 968.7598 962.2863 937.0702 971.1427 965.5693 937.2226 971.1732 966.3908 963.8523 998.6045 966.32122 981.9087 5 969.8712 985.2204 3 969.8712 985.2204 3 970.5216 1001.6257 6 1039.087 7 1057.674 995.6274 1019.3071 7 995.6274 1019.8854 2 1029.6781 1065.4593 1104.984 1044.4554 1078.0837 4 1044.4554 1079.1799 3 1044.4554 1079.1799 3 1045.7665 1079.1799 3 1045.7665 1079.1799 3 1045.7665 1079.1799 3<	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

9			4	4	
1078.951					
8	1119.1322	1107.4359	1153.757	1337.268	1388.0662
1086.424			1154.516	1340.251	
6	1128.2037	1108.8255	5	6	1388.9616
1097.629			1157.877	1341.847	
4	1141.7034	1110.1017	3	7	1390.3785
1099.770			1158.265	1347.783	
6	1145.2418	1115.8757	3	5	1395.2306
-			1160.445	1348.529	
1100.742	1146.5397	1117.8495	7	7	1395.3748
1101.189			1175.239	1349.263	
7	1147.2735	1131.5831	9	4	1400.4447
1103 394	111/12/00	110110001	1178 089	1351 561	11001111
8	1149 491	1134 1583	7	9	1401 7997
Ũ	11 101 101	110 11000	1191 975	1352 087	11011/00/
1104 825	1150 3437	1146 8524	6	5	1402 1599
1105 325	1100.0107	1110.0021	1194 202	1352 365	1102.1000
1	1152 9737	1148 8147	7	3	1402 2807
1106 299	1102.07.07	1140.0142	1203 166	1353 621	1402.2007
1100.2 <i>33</i> 7	1153 4924	1158 4484	1205.100 7	יבטטטיע רבי	1402 7066
1109 877	1100.4024	1100.4404	1205 104	1355 91/	1402.7000
6	1156 5068	1159 8868	1205.104 Q	7	1/0/ 1902
111/ 505	1150.5000	1155.0000	1222 536	1369 091	1404,1502
0	1158 0643	1175 4444	6	1303.031 7	1474 8400
J 1115 767	1150.0045	11/3.4444	1222 278	∠ 1370 698	1424.0433
1113.707	1158 6088	1176 0688	1223.370 g	1370.030 7	1/07 0171
+ 1121 527	1130.0000	11/0.0000	0 1212 946	∠ 1271 606	1427.3171
LT21,224	1175 2500	1767 1170	1312.040 E	13/1.000	
ט 1100 כרו	11/5.5509	1203.11/0	5	L 1202 707	1429.9030
1155.014 C	1177 0044	1000 0000	1010 656	1303./0/	1442 2067
ے 1116 کر 1	11//.0944	1200.3300	1310.030	4 1200 665	1442.2907
1140.231	1101 4176	1774 0077	1324./13	1309.005	1442 0606
1 1140 700	1191.41/0	12/4.09/2	/ 170 071	0 1200 162	1442.9000
1140./00	1104 1050		1320.371	1390.102	1440 01 - 1
	1194.1952	12/7.0592	1 1220 COC	9 1200 427	1443.3151
1100.520			1330.000	1390.437	1444 0011
9	1200.555	12/9.5992	0 1000 F07	5 1202 071	1444.9511
1164.060	1010 0470	1001 1015	1332.587	1393.071	1 4 4 7 7 40 7
2 1172 C10	1210.64/9	1281.1615	ے 1224 000	0 1000 005	1447.7483
11/3.619	1220.0400	1000 010 4	1334.088	1396.325	1 4 40 C 401
5	1220.9489	1282.3194	9	б 1000.007	1449.6491
11/5.350	1000 0017	1000 0700	1336.503	1398.087	1 450 0750
1000 470	1222.901/	1286.2702	5	8	1450.0753
1238.4/9	1000 0 100		1340./15	4000 00	
3	1283.8426	1289.8543	3	1399.22	1451.6645
1242.024			1343.186	1401.682	
4	1286.8981	1292.5968	8	7	1453.5131
1261.441	1010 000-	1000 0 17	1345.588		
1	1310.0807	1293.345	1	1401.997	1454.2478
1271.744	1321.8989	1297.2043	1347.944	1404.325	1455.8839

3			1	1	
1272.997			1348.524	1404.708	
4	1323.8193	1297.8461	6	8	1456.3977
1273.959			1353.178	1406.577	
8	1325.9936	1301.8559	8	7	1458.0343
1274.919			1359.291	1407.883	
9	1326.7313	1308.1637	7	4	1459.0532
1278.310			1360.058		
1	1329.6982	1309.9082	7	1408.801	1461.2984
1280.921			1378.902	1412.289	
4	1332.4355	1326.2967	8	7	1463.6248
1285.750			1380.582	1412.770	
5	1336.4855	1329.0427	5	5	1464.111
1287.506			1382.184	1413.878	
8	1338.8386	1330.6738	1	4	1465.2496
1288.079	100010000	100010/00	-	1414,978	1.00.2.00
4	1339.0112	1331.3113	1382.884	7	1465.3435
1288 575	1000.0112	1001.0110	1384 664	1415 464	1100.0100
6	1340 3479	1331 6855	8	5	1466 0153
1289 951	10-0.0-75	1551.0055	1386 382	1416 558	1400.0155
1205.551 7	1342 6638	1333 9912	6	6	1468 4268
1296 685	1342.0030	1000.0012	0	0	1400.4200
1230.003 7	1347 0421	1334 7726	1387 533	1/17/136	1/69 0365
ے 1207 /0/	1347.0421	1554.7720	1388 088	1417.450	1405.0505
1297.494	1240 2221	1226 4476	1300.900 E	1422.100	1470 4710
4	1549.2221	1550.4470	5	4 1422 705	14/2.4/10
1299.052	1250 5200	1247 7427	1201 /16	1425.795 E	1474 5111
שבר 1201	1320.2399	1342./432	1391.410	ס 1 געב 000	14/4.5111
1301.220	1251 0200	1747 0040	1392.375	1425.099	1 470 0074
L	1351.8296	1343.0649	L 1200 102		14/6.99/4
1312.433	1001 4005	1746 4600	1398.192	1425.837	1 470 0500
1212 C20	1361.4395	1346.4698	/	9	14/9.0502
1313.620	1000 1505	1040 0004	1399.402	1428./30	1 400 0000
4	1363.1537	1348.3324	8	4	1482.0308
1329.114			1401.205	1431.735	4 400 0 0 0 0 0 0
2	1381.5358	1349.6376	6	6	1483.3593
1331.221			1401.351	1433.171	4 40 - 6000
6	1382.8418	1350.5697	5	6	1485.6328
1331.684			1402.374	1437.620	
6	1383.2368	1352.1276	6	8	1487.3876
			1403.484	1438.779	
1332.116	1383.849	1352.8998	8	7	1490.6792
1333.787			1406.717	1439.934	
6	1386.2517	1355.8934	5	9	1493.5594
1334.222			1407.320	1440.090	
8	1387.3513	1356.5714	5	1	1494.5269
			1424.902	1443.481	
1334.98	1387.9157	1367.6176	5	1	1505.9467
1336.065			1427.739	1443.809	
8	1389.2801	1371.099	8	5	1507.995
1339.548	1390.4059	1374.7307	1432.945	1465.339	1528.8394

5			6	7	
1342.352			1433.144	1468.758	
4	1393.3205	1375.9947	9	3	1531.7072
1347.975			1442.570	2842.500	
9	1398.8399	1389.9061	5	8	2934.1357
			1444.001	2859.135	
1349.369	1401.1021	1390.988	7	5	2949.0714
1350.337				2947.028	
8	1401.649	1392.904	1447.656	6	3032.1591
1350.860			1449.708	2955.947	
9	1402.3348	1395.5224	5	4	3037.9131
1351.602	110210010	10001012	1450.829	2959.770	000/10101
3	1402 5109	1398 4355	8	9	3047 517
1352 528	1102.0100	1000.1000	1451 582	2961 762	5017.517
9	1403 3133	1399 0684	6	6	3050 6103
1352 822	1400.0100	1000.0004	1453 436	2963 137	5050.0105
6	1/03 5937	1/00 118/	1400.400 2	2000.107	3051 442
135/ 031	1403.3337	1400,1104	5 1 <i>454 4</i> 71	2966 253	5051.442
1334.031	1405 8040	1400 0974	1404.471	2300.233	2056 6126
ט 1262 סרד ב	1405.0045	1400.3074	2 1455 705	2068 528	2020.0120
1303.729 Q	1477 2200	1/07 22/10	1433.793	2900.330	2057 0206
U 1071 067	1422.3303	1402.3340	ט 1456 אבב	1 2072 605	3037.0200
13/1.30/	1420 5726		1450.455	2975.005	
	1429.5730	1403.50//		4 2077 110	3057.0075
1380.357	1 420 0000	1400 2205	1457.628	29/7.110	
ل درد / ۱۵۵	1438.0809	1406.2365	9	4	3062.5767
1384.322	1 420 270 4	1 400 00 41	1458.0/1	29/8.119	2002 0227
b 1207 021	1438.2704	1406.9841	9	2	3062.8337
1387.031	4.4.0.04.4		1458./2/	29/8.644	
8	1443.211	1407.6563	7	1	3063.3958
1388.540			1461.228	2980.165	
3	1445.1563	1409.7219	3	3	3065.2528
1390.730			1461.395	2980.368	
5	1446.7679	1410.4912	8	6	3065.712
1393.029			1462.010	2987.973	
3	1449.3709	1410.9705	8	4	3080.8493
1397.880			1463.898		
5	1450.7775	1412.5912	6	3000.385	3092.1593
1400.322			1464.186	3007.876	
5	1452.352	1412.9061	3	4	3107.1632
1401.947			1464.697		
7	1453.8308	1413.3558	6	3015.643	3112.4896
1404.758			1466.099	3015.842	
1	1455.8341	1414.7602	9	4	3114.9251
1405.691			1467.752	3018.791	
7	1457.0752	1415.2245	3	8	3114.9888
1406.150			1468.970	3019.831	
5	1457.8621	1417.7764	6	6	3115.5519
1407.893			1471.864	3023.176	
2	1459.1428	1418.9652	7	7	3117.8341
1408.202	1459.9791	1422.0385	1473.649	3024.568	3118.3835

