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Abstract

Warm Dense Matter(WDM) or High Energy Density(HED) plasmas are

encountered in many fields of science ranging from planetary science and

astrophysics to inertial confinement fusion(ICF). In ICF implosions, the

deuterium-tritium fuel and ablator materials undergo various extreme state

of matter. Accurately knowing of the properties of material under such condi-

tions is essential to both understand the implosion physics and to design the

ICF targets. Quantum molecular-dynamics(QMD), based on Density Func-

tional Theory(DFT), has been successfully applied to investigate the equa-

tion of state, thermal and electrical conductivities and optical absorptions

of warm dense plasma. However, these QMD studies based on Kohn-Sham

DFT cannot access to the HED plasmas with relatively high temperature

and low densities. In this Ph.D. project, a time-dependent orbital-free den-

sity functional theory (TD-OF-DFT) simulation package has been developed

for ab initio investigations of charged-particle stopping power of warm dense

matter . Our current dependent TD- OF-DFT calculations have reproduced

the recently well-characterized stopping power experiment in warm dense
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beryllium. For α-particle stopping in warm and solid-density DT plasmas,

the ab initio TD-OF-DFT simulations show a lower stopping power up to 25

% in comparison with three stopping-power models often used in the high-

energy-density physics community.
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Chapter 1

Introduction

1.1 High Energy Density Physics and Warm
Dense Matter(WDM)

High Energy Density Physics (HEDP) is the study of matter at extreme

conditions. It is a new and promising intersection field of different tra-

ditional physical fields including plasma physics, nuclear physics and solid

state physics. The study of HEDP is the key to understand and control the

extreme matter. Warm Dense Matter(WDM) is encountered in many fields

of science ranging from planetary science and astrophysics to inertial confine-

ment fusion(ICF). It is often defined as a region where both strongly cou-

pled and degeneracy effects are important. In this regime, where traditional

classical plasma physics assumptions break down, quantum and many-body

effects also play an important role. Strong many-body coupling and quantum

electron degeneracy effects play essential roles in determining material prop-

erties in the WDM regime. In recent years, HEDP and WDM have gained
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more attention including astrophysics and inertial confinement fusion. At

the same time, WDM is also the state that is hard to model theoretically

as quantum degeneracy, Coulomb correlations and thermal effects need to

be taken into account. In ICF implosions(Betti and Hurricane, 2016), the

deuterium-tritium(Hu et al., 2011) (Hu et al., 2014) fuel and ablator materi-

als (Hu et al., 2015a; Hu, Boehly and Collins, 2014) undergo various extreme

states of matter. Accurately knowing the properties of material including

both static and dynamic under such conditions is essential to both under-

stand the implosion physics and to design the ICF targets (Krauser et al.,

1996; Dittrich et al., 1999). Quantum molecular-dynamics(QMD) (Collins

et al., 1995) (Clérouin and Bernard, 1997) (Collins et al., 2001), based on

Density Functional Theory(DFT), has been successfully applied to investi-

gate the equation of state (Benedict et al., 2014) (Hu et al., 2015b), thermal

and electrical conductivities and optical absorptions of warm dense plasma.

However, these QMD studies based on Kohn-Sham DFT cannot access the

HED plasmas with relatively high temperature and low densities. This work

will focus on developing Time-Dependent Orbital-Free Density Functional

Theory code to study the properties of HED plasmas.

1.2 Equation of State(EOS)

In high energy density physics, the EOS plays an essential role in model-

ing the overall physical process. For example, in inertial confinement fusion
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(ICF) experiments, the EOS is critical in simulating the overall implosion

and is an essential piece of ICF experiments design. Static properties such as

EOS under extreme conditions can be studied using different first-principles

methods, such as DFT-based quantum molecular-dynamics (QMD), path-

integral Monte Carlo(PIMC) (Pierleoni et al., 1994), and quantum Monte

Carlo (QMC) (Tubman et al., 2015). Theoretical EOS models are particu-

larly difficult to generate in the so-called warm-dense-matter (WDM) regime,

where both strongly coupled and degeneracy effects are important (Nellis

et al., 1997b). In this regime, where traditional classical plasma physics as-

sumptions break down, quantum and many-body effects must be taken into

account. Various theoretical models have been developed to predict the EOS

of different materials. In this thesis, we will mainly focus on silicon and

Beryllium.

Beryllium (Be), which has many applications in nuclear power, electronic,

geophysics, and aerospace industries, is an element of great technological and

scientific importance for its simple atomic configurations. In inertial confine-

ment applications, beryllium has been used as an ablator for indirect-drive

fuel capsule designs (Simakov et al., 2014) because of its advantages of high

density, low opacity, high thermal conductivity (Wilson et al., 1998). Since

these target designs are based mainly on the radiation–hydrodynamic sim-

ulations where the materials will experience many different pressure (up to

105 Mbar) and temperature (up to 108 K) conditions (Nellis et al., 1997b),

accurate properties of beryllium under such extreme conditions are essential



CHAPTER 1. INTRODUCTION 4

for ICF applications. Experimental data are limited to 20 Mbar, however, be-

cause of the difficulty in generating shocks and measuring them accurately.

Hydrodynamic (hydro) simulations require a full equation-of- state (EOS)

table to cover all plasma conditions concerned. Therefore, it is of great im-

portance to calculate the EOS of beryllium for a wide range of conditions by

using reliable methods. Once the calculated EOS table is benchmarked with

experiments, it can be used for reliable ICF and high-energy- density target

designs and simulations. Silicon (Si) as one of the most abundant elements

on Earth, is also essential to both ICF and geophysics applications since it

is needed for hydrodynamic simulations of ICF implosions (used as dopants

to ablators in indirect-drive ICF target designs) and for understanding the

geophysics of the Earth’s outer core. In Chapter 2, the QMD method will

be presented in detail. In particular, I will introduce the Orbital-Free DFT

method in the section as the preparation for the implementation of time

dependent part. Both our FPEOS Hugoniot curve and off-Hugoniot is com-

pared with several theoretical and experimental data. The FPEOS is also

implemented into LILAC to investigate how the different EOS tables will

affect ICF implosions using beryllium as the ablator.

1.3 Electronic Transport Properties

Electronic transport properties of warm dense matter, such as electrical or

thermal conductivities and non-adiabatic stopping power, are of particular
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interest to geophysics, planetary science, astrophysics, and inertial confine-

ment fusion (ICF). One specific example is the α-particle stopping power of

dense deuterium-tritium (DT) plasmas, where an uncertainty of 20 %in stop-

ping power could lead to a 50 % variation in the energy required for ignition.

Accurate stopping power is therefore a key component for hydro- dynamic

modeling of ICF, astrophysics, and other fusion processes. In this thesis, I

will examine both α-particle and proton stopping in various materials under

different conditions.

A combination of simplified models, analytical limits, and semiempiri-

cal approaches have historically determined the stopping power of materials

(Li and Petrasso, 1993b) (Brown, Preston and Singleton Jr, 2005b) (Single-

ton Jr, 2008b). For low- temperature or high-density systems, first-principles

methods based on a quantum mechanical treatment of the electrons provide

accurate static, transport, and conductive properties. These methods include

finite-temperature density functional theory (DFT)-based quantum molecu-

lar dynamics, path-integral Monte Carlo, and quantum Monte Carlo calcu-

lations. In particular, the Kohn-Sham (KS) orbital-based DFT method has

been extensively used to calculate transport properties for various materials,

including both ionic and electronic transport in the time-independent formal-

ism (Desjarlais, 2003) (Recoules et al., 2009). In addition, the Kohn-Sham

time-dependent DFT method has recently been applied to x-ray Thompson

scattering (XRTS) (Baczewski et al., 2016) and the stopping power of ma-

terials well below the Fermi temperatures (TF) (Magyar, Shulenburger and
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Baczewski, 2016). For cold condensed matter systems, stopping power can

be modeled from first-principles using real-time time-dependent density func-

tional theory (DFT). However, high temperatures (10’s to 100’s of eV) may be

computationally prohibitive for traditional Kohn-Sham DFT. Strong many-

body coupling and quantum electron- degeneracy effects play essential roles

in determining material properties in the WDM regime (Nellis et al., 1997b),

which renders the traditional plasma-physics models no longer valid. Ab

initio approaches which can treat crossover regimes, without system specific

corrections, are thus highly desirable. Unfortunately, like we stated before,

extending the Kohn-Sham DFT approach beyond TF becomes computation-

ally difficult because of the large number of occupied eigenstates required.

For example, recent stopping-power experiments (Zylstra et al., 2015) (Frenje

et al., 2015) performed with warm dense plasmas (T > TF ) present particu-

lar difficulties. Despite these and other experiments (Cayzac et al., 2017), as

well as theoretical studies (Fu et al., 2016) (Kim et al., 2015a) (Kim et al.,

2015b), a stringent test of stopping-power models with first principles simu-

lations in the WDM regime remains elusive. In this project, we offer a pre-

scription to extend DFT methods for stopping power to high temperatures

and densities through a time-dependent orbital-free (OF) formulation. We

then compare our results with predictions from three stopping-power models,

Li-Petrasso (Li and Petrasso, 1993a) (LP), Brown-Preston-Singleton (BPS)

(Brown, Preston and Singleton Jr, 2005a) (Singleton Jr, 2008a), and RPA

dielectric function (Singleton Jr, 2008c) (DF), for both the Be experiment
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and the proposed experiment of α-particle stopping in DT.
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Chapter 2

Ab initio studies on static properties of
warm dense plasmas

Quantum molecular dynamics (QMD) based on the density-functional the-

ory (DFT), has proven to be a reliable method for studying the many-body

quantum systems of dense plasma. QMD simulations have been shown to

work well for EOS calculations such as deuterium, CH, silicon carbon,and

quartz. The most-recent first- principles calculations, which combined the

orbital - based DFT Kohn - Sham molecular dynamics (KSMD) and orbital-

free molecular dynamics (OFMD), have established wide-ranged and consis-

tent first-principles EOS (FPEOS) tables for CH and silicon. These studies

have also indicated that the observed EOS differences can have significant

effects on hydro-simulations. In this Chapter, QMD simulations were used

to calculate the Be-EOS table for a wide range of densities (ρ = 0.001 g/cm3

ρ = 500 g/cm3) and temperatures (T = 2000 K to T = 108 K). From the

established FPEOS table, we derived the principal Hugoniot curve using

the Rankie–Hugoniot equation and compared our calculations with several
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theoretical models and available experimental data. We also studied the

pressure and internal energy differences between FPEOS and SESAME 2023

for off-Hugoniot conditions. With the implementation of our FPEOS table

of beryllium into our radiation–hydrodynamics code LILAC, we investigate

the EOS effects on ICF simulations. The QMD method is described in Sec 1.

Our FPEOS Hugoniot curve is compared with several theoretical and exper-

imental data in Sec 2. The off-Hugoniot comparisons between FPEOS and

SESAME 2023 are shown in Sec 2. In Sec 3, the FPEOS is implemented into

LILAC to investigate how the different EOS tables will affect ICF implosions

using beryllium as the ablator.

2.1 Quantum molecular dynamic method

In recent years, first-principles method (or ab initio), including the DFT

based QMD, path-integral Monte Carlo(PIMC), and quantum Monte Carlo

(QMC) have made substantial progress in predictig the properties of materi-

als at extreme conditions. QMD, combining the laws of quantum mechanics

and classical molecular dynamics, has been proven to be an effective com-

putational approach to treating materials under extreme conditions. Based

on the finite-temperature density-functional theory, traditional QMD imple-

mentation uses the Kohn - Sham orbitals to represent the many - particle

system in terms of single - particle orbitals. The KSMD method is accurate

and computationally efficient at temperatures generally below the electron



CHAPTER 2. STATIC PROPERTIES OF WARM DENSE PLASMAS 10

Fermi temperature TF = EF/kb = (3π2ρ)2/3/2kb, in atomic unit, Fermi vec-

tor kF = (3π2ρ)1/3. At high temperature region T > TF however it becomes

impractical because of the increasing number of energy bands needed to rep-

resent the thermal-excited electrons ρ(r) =
∑

i fi|ψi(r)|2 according to Fermi

- Dirac distribution fi = (1 + e(εi−μ)/kbT )−1. In contrast, the other QMD im-

plementation is OFMD, which greatly improves the computational efficiency

by eliminating orbitals. In the OFMD treatment, the total free energy of a

many-particles system is expressed only in terms of electron density accord-

ing to an improved Thomas–Fermi–Dirac (TFD) model. The computational

efficiency at T > TF is at the expense of precision resulting from the approx-

imation of the TFD model. Nonetheless, the pressure predicted by OFMD

differs from the KSMD prediction by only 1% in the vicinity of Fermi tem-

perature where both methods are applicable.

2.1.1 Kohn-Sham density functional theory

The Kohn-Sham scheme imagines a system of N non-interacting electrons

that yield the electronic density of the original interacting N electron sys-

tem. These fictitious electrons sit in a new external potential called the KS

potential. The KS scheme is written as a set of equations that must be solved

self-consistently :

{
−1

2
∇2 + VH + Vext + Vxc

}
φi(r) = εiφi(r) (2.1)
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ρ(r) =
∑
i

fi|φi(r)|2 (2.2)

fi = (1 + e(εi−μ)/kbT )−1 (2.3)

where φ(r) and εr are the KS orbitals and energies, μ is chemical potential.

VH =
∫
dr

ρ(r)
|r − r| is classical Hartree potential and Vxc =

δExc

δρ(r)
is exchange-

correlation potential defined by the unknown XC energy. These must be

solved self-consistently since the Hartree potential and Exchange-Correlation

term depend explicitly on the density.

In this project, in order to make the wave function near the core re-

gions smoother, a projector-augmented wave (PAW) pseudopotential was

generated to replace the pure Coulomb potential. The electron exchange-

correlation potential is modeled by the Perdew–Burke–Ernzerhof (PBE) func-

tional in the generalized-gradient approximation (GGA). The electrons are

described by quantum-mechanical wave functions, and the nuclei (ions) are

treated as classical particles governed by the Newtonian mechanics.

2.1.2 Orbital-free density functional theory

The OFMD method describes the ground-state energy of a many-particle

system as a function of electronic density without constructing Kohn - Sham

orbitals. The main feature that distinguishes the OFMD from the KSMD

is the expression for the kinetic - energy term. In the OFMD approach, the
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kinetic energy is derived using the TFD model at a finite temperature plus

the von Weizsäcker correction taking into account the gradient correction of

the density. The finite temperature Thomas Fermi term is related to electron

density through following equations :

A

V
= −2

3
(
m

h̄2 )
3/2

√
2

π2β5/2

∫
x3/2

z−1ex + 1
dx+ μ

N

V

= −2

3
(
m

h̄2 )
3/2

√
2

π2β5/2

∫
x3/2

z−1ex + 1
dx+ μ ∗ (m

h̄2 )
3/2

√
2

π2β3/2

∫
x1/2

z−1ex + 1
dx

= −2

3
(
m

h̄2 )
3/2

√
2

π2β5/2
I3/2 + μ ∗ (m

h̄2 )
3/2

√
2

π2β3/2
I1/2

= −2

3
(
m

h̄2 )
3/2

√
2

π2β5/2
I3/2 + βμ ∗ (m

h̄2 )
3/2

√
2

π2β5/2
I1/2

= (
m

h̄2 )
3/2

√
2

π2β5/2
(− 2

3
I3/2 + βμI1/2)

(2.4)

N

V
= (

m

h̄2 )
3/2

√
2

π2β3/2

∫
x1/2

z−1ex + 1
dx

= (
m

h̄2 )
3/2

√
2

π2β3/2
I1/2

(2.5)

Where A is the free energy of the system, V is the volumn of the system, N

is the number of particles in the system. z = eμ/kbT is fugacity β = 1/(kbT ).
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And Fermi Integral I1/2is defined as :

I1/2 =

∫
x1/2

z−1ex + 1
dx (2.6)

The von Weizsäcker correction is written as Fvw =
∫
h(ρ(r))

|∇ρ(r)|2
ρ(r)

dr.

The h(ρ(r)) is an analytical corrrection term given by F. PerrotPerrot (1979)

to generalize the term int to finite temperatures. After introdcue these two

terms represent the kinetic energy and minimize the free energy of the system

with respect to the density, we got a nonlinear Schrödinger like equation

H(ρ(r))ψ(ρ(r)) = μψ(ρ(r)) where

H(ρ(r)) = −1

2
∇2 + [

δFTF

δρ(r)
+

δFxc

δρ(r)
+ Vext +

∫
dr

ρ(r)
|r − r| ] (2.7)

In this case, the electron density is expressed the sum a “collective orbital”

ρ(r) = |ψ(r)|2. Note that the introduction of the single “orbital” rather than

density is for numerical convenience. Using the normalization constraint∫ |ψ(r)|2dr for N total electrons. The FTF term the Thomas-Fermi (TF)

kinetic-energy functional. The Laplacian operator arises from the minimiza-

tion of the von Weizsäcker term. The Exchange Correlation term, external

potential and Hartree term is same as KS formalism.

In OFMD simulations, we assume that the beryllium plasmas are in the

local thermodynamic equilibrium (LTE); Relativistic effects in our simulation

region are negligible; and bound states and continuum states are treated
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in the same way. The exchange-correlation functional is expressed in the

local density approximation of Perdew and Zunger. The time evolution of

the system was also calculated in two steps. The electrons were treated

quantum mechanically and ions were classical particles. The difference here

is that we minimized the electron-free energy with respect to the electron

density directly, rather than minimizing with respect to the orbitals in the

KSMD case.

2.2 First-principles equation-of-state(FPEOS) ta-
ble of Beryllium

Combining the calculations of KSMD and OFMD, we examined the widely

ranged beryllium conditions in the pressure–temperature (P −T ) space. The

pressure and internal energy were obtained for all the sampled density and

temperature points (ρ = 0.001 g/cm3 ρ = 500 g/cm3) and temperatures

(T = 2000 K to T = 108 K). We make the transition from KSMD to OFMD

at the temperature point T = 250000K , where their differences are within

∼ 1%. The total pressures as a function of the beryllium temperature are

shown in Fig. 2.1.
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Figure 2.1: The pressure as a function of beryllium plasma temperature for
all densities (ρ = 0.001 to 500 g/cm3) by our first-principle Kohn-Sham and
orbital-free molecular dynamics calculations.
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2.2.1 Principle Hugoniot conditions comparison

The shock Hugoniot curve can be derived from the resulted FPEOS table

according to the Rankine - Hugoniot equation

Hug = Ef − E0 +
1

2
(Pf + P0)(

1

ρf
+

1

ρ0
) (2.8)

where the initial pressure, internal energy, and density of the beryllium

before the shock are represented by (P0, E0, q0) and the quantities after shock

are given by (Pf , Ef , qf ).

To compute the princi- pal Hugoniot, we chose the initial state to be

the solid beryllium, (ρ =1.84g/cm3) at ambient temperature (T = 300K).

Substituting the EOS data into the Hugoniot equation, we can derive the

principal Hugoniot of Be. SESAME EOS was constructed using various

combinations of different theoretical models and constrained by best-avaiable

experiment data in different regions.

Fig.2.2 shows that the FPEOS Hugoniot pressure of beryllium is in good

agreement (within 10%) with the widely used SESAME model (SESAME

2023) in the low- compression-ratio region (ρ/ρ0 < 3); however, the pressure

differences can be up to 30 % in the high compression region. Fig.2.2 also

shows that the peak compression ratio decreases slightly from 4.33 (FPEOS

calculation) to 4.26 (SESAME prediction), which indicates that under shock

compression, beryllium is slightly softer than the SESAME model near the

maximum compression. This is mainly because the the model overestimates
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Figure 2.2: The Rankine–Hugoniot curve of beryllium predicted by the first-
principles equation of state (FPEOS) (solid blue line) is compared with
the SESAME 2023 model (dashed red line), the Purgatorio modelWilson
et al. (2006) (dotted– dashed green line), the QEOS modelMore et al. (1988)
(dashed orange line), the INFERNO model Liberman and Bennett (1990)
(dotted–dashed blue line), and available experiments (various symbols) by
Regan,Ragan (1982) Cauble et al.,Cauble et al. (1998) Isbell et al., and Nel-
lis et al.Nellis et al. (1997a)
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the ionization of electrons, leading to too-large a pressure along the Hugoniot

curve for the same shock density. As the shock pressure continues to increase,

the density predicted by both the FPEOS and SESAME reaches an ideal gas

limit (ρ/ρ0 = 4). Experimental data for beryllium have also been plotted

in Fig. 2.2 for comparison. Most of models seemed to agree well with the

available experimental data. To the best of our knowledge, no published

experiments data have been found above 20 Mbar. Future experimental

data are needed to benchmark the theoretical models in the pressure region

ranging from 50 Mbar to 500 Mbar.

2.2.2 Off-Hugoniot conditions comparison

Figure 2.3: The off-Hugoniot equation of state (EOS) isothermal comparisons
between FPEOS and SESAME 2023. The (a) pressure and (b) internal
energy are plotted as functions of the beryllium density for T = 31,250 K,
T = 125,000 K, and T = 250,000K.

Next, we compare the pressure and internal energy of beryllium plasma
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for off-Hugoniot plasma conditions between FPEOS and SESAME prediction

2023 in Fig.2.3. Fig.2.3(a) shows the pressure as a function of density of

beryllium at T = 31, 250K, T = 125,000 K, and T = 250,000K, while the

internal energy comparisons are plotted in Fig.2.3(b) which indicates that

the internal energy per atom reaches minimum at density ∼ 2.5g/cm3 for

T = 31,250K. This internal energy minimum, manifesting the maximum

electronic–ion interaction, increases with temperature, and the corresponding

density having minimum internal energy also increases with temperature.

2.3 EOS effects on beryllium-shell-target im-
plosions

Implementing the FPEOS table of beryllium into our radiation–hydrodynamics

code LILAC, we can examine the EOS effects on HED plasma simulations.

The range of the extrapolated EOS table is wide enough for LILAC sim-

ulations. Since plasmas generally undergo several regimes including both

strongly coupled and degenerate regions during the ICF implosion, an inte-

grated ICF implosion can be used to study the EOS effects. In this section,

we simulate a National Ignition Facility (NIF) - type direct-drive implosion.

Fig. 2.4 shows the step laser pulse and dimensions of the target. The

duration of the laser pulse is 10 ns with a total energy of 1.5 MJ. The capsule

of the simulation had a 80 μm Be layer filled with deuterium-tritium (DT)

gas. We launched two simulations: one used beryllium FPEOS and the other
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Figure 2.4: The dimensions of the target (inset) and the laser pulse shape
for implosion simulations to study how EOS differences will affect hydro
simulations. The capsule was made of a 80 μm Be layer filled with 1420 μm
of deuterium - tritium (DT) gas. The duration of the step laser pulse was 10
ns with a total energy of 1.5 MJ.

used the SESAME 2023. For the DT gas the two simulations used the same

FPEOS. Once the lasers were launched, the Be layer was ablated, which

resulted in a shock propagating into the shell. Fig. 2.5 shows a snapshot of

the density and temperature profiles at t =2.2 μs versus the target radius for

two simulations. At this time, the first shock front was located at R ∼ 1446

μm with the main shock front behind it which indicates that the shock was

still propagating inside the Be layer. We can see that the FPEOS simulation

predicts a slightly lower density ∼ 2% than SESAME 2023 since FPEOS is

slightly stiffer than SESAME EOS in the temperature region. The shock

location in the FPEOS simulation is almost the same as in the SESAME

case. The reason behind this phenomenon is that shock speed depends on
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the shock density through the formula Vs =
√
Ps/ρ0

√
1− ρ0/ρs, from which

we obtain a very small differences. In addition, the hydro simulation with

FPEOS predicts an ∼ 4 % lower temperature than the SESAME case.

Figure 2.5: The density and temperature profile comparisons between the
FPEOS (solid blue line) simulation and SESAME 2023 (dashed red line)
simulation. At time t = 2.2ns, the shock front is located at R ∼ 1446 μm,
which indicates that the shock is still propagating inside the Be layer.