7			2	1	
1409.429			1474.820	3026.339	
1	1461.8492	1423.4447	8	8	3121.2125
1410.838				3027.951	
9	1462.4111	1425.3652	1476.478	5	3121.3994
1411.451				3035.073	
3	1462.6549	1426.3441	1477.728	5	3123.2628
1411.456				3035.567	
2	1462.8022	1426.5591	1478.06	1	3130.6666
1412.191			1479.141	3039.636	
3	1463.0042	1426.7077	3	3	3132.7071
1413.041			1480.799	3039.880	
4	1464.4851	1429,1808	3	1	3135.0247
1413 627	110111001	112011000	1482 646	3047 819	510010217
1	1464,9902	1430.3045	4	4	3140.6778
1415.019	110110000	1 100100 10	1483.068	3049.843	511010770
6	1466 9225	1431 367	6	201010	3142 6564
1415 345	1400.5225	1401.007	1484 285	3053 532	5142.0504
1410.040 2	1467 4868	1431 8895	7	6	3143 6297
2 1417 419	1407.4000	1401.0000	, 1486 548	3054 905	5145.0257
ο β	1469 0021	1434 8573	1400.040	1	3147 6796
1/17 567	1405.0021	1434.0373	1/189 118	3056 303	5147.0750
5	1/69 9606	1/36 1519	1405.110 7	2020.202 2	31/18 6796
1/17 96/	1405.5000	1450,1515	2 1/190 357	3058 282	5140.0750
1417.J04 2	1471 0043	1/27 /710	14J0.JJ/ 7	JUJU.202	21/18 0172
1/20 586	14/1.0545	143/.4/12	ے 1101 981	3059 023	5140.5125
1420.300 6	1/77 8730	1440 3061	14J1.J04 5	2000.020 2	21/0 2262
1/21 281	14/2.0233	1440.5001	1/03 207	3050 746	5145.2502
1421,201	1474 2725	1441 4205	1433.307 6	2039.740 Q	2150 9640
4 1 <i>ו</i> ר 101	14/4.2/33	1441.4303		2060.226	5150.0045
1423,101	1475 4110	1 4 4 4 1 7 4 1	1507.205 C	3000.330	2152 0026
5 1475 E02	14/5.4115	1444.1341	3 1507.005	4 2062 044	5152.0050
1425.595 C	1 477 7020		1507.995	0	2152 2115
2 1406 017	14//./030	1445.0000		3 2062 102	5152.5115
1420.01/	1 470 4074	1 4 4 7 7 7 7 7 4	1509.055	3002.192	2152 400
/ 1 407 070	14/0.40/4	1447.2334		1	3152.490
1427.073	1 470 0000	1 4 40 0 20 1	1512.595 C	3062.229	2152 2065
4	14/0.9033	1449.0301	2	0	3133.3905
1427.376		2072 CO 40	2968.991	3062.499	
2 1 400 001	14/9.6015	28/3.6949	4	ل 2005 عمر	3154.4863
1429.301	1 401 0007	2006 00 42	2001 152	3065.381	
5	1481.2027	2896.8043	2991.1/2	5	3157.298
1430.982	1 400 0000		3046.586	3068.278	21.00 4005
4	1482.2336	2955.5692	5	3	3160.4867
1431.55/	4 400 6 440		3049.851	30/1.698	04644650
4	1483.6419	2962.9342	9	3	3164.1659
1432.873	4 400 4040		3050.081	3072.271	
1	1486.4818	2965.6483	9	8	3164.7081
1434.355	4 405 0000		3056.621	3072.640	
1	1487.8866	2970.5758	3	1	3165.6902
1436.341	1489.0582	2971.8078	3057.680	3075.365	3167.3142

2

2980.293 5

2980.445

9

2981.222

2985.069

3065.186

3066.676

3066.9388

3070.4781

3071.7285

3025.8343

3030.3822

3037.3502

3042.1319

3046.2956

4

3124.789

3128.648

1 3133.230

5

3138.711

8			8
1437.018 1439.234	1490.377	2972.5054	3060.368 3061.439
9	1493.744	2974.3266	7
1440.105 7	1494.497	2975.3096	3063.838
1442.197	1497.5545	2976.0794	3064.049
1442.931	1504.0422	2978.2931	3064.299 5
1443.704 5	1505.3275	2978.6672	3064.604
1444.859 3	1509.09	2978.8566	3064.676
2884.441 2	2981.2764	2979.3652	3067.420 5
2891.375 4	2987.1698	2979.7865	3069.252 8
2948.803	3042.6502	2980.2635	3070.524 7
2954.364	3048.8622	2981.6172	3072.144 2
2963.611 7	3051.5321	2982.6706	3074.058 6
2966.855 5	3054.8404	2984.8775	3082.520 3
2974.241 2	3060.8518	2985.4212	3084.913 5
2977.183 1	3062.5253	2993.0321	3095.053 6
2977.331 5	3062.8167	3002.2476	3096.410 7
2977.732 7	3063.3315	3005.0265	3099.402 1
2978.688 2	3063.7863	3013.2798	3111.398 5
2979.333 8	3064.0236	3014.958	3115.007 7
2979.819 8	3064.994	3018.1433	3119.377 7
2980.226			3124.164

3076.083 5

3168.7925

9			
2985.761			3140.191
5	3072.5974	3049.1305	8
			3142.615
2985.89	3079.1742	3050.0557	6
2986.344			
9	3082.5245	3051.7856	3143.559
2989.440			3145.469
3	3085 2289	3052 1207	2
3001 273	0000.2200	0002.1207	3146 772
6	3095 6039	3053 8249	<u>A</u>
3003 442	0000.0000	5055.0245	31/7 661
1	2006 2821	2054 722	6
4	5050.2051	5054.752	0
5004.549	2000 7042	2055 2207	2140 161
	3090.7042	3033.3207	3140.101
3005.187	2101 1404		3148.943
3	3101.1494	3055.//96	
3014.325			3149.424
4	3114.1684	3057.6088	6
3023.295			3149.685
9	3119.5136	3058.3256	8
			3150.554
3027.023	3125.1384	3058.7305	3
3028.668			
9	3126.1202	3060.2519	3150.889
3029.871			3151.422
1	3127.9459	3060.8364	9
3033.315			3152.315
5	3129.8277	3061.0386	5
3038.186			3152.403
7	3130.2871	3061.2427	2
3040.178			3153.023
5	3134.5016	3061.4596	9
3042.879			3153.145
1	3138 5205	3061 7995	5
3049 967	0100.0200	5001.7555	3154 206
6	3143 3007	3062 2086	5
0	5145.5007	5002.2000	3155 133
3051 216	31/3 8656	3064 0819	6
3052 632	5145.0050	5004.0015	3156 384
5052.052 7	2144 2175	2065 0212	5150.504 6
/ 2052 756	5144.2175	5005.5512	0 2157 220
2022.730 C	2146 1710		JJJ7.230
	5140.1/10	5000.0511	∠ 2101 000
3053.554			3161.029
9	3140.5/88	3068.8889	
3056.604	24 40 000 4		3163.581
5	3148.0604	3070.1025	2
3058.422			3163.911
6	3148.6401	3072.4133	3
3058.697	3149.5481	3073.2693	3165.199

			2
3059.041			3170.795
4	3150.5759	3080.0675	2
3059.496			3175.316
7	3150.6349	3080.8051	8
3060.518			3176.465
9	3151.0657	3083.9017	5
3061.079			3196.676
7	3152.8912	3099.3498	8
3061.174			3204.201
3	3153.3009	3106.056	7
3061.483			
9	3153.6361		
3061.921			
8	3154.6297		
3062.170			
7	3155.4029		
3066.204			
2	3157.3822		
3067.864			
2	3159.4438		
3069.094			
5	3160.063		
3069.507			
3	3160.3155		
3069.652			
4	3160.7247		
3070.801			
2	3162.2838		
3071.112			
9	3164.7543		
3073.237			
6	3165.7144		
3077.227			
4	3169.1037		
3078.645			
5	3169.7183		
3079.451			
2	3169.9469		
3080.913			
2	3172.7557		
3081.307	3173.7476		
3082.360			
8	3174.6379		
3084.227			
7	3176.7837		

Table S3. Comparison of structural parameters between crystal/PBE/PBE0 optimised structures for compounds **1-6**. Cp¹ and Cp² in **6** refer to lightest and heaviest cyclopentadienyl rings, respectively. Values for **1**, **3-5** are taken from Table 1 in reference ¹⁴. All angles and distances measured with respect to the Cp centroids. RMSD values do not consider hydrogen atoms.

				RMSD	RMSD
		$\mathbf{D} = \mathbf{C}^2(\mathbf{R})$	Cp-Dy-Cp	. 1	. 1
	$Cp^2 - Dy$ (A)	$Dy - Cp^{-}(A)$	(dogroos)	crystal vs	crystal vs
			(degrees)	PBE	PBE0
	2.29(1) /	2.29(1) /	147.2(8) /		
1	2.291 /	2.291 /	146.10 /	0.098	0.103
	2.279	2.279	146.94		
	2.318 /	2.314 /	152.7 /		
2	2.309 /	2.309 /	151.45 /	0.080	0.105
	2.290	2.290	153.43		
	2.340(7) /	2.340(7) /	162.1(7) /		
3	2.351 /	2.345 /	158.06 /	0.266	0.308
	2.335	2.333	158.9		
	2.302(6)/	2.302(6) /	161.1(2) /		
4	2.323 /	2.331 /	155.67 /	0.358	0.223
	2.311	2.318	156.69		
	2.298(5) /	2.298(5) /	156.6(3) /		
5	2.318 /	2.323 /	155.11 /	0.088	0.084
	2.306	2.309	156.10		
	2.296 /	2.284 /	162.5 /		
6	2.308 /	2.290 /	160.10 /	0.273	0.100
	2.297	2.277	162.06		

The predicted Infra-Red (IR) spectra from DFT can be compared to the experimental IR to assess how accurate the calculated normal modes are. Figure S2-Figure S7 show that the IR profiles obtained with PBE and PBE0 are very similar, but the spectra from PBE0 are consistently shifted towards higher energies. In an attempt to improve the agreement with the experiment, we build a composite spectrum for each

molecule including the spectrum of the isolated counterion $[B(C_6F_5)]^+$ (Figure S8-Figure S12). From this comparison, a set of optimized linear corrections for the PBE energies for **1-6** is presented in Table S4. However, due to the moderate improvement between predicted and experimental IR and the small impact on the calculated rates (see main text), calibration of normal modes is not recommended.

Figure S2. Comparison of IR spectra for 1.

Figure S3. Comparison of IR spectra for 2.

Figure S4. Comparison of IR spectra for 3.

Figure S5. Comparison of IR spectra for 4.

Figure S6. Comparison of IR spectra for 5.

Figure S7. Comparison of IR spectra for 6.

Figure S8. Comparison of experimental and PBE IR spectra without (top) and with (bottom) calibration for **1**, using the parameters from Table S4

Figure S9. Comparison of experimental and PBE IR spectra without (top) and with (bottom) calibration for **3**, using the parameters from Table S4.

Figure S10. Comparison of experimental and PBE IR spectra without (top) and with (bottom) calibration for **4**, using the parameters from Table S4.

Figure S11. Comparison of experimental and PBE IR spectra without (top) and with (bottom) calibration for **5**, using the parameters from Table S4.

Figure S12. Comparison of experimental and PBE IR spectra without (top) and with (bottom) calibration for **6**, using the parameters from Table S4.

compound	Cation	Anion
1	0.937 <i>x</i> +19.141	0.992 x + 26
2	0.9485 <i>x</i> +69.33	0.992 x + 26
3	1.032 x - 9.245	0.992 x + 26
4	1.025 x - 3.646	0.992 x + 26
5	1.037 x - 16.536	0.992 x + 26
6	1.034 - 12.167	0.992 x+26

Table S4. Calibration applied to the PBE normal mode energies.