We also took a snapshot t = 10 ns, where the shell was at the end

of the acceleration and plotted both the density profile and the electron

temperature profile as functions of the target radius. One sees from Fig. 2.6

(a) that the peak density predicted by the FPEOS is 3% lower than predicted

by SESAME simulations. The temperature at peak density predicted by

FPEOS was ∼ 16.6 eV, while the SESAME prediction was ∼ 15.7 eV, a

difference of ∼ 6%. We can see that at the back surface of the shell, there are
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more significant temperature differences (∼ 18%). Fig. 2.6(b) plots density

and ion temperature as functions of radius at the peak compression (t =

12 ns). In these situations, the differences between FPEOS and SESAME

simulations are small even for peak density as with the temperature increase

above T > 106 K.

Figure 2.6: Same as Fig.2.5 but for different implosion time : (a) t = 10 ns
where the shell is at the end of acceleration and (b) = 12 ns where it is at
peak compression.

Finally, we compared the overall target performance between the FPEOS

and SESAME simulations. The FPEOS simulation also predicted a higher

total neutron yield Y = 3.76× 104, which is ∼ 15 % higher than SESAME

simulation.
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Chapter 3

TD-OF-DFT Simulation Package Devel-
opment

3.1 Orbital-Free DFT foundations

In this section, we calculate the potential in Fourier space. We calculated

the potential energy and the derivative of the potential, which will be used

in following minimize process. The function Free Energy Or Derivative will

do one of two jobs.

In periodic boundary conditions, the Fourier transform can be written as:

V (r) =
∑
G

V (G)e−iG·r

V (G) =
1

Ω

∫
V (r))eiG·rdr

(3.1)

When come to discreet pay attention to the differences of summation and

integration, integration includes the summation and the small volume ele-
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ments.

b∑
x=a

f(x)δx =

∫ b

a

f(x)dx

∑
G

=

∫
dr

dV
=

∫
dr

(2π/L)3

(3.2)

In the periodic box, the Delta function should normalized as :

1

V

∫
box

d3rei(k−k′) = δk,k′ (3.3)

After Fourier transform:

3.1.1 Hartree terms in planewaves

According to Poisson’s equation:

∇2V (r) = −4πn(r) (3.4)

After Fourier transform:

G2V (G) = 4πn(G) (3.5)

The Fourier component of electron-electron interaction energy is as following.

I think this terms is a non-local potential, which is not confined by the single

box. Pay attention, here is the potential density. True potential
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Vee(G) =
4πn(G)

G2
(3.6)

where

n(r) =
∑
G

n(G)e−iG·r (3.7)

The Fourier representation of the Hartree energy term is, since the inte-

gration is done in the single box, this energy should be the energy of the box,

not the whole space.

1

2

∫ ∫
drdr’

n(r)n(r’)
|r − r’| =

1

2
Ωcell

∑
G

Vee(G)n∗(G)

= 2πΩcell

∑
G

n2(G)

G2

(3.8)

Pay attention how to use Hartree potential energy in the minimization.

This term is calculated in the function "free energy or derivative" using

what we derived for Hartree potential. And then, using Parseval’s theorem

to calculate the energy. However, when do the minimization of the energy,

we minimize with respect to the density, the result after that might only be

the potential.

The following integral in Fourier space transform the potential into the

potential energy. Considering the complex conjugate, the product becomes

the sum of both Re part and Im part. We can do this because the potential
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energy is a real number. This calculating is in ElectronicFunctionals. In The

Adiabatic Approximation we do it again, use the conjg directly. They are

the same.

∫
drn(r)Vee(r) = Ω

∑
G

n(G)V ∗ee(G)

= Ω
∑
G

(Re(n(G))Re(Vee)(G)) + Im(n(G))Im(Vee)(G)))

(3.9)

The Coulomb’s potential induced by the electron density could be written

in atomic unit as:
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V (r) =
∫
allspace

n(r′)
|r − r′|dr

′

=

∫
allspace

∑
G n(G)e−iG·r’

|r − r′| dr′

=
∑
G

∫
allspace

n(G)e−iG·r’

|r − r′| dr′

=
∑
G

∫
allspace

n(G)eiG·u

|u| du

=
∑
G

e−iG·r
∫
allspace

n(G)e−iG·(r-u)

|u| du

=
∑
G

e−iG·r
∫
allspace

n(G)eiG·u

|u| du

=
∑
G

e−iG·rn(G)

∫ 2π

0

dφ

∫ π

0

eiGucosθsinθdθ

∫ +∞

0

udr

= 2π
∑
G

e−iG·rn(G)dθ

∫ +∞

0

eiGu − e−iGu

iG
dr

= 4π
∑
G

e−iG·rn(G)dθ

∫ +∞

0

sin(Gu)

G
dr

= 4π
∑
G

n(G)

G2
e−iG·r(1 + C)

(3.10)

C is a constant. From this expression of V (r), we can get the Fourier com-

ponent, which is in the same formation as we derived from the poisson’s

equation. There is a connection between the Coulomb potential and pois-

son’s equation both in real space and fourier space.
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∇2V (r) = ∇2

∫
allspace

− n(r′)
|r − r′|dr

′

=

∫
allspace

∇2 − n(r′)
|r − r′|dr

′

= −
∫
allspace

4πδ(r − r′)n(r′)dr′

= −4πn(r)

(3.11)

The third step of derivation see quantum homework 4.

3.1.2 The electron ion potential, structure factor, form
factor

The ionic potential (the external potential) can be written as following: Now

we choose one nuclei and calculating the potential that all the electrons acting

on them. If we want to calculate the potential of 128 atoms in the box, we

can simply do the summation. τj is a vector but i cannot make it bold!

In addition, we want to find the potential at certain position r, τ is the

vector from the position to the ion. We also take into account the periodic

boundary conditions, at r − τj − nL there are also image atoms that con-

tributes to the potential. We sum them together. Change the variable of

the integral and use the properties of G, the integral limit will also change

when we change the integral variable. In this case, the integral limit will go

to the any periodic boxes. So we can change the integral to all the space.

The potential we get here should also be the one taking into account all the
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space ions.

Vne(r) =
128∑
j=1

∑
nL

V (r − τj − nL) (3.12)

Vne(G) =
1

Ω

∫
Ω

dr
128∑
j=1

∑
nL

V (r − τj − nL)eiG·r

=
1

Ω

∫
allspace

dr
128∑
j=1

V (r − τj)e
iG·r

=
1

Ω

∫
allspace

drV (r)eiG·r
128∑
j=1

eiG·τj

= Vne(G)
128∑
j=1

S(G)

(3.13)

Attention should be paied here the structure factor in the code is different

from what we derived here, it has
1

Ω
in the expression! Once this problem

was solve, we can conclude that the Fourier transform of Vie is done over all

the space. Like the following the derivation.

where Vne(G) is the single nuclei Fourier component of ionic potential,

S(G) is the structure factor, Vne,single(G) is the form factor.

Vne,single(G) =
1

Ω

∫
allspace

drVne(r)eiG·r (3.14)

S(G) = eiG·τj (3.15)
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The Fourier representation of the ionic energy is as following. In the

derivation, the Parseval’s theorem was used, which introducing the complex

conjugate term. Since the potential is real, its complex conjugate is itself.

∫
drn(r)Vne(r) = Ω

∑
G

n(G)V ∗ne(G)

= Ω
∑
G

n(G)Vne,single(G)S∗(G)

(3.16)

First, let us derive the convolution theory in periodic boundary condition:

(1D), it is similar in 3D expect the length go to volume.

f ∗ g =

∫
box

f(u)g(r − u)du (3.17)

then the Fourier transform of this convolution is given by:

F [f(r) ∗ g(r)] = 1

Ω

∫
box

eiGr(

∫
box

f(u)g(r − u)du)dr

= Ω(
1

Ω

∫
box

eiGτg(τ)dτ)(
1

Ω

∫
box

eiGuf(u)du)

= ΩF [f(r)]F [g(r)]

(3.18)

In the second step we change the variable τ = r − u, finally we found the

Fourier transform of convolution is the multiply of Fourier component and
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multiply the volume Ω. The volume is the major difference from the standard

Fourier transformation. Next, we will use this theory to prove the Fourier

transform of ion-electron potential.

F [
∑
n

V (r − τj − nL)]

=F [

∫
box

∑
n

V (x − nL)δ(x − r + τj)dx]

=F [
∑
n

V (r − nL)]F [δ(x − r + τj)]Ω

=(
1

Ω

∫
box

V (r − nL)eiG·rdr)(
1

Ω

∫
box

eiG·(x-r)drδ(x − r + τj))Ω

=Ω(
1

Ω

∫
allspance

V (r)eiG·rdr)(
1

Ω
eiG·τj)

(3.19)

3.1.3 The Proof of Parseval’s theory in PBC

The result in 1D case is :

∫
box

f(r)g(r)∗dr =
1

L

∑
G

f(G)g(G)∗ (3.20)

We can write LHS of above equation as:

∫
box

f(r)g(r)∗dr =
∫
box

(
∑
G

f(G)eiGr)(
∑
G′

g∗(G′)eiG
′r)dr (3.21)



CHAPTER 3. TD-OF-DFT SIMULATION PACKAGE DEVELOPMENT 32

Rearrange the order to integration we obtain the theory in periodic boundary

condition case.

∫
box

f(r)g(r)∗dr =
∑
G

∑
G′

f(G)g∗(G′)(
∫
box

ei(G−G
′)rdr)

=
∑
G

∑
G′

f(G)g∗(G′)(Lδ(G,G′))

= L
∑
G

f(G)g∗(G)

(3.22)

3.1.4 Hellmann Feynman theory

Once we calculated the ironic energy, we can use Hellmann Feynman theory

to calculate the force that electrons acting on ions. The theory says:

Fj = − d

dτj
〈Ψ| Ĥne |Ψ〉 (3.23)

If the wave function do not depend on the position of ions, we can take the

derivative with respect to the Hamiltonian. In the last step of the derivation,

the force should be a real number, so we only take the real part. Finally, we

derive the exact form of the force we have in the code.
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Fj = −〈Ψ| d

dτj
Ĥne |Ψ〉

=
d

dτj
(Ω

∑
G

n(G)Vne,single(G)e−iG·τj)

= −iGΩ
∑
G

n(G)Vne,single(G)e−iG·τj

= GΩ
∑
G

Vne,single(G)Im((G)e−iG·τj)

(3.24)

The potential energy (Vie Vee) is summed over a single box. While the

potential is due to the charges all over the space. When we calculate the

force, the force is summed over all the space.

3.1.5 Regularized Potentials

This subroutine reads the cut off radius, energy corrections and Regular-

ized Potential from OFMD.input and calculate the Fourier transform of the

potential as following:
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V (G) =
1

Ω

∫
box

V (r)eik·rdr

=

∫ 2π

0

dφ

∫ π

0

sinθdθ

∫ +∞

0

V (r)r2eikrcosθdr

=
1

Ω
2π

∫ π

0

sinθeikrcosθdθ

∫ +∞

0

V (r)r2dr

=
1

Ω
2π

∫ +∞

0

V (r)r2dr

∫ π

0

sinθeikrcosθdθ

=
1

Ω
2π

∫ +∞

0

V (r)r2
eikr − e−ikr

ikr
dr

=
4π

Ωk

∫ +∞

0

V (r)rsin(kr)dr

=
4π

Ωk
(

∫ Rc

0

V ps(r)rsin(kr)dr +

∫ +∞

Rc

sin(kr)dr)

=
4π

Ωk
[(Rc)2

∫ 1

0

V ps(r)rsin(k ∗Rc ∗ r)dr + 1

k
(cos(k ∗Rc) + C)]

(3.25)

In the last step of derivation, the use the constant C to represent the upper

limit of the integration. In the potential, the constant does not matter, the

potential is relative.

dV (G)

dG2
=

1

2G

dV (G)

dG
=

1

2G

1

G
(
d(GV (G))

dG
− V (G)) (3.26)

where we change the vector into the magnitude of vector.Error function and

complimentary error function :
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erf(x) =
2√
π

∫ x

0

e−t
2

dt (3.27)

erfc(x) = 1− erf(x)

=1− 2√
π

∫ x

0

e−t
2

dt =
2√
π

∫ ∞

x

e−t
2

dt
(3.28)

Next, the definition of short range and long range force. If potential drops

down to zero faster than r−d, where r is the separation between two particles

and d is the dimension of the problem, it is called short ranged, otherwise it

is long ranged.