S3. CASSCF-SO calculations: Electronic structure

We adopt two approaches to describe the electronic structure of **1-6**: "full" and "low" differing in the quality of the ANO-RCC^{15,16} basis sets and the spin multiplicities considered (Table S5). Both approaches employ the resolution of the identity decomposition (RICD acCD) of the two-electron integrals,¹⁷ as regular Cholesky decomposition results in discontinuous CASSCF energies along the potential energy surfaces. The molecular orbitals (MOs) were optimised in state-averaged CASSCF calculations, where the active space was defined by the nine *4f* electrons in the seven *4f* orbitals of Dy(III). The wavefunction was then mixed by spin orbit coupling where the corresponding states of appropriate multiplicity were included. The resulting spin orbit wavefunctions were decomposed into CFPs using SINGLE_ANISO¹⁸ with a fixed reference frame extracted from the equilibrium geometry. The two different approaches were applied to the optimised and crystal geometries (Table S6 – Table S9). The "low" approach was employed to perform the ab initio spin dynamics calculations.

Table S5. Definition of the "low" and "f	ull" CASSCF-SO approaches. 1 st and 2 nd refer
to the 10 coordinating carbon atoms of	the cyclopentadienyl ring and the remaining
atoms, respectively.	

	"low"	"full"
	Dy : VTZP	Dy : VQZP
Basis sets	1 st : VDZP	1 st : VTZP
	2^{nd} : VDZ	2^{nd} : VDZP
Spin multiplicities	6	6/4/2
State Averaged		
	21	21 / 224 / 490
roots		
States in RASSI	21	21 / 128 / 130

Table S6. Electronic structure of **1-6** calculated with "low" CASSCF-SO using the PBE optimised geometries. Each row corresponds to a Kramers doublet. Last column reports the CF energies from the CASSCF-SO crystal field parameters.

Energy (cm ⁻¹)	Energy (K)	g1	g2	g3	Angl e	Wavefunction	<jz ></jz 	Energy ^{CF} (cm ⁻¹)
				1				
0.00	0.00	0.00	0.00	19.97		$100\% \pm 15/2\rangle$	±7.5	0.00

	414.45	596.30	0.00	0.00	17.10	0.2	$100\% \pm 13/2\rangle$	±6.5	421.18
	687.61	989.32 1259.7	0.00	0.00	14.46	0.4	$100\% \pm11/2)$	±5.5	686.00
	874.90	8	0.02	0.03	11.79	0.1	$100\% \pm 9/2\rangle$	±4.5	875.20
	1035.2 2	1489.4 5	0.56	0.67	9.09	0.1	100% ± 7/2	±3.5	1038.49
	1166.9 0	1678.9 0	1.13	2.97	6.13	0.1	$\begin{array}{c} 60\% \big \pm 5/2 \big\rangle + \\ 34\% \big \mp 5/2 \big\rangle \end{array}$	±0.7	1171.06
	1248.7 7	1796.7 0	2.39	7.97	9.53	89.2	$74\% \pm 3/2\rangle + 22\% \mp 1/2\rangle$	±0.9	1254.67
	1384.8 9	1992.5 4	0.13	0.33	18.38	90.0	$65\% \pm 1/2\rangle + 23\% \mp 3/2\rangle + 7\% \mp 1/2\rangle$	±0.0	1381.58
					2				
-	0.00	0.00	0.00	0.00	19.99		100% ± 15/2	±7.5	0.00
	460.98	663.24	0.00	0.00	17.08	1.6	100% ± 13/2	±6.5	469.57
	728.38	1047.9 6	0.00	0.00	14.45	2.8	$100\% \pm 11/2\rangle$	±5.5	724.53
	900.42	1295.5 0	0.00	0.01	11.79	2.8	$100\% \pm 9/2\rangle$	±4.5	900.72
	1057.6 8	1521.7 6	0.06	0.06	9.12	3.6	$100\% \left \pm 7/2 \right\rangle$	±3.5	1063.05
	1207.6 0	1737.4 6	1.05	1.29	6.43	1.9	97% ± 5/2	±2.5	1213.38
	1324.4 1	1905.5 1	3.36	3.97	7.37	90.0	$85\% \pm 3/2\rangle + 8\% \mp 1/2\rangle$	±1.2	1328.20
	1407.8 0	2025.4 9	0.89	4.48	15.57	89.6	$ \frac{12\%}{\pm 1/2} + \frac{18\%}{\pm 1/2} + \frac{6\%}{\pm 3/2} $	±0.3	1404.47
					3				
-	0.00	0.00	0.00	0.00	20.00		100% ± 15/2	±7.5	0.00
	478.43	688.35	0.00	0.00	17.08	2.1	$100\% \pm13/2\rangle$	±6.5	488.45
	742.03	1067.6	0.00	0.00	14.46	2.9	$100\% \pm 11/2\rangle$	±5.5	736.95
	911.22	1311.0 3	0.04	0.04	11.84	3.2	$100\% \pm 9/2\rangle$	±4.5	910.25
	1068.4 0	1537.1 8	0.55	0.64	9.14	5.9	98% ± 7/2	±3.5	1074.14
	1224.9 6	1762.4 3	0.24	1.42	6.35	6.9	$94\% \pm 5/2\rangle + 2\% \pm 3/2\rangle$	±2.4	1232.44
	1351.4 6	1944.4 4	3.10	6.92	7.23	89.8	10% = 312 + 10% = 1/2 + 5% = 1/2 +	±1.1	1355.67
	1466.5	2110.0	0.64	2.76	16.97	89.3	$76\% \pm 1/2\rangle +$	±0.2	1462.93

	4	1					8% 1 /2 +		
	4	1					$12\% \mp 3/2\rangle$		
					4				
-	0.00	0.00	0.00	0.00	20.00		100% ± 15/2	±7.5	0.00
	478.67	688.70	0.00	0.00	17.07	1.1	$100\% \pm 13/2\rangle$	±6.5	488.40
	749.63	1078.5 4	0.00	0.00	14.45	1.3	$100\% \pm 11/2\rangle$	±5.5	744.66
	924.19	1329.7 0	0.01	0.01	11.80	0.9	$100\% \pm 9/2\rangle$	±4.5	923.50
	1085.1 0	1561.2 0	0.26	0.29	9.11	2.9	$100\% \pm 7/2\rangle$	±3.5	1090.66
	1241.4 8	1786.2 1	0.09	0.68	6.38	4.1	98% ± 5/2	±2.5	1248.38
	1365.5 5	1964.7 1	3.20	6.37	7.04	89.0	$77\% \pm 3/2\rangle + 10\% \mp 1/2\rangle + 10\% \mp 3/2\rangle $	±1.0	1369.48
	1470.6 6	2115.9 5	0.71	3.20	16.61	90.0	$51\% \pm 1/2\rangle + 36\% \mp 1/2\rangle + 7\% \mp 3/2\rangle$	±0.0	1467.08
-					5				
	0.00	0.00	0.00	0.00	20.00		100% ± 15/2	±7.5	0.00
	475.70	684.43	0.00	0.00	17.07	1.2	$100\% \pm 13/2\rangle$	±6.5	485.13
	745.35	1072.3 8	0.00	0.00	14.45	1.7	$100\% \pm 11/2\rangle$	±5.5	740.38
	919.38	1322.7 8	0.02	0.03	11.81	1.9	$100\% \pm 9/2\rangle$	±4.5	918.63
	1079.7 1	1553.4 5	0.42	0.49	9.11	3.3	99% ± 7/2	±3.5	1085.06
	1235.2 0	1777.1 6	0.25	0.67	6.39	3.5	98% ± 5/2	±2.5	1241.80
	1357.5 7	1953.2 3	3.21	6.19	7.20	88.9	$86\% \pm 3/2\rangle + 10\% \mp 1/2\rangle$	±1.2	1361.42
	1460.9 9	2102.0 2	0.72	3.20	16.57	89.7	$ \begin{array}{c} 78\% \pm 1/2\rangle + \\ 8\% \mp 1/2\rangle + \\ 9\% \mp 3/2\rangle \end{array} $	±0.3	1457.13
_					6		1 .		
	0.00	0.00	0.00	0.00	20.00		$100\% \pm 15/2\rangle$	±7.5	0.00
	530.41	763.13	0.00	0.00	17.04	1.0	$100\% \pm 13/2\rangle$	±6.5	543.62
	807.70	1162.0 9	0.00	0.00	14.45	1.6	$100\% \pm11/2\rangle$	±5.5	800.34
	971.40	1397.6 2	0.00	0.01	11.82	0.6	$100\% \pm 9/2\rangle$	±4.5	970.51
	1128.1 2	1623.1 1	0.27	0.29	9.11	2.4	99% ±7/2 }	±3.5	1135.81

1291.7 0	1858.4 5	0.28	0.77	6.35	2.7	99% ± 5/2	±2.5	1301.35
1430.0 0	2057.4 4	3.25	5.65	7.12	88.8	$87\% \pm 3/2\rangle + 10\% \mp 1/2\rangle$	±1.2	1434.85
1544.6 9	2222.4 5	0.77	3.62	16.37	90.0	$58\% \pm 1/2\rangle + 31\% \mp 1/2\rangle + 6\% \mp 3/2\rangle$	±0.1	1540.66

Table S7. Electronic structure of **1-6** calculated with "low" CASSCF-SO using the crystal geometries. Each row corresponds to a Kramers doublet. Last column reports the CF energies from the CASSCF-SO crystal field parameters.