In the code, we do the Ewald summation to calculate the E-field or po-

tential generated by the nucleus. They are not continuous as the electron

density, which we have explored in the Hartree part. The charge density for

point charge qi is

ni(r) = qiδ(r − ri) (3.29)

we can split it into two terms by adding and subtracting a Gaussian distri-

bution:

nS
i (r) = qiδ(r − ri)− qiG(r − ri) (3.30)
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nL
i (r) = qiG(r − ri) (3.31)

where

G(r − ri) =
1

(2πσ2)3/2
exp[−(r − ri)2

2σ2
]

=(
α2

π
)3/2exp[−α2(r − ri)2]

(3.32)

where α = 1/(
√
2σ).σ is the standard deviation of Gaussian distribution. If

the stand deviation is large enough, Gaussian distribution turns into delta

function. The potential field then also in two term:

V S
i (r) =

qi
4πε0

∫
δ(r − r′)−G(r − r′)

|r − r′| d3r (3.33)

V L
i (r) =

qi
4πε0

∫
G(r − r′)
|r − r′| d3r (3.34)

The potential field generate by charge distribution of the Gaussian can

be obtained by solving the Poisson’s equation:

∇2V (r) = −qG(r)
ε0

(3.35)

Since the Gaussian in 3D is also symmetry, only depend on the magnitude

r. We try to solve the Poisson’s equation in spherical coordinates:
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1

r

∂2

∂r2
[rV (r)] = −qG(r)

ε0
∂

∂r
[rV (r)] = q

∫
−rG(r)

ε0
dr =

σ2

ε0
qG(r)

rV (r) =
σ2

ε0
q

∫ r

0

G(r)dr =
σ2

ε0

q

(2πσ2)3/2

√
π

2
erf(

r√
2σ

)

V (r) =
q

4πε0r
erf(

r√
2σ

) (3.36)

where erf(x) =
2√
π

∫ x

0
e−t

2
dt. Therefore:

V S(r) =
q

4πε0|r − ri|erfc(
|r − ri|√

2σ
) (3.37)

V L(r) =
q

4πε0|r − ri|erf(
|r − ri|√

2σ
) (3.38)

Because limz→∞erf(z) = 1,we can see that V S is the short range potential,

we distance is large, the potential is weak. V L(r) is the long range poten-

tial, when distance is large, the potential is large. Considering the periodic

boundary conditions, the short range potential and potential energy can be

written as:

V S(r) =
1

4πε0

∑
n

N∑
j=1

qj
|r − ri + nL|erfc(

|r − ri + nL|√
2σ

) (3.39)
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ES(r) =
1

4πε0

∑
n

N∑
i=1

∑
j>i

qiqj
|r − ri + nL|erfc(

|r − ri + nL|√
2σ

) (3.40)

Next, how to derive the long range potential in reciprocal space.The long

range force cannot be directly computed in by summation in real space. The

basic idea of the Ewald summation is to transform it into a sum in the

reciprocal space. For nucleus sitting at certain position, the total charge

density field is given by:

nL(r) =
∑
n

N∑
i=1

nL(r + nL) (3.41)

Because the charge density is a periodic function, we can do the Fourier

transform of the density and long range potential like what we do in calcu-

lating the electronic potential in the above sections. The definition of the

Fourier transform we use in this section is shown as following.

V (r) =
∑
G

V (G)e−iG·r

V (G) =
1

Ω

∫
V (r))eiG·rdr

(3.42)

The potential field and the charge distribution is related by the Poisson’s

equation
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∇2V L(r) = −n(r)
ε0

(3.43)

which can be transformed into reciprocal space (In SI unit)

V L(G) =
n(G)

ε0G2 (3.44)

We use this method to treat the long range potential induced by the Gaussian

distribution.

nL(r) =
∑
n

N∑
j=1

qjG(r − rj + nL) (3.45)

nL(G) =
1

Ω

∫
Ω

∑
n

N∑
j=1

qjG(r − rj + nL)eiGrdr

=
1

Ω

N∑
j=1

qj

∫
R3

G(r − rj)eiGrdr

=
1

Ω

N∑
j=1

qj

∫
R3

1

(2πσ2)3/2
exp[−(r − ri)2

2σ2
]eiGrdr

=
1

Ω

1

(2πσ2)3/2

N∑
j=1

qj

∫
R3

exp[− r2

2σ2
]eiG(r+rj)dr

=
1

Ω

N∑
j=1

qje
iGrje−G2σ2/2

(3.46)

we get the long range density in Fourier space. Then according to poisson’s

equation, we can calculate the potential in Fourier space:
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V L(G) =
1

ε0

1

Ω

N∑
j=1

qie
iGrj e

−G2σ2/2

G2
(3.47)

Now applying the inverse Fourier transform to get the potential in real space:

V L(r) =
1

ε0

1

Ω

∑
G

N∑
j=1

qje
iG(rj−r) e

−G2σ2/2

G2
(3.48)

we can see that the potential decay with the increase of reciprocal vector G,

we can ignore the large G term and summation over only small G term. The

long-range potential energy is written as:

EL =
1

2

N∑
i=1

qiV
L(ri)

=
1

2

1

ε0

1

Ω

∑
G

N∑
i=1

N∑
j=1

qiqje
iG(rj−ri) e

−G2σ2/2

G2

=
1

ε0

1

Ω

∑
G

N∑
i=1

∑
j>i

qiqje
iG(rj−ri) e

−G2σ2/2

G2

(3.49)

In the last step of derivation, the summation over j have already have no

repeat, so we get rid of 1/2. Defining the structure factor

S(G) =
N∑
i=1

qie
iGri (3.50)

EL =
1

2

1

ε0

1

Ω

∑
G

e−G2σ2/2

G2
|S(G)|2 (3.51)
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3.1.6 Short range potential sum in real space

The original form of short range potential can be written as following:

V (ri − rj) =
∑
n

∑
i

∑
j>i

Zerfc(αr)
|ri − rj + nL| (3.52)

The cut-off radius for short range potential is L/2. At a point rj, we only

consider the particles within the range of L/2. The above expression can be

simplified, we only consider 1D case. In the code, separate 3D into 3 1D case

just like here:

V (r) =
∑
i

∑
j>i

Zerfc(αr)

r
(3.53)

We can take the derivative with r to calculate the electric field: in the code

there is 1/rinside the urtab, so in the following calculating E field section,

we should remember multiply by r

E(r) =
∑
i

∑
j>i

−Zerfc(αr)

r2
+

1

r

2√
π
e−r

2

(3.54)

In this part of implementation, we do not calculating the error function

in every loop. Actually, the error function table was initially calculated as a

table of 5000. Later on, we choose from the table according to the position

differences of two ions. The algorithm (two lines EwaldSumms line 450 451,

in this part, many calculations are in this form ) for summation of
∑

i

∑
j>i

is very good.
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3.1.7 self energy term and a correction constant

The self potential term is as following, first term is self potential and second

is the energy correction which depend on the dipole momentum. If calculate

the energy, need to consider
1

2
.

Vself =
2αZi√

π
+
∑
i

πZi

α2L3
(3.55)

3.1.8 long range potential sum in fourier space

The original long range potential term

Vlongrange(r) =
4π

L3

∑
k

exp(−k2/4α2)

k2

N∑
j

qje
ik·(r−rj) (3.56)

The coefficient should be 4π or 8π depending whether we take spin into

account;

V (r) =
4π

L3

∑
k

exp(−k2/4α2)

k2

N∑
j=1

qje
ik·(r−rj)

=
4π

L3

∑
k

exp(−k2/4α2)

k2

N∑
j=1

qjcos(k · r − k · rj)

=
4π

L3

∑
k

exp(−k2/4α2)

k2
[cos(k · r)

N∑
j=1

qjcos(k · rj) + sin(k · r)
N∑
j=1

qjsin(k · rj)]

(3.57)
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Next, we separate the case of k into (k, 0, 0), (k, l, 0), (k, l,m). For the first

situation (k, 0, 0). In the cos(k·r), we only have one term. The quantity in the

code the first dimension represent k = 1 to kmax, second dimension represent

X,Y,Z three directions, third dimension represent number of particles. In the

(k, 0, 0) case, we need (0, l, 0) (0, 0,m) , so there is loop of ic = 1 to 3. For

k = 1 case, we write it cos(kr) explicitly. For other k, we use sin(kr) and

cos(kr) to construct the cos(nkr) and sin(nkr). The middle case for example:

cos[(kx, ky, 0) · (rx, ry, 0)]
N∑
j=1

qjcos(k · rj) + sin(k · r)
N∑
j=1

qjsin(k · rj)]

=cos(kxrx + kyry)
N∑
j=1

qjcos(kxrxj + kyryj) + .......

(3.58)

since cos(x + y) and cos(x − y) use different rules, we should treat them

differently as in the code do. First we calculate the cos(x + y) term, and

then we do the summation
∑N

j=1, then multiply them together and take in

to account the difference between cos(x+ y)cos(x− y) add them separately.

Taking into account all the cases of (k, 0, 0), (k, l, 0), (k, l,m), we can finish

the summation. In this way, we avoid double summation. For the summation

of k, we choose a maximum kmax value as the cut off.

In the code, we actually calculate the V (rj), because we need the E(rj)

to calculate the force acting on each nucleus. We do not need the potential

at each grid.
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And in the separate of k, we do not consider +k and −k, we only use

+k, which we should multiply the results by 2.

3.2 Molecular Dynamics

3.2.1 Gaussian isokinetic equation of motion

First, specifying the meaning of two terms:Holonomic and nonholonomic.

Holonomic constrains are used to restrict coordinates only do not involve

with velocity but nonholonomic is velocity-dependent.

Our definition of temperature is based on the ideal-gas thermometer.

Temperature is proportional to the kinetic energy. In non-equilibrium steady

state problem, it is convenient to specify the isothermal condition to extract

irreversibly generated heat. The multiplier we introduce in the equation of

motion plays the role of a friction coefficient, but it takes on both positive

and negative value to keep temperature constant.

The Liouville equation describes the evolution of phase space distribution

function for the conservative Hamiltonian system. It is the continuity equa-

tion for in 6N phase space. Let ρ(qi, pi, t) denotes the density in phase space.

The infinitesimal volume element is dw = d3Nqd3Np. The surface elements

are denote by σ. According to the conservation of mass:
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∂

∂t

∫
w

ρdw +

∫
σ

ρv · ndσ = 0 (3.59)

Using the divergence theory:

∂

∂t
ρ+∇ · (ρv) = 0 (3.60)

In 6N dimension phase space, the divergence is written as:

∂ρ

∂t
+

3N∑
i=1

(
∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi) +

3N∑
i=1

ρ(
∂q̇i
∂qi

+
∂ṗi
∂pi

) = 0 (3.61)

∂q̇i
∂qi

=
∂2H(qi, pi)

∂q∂p
= −∂ṗi

∂pi
(3.62)

In the Hamiltonian system, the last term (compressibility) will vanish, the

first two terms will combined into the total derivative. The second term is

the Poisson’s bracket.
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dρ

dt
=

∂ρ

∂t
+

3N∑
i=1

(
∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi)

dρ

dt
=

∂ρ

∂t
+ [ρ,H] = 0

(3.63)

Define the operator L = i[H],

∂ρ

∂t
+ iLρ = 0

ρ(q, p, t) =exp[−iLt]ρ(q, p, 0)

(3.64)

For the non-Hamiltonian system, the last term (phase space is compress-

ible) will not vanish. We will use the following expression in Isokinetic en-

semble.

dρ

dt
+

3N∑
i=1

ρ(
∂q̇i
∂qi

+
∂ṗi
∂pi

) = 0 (3.65)

3.2.2 Gauss’s Principle of Least Constraint

According to Gauss’s Principle of least constrain, we should first write the

constrains function as:

g(r, ṙ, t) =
N∑
i=1

miṙ2i /2− (3N − 1)kT/2 (3.66)
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Differentiating once with respect to time gives the equation of constraint

plane:

N∑
i=1

miṙir̈i (3.67)

Substitute into the Gauss’s Principle:

∂

∂r̈i

(1
2

N∑
j=1

mj(r̈j − Fj

mj

)
2
+ α

N∑
j=1

mj ṙj r̈j
)
= 0 (3.68)

Finally we get:

mir̈i = Fi − αmiṙi (3.69)

Using Hamiltonian we will get the same results:

N∑
i=1

p2
i /2mi − (3N − 1)kT/2 = 0 (3.70)
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g =
N∑
i=1

piṗi/mi (3.71)