Energy (cm ⁻¹)	Energy (K)	g1	g2	g3	Angl e	Wavefunction	<jz ></jz 	Energy ^{CF} (cm ⁻¹)
				1				
0.00	0.00	0.00	0.00	19.98		$99\% \pm 15/2\rangle$	±7.5	0.00
452.99	651.74	0.00	0.00	17.07	1.31	$99\% \pm 13/2\rangle$	±6.5	461.29
739.26	1063.6 2	0.00	0.00	14.45	1.98	99% ± 11/2	±5.5	736.41
932.34	1341.4 2	0.04	0.04	11.80	1.76	$99\% \left \pm 9/2 \right\rangle$	±4.5	932.16
1098.6 0	1580.6 2	0.62	0.72	9.09	3.71	$99\% \left \pm 7/2 \right\rangle$	±3.5	1102.91
1244.2 1	1790.1 3	0.03	1.35	6.27	4.83	$93\% \pm 5/2\rangle + 3\% \pm 1/2\rangle$	±2.3	1249.58
1341.8 6	1930.6 3	2.66	8.10	9.24	89.96	$71\% \pm 3/2\rangle + 22\% \mp 1/2\rangle$	±0.9	1347.34
1476.7 3	2124.6 8	0.26	0.83	18.22	89.57	$71\% \pm 1/2\rangle + 19\% \mp 3/2\rangle$	±0.2	1473.40
				2				
0.00	0.00	0.00	0.00	19.99		$99\% \pm 15/2\rangle$	±7.5	0.00
489.45	704.21	0.00	0.00	17.06	1.84	99% ±13/2⟩	±6.5	499.53
773.79	1113.3 0	0.00	0.00	14.45	3.38	99% ± 11/2	±5.5	769.27
955.21	1374.3 3	0.00	0.01	11.81	3.33	$99\% \pm 9/2\rangle$	±4.5	955.31
1118.6 2	1609.4 3	0.05	0.05	9.13	5.03	$98\% \pm 7/2\rangle$	±3.5	1124.85
1276.0 1	1835.8 9	0.77	0.96	6.42	3.34	$96\% \pm 5/2\rangle + 2\% \pm 3/2\rangle$	±2.5	1282.84
1399.9 1	2014.1 4	3.36	4.38	7.18	89.70	$80\% \pm 3/2\rangle + 10\% \mp 1/2\rangle + 8\% \mp 3/2\rangle$	±1.1	1404.25
1490.5	2144.6	0.87	4.34	15.70	89.36	$80\% \pm 1/2\rangle +$	±0.4	1487.06

							9% + 1/2 +		
	8	0					$5\% \pm 3/2\rangle +$		
							$5\% \mp 3/2$		
-					3				
	0.00	0.00	0.00	0.00	20.00		$100\% \pm 15/2$	±7.5	0.00
	549.08	789.99	0.00	0.00	17.03	1.41	$100\% \pm 13/2\rangle$	±6.5	560.82
	881.33	1268.0 3	0.00	0.00	14.38	1.78	$100\% \pm 11/2\rangle$	±5.5	874.82
	1098.1 8	1580.0 3	0.00	0.00	11.75	2.04	$100\% \left \pm 9/2\right\rangle$	±4.5	1097.50
	1287.0 2	1851.7 2	0.02	0.02	9.10	4.52	99% ± 7/2	±3.5	1294.42
	1462.2 2	2103.7 9	0.13	0.18	6.41	5.36	$97\% \pm 5/2\rangle + 1\% \pm 3/2\rangle$	±2.5	1470.70
	1599.3 2	2301.0 5	3.38	4.99	6.37	86.89	$\frac{35}{1} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2}$	±1.3	1603.74
	1699.6 8	2445.4 5	0.87	4.38	15.68	89.44	$76\% \pm 1/2\rangle + 8\% \mp 1/2\rangle + 12\% \mp 3/2\rangle$	±0.2	1695.41
-					4				
	0.00	0.00	0.00	0.00	20.00		$100\% \pm 15/2\rangle$	±7.5	0.00
	567.94	817.13	0.00	0.00	17.01	1.56	$100\% \pm 13/2\rangle$	±6.5	583.50
	864.63	1244.0 0	0.00	0.00	14.43	2.26	$100\% \pm 11/2\rangle$	±5.5	855.81
	1040.1 4	1496.5 2	0.02	0.03	11.82	2.59	$100\% \left \pm 9/2\right\rangle$	±4.5	1038.87
	1211.0 9	1742.4 8	0.42	0.47	9.11	5.12	$100\% \pm 7/2\rangle$	±3.5	1220.13
	1393.7 0	2005.2 2	0.04	0.86	6.35	5.42	97% ± 5/2	±2.5	1405.24
	1553.0 4	2234.4 7	3.39	5.12	5.36	89.52	$88\% \pm 3/2\rangle + 6\% \mp 1/2\rangle + 2\% \mp 3/2\rangle$	±1.3	1558.43
	1670.9 8	2404.1 5	0.92	4.93	15.39	89.49	$56\% \pm 1/2\rangle + 35\% \mp 1/2\rangle + 5\% \mp 3/2\rangle$	±0.1	1665.86
-					5		1		
	0.00	0.00	0.00	0.00	20.00		100% ± 15/2	±7.5	0.00
	503.48	724.40	0.00	0.00	17.06	1.52	$100\% \pm 13/2\rangle$	±6.5	514.44
	787.33	1132.7 8	0.00	0.00	14.44	2.06	$100\% \left \pm 11/2 \right\rangle$	±5.5	781.58
	969.48	1394.8	0.00	0.01	11.81	2.59	$100\% \pm 9/2\rangle$	±4.5	968.57

	5							
1137.5 1	1636.6 1	0.32	0.35	9.11	4.21	99% ±7/2⟩	±3.5	1143.90
1302.9 6	1874.6 6	0.14	0.74	6.36	4.16	97% ± 5/2	±2.5	1311.04
1436.2 8	2066.4 8	3.21	6.01	7.13	88.41	$82\% \pm 3/2\rangle + 10\% \mp 1/2\rangle + 5\% \mp 3/2\rangle$	±1.1	1440.82
1547.5 8	2226.6 0	0.74	3.37	16.49	89.36	$51\% \pm 1/2\rangle + 36\% \mp 1/2\rangle + 7\% \pm 3/2\rangle$	±0.1	1543.60
				6				
0.00	0.00	0.00	0.00	20.01		100% ± 15/2	±7.5	0.00
579.22	833.36	0.00	0.00	17.00	0.78	$100\% \pm 13/2\rangle$	±6.5	595.41
881.96	1268.9 3	0.00	0.00	14.43	1.37	$100\% \pm 11/2\rangle$	±5.5	872.51
1057.6 7	1521.7 4	0.01	0.01	11.81	1.44	$100\% \left \pm 9/2\right\rangle$	±4.5	1056.51
1228.5 5	1767.6 0	0.13	0.16	9.09	2.28	$100\% \pm 7/2\rangle$	±3.5	1238.02
1410.7 3	2029.7 2	0.33	0.64	6.35	2.24	99% ± 5/2	±2.5	1422.52
1570.6 5	2259.7 9	3.48	4.46	4.79	88.01	$85\% \pm 3/2\rangle + 9\% \mp 3/2\rangle$	±1.1	1576.04
1683.3 0	2421.8 8	0.99	5.60	14.85	89.71	$6\% \pm 1/2\rangle + 6\% \mp 1/2\rangle + 4\% \pm 3/2\rangle$	±0.4	1678.18

Table S8. Electronic structure of **1-6** calculated with "full" CASSCF-SO using the PBE optimised geometries. Each row corresponds to a Kramers doublet. Last column reports the CF energies from the CASSCF-SO crystal field parameters.

Energy	Energy	۵1	۵Ĵ	a3	Angl	Wavefunctio	<jz< th=""><th>Energy^{CF}</th></jz<>	Energy ^{CF}
(cm ⁻¹)	(K)	gı	g2	gJ	е	n	>	(cm ⁻¹)
				1				
0.00	0.00	0.00	0.00	19.87		$100\% \pm 15/2\rangle$	±7.5	0.00
416.26	598.90	0.00	0.00	17.05	0.10	$100\% \pm 13/2\rangle$	±6.5	420.87
691.18	994.45	0.00	0.00	14.42	0.09	$100\% \pm 11/2\rangle$	±5.5	690.11
883.09	1270.5 6	0.01	0.02	11.76	0.03	$100\% \left \pm 9/2\right\rangle$	±4.5	883.38
1044.8 2	1503.2 5	0.53	0.62	9.07	0.13	100% ±7/2	±3.5	1046.96

1174.8 4	1690.3 2	1.28	3.05	6.10	0.10	$93\% \pm 5/2\rangle + 5\% \pm 1/2\rangle$	±2.3	1177.63
1255.5 7	1806.4 7	2.37	7.78	9.62	89.43	$72\% \pm 3/2\rangle + 22\% \mp 3/2\rangle$	±0.9	1259.79
1386.3 1	1994.5 8	0.14	0.35	18.32	89.90	$62\% \pm 1/2\rangle + 22\% \mp 3/2\rangle + 10\% \mp 1/2\rangle$	±0.0	1383.98
				2				
0.00	0.00	0.00	0.00	19.89		$100\% \pm 15/2\rangle$	±7.5	0.00
460.60	662.70	0.00	0.00	17.03	1.57	$100\% \pm 13/2\rangle$	±6.5	466.21
727.23	1046.3 2	0.00	0.00	14.40	2.39	$100\% \pm 11/2\rangle$	±5.5	724.67
903.59	1300.0 6	0.00	0.01	11.74	2.73	$100\% \pm 9/2\rangle$	±4.5	904.17
1062.9 2	1529.2 9	0.07	0.07	9.10	3.50	$100\% \pm 7/2\rangle$	±3.5	1066.62
1211.0 3	1742.4 0	1.03	1.28	6.45	2.05	97% ± 5/2	±2.5	1214.67
1326.0 2	1907.8 3	2.47	3.67	5.48	90.00	$82\% \pm 3/2\rangle + 11\% \mp 3/2\rangle$	±1.0	1328.21
1396.9 6	2009.9 0	1.09	6.28	14.11	89.64	$88\% \pm 1/2\rangle + 6\% \mp 1/2\rangle + 2\% \pm 3/2\rangle$	±0.4	1395.19
				3				
0.00	0.00	0.00	19.9 0			$100\% \pm 15/2\rangle$	±7.5	0.00
479.56	0.00	0.00	17.0 3	2.13	2.13	$100\% \pm 13/2\rangle$	±6.5	486.31
744.50	0.00	0.00	14.4 2	2.66	2.66	$100\% \pm11/2\rangle$	±5.5	741.05
920.27	0.04	0.04	11.7 9	2.74	2.74	100% ±9/2	±4.5	919.69
1080.6 0	0.51	0.59	9.11	5.54	5.54	98% ± 7/2	±3.5	1084.40
1234.8 3	0.49	1.61	6.33	6.75	6.75	$95\% \pm 5/2\rangle + 2\% \pm 3/2\rangle$	±2.4	1239.70
1355.9 5	3.04	6.99	7.59	89.75	89.75	$81\% \pm 3/2\rangle + 14\% \mp 1/2\rangle$	±1.2	1358.84
1468.9			17.1	00.20	80.20	$72\% \pm 1/2\rangle +$		
2	0.60	2.44	2	89.39	09.39	$10\% +1/2\rangle + 11\% \mp 3/2\rangle$	±0.2	1466.54
2	0.60	2.44	2	4	09.39	10% + 1/2 + 11% = 3/2	±0.2	1466.54

	479.74	690.23	0.00	0.00	17.03	1.13	$100\% \pm 13/2\rangle$	±6.5	486.21
	751.56	1081.3 3	0.00	0.00	14.41	1.34	$100\% \pm11/2\rangle$	±5.5	748.20
	932.27	1341.3 2	0.01	0.01	11.77	0.68	$100\% \left \pm 9/2\right\rangle$	±4.5	931.93
	1095.9 0	1576.7 5	0.25	0.27	9.09	2.60	$100\% \left \pm 7/2 \right\rangle$	±3.5	1099.65
	1250.1 0	1798.6 0	0.13	0.69	6.38	3.81	98% ± 5/2	±2.5	1254.65
	1369.3 1	1970.1 2	3.19	6.49	7.09	88.90	$83\% \pm 3/2\rangle + 11\% \mp 1/2\rangle$	±1.1	1372.10
	1469.9 6	2114.9 3	0.70	3.06	16.65	90.00	$ \begin{array}{c} 46\% \pm 1/2\rangle + \\ 41\% \mp 1/2\rangle + \\ 6\% \mp 3/2\rangle \end{array} $	±0.0	1467.68
					5				
	0.00	0.00	0.00	0.00	19.90		$100\% \pm 15/2\rangle$	±7.5	0.00
	476.70	685.87	0.00	0.00	17.03	1.29	100% ± 13/2	±6.5	483.07
	747.42	1075.3 6	0.00	0.00	14.41	1.63	$100\% \pm 11/2\rangle$	±5.5	744.19
	927.66	1334.6 9	0.02	0.02	11.77	1.65	$100\% \pm 9/2\rangle$	±4.5	927.44
	1090.6 8	1569.2 3	0.39	0.45	9.09	3.05	99% ± 7/2	±3.5	1094.46
	1243.9 4	1789.7 5	0.20	0.66	6.38	3.37	98% ± 5/2	±2.5	1248.47
	1361.5 7	1958.9 8	3.20	6.30	7.27	88.80	$86\% \pm 3/2\rangle + 11\% \mp 1/2\rangle$	±1.2	1364.48
	1460.6 6	2101.5 5	0.70	3.06	16.62	89.70	$52\% \pm 1/2\rangle + 34\% \mp 1/2\rangle + 7\% \pm 3/2\rangle$	±0.1	1458.38
					6				
-	0.00	0.00	0.00	0.00	19.90		$100\% \pm 15/2$	±7.5	0.00
	529.36	761.62	0.00	0.00	17.00	1.02	100% ± 13/2	±6.5	538.13
	804.37	1157.3 1	0.00	0.00	14.41	1.55	$100\% \pm 11/2\rangle$	±5.5	799.38
	973.79	1401.0 6	0.01	0.01	11.78	0.50	$100\% \pm 9/2\rangle$	±4.5	973.26
	1132.5 5	1629.4 7	0.24	0.26	9.09	2.23	$100\% \left \pm 7/2 \right\rangle$	±3.5	1137.58
	1292.3 5	1859.3 9	0.29	0.73	6.35	2.66	98% ± 5/2	±2.5	1298.51
	1423.1 o	2047.6	3.22	5.86	7.35	88.84	$85\% \pm 3/2\rangle +$	±1.2	1426.39
	1533.0 2	4 2205.6	0.74	3.33	16.53	90.00	$46\% \pm 1/2\rangle +$	±0.0	1530.32
	2	b					41% ∓1/2⟩ +		
$$7\% |\mp 3/2\rangle + 5\% |\pm 3/2\rangle$$

Table S9. Electronic structure of **1-6** calculated with "full" CASSCF-SO using the crystal geometries. Each row corresponds to a Kramers doublet. Last column reports the CF energies from the CASSCF-SO crystal field parameters.

Energy (cm ⁻¹)	Energy (K)	g1	g2	g3	Angl e	Wavefunctio n	<jz></jz>	Energy ^{CF} (cm ⁻¹)
				1				
0.00	0.00	0.00	0.00	19.88		$100\% \pm 15/2\rangle$	±7.5	0.00
455.37	655.17	0.00	0.00	17.03	1.22	$100\% \pm 13/2\rangle$	± 6.5	460.98
743.46	1069.6 7	0.00	0.00	14.40	1.53	$100\% \big \pm 11/2 \rangle$	±5.5	741.54
942.01	1355.3 3	0.03	0.04	11.76	1.72	$100\% \pm 9/2\rangle$	±4.5	942.01
1110.8 1	1598.2 0	0.59	0.67	9.07	3.44	99% ± 7/2	±3.5	1113.66
1254.9 4	1805.5 7	0.06	1.37	6.25	4.50	$\begin{array}{c} 92\% \big \pm 5/2 \big\rangle + \\ 3\% \big \mp 5/2 \big\rangle \end{array}$	±2.3	1258.48
1350.1	1942.5	2.65	8.15	9.13	89.87	$\begin{array}{c c} 74\% \pm 3/2\rangle + \\ 19\% \mp 1/2\rangle + \end{array}$	±1.0	1354.08
1	5					$3\% \pm 1/2\rangle$ 57% $ \pm 1/2\rangle \pm$		
1479.6 4	2128.8 6	0.26	0.82	18.17	89.53	$20\% \mp 3/2\rangle +$	±0.1	1477.33
						1/% +1/2		
				2				
0.00	0.00	0.00	0.00	19.89		$100\% \pm 15/2\rangle$	±7.5	0.00
488.65	703.05	0.00	0.00	17.02	1.88	$100\% \pm 13/2\rangle$	±6.5	495.15
770.98	1109.2 7	0.00	0.00	14.40	2.94	$100\% \pm11/2\rangle$	±5.5	767.94
956.54	1376.2 4	0.00	0.01	11.76	3.27	$100\% \pm 9/2\rangle$	±4.5	956.93
1122.1 7	1614.5 4	0.05	0.05	9.11	4.87	98% ± 7/2	±3.5	1126.36
1277.5 4	1838.0 8	0.83	1.01	6.44	3.44	96% ± 5/2	±2.5	1281.76
1399.3 5	2013.3 4	2.84	3.67	5.39	89.42	$\begin{array}{c} 90\% \pm 3/2\rangle + \\ 4\% \mp 1/2\rangle \end{array}$	±1.3	1401.81
1476.0 6	2123.7 0	1.07	6.11	14.27	89.41	$86\% \pm 1/2\rangle + 4\% \mp 1/2\rangle + 8\% \pm 3/2\rangle$	±0.4	1474.05
				3				
0.00	0.00	0.00	0.00	19.90		100% ± 15/2	±7.5	0.00

	550.90	792.62	0.00	0.00	16.99	1.41	$100\% \pm 13/2\rangle$	±6.5	558.69
	881.13	1267.7 5	0.00	0.00	14.35	1.58	$100\% \pm 11/2\rangle$	±5.5	876.71
	1102.7 0	1586.5 2	0.00	0.00	11.72	1.85	$100\% \left \pm 9/2 ight angle$	±4.5	1102.39
	1293.8 4	1861.5 4	0.02	0.03	9.08	4.13	98% ± 7/2	±3.5	1298.76
	1466.4 8	2109.9 3	0.15	0.20	6.42	5.02	$98\% \pm 5/2\rangle + 1\% \pm 3/2\rangle$	±2.5	1471.93
	1598.5 2	2299.9 0	3.40	4.94	6.35	86.76	$\begin{array}{c} 90\% \big \pm 3/2 \big\rangle + \\ 8\% \big \mp 1/2 \big\rangle \end{array}$	±1.3	1601.46
	1693.2 6	2436.2 2	0.88	4.38	15.62	89.45	$\begin{array}{c} 62\% \pm 1/2\rangle + \\ 28\% \mp 1/2\rangle + \\ 5\% \mp 3/2\rangle \end{array}$	±0.2	1690.40
					4				
_	0.00	0.00	0.00	0.00	19.90		100% ± 15/2	±7.5	0.00
	571.16	821.77	0.00	0.00	16.98	1.63	$100\% \pm 13/2\rangle$	±6.5	581.51
	868.77	1249.9 6	0.00	0.00	14.39	2.08	$100\% \pm 11/2\rangle$	±5.5	862.83
	1054.4 1	1517.0 6	0.01	0.02	11.78	2.24	$100\% \pm 9/2\rangle$	±4.5	1053.71
	1231.2 2	1771.4 4	0.39	0.42	9.09	4.79	99% ± 7/2	±3.5	1237.31
	1412.5 0	2032.2 6	0.04	0.87	6.37	5.31	97% ± 5/2	±2.5	1420.07
	1565.6 0	2252.5 3	3.40	5.22	5.40	89.92	$90\% \pm 3/2\rangle + 6\% \mp 1/2\rangle$	±1.3	1569.25
	1677.1 8	2413.0 8	0.92	4.79	15.41	89.52	$\begin{array}{c} 47\% \pm 1/2\rangle + \\ 44\% \mp 1/2\rangle + \\ 5\% \mp 3/2\rangle \end{array}$	±0.0	1673.89
					5				
_	0.00	0.00	0.00	0.00	19.90		100% ± 15/2	±7.5	0.00
	506.44	728.65	0.00	0.00	17.01	1.54	$100\% \pm 13/2\rangle$	±6.5	513.77
	792.58	1140.3 4	0.00	0.00	14.40	1.91	$100\% \pm 11/2\rangle$	±5.5	788.70
	982.86	1414.1 0	0.00	0.00	11.77	2.24	$100\% \left \pm 9/2\right\rangle$	±4.5	982.35
	1155.3 0	1662.2 0	0.30	0.31	9.09	3.94	99% ± 7/2	±3.5	1159.57
	1319.4 3	1898.3 6	0.22	0.77	6.36	4.04	97% ± 5/2	±2.5	1324.71
	1448.0 2	2083.3 6	3.20	6.13	7.22	88.52	$76\% \pm 3/2\rangle + 11\% \mp 1/2\rangle + 11\% \pm 1/2\rangle$	±0.9	1451.13

1555.1 4	2237.4 8	0.72	3.20	16.55	89.40	$\begin{array}{c} 41\% \left \pm 1/2 \right\rangle + \\ 46\% \left \mp 1/2 \right\rangle + \\ 7\% \left \mp 3/2 \right\rangle \end{array}$	±0.0	1552.49
0.00	0.00	0.00	0.00	10.00		1000/ +15/2	+75	0.00
	0.00	0.00	0.00	19.90		$100\% \pm 13/2$	±7.5	0.00
580.50	835.20	0.00	0.00	16.97	0.79	$100\% \pm13/2\rangle$	±6.5	591.21
881.24	1267.9 0	0.00	0.00	14.39	1.19	$100\% \big \pm 11/2 \rangle$	±5.5	874.84
1064.9 5	1532.2 1	0.01	0.01	11.77	1.27	$100\% \pm 9/2\rangle$	±4.5	1064.30
1239.8 4	1783.8 4	0.13	0.15	9.08	2.16	$100\% \pm7/2\rangle$	±3.5	1246.12
1419.2 3	2041.9 5	0.42	0.72	6.36	2.22	$99\% \pm 5/2\rangle$	±2.5	1426.83
1571.7 6	2261.3 9	3.48	4.57	5.00	88.33	$91\% \pm 3/2\rangle + 6\% \mp 1/2\rangle$	±1.3	1575.29
1678.0 7	2414.3 6	0.98	5.37	14.95	89.70	$63\% \pm 1/2\rangle + 31\% \mp 1/2\rangle + 4\% \pm 3/2\rangle$	±0.2	1674.76

Table S10. Comparison of crystal field splitting (cm⁻¹) of the ground ${}^{6}H_{15/2}$ multiplet obtained at different levels of theories for **6**.

	"low"	
Kramers	CASSCE-SO on	XMS-CASP12
l'unitero		on DFT-PBE0 6
doublet	DFT - PBE 6	
		(ref. ¹⁹) ^a
	(this work)	
1	0.00	0
2	530.41	539
3	807.70	824
4	971.40	992
5	1128.12	1143
6	1291.70	1293
7	1430.00	1414
8	1544.69	1536

^a SA-CASSCF/XMS-CASPT2/SO-RASSI with only sextets included in the XMS-CASPT2 and SO-RASSI calculations (see Table S16 in ref. 19).