∂

∂ṗi

(1
2

N∑
j=1

mj(ṗj/mj − Fj

mj

)
2
+ α

N∑
i=1

pjṗj/mj

)
= 0 (3.72)

ṗi = Fi − αpi
(3.73)

N∑
i=1

pi · (Fi − αpi)/mi = 0 (3.74)

α(q,p) =
∑N

i=1 Fi · pi/mi∑N
i=1 p2

i /mi

(3.75)

3.2.3 Isokinetic ensemble

At equilibrium the Gaussian isokinetic equations become:
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q̇i = pi/m =
∂H

∂qi

ṗi = Fi − αpi = −∂H

∂pi

− αpi

(3.76)

From the Liouville’s equation, the distribution function can be written

as following, and using above expression. In the fifth step of derivation,

the p2
i /mi is a constant, kinetic energy. In the seven step of derivation,

K = 1/2mv2 = 3/2kBT .
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df

dt
=− f

∂

∂Γ
· Γ = −f

N∑
i=1

(
∂

∂qi

· q̇i +
∂

∂pi

· ṗi)

=− f
N∑
i=1

(
∂

∂qi

· ∂H
∂pi

+
∂

∂qi

· (−∂H

∂pi

− αpi))

=f
N∑
i=1

∂

∂pi

· (αpi)

=f
N∑
i=1

∂

∂pi

· (
∑N

i=1 Fi · pi/mi∑N
i=1 p2

i /mi

pi)

=3Nαf + (−α) = (3N − 1)αf

=(3N − 1)(

∑N
i=1 Fi · pi/mi∑N

i=1 p2
i /mi

pi)f

=(3N − 1)(

∑N
i=1 Fi · pi/mi

3NkT
pi)f

=(3N − 1)(

∑N
i=1 −(∂φ/∂t)(∂t/∂q) · pi/mi

3NkT
pi)f

=− (3N − 1)

3NkT

dφ

dt
f

(3.77)

In the seven step, if we choose
∑N

i=1 p2
i /mi = (3N − 1)kT , we will have

simpler expressions:

d lnf
dt

=− dφ

dt

lnf =− φ

kT

f(q,p) =exp(φ/kT )δ
( N∑

i=1

p2
i /mi − (3N − 1)kT

) (3.78)
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3.3 Time-Dependent Orbital-Free DFT formal-
ism

3.3.1 Functional derivative

For functions of multiple argument F [y0, y1, y2.....], we can write dF =
∑

i

∂F

∂yi
dyi.

Similarly for functional derivative F [y(x)],

δF = F [y + δy]− F [y] =

∫
dx

∂F

∂yi
δyi (3.79)

The functional derivative is defined by :

F [f(x) + δf(x)]− F [f(x)] =

∫
dx

δF [f(x)]

δf(x)
δf(x) (3.80)

For example, we can do the functional derivative of External potential energy

with respect to density:

Eext[n(r)] =
∫

Vext(r)n(r)dr (3.81)

Eext[n(r) + δn(r)]− Eext[n(r)]

=

∫
Vext(r)(n(r) + δn(r))dr −

∫
Vext(r)n(r)dr

=

∫
Vext(r)δn(r)dr

(3.82)

Compared this expression with the definition, we can see that
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δF [f(x)]

δf(x)
= Vext (3.83)

We lean from this example that if you have a local functional F [f(x)] in the

form of a definite integral, we can simply take the derivative of the integrand

(a function that is to be integrated) with respect to the function f and get

rid of the integral sign.

In the application of potential energy between electrons and ions, it is

similar as external potential. We can take derivative of

Vext(r)n(r) (3.84)

with respect to n(r), we just get Vext.

In the application of potential energy between electrons and electrons

(Hartree Potential energy)

EHartree =
1

2

∫ ∫
drdr′

n(r)n(r′)
|r − r′| (3.85)
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EHartree[n(r) + δn(r)]− EHartree[n(r)]

=
1

2

∫ ∫
drdr′

(n(r) + δn(r))(n(r′) + δn(r′))
|r − r′| − 1

2

∫ ∫
drdr′

n(r)n(r′)
|r − r′|

=
1

2

∫ ∫
drdr′

δn(r)n(r′) + δn(r′)n(r)
|r − r′|

=

∫ ∫
drdr′

δn(r)n(r′)
|r − r′|

(3.86)

Consider the symmetry of n(r) and n(r′), we can conduct the last step of

above derivation. Comparing with the definition of functional derivative, we

can get the result:

∫
dr′

n(r′)
|r − r′| = VHartree (3.87)

3.3.2 Thomas-Fermi kinetic energy functional

In this section, we will derive the Thomas-Fermi functional. The number of

particles N in the system can be written in this form :

N =

∫
a(ε)f(ε)dε (3.88)

where a(ε) is the density of the states, f(ε) is the particle distribution. In

this case, it is just Fermi-Dirac distribution. The density of states of non-

interacting Fermi gas can be written as:
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a(p) = 2 ∗ V

h3
4πp2dp

a(ε) = 2 ∗ V

h3
2π(2m)3/2ε1/2dε

(3.89)

Taking into account of Fermi-Dirac distribution, the number of particles can

is :

N =

∫
2 ∗ V

h3
2π(2m)3/2ε1/2

1

exp[(ε− u)/kT ] + 1
dε (3.90)

After change of variable x = ε/kT and fugacity z = exp[u/kT ], we get

N

V
= 2 ∗ 2π

h3
(2mkT )3/2

∫
x1/2

z−1ex + 1
dx

=
4π

h̄3(2π)3
(2mkT )3/2

∫
x1/2

z−1ex + 1
dx

= (
m

h̄2 )
3/2

√
2

π2β3/2

∫
x1/2

z−1ex + 1
dx

(3.91)

Using the relation

PV

kT
= lnΞ =

∫
a(ε)ln(1 + zeβε)dε

=
2

3
V (

m

h̄2 )
3/2

√
2

π2β3/2

∫
x3/2

z−1ex + 1
dx

(3.92)
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And use the relation of thermal dynamics:

U = − ∂

∂β
lnΞ =kT 2[

∂

∂T
(
PV

kT
)]

=
3

2
kT

2

3
V (

m

h̄2 )
3/2

√
2

π2β3/2

∫
x3/2

z−1ex + 1
dx

=V (
m

h̄2 )
3/2

√
2

π2β5/2

∫
x3/2

z−1ex + 1
dx

=
3

2
PV

(3.93)

According to Euler’s equation:

U = TS − PV + μN (3.94)

and the definition of Helmholtz Free energy;

A =U − TS

=− PV + μN

=− 2

3
U + μN

(3.95)

Finally we get the density of free energy:
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A

V
= −2

3
(
m

h̄2 )
3/2

√
2

π2β5/2

∫
x3/2

z−1ex + 1
dx+ μ

N

V

= −2

3
(
m

h̄2 )
3/2

√
2

π2β5/2

∫
x3/2

z−1ex + 1
dx+ μ ∗ (m

h̄2 )
3/2

√
2

π2β3/2

∫
x1/2

z−1ex + 1
dx

= −2

3
(
m

h̄2 )
3/2

√
2

π2β5/2
I3/2 + μ ∗ (m

h̄2 )
3/2

√
2

π2β3/2
I1/2

= −2

3
(
m

h̄2 )
3/2

√
2

π2β5/2
I3/2 + βμ ∗ (m

h̄2 )
3/2

√
2

π2β5/2
I1/2

= (
m

h̄2 )
3/2

√
2

π2β5/2
(− 2

3
I3/2 + βμI1/2)

(3.96)

Where we defined

N

V
= (

m

h̄2 )
3/2

√
2

π2β3/2

∫
x1/2

z−1ex + 1
dx

= (
m

h̄2 )
3/2

√
2

π2β3/2
I1/2

(3.97)

Where we defined the Thomas function different from Pathria’s book.

I1/2 =

∫
x1/2

z−1ex + 1
dx (3.98)

Next we try to find the analytical expression for free energy.

First, Fermi energy in this case can be written as (Pathria (8.1.24)) :
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εF = (
6π2n

2
)2/3

h̄

2m
(3.99)

We can define the reduced temperature:

t =
T

Tf

=
2

β[3π2n]2/3
m

h̄
(3.100)

Then the equation for density can be expressed as

y = I1/2(βμ) = (
h̄2

m
)3/2

π2

√
2
β3/2n =

2

3t3/2
(3.101)

Next define a function f(η), where η = βμ

f(η) =
βA/V

N/V
=

1

I1/2(η)
[−2

3
I3/2(η) + βμI1/2(η)] (3.102)

Once we know the density, we can calculate the y immediately. And y is

related to η by I1/2, from which we can get η(y).The series expansion for

Iα(η) can be expressed as:
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Iα(η) = Γ(α + 1)eη
∞∑
k=0

(−1)k
ekη

(k + 1)α+1 (3.103)

For example, in the non-degenerate limit (Temperature very high and

density very low, Z << 1 and chemical potential μ must be negative and

magnitude large to make Z approach zero, classical limit).

y = I1/2(η) ≈=

√
π

2
eη(1− eη

2
√
2
) (3.104)

From this equation, we can solve for η in terms of y.

η(y) = ln(
2√
π
y) +

y√
2π

+O(y2) (3.105)

Substitute the η in to the f(η), we can finally get the Free energy A/V of

the system. Similarly, we can get the degenerate limit Z >> 1 expressions

(for bosons, 0 < Z < 1). The relation between the Energy and the Density

should be fitted through polynomials or other analytical functions.

Free energy per unit volume (Free energy density) is written as, is what

we see in the code.
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A

V
=

nf(y)

β
(3.106)

In the code, we use the integral function to get the total free TF energy.

A =

∫
(
A

V
)dV =

∑
Nx,Ny ,Nz

A

V

V

Nx ∗Ny ∗Nz

(3.107)

We do the integration in real space, it is the standard definition of integration.

In the code, there is also function called Fintegral to calculate the integration

in Fourier space. We use this to calculate the potential energy in Fourier

space.

In the minimization process, we use the free energy of the system to take

the functional derivative.

∂A

∂n
=

f(y)

β
+

∂f(y)

∂y

∂y

∂n

=
f(y)

β
+

∂f(y)

∂y
(
h̄2

m
)3/2

π2

√
2
β3/2

=
f(y)

β
+

∂f(y)

∂y
∗ factor

(3.108)

This is exactly what we see in the code, where the factor is (
h̄2

m
)3/2

π2

√
2
β3/2.

In the code, the kinetic energy is also calculated
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A = U − TS (3.109)

For ideal Fermi system, we do not have potential energy, we only have kinetic

energy.

A = K − TS (3.110)

Since entropy S is independent of temperature we can calculate the kinetic

energy in the following way.

K =
∂(βA)

∂β
=

∂(βK − kS)

∂β
(3.111)

Actually, it is just the U we calculated in the above sub-section.

K =
∂(βA)

∂β
=

∂(nf(y))

∂β
= n

∂(f(y))

∂y

∂(y)

∂β

= n
∂(f(y))

∂y
n
∂factor

∂β

(3.112)

This expression is just what we see in the code.
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3.3.3 Von Weizsäcker kinetic energy functional

This term is exact for any single orbital system, i.e., for up to two singlet-

coupled fermions or any number of bosons. The vW functional by it self is a

lower bound to the true kinetic energy since it neglects spin and Pauli Exclu-

sion Principle. Imposition of the Pauli Principle for more than two electrons

introduces the nodes in the many-body wave function, which increase the

kinetic energy. For a one-orbital system,the kinetic energy can be calculated

exactly, the first step derivation using integral by part and Gaussian’ theory,

the surface term vanish:

Fvw = −1

2

∫
drϕ(r∗)∇2ϕ(r)

=
1

2

∫
dr|∇ϕ(r)|2

=
1

2

∫
dr|∇√

n||∇√
n|

=
1

8

∫
dr

|∇√
n|2

n(r)

(3.113)

Taking into account the first gradient correction lead to the free energy:

Fw =

∫
h(n)

|∇n(r)|2
n(r)

dr (3.114)

The h(n) is given in F. Perrot (PRA 1979) by identifying the polarizability

of a system with exact polarizability of the non interacting electron gas at
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large wavelength.

|∇n(r)|2
n(r)

=
|∇ψ2(r)|2
ψ2(r)

=
|2ψ(r)∇ψ(r)|2

ψ2(r)
= 4|∇ψ(r)|2 (3.115)

In the code, calculating the square of the gradient in Fourier space (−iGψ(G)).