 $\langle J_z \rangle$ $\langle J_z \rangle$ **Figure S13.** Comparison of the static electronic structure of compounds **1-6** calculated with the crystal field parameters obtained from "low" and "full" CASSCF-SO calculations, at the PBE optimised geometries.

 $\langle J_z \rangle$ $\langle J_z \rangle$ **Figure S14.** Comparison of the static electronic structure of compounds **1-6** calculated with the crystal field parameters obtained from "low" and "full" CASSCF-SO calculations, at the crystal geometries.

Figure S15. Comparison of the static electronic structure of compounds **1-6** calculated with the crystal field parameters obtained from "low" CASSCF-SO calculations, at the crystal and PBE optimised geometries.

Figure S16. Comparison of the static electronic structure of compounds **1-6** calculated with the crystal field parameters obtained from "low" CASSCF-SO calculations, at the crystal geometries.

Figure S17. Comparison of the static electronic structure of compounds **1-6** calculated with the crystal field parameters obtained from "low" CASSCF-SO calculations, at the PBE0 optimised geometries.

Figure S18. Comparison of the static electronic structure of compounds **1-6** calculated with the crystal field parameters obtained from "low" CASSCF-SO calculations, at the PBE and PBE0 optimised geometries.

S4. Spin-dynamics approach

We seek to reproduce, *ab initio*, the relaxation dynamics involved in the Orbach process, in which the electronic structure (crystal field) is coupled individually to each harmonic vibrational mode of the molecule. These couplings allow transitions between a set of equilibrium crystal field eigenstates resulting in a step wise relaxation process.

In order to describe such dynamics, we assume that *i*) the Born-Oppenheimer approximation for electronic-nuclear decoupling is valid i.e. that the spin-phonon coupling operates in the weak limit, *ii*) the time scale for spin-relaxation is orders of magnitude slower than the lifetimes of vibrational modes i.e. that the phononic bath of the lattice is always in equilibrium and at the temperature of the cryostat, and *iii*) the gas-phase vibrational modes within the harmonic approximation are valid. The change in population of each electronic state with time is then a stochastic process governed by the classical master equation^{20,21}

$$\frac{d}{dt}p_i(t) = \sum_{f \neq i} \left[\gamma_{if} p_f(t) - \gamma_{fi} p_i(t) \right]$$
(S1)

where $p_i(t)$ and $p_f(t)$ are the time dependent populations of states *i* and *f*, γ_{if} is the rate of the transition $f \rightarrow i$ between states *i* and *f*, which must fulfil the detailed balance criterion such that $\gamma_{fi} = \gamma_{if} e^{-|E_f - E_i|/k_B T}$ where E_i and E_f are the energies of states *i* and *f*, respectively. The solutions to this set of differential equations can be found by solving the eigenvalue equation for the matrix $\Gamma_{f,i} = (1 - \delta_{f,i}) \gamma_{f,i} - \delta_{f,i} \sum_{m \neq i} \gamma_{m,i}$, where the eigenvalues are the negative of the characteristic relaxation rates $\frac{-1}{\tau_{L}}$. Error! Bookmark not defined.

The crystal field splitting of the 2J + 1 states of the ground state multiplet ${}^{2S+1}L_J$ is described by the crystal field Hamiltonian

$$\widehat{H}_{CF} = \sum_{k}^{2,4,6} \sum_{q=-k}^{k} \theta_k B_k^q (Q_{eq}) \widehat{O}_k^q$$
(S2)

where $B_k^q(Q_{eq})$ is a CF parameters (CFP) at the equilibrium geometry Q_{eq} , θ_k is an operator equivalent factor and \hat{O}_k^q an extended Stevens operator.²² The 2*J* + 1 eigenstates ψ of S2 are the reference eigenstates to which the as yet undefined spin-phonon perturbation \hat{H}_{SP} is applied.

Assuming that the spin-phonon perturbation is much larger than the equilibrium CF, we can use Fermi's Golden Rule^{Error! Bookmark not defined.,23,24} from first order time-dependent perturbation theory to define the transition rates γ_{if}

$$\gamma_{fi} = \frac{2\pi}{\hbar} \left| \langle f | \hat{H}_{SP} | i \rangle \right|^2 \rho \left(\left| \Delta E_{fi} \right| \right)$$
(S3)

Where $\rho(|\Delta E_{fi}|)$ is the phonon density of states (DOS) at the transition energy ΔE_{fi} . To define the spin-phonon perturbation we can take one of two approaches. In the first, we use quench dynamics to define a oscillatory time-dependent spin-phonon perturbation $\widehat{H}_{SPj}(t)$ caused by displacement along the normal mode vector Q_j of mode j

$$\widehat{H}_{SP_j}(t) = Q_j \sum_{k=2,4,6} \sum_{q=-k}^{k} B_{kj}^q \left(\dot{Q}_j \sin\left[\omega_j t + \phi_j\right] \right) \theta_k \widehat{O}_k^q$$
(S4)

Where $B_{kj}^q (\dot{Q}_j \sin[\omega_j t + \phi_j])$ is a time-dependent CFP, which oscillates with angular frequency ω_j , phase ϕ_j , and amplitude \dot{Q}_j (thermally-averaged magnitude of displacement along Q_j (*vide infra*)). Matrix elements of S4 are of the form

$$\left\langle f \left| \widehat{H}_{SP_{j}}(t) \right| i \right\rangle = \left\langle f \left| Q_{j} \sum_{k=2,4,6} \sum_{q=-k}^{k} \theta_{k} B_{kj}^{q} \left(\dot{Q}_{j} \sin \left[\omega_{j} t + \phi_{j} \right] \right) \widehat{O}_{k}^{q} \right| i \right\rangle = \left\langle \psi_{f} \left| \sum_{k=2,4,6} \sum_{q=-k}^{k} \theta_{k} B_{kj}^{q} \left(\dot{Q}_{j} \sin \left[\epsilon \right] \right) \right\rangle \right\rangle$$
Where the electronic and vibrational components have been separated. We follow the work of Orbach and Stevens,^{25,26} and remove the explicit dependence on the vibrational basis (where n_{j} is the vibrational quantum number of mode j) and define the non-zero matrix elements

$$\left| \left\langle n_{j} + 1 \left| Q_{j} \right| n_{j} \right\rangle \right|^{2} = \frac{1}{2} \left(1 - e^{\frac{-\hbar\omega_{j}}{k_{B}T}} \right)^{-1}$$

$$\left| \left\langle n_{j} - 1 \left| Q_{j} \right| n_{j} \right\rangle \right|^{2} = \frac{1}{2} \left(e^{\frac{\hbar\omega_{j}}{k_{B}T}} - 1 \right)^{-1}$$
(S6)
(S7)

Which correspond to gain and loss of a vibrational quantum respectively, and are referred to here as occupation numbers as they arise from Bose-Einstein statistics. Boltzmann statistics can be used to make a similar substitution.

$$\left| \left\langle n_j + 1 \left| Q_j \right| n_j \right\rangle \right|^2 = \frac{1}{2}$$
(S8)

$$\left|\left\langle n_{j}-1\left|Q_{j}\right|n_{j}\right\rangle\right|^{2}=\frac{1}{2}e^{-\hbar\omega_{j}/k_{B}T}$$
(S9)

In our work we see little difference between the two statistical approaches (Figure S19). We are then are able to define our transition rates purely within the basis of equilibrium CF eigenstates ψ , such that for $E_f > E_i$

$$\gamma_{fi} = \frac{2\pi}{\hbar} \sum_{j} \left| \left\langle \psi_{f} \right| \widehat{H}_{SPj} \left| \psi_{i} \right\rangle \right|^{2} \left| \left\langle n_{j} - 1 \left| Q_{j} \right| n_{j} \right\rangle \right|^{2} \rho_{j} \left(\left| \Delta E_{fi} \right| \right)$$
(S10a)

$$\gamma_{if} = \frac{2\pi}{\hbar} \sum_{j} \left| \left\langle \psi_{i} \right| \widehat{H}_{SPj} \left| \psi_{f} \right\rangle \right|^{2} \left| \left\langle n_{j} + 1 \left| Q_{j} \right| n_{j} \right\rangle \right|^{2} \rho_{j} \left(\left| \Delta E_{if} \right| \right)$$
(S10b)

where we have now removed the explicit time dependence of \widehat{H}_{SPj} by replacing it with the average of its value at maximal positive and negative displacements choosing, arbitrarily, the phase of the matrix elements corresponding to positive displacement.

$$\langle \psi_f | \hat{H}_{SP} | \psi_i \rangle = i i$$
 (S11)
The matrix elements of \hat{H}_{SPj}^{\pm} can be computed either at the zero point displacement (*vide infra*) (per reference 28) or by using a temperature dependent displacement factor (per reference ²⁷).

In the second approach to defining \hat{H}_{SP} we expand the CFPs in a Taylor series in the j^{th} normal mode displacement Q_j around the equilibrium structure $Q_{eq}=0$ ²⁵

$$B_{k}^{q}(Q_{j}) = B_{k}^{q}(Q_{eq}) + \sum_{j}^{3N-6} Q_{j} \left(\frac{\partial B_{k}^{q}}{\partial Q_{j}}\right)_{eq} + \frac{1}{2} \sum_{j}^{3N-6} \sum_{j'}^{3N-6} Q_{j} Q_{j'} \left(\frac{\partial^{2} B_{k}^{q}}{\partial Q_{j} \partial Q_{j'}}\right)_{eq} + \dots$$
(S12)

The term independent of Q corresponds to the equilibrium CFPs and can be discarded, whereas those linear and quadratic in Q describe the spin one- and two-phonon interactions respectively. As we are interested in the Orbach process we need only to use the linear term to define the spin-phonon Hamiltonian

$$\widehat{H}_{SP_{j}} = Q_{j} \sum_{k=2,4,6} \sum_{q=-k}^{k} \theta_{k} \left(\frac{\partial B_{k}^{q}}{\partial Q_{j}} \right)_{eq} \widehat{O}_{k}^{q}$$
(S13)

Matrix elements of S13 are of the form

$$\left\langle f \left| \widehat{H}_{SP_{j}} \right| i \right\rangle = \left\langle f \left| Q_{j} \sum_{k=2,4,6} \sum_{q=-k}^{k} \theta_{k} \left(\frac{\partial B_{k}^{q}}{\partial Q_{j}} \right)_{eq} \widehat{O}_{k}^{q} \right| i \right\rangle = \left\langle \psi_{f} \left| Q_{j} \sum_{k=2,4,6} \sum_{q=-k}^{k} \theta_{k} \left(\frac{\partial B_{k}^{q}}{\partial Q_{j}} \right)_{eq} \widehat{O}_{k}^{q} \right| \psi_{i} \right\rangle \left\langle n_{j}^{'} \left| Q_{j} \right| n$$
(S14)

Where similarly to S5, the electronic and vibrational components have been separated. As before, we then use S6 and S7 (or S8 and S9) to remove the explicit treatment of the vibrational basis to give S10a and S10b, where \hat{H}_{SP_i} is defined in S13.