The above expression is exact what we use to calculate the free energy in the

code. Next, we calculate the functional derivative:

F [f, f ′]
δf

=
∂a

∂f
− d

dx

∂a

∂f ′
(3.116)

where a is the kernel of a integral, using this relation, it is simple to get

functional derivative of above equation, take h as 1/8. First term goes to

zero because is independent of ψ, the ψ, ψ′ is independent of each other.

∂Fw

δψ
=

1

2

∂(|∇ψ(r)|2)
∂ψ

− 1

2

d

dx

∂|∇ψ(r)|2
∂ψ′

= −∇2ψ(r) (3.117)

δFw

δn
=

∂

∂n
(h(n)

|∇n(r)|2
n(r)

)

=|∇n(r)|2 ∂

∂n
(
h

n
) +

h

n

∂

∂n
|∇n(r)|2

=|∇n(r)|2((∂h/∂n)n− h

n2
) +

h

n
2
∂n

∂r

∂2

∂2r

∂r

∂n

=|∇n(r)|2((∂h/∂n)n− h

n2
) + 2

h

n
∇2n

(3.118)
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If we take derivative with ψ, we should multiply the above equation by 2ψ.

δFw

δψ
=
(
|∇n(r)|2((∂h/∂ψ)n/2ψ − h

n2
) + 2

h

n
∇2n

)
2ψ

=
(
4ψ2|∇ψ|2((∂h/∂ψ)ψ/2− h

ψ4
) + 2h

2|∇ψ|2+2ψ∇2ψ

ψ2

)
2ψ

=8
(
|∇ψ|2 ∂h

∂ψ
ψ/2 + h∇2ψ

)
=8

(
|∇ψ|2∂h

∂n
+ h∇2ψ

)
=8

(
|∇ψ|2∂h

∂y
∗ factor + h∇2ψ

)

(3.119)

Since y = (
h̄2

m
)3/2

π2

√
2
β3/2n, where the factor is (

h̄2

m
)3/2

π2

√
2
β3/2.

For the final calculation, we calculating the kinetic energy of the system

in the same way as we use in TF case:

K =
∂(βFw)

∂β
=Fw + β

∂
(
h(n)

|∇n(r)|2
n(r)

)
∂β

=Fw + β4|∇ψ(r)|2∂h
∂y

∂y

∂β

=Fw + 4
∂h

∂y
|∇ψ(r)|23

2

(3.120)

This expression is just what we see in the code.
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3.3.4 Free energy minimization and OF equation

The free energy of the system is written as:

F [n(r)] = FTF.. +

∫
Vextn(r)dr +

1

2

∫ ∫
drdr’

n(r)n(r’)
|r − r’| + Fxc (3.121)

Introducing another quantities that related to density by : Attention

norm square

n(r) = |ψ(r)|2 (3.122)

The equation of free energy is constrained by condition:

∫
|ψ(r)|2dr = N (3.123)

Taking the constrains into account by Lagrange’s multiplier, we get :

W [ψ(r)] = FTF.. +

∫
Vextn(r)dr+

1

2

∫ ∫
drdr’

n(r)n(r’)
|r − r’| + Fxc

− μ[

∫
ψ(r)2dr −N ]

(3.124)

where μ is the chemical potential.
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δW [ψ(r)]
δψ(r)

=
δF [ψ(r)]
δn(r)

δn(r)
δψ(r)

− 2μψ(r)

=2[
δF [ψ(r)]
δn(r)

− μ]ψ(r)

=2[
δFTF

δn(r)
+ λ

δFW

δn(r)
+

δFxc

δn(r)
+ Vext +

∫
dr′

n(r′)
|r − r′| − μ]ψ(r)

(3.125)

Where λ is introduced to correct the overestimation of the von-Weizsacker

term. And in the first step of derivation, we use the definition of functional

derivative.

In the code. The first three terms are kinetic terms and exchange correla-

tion terms. The last term is 2ψ(r)V (r), which take into account that density

is ψ(r)2. In the minimization subroutine, the dFdpsi is called Hamiltonian.

Multiply by L3 is because we calculated the potential per unit volume. For

example, the free energy A/V .

δW

δψ(r)
= 2λ(Hψ(r)− μψ(r)) = 0 (3.126)

Where H is

H(ψ(r) = −1

2
∇2 +

1

λ
[
δFTF

δn(r)
+

δFxc

δn(r)
+ Vext +

∫
dr′

n(r′)
|r − r′| ] (3.127)

Finally, we get the same form as the KS equations.
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Hψ(r) = μψ(r)) (3.128)

3.3.5 Conjugate Gradient for Optimization

Take the bra product from left of above equation:

〈ψ| Ĥ |ψ〉 = 〈ψ|μ |ψ〉 = Nμ (3.129)

Chemical potential is calculated as:

μ =

∫
drψ(r)Hψ(r)

N
(3.130)

The SD (steepest descent) vector is calculated as : just the negative of

gradient vector.

ζ =
δW

δψ(r)
= 2λ(μ−H)ψ(r) (3.131)

In the first step, we have to use SD vector as CG vector. We use φ denotes

the CG vector, ζ as SD vector, ϕ as wave function, W total energy of the

system.

|φ0〉 = |ζ0〉 = δW0

δ 〈ψ0(r)| =
δW0

δn

δn

δ 〈ψ0(r)| = 2λ(μ0 −H0) |ψ0(r)〉 (3.132)

Attention here we minimize with respect to 〈ψ0(r)| in order to get the results
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vector in |ket〉 form. Since

n(r) = |ψ(r)|2= ψ∗(r)ψ(r) (3.133)

〈ψ(r)|ψ(r)〉 =
∫

ψ∗(r)ψ(r)dr = N (3.134)

The CG vector must be further orthogonalized to wave function ψi and

normalized to N .

φ′0 = (1− |ψ0〉 〈ψ0|
N

) |φ〉 (3.135)

|φ′′0〉 =
√

N

〈φ′0|φ′0〉
|φ′0〉 (3.136)

After get the normalized CG vector φ′′0, we can update the wave function ϕ

through the direction of CG vector.

|ψ1〉 = |ψ0〉 cosθ0 + |φ′′0〉 sinθ0 (3.137)

Where the value of θ is determined by minimizing the total energy as the

function of θ. The following two subroutines are the detailed process to

calculate the minimum θ.

After know the minimum θ. we can update the wave function, free energy,

chemical potential and so on.
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μ1 =

∫
drψ1(r)Hψ1(r)

N
(3.138)

|ζ1〉 = δW1

δψ1(r)
= 2λ(μ1 −H1) |ψ1(r)〉 (3.139)

|φ1〉 = |ζ1〉+ 〈ζ1|ζ1〉
〈ζ0|ζ0〉 |φ0〉 (3.140)

After normalization, we can update the wave function again. The we repeat

the second step minimization process.

|ψ2〉 = |ψ1〉 cosθ1 + |φ′′1〉 sinθ1 (3.141)

Compared to standard Conjugate Gradient method, we update the CG vector

φ in the same way. However, we update the wave function ψ in a different

way from the CG method. We minimize with respect to θ. But the spirit of

the method is the same, so i guess the process will terminate in N steps.

At the end of this section, I want to summarize the rank of CG vector.

In 2D case (x1, x2) , when we minimize with respect to vector x = (x1, x2),

the CG vector is also a 2*2 vector.

−f ′(x) = [
∂f(x)

∂x1

,
∂f(x)

∂x2

] (3.142)

In our minimization, we minimize with respect to a matrix, so I wonder how

many steps we need to finish the minimization process. The Free Energy of
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the whole system (entire box) is only a number, it depends on the summation

of density, and density depend on the coordinates x, y, z.

Mnbrak finds 3 points of a function bracketing a minimum, giving two

initial points ax bx. It searches in the downward direction until it can find

three new values ax bx cx that bracket a minimum. In this subroutine, we

use Parabolic Interpolation to find the minimum.

The function f(x) can be approximated by a parabola (quadratic func-

tion) in the neighborhood of its minimum (or maximum). Let a < b < c be

three points on the x-axis corresponding to function values f(a) > f(b) <

f(c). Then a quadratic function can be generated through these points by

the Lagrange interpolation:

q(x) = f(a)
(x− b)(x− c)

(a− b)(a− c)
+ f(b)

(x− c)(x− a)

(b− c)(b− a)
+ f(c)

(x− a)(x− b)

(c− a)(c− b)

To find the minimum q(x) at the vertex of this quadratic function, we set its

derivative to zero q′(x) = 0 and get:

q
′
(x) = f(a)

(x− b) + (x− c)

(a− b)(a− c)
+ f(b)

(x− c) + (x− a)

(b− c)(b− a)
+ f(c)

(x− a) + (x− b)

(c− a)(c− b)
= 0

Multiplying both sides by (a− b)(b− c)(c− a) we get

f(a)(c− b)(2x− b− c) + f(b)(a− c)(2x− c− a) + f(c)(b− a)(2x− a− b) = 0
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i.e.,

2x[f(a)(c− b) + f(b)(a− c) + f(c)(b− a)]− [f(a)(c
2 − b

2
) + f(b)(a

2 − c
2
) + f(c)(b

2 − a
2
)] = 0

Solving for x we get:

xmin =
1

2

f(a)(c2 − b2) + f(b)(a2 − c2) + f(c)(b2 − a2)

f(a)(c− b) + f(b)(a− c) + f(c)(b− a)

= b +
1

2

f(a)(c− b)(c + b− 2b) + f(b)(a− c)(a + c− 2b) + f(c)(b− a)(b + a− 2b)

f(a)(c− b) + f(b)(a− c) + f(c)(b− a)

= b +
1

2

f(a)(c− b)2 + f(b)(a− c)(a + c− 2b)− f(c)(b− a)2

f(a)(c− b) + f(b)(a− c) + f(c)(b− a)

= b +
1

2

[f(a)− f(b)](c− b)2 − [f(c)− f(b)](b− a)2

[f(a)− f(b)](c− b) + [f(c)− f(b)](b− a)

It is the u we see in the code. When the f(a) > f(b) < f(c), we bracket the

minimum and finish this subroutine.

Since we already have f(a) > f(b) < f(c), we can use parabolic to fit

the function and find the minimum value of θ. we can substitute the three

numbers into the parabolic equations and solve the determinant of the matrix

to get the parameter of parabolic functions.

3.3.6 Time evolution of collective orbital

We use splitting techniques to do the time propagator. The split-operator(SO)

techniques takes advantage of the fact that the Hamiltonian is composed of

two terms, one diagonal in Fourier space(kinetic term) and potential term
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diagonal in real space.The time dependent Schrodinger equation in atomic

unit in 1D:

−1

2
∇2ψ(x, t) + V (x)ψ(x, t) = i

∂ψ(x, t)

∂t
(3.143)

which have a solution

ψ(x, t) = exp
(
− i(−1

2
∇2 + V (x))Δt)

)
ψ(x, 0) (3.144)

Splitting the Laplacian operator into two parts:

ψ(x, t) = exp[i(
1

4
∇2Δt)] exp[−iV (x)Δt)] exp[i(

1

4
∇2Δt)]ψ(x, 0) (3.145)

This decomposition neglects the commutator term of x and p, and accuracy

of this method is (Δt)2. In Fourier space, the Laplacian operator acts as

(iG)2 where G is the reciprocal vector. So in the codes, I do the loop as

following :

1. First Fourier transform ψ(x, 0) into Fψ(G, 0) in fourier space

2. Propagate Fψ(G, 0) in half step:

Fψ(x,Δt/2) = exp[− i

4
G2Δt]Fψ(x, 0) (3.146)

3. transform back to real space ψ(x,Δt/2)

4. Propagate ψ(G,Δt/2) in full one step in real space:
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ψ(x,Δt/2) = exp[−iV (x)Δt]ψ(x,Δt/2) (3.147)

5. Fourier transform ψ(x,Δt/2) again into Fψ(G,Δt/2) in fourier space

6. Propagate Fψ(G,Δt/2) in half step:

Fψ(x,Δt) = exp[− i

4
G2Δt]Fψ(x,Δt/2) (3.148)

7. Transform back to real space we get the ψ(x,Δt)

During this process, the value of G is range from 0 128 − 127 − 1, this

is typical fftw use to do fft. However, if you use python scipy.fftpack, the

G vector is 0 127 − 128 − 1. Python numpy is also different from these

two. When use the fft to solve Possion’s equation, the G = 0 is set to zero to

avoid division by zero. In the time propagator part, I rewrite a subroutine

TD_Reciprocal_vector in which the G is normal, do not set zero.