Crucially, for both methods we must define, quantitatively, the physical displacement along each vibrational mode. In our original work²⁸ we defined the zero-point displacement (ZPD) for each normal mode as $Q_{j,0} = a_0 / \sqrt{\mu_j}$ (where μ_j is the effective reduced mass of mode *j* obtained with DFT and a_0 is the Bohr radius), which

leads to a wrong expression for the force constant. Thus, in our revised approach, we define the ZPD

$$Q_{j,0} = \sqrt{\frac{h\dot{v}_j c}{k_j}}$$
(S15)

where h, \dot{v}_j , c and k_j are the Planck constant, the wavenumber of mode j, the speed of light and the force constant of mode j, respectively. At some temperature T there will be a non-zero population of vibrationally excited states which have larger maximal displacements than the zero point energy level. To account for this we calculate a Boltzmann distribution across the harmonic energy levels of each vibrational mode and use this to define the thermally weighted maximal displacement for each mode

$$\dot{Q}_{j}(T) = \frac{Q_{j,0}}{Z_{j}} \sum_{n=0}^{\infty} e^{\frac{-\dot{V}_{j}n}{k_{B}T}} \sqrt{1+2n}$$
(S16)

Where Z_j is the corresponding partition function. We can express this quantity in terms of the ZPD by calculating the ratio

$$D_j = \dot{Q}_j(T) / Q_{j,0}$$
 (S17)

In our work, we choose to set a minimum value of D_j =1.5 for all modes, though if D_j >1.5, we set it to 110% of its calculated value; this ensures that we are always in the interpolation regime for the temperature-dependent spin-phonon coupling matrix

elements. To calculate either $B_{kj}^q (\dot{Q}_j \sin[\omega_j t + \phi_j])$ or $\left(\frac{\partial B_k^q}{\partial Q_j}\right)_{eq}$ we distort the equilibrium

molecular structure along each vibrational mode separately up to $D_j Q_{j,0}$ in a series of steps in positive and negative directions, recalculating the electronic structure and expressing it in terms of a set of CFPs at each step. We then fit changes in the CFPs (compared to those calculated at the equilibrium geometry) to cubic polynomials

$$B_{k}^{q}(Q_{j}) = a Q_{j}^{3} + b Q_{j}^{2} + c Q_{j} + B_{k}^{q}(Q_{eq})$$
(S18)

Which can be used in their entirety to define $B_{kj}^q (\dot{Q}_j \sin[\omega_j t + \phi_j])$, or simply the linear

term $c Q_j$ can be used to define $\left(\frac{\partial B_k^q}{\partial Q_j}\right)_{eq} = c$.

Figure S19. Comparison of predicted rates for **2** (using the PBE density-functional) calculated with Boltzmann (upper) and Bose-Einstein (lower) phonon statistics. For each case, we employ temperature-dependent CFPs ("Polynomial"), fixed ZPD CFPs ("Static") and first-derivative ("Taylor") definitions for $\langle f | \hat{H}_{SP} | i \rangle$.

Figure S20. FWHM linewidth dependence of predicted rates for **2** (using the PBE density-functional) calculated with Boltzmann (upper) and Bose-Einstein (lower) phonon statistics.

Figure S21. Comparison of experimental (circles) and PBE0 calculated (lines) rates for **1-6**. Solid lines are obtained without IR calibration, using "Taylor" for the spin-phonon coupling, Bose-Einstein phonon statistics and calculated with fixed full-width half-maxima of 6, 10 and 20 cm⁻¹. Experimental error bars are estimated standard deviations derived from the generalised Debye model.¹

Figure S22. Comparison of experimental (circles) and PBE calculated (lines) rates for **1-6**. Solid and dashed lines are obtained without and with IR calibration, respectively, using "Taylor" for the spin-phonon coupling, Bose-Einstein phonon statistics and calculated with fixed full-width half-maxima of 1, 2 and 4 cm⁻¹. Experimental error bars are estimated standard deviations derived from the generalised Debye model.¹

Within our approximation considering only gas-phase molecular vibrations, we include the temperature dependence of the transition rates by solving the master matrix (Eq. 1 in the main text) at different temperatures. In our original approach,²⁸ the spin-

phonon coupling matrix elements $\langle \psi_f | \hat{H}_{SP} | \psi_i \rangle$ were assumed to be temperature independent and the line-shape of the vibrational density of states for each mode was set to an area normalized Gaussian function with constant linewidth (σ), approximated by comparison with experimental vibrational spectra.

$$\rho_{j}(\Delta E) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(\Delta E - \hbar \omega_{j})^{2}}{2\sigma^{2}}}$$
(S19)

Therefore, as we used Boltzmann statistics, the only term with an explicit dependence on temperature was the phonon matrix element, defined as the probability of losing a vibrational quantum S9.

Considering a fixed value of σ for all normal modes is an oversimplification as it discards effects beyond the harmonic approximation, such as anharmonicity and phonon-lifetimes. To address this, we use the mode- and temperature-dependent linewidth of Lunghi et al.²⁹, based on the NVT canonical ensemble:

$$\sigma_{j} = (\hbar \omega_{j})^{2} e^{\frac{\hbar \omega_{j}}{k_{B}T}} / \left(e^{\frac{\hbar \omega_{j}}{k_{B}T}} - 1 \right)^{2}$$
(S20)
Comparing the calculated relaxation rates of **1** and **6** using the two different definitions

of the phonon linewidth (Figure S23 and Figure S24). We find that the high temperature data appear similar to fixed linewidths of *ca*. FWHM ~ 2 cm⁻¹, however the rates differ drastically from our fixed linewidth calculations at lower temperatures. The precipitous fall in relaxation rates occurs due to a drastic narrowing of the linewidth at low temperatures. Because we have shown (see main text) that the experimental ordering of the rates for **1-6** is not obeyed when FWHM < 6 cm⁻¹, and that using the mode-energy-and temperature-dependent linewidth model behaves like FWHM ~ 2 cm⁻¹, we suggest that this approximation is not appropriate in this case.

Figure S23. Comparison of calculated rates obtained with a fixed and a temperature dependent phonon linewidth for **1**.

Figure S24. Comparison of calculated rates obtained with a fixed and a temperature dependent phonon linewidth for **6**.

S4.2. Understanding the origin of different relaxation rates

Figure S25. Most important transitions identified by the "knockout method" (left) and the effect of their sequential removal on the calculated rates (right) for **1**. Energy levels are based on the crystal field parameters calculated with CASSCF-SO. Rates obtained at the PBE geometry, without IR calibration and using a FWHM value of 10 cm⁻¹.

Figure S26. Most important transitions identified by the "knockout method" (left) and the effect of their sequential removal on the calculated rates (right) for **2**. Energy levels are based on the crystal field parameters calculated with CASSCF-SO. Rates obtained at the PBE geometry, without IR calibration and using a FWHM value of 10 cm⁻¹.

Figure S27. Most important transitions identified by the "knockout method" (left) and the effect of their sequential removal on the calculated rates (right) for **3**. Energy levels are based on the crystal field parameters calculated with CASSCF-SO. Rates obtained at the PBE geometry, without IR calibration and using a FWHM value of 10 cm⁻¹.

Figure S28. Most important transitions identified by the "knockout method" (left) and the effect of their sequential removal on the calculated rates (right) for **4**. Energy levels are based on the crystal field parameters calculated with CASSCF-SO. Rates obtained at the PBE geometry, without IR calibration and using a FWHM value of 10 cm⁻¹.

Figure S29. Most important transitions identified by the "knockout method" (left) and the effect of their sequential removal on the calculated rates (right) for **5**. Energy levels are based on the crystal field parameters calculated with CASSCF-SO. Rates obtained at the PBE geometry, without IR calibration and using a FWHM value of 10 cm⁻¹.

Figure S30. Most important transitions identified by the "knockout method" (left) and the effect of their sequential removal on the calculated rates (right) for **6**. Energy levels are based on the crystal field parameters calculated with CASSCF-SO. Rates obtained at the PBE geometry, without IR calibration and using a FWHM value of 10 cm⁻¹.

Figure S31. Most important transitions identified by the "knockout method" (left) and the effect of their sequential removal on the calculated rates (right) for **6**. Energy levels are based on the crystal field parameters calculated with CASSCF-SO. Rates obtained at the PBE0 geometry, without IR calibration and using a FWHM value of 10 cm⁻¹.

We define the overall spin-phonon coupling strength for each mode as S;³⁰ note here that B_q^k are CFPs in Wybourne notation and are linear combinations of the CFPs in Stevens notation $B_{k^*}^{q 31}$

$$S = \sqrt{\frac{1}{3} \sum_{k} \frac{1}{2k+1} \sum_{q=-k}^{k} \left| \left(\frac{\partial B_{q}^{k}}{\partial Q_{j}} \right)_{eq} \right|^{2}}$$
(S16)

In Figure S32-S38, the electronic states are labelled in increasing order such that the two states of the ground doublet are $|1\rangle$ and $|2\rangle$ and those of the most excited doublet $|15\rangle$ and $|16\rangle$.

Figure S32. Strength of the crystal field distortions induced by each vibrational mode for PBE optimised **1**. Uncalibrated vibrational modes using "Taylor". Electronic states (orange) and the most important transitions (green, @ 100K FWHM = 10 cm⁻¹) are calculated from the crystal field parameters obtained with CASSCF-SO, using the knockout method.

Figure S33. Strength of the crystal field distortions induced by each vibrational mode for PBE optimised **2**. Uncalibrated vibrational modes using "Taylor". Electronic states (orange) and the most important transitions (green, @ 100K FWHM = 10 cm⁻¹) are calculated from the crystal field parameters obtained with CASSCF-SO, using the knockout method.

Figure S34. Strength of the crystal field distortions induced by each vibrational mode for PBE optimised **3**. Uncalibrated vibrational modes using "Taylor". Electronic states (orange) and the most important transitions (green, @ 100K FWHM = 10 cm⁻¹) are calculated from the crystal field parameters obtained with CASSCF-SO, using the knockout method.

Figure S35. Strength of the crystal field distortions induced by each vibrational mode for PBE optimised **4**. Uncalibrated vibrational modes using "Taylor". Electronic states (orange) and the most important transitions (green, @ 100K FWHM = 10 cm⁻¹) are calculated from the crystal field parameters obtained with CASSCF-SO, using the knockout method.

Figure S36. Strength of the crystal field distortions induced by each vibrational mode for PBE optimised **5**. Uncalibrated vibrational modes distorted to one unit of ZPD. Electronic states (orange) and the most important transitions (green, @ 100K FWHM = 10 cm⁻¹) are calculated from the crystal field parameters obtained with CASSCF-SO, using the knockout method.

Figure S37. Strength of the crystal field distortions induced by each vibrational mode for PBE optimised **6**. Uncalibrated vibrational modes using "Taylor". Electronic states (orange) and the most important transitions (green, @ 100K FWHM = 10 cm⁻¹) are calculated from the crystal field parameters obtained with CASSCF-SO, using the knockout method.