Next, the Kohn Sham Hamiltonian (actually chemical potential according

to scaling) we use now to do the propagator. This Hamiltonian is derived as:

H(ψ(r)) = −1

2
∇2 + [

δFTF

δn(r)
+

δFxc

δn(r)
+ Vext +

∫
dr′

n(r′)
|r − r′| ] (3.149)

In the propagator, the first term work as kinetic operator, the following

four term work together as the potential term.

The derivation of the first term is as following: This term is exact for
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any single orbital system, i.e., for up to two singlet-coupled fermions or any

number of bosons. The vW functional by it self is a lower bound to the true

kinetic energy since it neglects spin and Pauli Exclusion Principle. Imposition

of the Pauli Principle for more than two electrons introduces the nodes in

the many-body wave function, which increase the kinetic energy. For a one-

orbital system,the kinetic energy can be calculated exactly, the first step

derivation using integral by part and Gaussian’ theory, the surface term

vanish:

Fvw = −1

2

∫
drϕ(r∗)∇2ϕ(r)

=
1

2

∫
dr|∇ϕ(r)|2

=
1

2

∫
dr|∇√

n||∇√
n|

=
1

8

∫
dr

|∇√
n|2

n(r)

(3.150)

Taking into account the first gradient correction lead to the free energy:

Fw =

∫
h(n)

|∇n(r)|2
n(r)

dr (3.151)

The h(n) is calcuated by identifying the polarizability of a system with exact

polarizability of the non interacting electron gas at large wavelength.
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|∇n(r)|2
n(r)

=
|∇ψ2(r)|2
ψ2(r)

=
|2ψ(r)∇ψ(r)|2

ψ2(r)
= 4|∇ψ(r)|2 (3.152)

In the code, calculating the square of the gradient in Fourier space (−iGψ(G)).

The above expression is exact what we use to calculate the free energy in the

code. Next, we calculate the functional derivative:

F [f, f ′]
δf

=
∂a

∂f
− d

dx

∂a

∂f ′
(3.153)

where a is the kernel of a integral, using this relation, it is simple to get

functional derivative of above equation, take h as 1/8. First term goes to

zero because is independent of ψ, the ψ, ψ′ is independent of each other.

∂Fw

δψ
=

1

2

∂(|∇ψ(r)|2)
∂ψ

− 1

2

d

dx

∂|∇ψ(r)|2
∂ψ′

= −∇2ψ(r) (3.154)

pay attention to multiply by 2 /psi or not in the code.



CHAPTER 3. TD-OF-DFT SIMULATION PACKAGE DEVELOPMENT 75

3.4 Current dependent kinetic energy functional

3.4.1 Linear response theory and Lindhard function

In terms of Linear Response (LR) theory, a small change in the potential

causes a first order change in density:

∂ρ(r, t) =
∫

dr′
∫

dt′χ(r, r′, t, t′)∂V (r′, t′) (3.155)

χ(r, r′, t, t′)−1 = −∂V (r′, t′)
∂ρ(r, t)

= − ∂2E(ρ)

∂ρ(r, t)∂ρ(r′, t′)
(3.156)

In Fourier Space :

χ̃(r,q, t, ω)−1 = −F [
∂2E(ρ)

∂ρ(r, t)∂ρ(r′, t′)
] (3.157)

Lindhard static response function ω = 0

Start from the simple static case in free electron gas limit, the density ρ is

uniform, orbitals φk(r) are plane waves :

φk(r) = (
1

2π
)−3/2eik·r (3.158)

Introduce a weak perturbation potential V (r) into this system, first order

the orbitals can be written accurately as :
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φ
(1)
k (r) = φk(r) +

∑
k �=k

Vc

εk − εk′
φk′(r) (3.159)

where Vc is the coupling element give by :

Vc = (2π)−3Ṽ (k − k′) (3.160)

Introducing a new variable q = k − k′ and replace the summation with

integration :

φ
(1)
k (r) = φk(r) +

2

2π3

∫
q �=0

Ṽ (q)φk−q(r)
k2 − (k − q)2

dq (3.161)

The density variation due to the potential change can be written as :

∂ρ(r) =
occ∑
k

fk[φ
(1)
k (r)2 − φk(r)

2]

=
4

(2π)6

∫
q �=0

Ṽ (q)e−iq·r
occ∑
k

fk

k2 − (k − q)2
dq

(3.162)

In Fourier space, fk is the occupation number, depend on temperature ac-

cording to Fermi-Dirac distribution, at zero temperature occupation number

is 2.

∂ρ̃(q) =
1

(2π)3
Ṽ (q)

occ∑
k

fk

k2 − (k − q)2
(3.163)



CHAPTER 3. TD-OF-DFT SIMULATION PACKAGE DEVELOPMENT 77

Compare this above equation with the definition of response function, we

get

χ̃lind(q) =
1

(2π)3

occ∑
k

fk

k2 − (k − q)2
(3.164)

Setting the occupation number to 2(zero temperature case), replacing the

summation with an integration, doing the integral in sperical coordinate, we

can get :

χ̃lind(q) =
1

(π)3

∫ 2π

0

dφ

∫ π

0

sin θdθ

∫ kF

0

r2
dk

2qk cos(θ)− q2

= − kF
(π)2

∫ kF

0

k ln|q + 2k

q − 2k
|

= − kF
(π)2

(
1

2
+

1− η2

4η
+ ln|1 + η

1− η
|)

(3.165)

where η = q/(2 ∗ kF ) is a diemnsionless momentum.

Extension to finite temperature T can be made by using the Fermi-Dirac

distribution function for the occupation number. Unfortunately, the finite

temperature lindhard function is not generally analytically solvable. How-

ever, it can be calculated numerically using

χ̃lind(q, T ) =
∫ ∞

0

dE
χ̃lind(q, , T = 0)

4kBT cosh2(
E − μ(T )

2kBT
)

(3.166)
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Response function of TF and vW functionals

Using the same method, we can derive the response function of various ki-

netic energy density functionals, the zero temperature Thomas Fermi density

functional is given by :

TTF [ρ] =
3

10
(3π)2/3

∫
ρ(r)5/3dr (3.167)

The TF potential is calculated as :

∂TTF [ρ]

∂ρ(r)
=

1

2
(3π)2/3ρ(r)2/3dr (3.168)

Expand the ρ(r)2/3 and keep the linear term,

∂2TTF [ρ]

∂ρ(r)∂ρ′(r)
=

1

3
(3π)2/3ρ(r)−1/3 (3.169)

So the response function is as following, kF = 3π2ρ(r0)

χ̃TF (q, T = 0) = −kF
π2

(3.170)

The response function of vW functional is

χ̃vW (q, T = 0) = −kF
π2

∗ 4

3q2
(3.171)
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3.4.2 Lindhard dynamic response function ω �= 0

Definition :

χ̃−1Lind(q, ω) = −F
( ∂2F [ρ(r)]

∂ρ(r)∂ρ(r′)

)
(3.172)

We consider two approximate inverse response function for the NI-HEG

(Non-Interacting Homogenous Electron Gas):

χ̃−1TFw(q, ω) = −(π)2

kF
(
1

2
+

3q2

4k2
F

− 3ω2

k2
F q

2
) (3.173)

χ̃−1CD(q, ω) = χ̃−1TFw(q, ω) + i
π3ω

k2
F q

(3.174)

Potential Match :

TNI−HEG = TTF + TwW + TNLR + TCD + TNLI (3.175)

Take derivative of both left and right hand sides with respect to ρ :
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∂TNI−HEG(r, t)

∂ρ(r, t)
=

∂TTF (r, t)

∂ρ(r, t)
+

∂TwW (r, t)

∂ρ(r, t)
+
∂TNLR(r, t)

∂ρ(r, t)

+
∂TCD(r, t)

∂ρ(r, t)
+
∂TNLI(r, t)

∂ρ(r, t)

(3.176)

which is :

χ̃−1Lind(q, ω) = χ̃−1TF (q, ω) + χ̃−1vW (q, ω) + χ̃−1NLR(q, ω) + χ̃−1CD(q, ω) + χ̃−1NLI(q, ω)

(3.177)

Real Part of Lindhard :

Re[χ̃Lind(q, ω)] = −kF
π2

{1

2
− 1− v2−

4q̄
ln|v− + 1

v− − 1
|−1− v2+

4q̄
ln|v+ + 1

v+ − 1
|
}

(3.178)

Imag Part of Lindhard :

Im[χ̃Lind(q, ω)] = −kF
π2

{
(1− v2−)Θ[1− v2−]− (1− v2+)Θ[1− v2+]

}
(3.179)
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3.4.3 Dynamic kinetic energy functional from Lindhard
response

Following previous section analysis leads to the current-dependent (CD) ki-

netic energy functional potential(KEDP, functional derivative of KEDF(White

et al., 2018)). The functional was first developed by Alexander J. White from

Los Alamos National Laboratory and published in (White et al., 2018). The

current dependent functional is given as:

VCD(r, t) =
π3

2K2
F (r, t)

F−1
q,r [iq · J(q, t)/q](r) (3.180)

This term has been implemented in our TD-OF-DFT code to calculate

stopping power. Comparison of response propagation between full Lindhard

response, TFW response and TFW with new current dependent term are

show as Fig. 3.1

Both response functions have a resonance point at
ω

k2
F

=
q

kF

√
1

3
+ (

q

2kf 2

),

but the resonance is broadened by the imaginary part of the current depen-

dent term. As mentioned in the paper(White et al., 2018), The real-time ef-

fect of the CD KEDP VCD is then to dampen density oscillations introduced

by the perturbation. In our case, it is the effect introduced by momentum

transfer of the test particle.This dampening is caused by the decay of the

bulk hydrodynamic motion into electron-hole excitation individual electron

motions. In the TD-OF-DFT approach, these single-particle excitation are
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Figure 3.1: Dynamic density-density response functions for homogeneous
electron gas as a function of wave vector (a) Real part of comparison (b)
Imaginary part of comparison

resolved by the introduction of the auxiliary orbitals. The role of the CD

KEDP is to effect these individual excitation.

3.4.4 Temperature-dependent dynamic kinetic energy
functional

For previous section, the derivation of the current dependent is at zero tem-

perature. For practical use of the simulation in warm dense matter, this

term has to been extended to finite temperature case. In section 3.5.1, I

mentioned that extension to finite temperature can be made using the Fermi-

Dirac distribution function for the occupation number. Unfortunately, the

finite temperature Lindhard function is not generally analytically solvable.

However, it can be calculated numerically using
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Figure 3.2: Im(∂χ−1/∂ω) as a function of the scaled momentum vector q/kF .