Figure S38. Comparison of gamma matrices between **1** and **6** calculated with PBE, 100 K, with a FWHM of 10 cm⁻¹ and without IR calibration. We are only interested in the lower-triangle (phonon absorption) because the upper-triangle (phonon emission) carries the same information about spin-phonon coupling and phonon density-of-states (DOS) as the lower-triangle, but lacks dependence on the phonon occupation number (*i.e.* dependence on the energy splitting and hence occupation of the vibrational modes).

Table S11. Breakdown of relaxation rates between **2** and **6** *via* a mode-averaging procedure. Relaxation rates are calculated using the PBE density-functional, without calibration, at 100 K with FWHM = 10 cm⁻¹. Top portion corresponds to a base $\dot{\gamma}$ matrix of **2**, while bottom portion corresponds to a base matrix of **6**. Rows are ordered by increasing rate.

	-	1	1	1	i
$\langle \acute{m v} angle$	$\left< oldsymbol{\acute{Q}} \right>$	$\langle \dot{oldsymbol{\phi}} angle$	$\langle \acute{m{n}} angle$	$ au^{-1}$	$ au^{-1}/ au^{-1}_{2}$
2	6	2	2	7.79×10 ²	0.19
6	2	2	2	3.26×10^{3}	0.80
2	2	2	2	4.05×10^{3}	1.00
2	2	2	6	4.31×10 ³	1.06
2	2	6	2	6.18×10 ³	1.53
$\langle \acute{m v} angle$	$\left< \dot{oldsymbol{Q}} \right>$	$\langle \dot{oldsymbol{lpha}} angle$	$\langle \acute{m{n}} angle$	$ au^{-1}$	$ au^{-1}/ au^{-1}_{6}$
6	6	6	2	6.54×10^{2}	0.52
6	6	2	6	6.75×10^{2}	0.54
6	6	6	6	1.25×10^{3}	1.00
2	6	6	6	2.08×10^{3}	1.66

6	2	6	6	5.88×10 ³	4.70
---	---	---	---	----------------------	------

S5. Survey of hypothetical compounds

Table S12. Comparison of PBE optimised structural parameters for the hypothetical homoleptic compounds ordered by increasing CF splitting (Figure 5c). All angles and distances measured with respect to the ring (R) centroids. Compound 6 is shown for comparison.

	R ¹ -Dy	Dy-R ²	R-Dy-R	Calculated	Calculated
	(Å)	(Å)	(degrees)	$U_{ m eff}$ (K)	$\tau_{0}(s)$
[DyFluorene <i>i</i> Pr ₃] ⁺	2.26	2.32	145.75	1095	1.14×10 ⁻¹²
$[Dy(N_5)_2]^+$	2.24	2.24	145.27	1292	6.42×10 ⁻¹²
$[Dy(C_5H_5)_2]^+$	2.28	2.43	170.12	1347	4.93×10 ⁻¹⁰
$[Dy(C_5I_5)_2]^+$	2.31	2.31	148.39	1527	8.82×10 ⁻¹²
$[Dy(C_4Me_4)_2]^-$	2.27	2.27	138.54	1833	8.03×10 ⁻¹³
$[Dy(C_4^{i}Pr_4)_2]^{-1}$	2.28	2.29	148.80	1939	6.83×10 ⁻¹³
$[Dy(C_5Me_5)_2]^+$	2.26	2.26	144.38	1549	8.90×10 ⁻⁸
$[Dy(C_4H_4)_2]^{-1}$	2.29	2.29	141.82	2093	2.48×10 ⁻¹¹
$[Dy(C_4^tBu_4)_2]^-$	2.32	2.34	161.83	2117	7.54×10 ⁻¹³
6	2.31	2.29	160.0	2048	1.03×10 ⁻¹²

Figure S39. Strength of the crystal field distortions induced by each vibrational mode for PBE optimised $[DyC_5Me_5]_2^+$. Uncalibrated vibrational modes using "Taylor". Electronic states (orange) and the most important transitions (green, @ 100K FWHM = 10 cm⁻¹) are calculated from the crystal field parameters obtained with CASSCF-SO, using the knockout method.

Figure S40. Strength of the crystal field distortions induced by each vibrational mode for PBE optimised $[DyC_4H_4]_2^-$. Uncalibrated vibrational modes using "Taylor". Electronic states (orange) and the most important transitions (green, @ 100K FWHM = 10 cm⁻¹) are calculated from the crystal field parameters obtained with CASSCF-SO, using the knockout method.

Table S13. Breakdown of relaxation rates between $[Dy(C_4H_4)_2]^-$ and **6** *via* a modeweighting procedure. Relaxation rates are calculated using the PBE density-functional, without calibration, at 100 K with FWHM = 10 cm⁻¹. Top portion corresponds to a base $\dot{\gamma}$ matrix of $[Dy(C_4H_4)_2]^-$, while bottom portion corresponds to a base matrix of **6**. Rows are ordered by increasing rate.

$\left\langle \dot{H}_{SP} ight angle$	$\langle \dot{oldsymbol{Q}} angle$	$\langle \dot{oldsymbol{\phi}} angle$	$\langle {oldsymbol{\acute{n}}} angle$	$ au^{-1}$	$\tau^{-1}/\tau^{-1}[Dy[C_4H_4]_2]^{-i}$
6	$[\mathrm{Dy}(\mathrm{C}_4\mathrm{H}_4)_2]^{-1}$	$[Dy(C_4H_4)_2]^2$	$[Dy(C_4H_4)_2]^{-1}$	2.16×10^{1}	0.67
$[Dy(C_4H_4)_2]^{-1}$	$[Dy(C_4H_4)_2]^{-1}$	$[Dy(C_4H_4)_2]^2$	$[Dy(C_4H_4)_2]^{-1}$	3.23×10 ¹	1.00
$[Dy(C_4H_4)_2]^{-1}$	$[Dy(C_4H_4)_2]^{-1}$	$[Dy(C_4H_4)_2]^{-1}$	6	4.10×10 ¹	1.27
$[Dy(C_4H_4)_2]^{-1}$	6	$[Dy(C_4H_4)_2]^{-1}$	$[Dy(C_4H_4)_2]^{-1}$	1.27×10^{2}	3.93
$[Dy(C_4H_4)_2]^-$	$[Dy(C_4H_4)_2]^-$	6	$[Dy(C_4H_4)_2]^{-1}$	1.03×10 ³	31.89
$\left< \dot{H}_{SP} \right>$	$\langle oldsymbol{\acute{Q}} angle$	$\langle {oldsymbol{\dot{q}}} angle$	$\langle {oldsymbol{\acute{n}}} angle$	$ au^{-1}$	$ au^{-1}/ au^{-1}_{6}$
6	6	$[\mathrm{Dy}(\mathrm{C}_4\mathrm{H}_4)_2]^{-1}$	6	9.83×10 ¹	0.08
6	$[Dy(C_4H_4)_2]^-$	6	6	3.29×10^{2}	0.26
6	6	6	$[Dy(C_4H_4)_2]^{-1}$	6.16×10^2	0.49

6	6	6	6	1.25×10^{3}	1.00
$[Dy(C_4H_4)_2]^-$	6	6	6	1.88×10^{4}	15.04

S6. References

- ¹ D. Reta, N. F. Chilton, *Phys. Chem. Chem. Phys.*, 2019, **21**, 23567-23575.
- ² M. J. Frisch, et al. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2016
- ³ J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.* 1996, **77** (18), 3865–3868.
- ⁴ J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.* 1997, **78** (7), 1396–1396.
- ⁵ C. Adamo, V. Varone, J. Chem. Phys., 110 (1999) 6158-69.
- ⁶ T. H. Dunning, J. Chem. Phys. 1989, **90** (2), 1007–1024.
- ⁷ J. M. L. Martin and A. Sundermann, *J. Chem. Phys.* 2001, **114** (8), 3408–3420.
- ⁸ S. Grimme, J. Comput. Chem. 2004, **25** (12), 1463–1473.
- ¹¹ W. Kabsch, IUCr, Acta Crystallogr. Sect. A 32 (1976) 922e923.
- ¹² W. Kabsch, IUCr, Acta Crystallogr. Sect. A 34 (1978) 827e828.
- ¹³ J. C. Kroman, A. Bratholm, GitHub: Calculate RMSD for two XYZ structures. http://github.com/charnley/ rmsd, 2016
- ¹⁴ McClain, K. R.; Gould, C. A.; Chakarawet, K.; Teat, S. J.; Groshens, T. J.; Long, J. R.; Harvey, B. G. *Chem. Sci.* **2018**, *9*, 8492-8503.
- ¹⁵ B. O. Roos, R. Lindh, P.-Å. Malmqvist, V. Veryazov and P.-O. Widmark, *J. Phys. Chem. A.* 2004, **108**, 2851–2858.
- ¹⁶ B. O. Roos, R. Lindh, P.-Å. Malmqvist, V. Veryazov and P.-O. Widmark, *J. Phys. Chem. A.* 2005, **109**, 6575–6579.
- ¹⁷ F. Aquilante, L. Gagliardi, T. B. Pedersen and R. Lindh, J. Chem. Phys., 2009, **130**, 154107.
- ¹⁸ L. Ungur and L. F. Chibotaru, *Chem. Eur. J.* 2017, **23**, 3708–3718.
- ¹⁹ Guo, F.-S.; Day, B. M.; Chen, Y.-C.; Tong, M.-L.; Mansikkamäki, A. & Layfield, R. A. *Science*, **362**, 1400, (2018).
- ²⁰ D. Gatteschi, R. Sessoli and J. Villain, *Molecular Nanomagnets*; Oxford University Press, 2006.
- ²¹ M. H. Alexander, G. E. Hall and P. J. Dagdigian, J. Chem. Educ. 2011, 88 (11), 1538–1543.
- ²² N. F. Chilton, R. P. Anderson, L. D. Turner, A. Soncini and K. S. Murray, *J. Comput. Chem.* 2013, **34**, 1164–1175.
- ²³ R. Orbach, *Proc. Roy. Soc. A.* 1961, **264**, 458–484.
- ²⁴ Messiah, A. in *Quantum Mechanics*, Dover, New York, 2nd edition, 1995, vol. 2, ch. XVII, pp. 722-762.
- ²⁵ R. Orbach, Proc. R. Soc. London. Ser. A. Math. Phys. Sci., 1961, 264, 458–484.
- ²⁶ K. W. H. Stevens, *Reports Prog. Phys.*, 1967, 30, 189–226.
- ²⁷ Evans, P., Reta, D., Whitehead, G. F.S., Chilton, N. F. & Mills, D. P. J. Am. Chem. Soc., **141**, 19935–19940 (2019).
- ²⁸ C. A. P. Goodwin, F. Ortu, D. Reta, N. F. Chilton and D. P. Mills, *Nature* 2017, **548** (7668), 439–442.
- ²⁹ A. Lunghi, F. Totti, R. Sessoli and S. Sanvito, Nat. Commun., 2017, 8, 14620.
- ³⁰ N. C. Chang, J. B. Gruber, R. P. Leavitt and C. A. Morrison, J. Chem. Phys., 1982, 76, 3877–3889.
- ³¹ J. Mulak and Z. Gajek, *The effective crystal field potential*, Elsevier, Oxford, 2000.