χ̃lind(q, T ) =
∫ ∞

0

dE
χ̃lind(q, , T = 0)

4kBT cosh2(
E − μ(T )

2kBT
)

(3.181)

where μ(T ) is the NI-HEG chemical potential. At high temperatures,

kbT >> k2
F/2, when q goes to zero, we have

−i
∂χ−1L (q, ω = 0, T )

∂ω
≈ −π2

kF
[

π

2kF q
]× cT (3.182)

where cT = ([Θ1/2 × 1.69271]3.6 + 1)1/3.6. The two numerical constants

are determined by fitting the Im(∂χ−1/∂ω) as a function of the scaled mo-

mentum vector q/kF shown as Fig. 3.2. The temperature dependent CD

potential is the product of the zero temperature current dependent term and
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the temperature scaling constant ct.
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Chapter 4

Ab initio studies on the stopping power
of warm dense matter with time-dependent
orbital-free density functional theory

4.1 Experimental measure of stopping power

The experiment was conducted on OMEGA with a 532-μm-long solid Be

plug, isochorically heated by x rays produced by a laser-irradiated Ag-coated

CH tubeZylstra et al. (2015). A typical temperature of kbT =32eV is inferred

from XRTS in a similar experimental set upGlenzer et al. (2007). A D3

Hellium glass capsule is imploded to generate the ∼ 15-MeV protons as the

charged-particle source for probing the warm dense Be target. Once the

protons passed through the Be target, the spectra of decelerated protons

were recorded. At this condition ρ = 1.78 g/cm3 and kbT = 32 eV, the Be

plasma is in its fluid phase with degeneracy and coupling parameter of θ ≈
2 and Γ ≈ 0.3.
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4.2 Theoretical models of stopping power

4.2.1 Modified Li-Petrasso formalism

Li-Petrasso (Li and Petrasso, 1993a,b) proposed model of stopping power

includes two parts, binary Coulomb collisions and collective plasma effects

as

dE

dx
= −(

Zte

vt
)2ω2

pf

[
G(xt/f )lnΛb +Θ(xt/f )ln(1.123

√
xt/f )

]
(4.1)

In the above equation, e is the fundamental charge, Zt is the projectile

charge in atomic units, vt is the projectile travel velocity, ωpf is the plasma

frequency which are defined as

ωpf =

√
4πnfe

2
f

mf

(4.2)

where f represent different species for background particles, ef is the

charge of the field particle, nf is the number density of particles and mf

is the mass. The term xt/f =
v2t
v2f

and v2f =
2kBTf

mf

. The last part of equa-

tion and also the most important part I want to mention is the Coulomb

logarithm which is lnΛb in above expression. This term is generally written

as
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lnΛb =
1

2
ln
[
1 + (

λD

pmin

2

)

]
(4.3)

For the Coulomb logarithm, λD is total Debye length both electrons and

ions in the plasma since absolute screen length should be taken into account.

It can be expressed as

λD =
1√

Σf4πnfe2f/kBTf

(4.4)

The last term left is the maximum momentum transfer collision term

which is defined Li-Petrasso paper as

pmin =

√
pv + (

h̄

2mru
) (4.5)

where pv = etef/mru2 is the classical impact parameter. And the second

term is a correction term account for quantum effects. mr is the reduced

mass of test and field particles and u is the velocity ratio between test and

background particles. Also in the paper Li and Patrosso notes that "in the

low temperature, high density regime, electron quantum degeneracy effects

must be considered in calculating maximum momentum transfer collision

term and total Debye length". We can use effective field particle temperature

to consider this quantum effects. In the next section, when compared the

theoretical model with our simulation results, Li-Petrasso model is calculated

in this way.
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4.2.2 Brown-Preston-Singleton (BPS) model

The BPS (Brown, Preston and Singleton Jr, 2005a; Singleton Jr, 2008a)

model describe the charged particle stopping effects in three parts, short-

range Coulomb collisions, long-range dielectric response and quantum cor-

rection.The short-range classical energy loss term is given as

ECS

dx
=
e2t
4π

κ2

mtvt

√
mf

2πβf

∫ 1

0

du
√
uexp(−βfmfv

2
t u/2)[

−ln(βf
etefK

4π

mf

mtf

u

1− u
) + 2− 2γ

] [
βfMtfv

2
t −

1

u

]
+

2

u

(4.6)

In above expression, f represent the field particle and t represent the

projectile. e is particle charge, m is the mass of the particles, vt is the

particle velocity, κ = βfe
2
fnf is the Debye wave number for field species f .

The long-range dielectric response is given as

ECR

dx
=
e2t
4π

i

2π

∫ 1

−1
duu

ρf (uvt)

ρtot(uvt)
F (uvt)ln(

F (uvt)

K2

)

− e2t
4π

i

2π

1

βfmtv2t

[
F (vt)ln

F (vt)

K2

− F ∗(vt)ln
F ∗(vt)
K2

] (4.7)

The BPS model also include an quantum correction term. The BPS model

used to compared with our simulation data is calculated using these three

terms, short-range classical energy loss term, long range dielectric response

term and quantum correction term. From this point of view, Li-Petrasso also
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use three terms to describe full slowing effect of charged particles stopping

in plasma or warm dense matter. In next section, we compared our model

with theoretical models, the data is calculated from these equations. In their

published papers, often the ionization level is calculated in more sophisticated

way to take into effect of both free electrons and bound electrons. In these

thesis, the calculation is only for model comparison purpose. An important

point I want to emphasize here is that in our simulation model, we do not

need any further assumptions of ionization level, the entire simulation system

is self-consistence.

4.3 Simulation set up and Convergence Tests

Since we use plane wave in our simulation, the boundary condition is always

periodic. This will give make the above derivation easier when we use plane

wave. However, when we deal with dynamic case, the periodic boundary

condition(PBC) will bring difficulties to us. Fig. 4.1 (a) is the example

of our simulation unit with periodic boundary conditions. The middle box

with highlight is the master box and other eight boxes are mirrored box.

The figure shows us one test charges particle travel through uniform electron

gas. We can clearly see the response of the background electron density.

In the previous static case, we use Hellmann-Feynman theorem to calculate

the force acting on the nucleus including the test particle since we treat the

nucleus as classical particles. However, if we Hellmann-Feynman theorem
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Master box Mirrored box

(a) (b) Projectile (alpha particle) 
in uniform electron gas
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Figure 4.1: (a) Electron density profile of the simulation box include master
box and mirrored box. We simulate the alpha particle travel through the
uniform electron gas. (b) Force acting on the particle versus travel distance
plot, the calculation is Fourier space is shown in blue and in real space is
shown in orange.

to calculate the force in Fourier space, the effect of electron density will

inevitably influence the momentum of the particle in master box. Fig. 4.1

(b) shows the force acting on the test particle along the way the particle

travel through the simulation unit. The blue line shows the force calculating

in Fourier space and the orange line shows the force calculating in real space.

When the particle reach to the end of the simulation box, the particle will

be influenced by the excited electron gas in the neighbor box, which is an

artificial effect introduced by the periodic boundary condition. In real space

we can calculate the force only consider the master box. The results are

shown as the orange line in Fig. 4.1 (b). As the projectile travel through

the box, the force acting on it will increase since the electron density will
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accumulate around the test particle and provide the drag force. If the box is

long enough, the particle will reach to a final steady state.

Note that the TD-OF-DFT method is all-electron and all-ion, treating the

electronic structure of the whole system with the same level of theory. No

partial- charge or bound vs free electrons need to be defined for the projectile

or bulk ions. We use a range of 64 to 1024 atoms in a periodic rectangular

box of up to 130 Ålength along the long side depend on the projectile velocity.

The criterion to choose the box if make sure the test particle will reach to

final steady state in uniform electron gas.

Convergence test is an essential step in numerical simulation especially

in dynamic case. Simulation length scale, time scale and grid density plays

an importance role in the calculation. We have tested to make sure box size,

grid density, and time step are converged in our calculations. Fig.4.2 shows

us the convege test on number of particles in the simulation unit. Fig.4.2 (a)

indicate that when we increase the number of particles of the box and keep

the density, the length of the box will increase and the force acting on the

particle will gradually reach a steady state and the force will converge when

the number of particle reach to a certain level. In this specific case, the alpha

particle travel in the the uniform electron gas, we believe when number of

particles in the box is larger than 150 the simulation is converged since the

differences are within ∼ 4% compared to larger boxes.
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Figure 4.2: Convergence test of alpha particle travel through the uniform
electron gas. (a) shows the force history along the path (b) shows the average
force along the path

4.4 Proton Stopping in warm dense Beryllium

First we simulation one condition that is same as experimental measure-

ment which is proton stopping in warm beryllium at temperature kbT = 32

eV and solid density = 1.78g/cm3. To start our TD-OF-DFT calculation

we randomly take snapshots of the Be plasma as the initial condition, then

launch the energetic testing proton to move across it. To illustrate, we show

in Fig.4.3 the time-dependent electron densities on the x-y plane containing

the test particle (E0 = 1.5 MeV). The high-energy red spot represent loca-

tions of the background Be ions, while the proton(marked by white arrows)

moves toward +x direction. One can see from the electron density profile

that electron graduate accumulate around the test particle and the particle

will generate the wave in front of the particle.
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Figure 4.3: Snapshots of electron densities in an enlarged window on the x-y
plane from TD-OF-DFT simulations of a 1.5-MeV proton traveling through
a warm dense Be plasma of kbT = 32 eV and solid density = 1.78g/cm3.
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While the test particle travel through the simulation unit, the drag force

provided by the electron density will acting on the test particle slow the test

particle down. We can easily track the energy change of the particle along

the path and calculate the stopping power through −dE/dx. Fig. 4.4 shows

the energy loss of the test particle versus the travel distance. The maximum

travel distance in the example is up to 1.5 μm, the initial energy of the

proton is 1.5MeV and loss ∼ 7keV long the path. The enlarged figure shows

the energy fluctuations due to the variation of the electron density. However,

the overall trend is energy loss. From this energy loss we can calculate the

stopping power in this condition.
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Figure 4.4: Test particle energy (proton) loss versus the travel distance in
the simulation box. The initial energy is 1.5 MeV and travel up to 1.5 μm.

Launching TD-OF-DFT runs with different proton energies ranging from

2 to 15 MeV, we obtain the proton stopping power of the warm dense Be

plasma. The converged results are shown in Fig.4.5(a). For each energy
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point, we have statistically averaged over 20 snapshots from different plasma

configurations. The error bar in Fig.4.5(a) represents the variation from the

20 different runs. Our results are compared to the three stopping-power

models of LPLi and Petrasso (1993a), BPS Brown, Preston and Singleton Jr

(2005a) Singleton Jr (2008a), and DF Clauser and Arista (2018) all with

full electron density. For the exper- imentally accessible energy range, we

provide a more- detailed comparison in the inset of Fig.4.5(b). The stopping

power calculated by TD-OF-DFT is slightly lower than predictions of the LP

model(blue solid line) and the BPS model((red dashed line) by ∼ 5% and ∼
11% respectively, and higher than predicted by DF (orange dash-dotted line)

by ∼ 20%.
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Figure 4.5: (a) The TD-OF-DFT calculated proton stopping power in high
velocities (away from the Bragg peak) in comparison with three stopping-
power models of LPLi and Petrasso (1993a), BPS Brown, Preston and Sin-
gleton Jr (2005a) Singleton Jr (2008a), and DF Clauser and Arista (2018).
(b) Comparisons of the downshifted proton spectra among the experimental
measurementsZylstra et al. (2015), predictions of LP and BPS models, and
the TD-OF-DFT calculations
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To directly compare with experimental measurements, we take the stopping-

power results from TD-OF-DFT calculations and compute the energy spec-

trum after the protons have traversed the 532 μm Be target. The spectral

comparisons between calculations and experiments are made in Fig.4.5(b).

The proton source from the experiment is centered at ∼ 15 MeV as as shown

by the black dashed line in Fig.4.5(b). After passing through the Be target,

the protons are downshifted to a lower energy peaked near E ∼ 12.2MeV.

For visual clarity we only plot the TD-OF-DFT, LP, and BPS spectra. The

measured downshifted spectrum (purple long dashed line) is in good agree-

ment with the TD-OF-DFT calculation (within ∼ 20keV), while both LP and

BPS models predict somewhat larger downshifts than experiment. Namely,

the proton peaks predicted by LP and BPS models are further downshifted

by ∼ 100 and ∼ 200 keV, respectively, than both the experiment and the

TD-OF-DFT calculation.

4.5 Alpha particle stopping in warm-dense DT

As a further example, we consider α particles stopping in warm-dense DT

plasmas. To ultimately obtain experimental verification of stopping-power

models, a uniform and well-characterized DT target is needed. On the other

hand, we would like to have stopping power studies relevant to hot-spot and

compressed DT-shell conditions in ICF. A possible solution is to scale the

warm solid-density targets to have similar coupling and degeneracy parame-
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ters to those of ICF ignition targets. To this end, we envision a 50-μm-thick

solid DT slab at density ρ = 0.25g/cm3 that can be isochorically heated to

kbT = 10eV by laser produced soft x rays. At these conditions, we have a

degeneracy parameter θ ≈ 2.4 and Γ ≈ 0.6, which are close to the compressed

DT-shell condition in ICF targets. With a DT-filled exploding-pusher tar-

get implosion, the α particles source can be generated separately for the

stopping-power measurements. Bearing such an experimental scenario in

mind, we have performed our TD-OF-DFT calculations with α particle en-

ergies ranging from 0.025 to 4MeV.

4.5.1 ρ = 0.25g/cm3 and kbT = 10eV

(a) (b)

Figure 4.6: (a) The α-particle stopping power of warm dense DT plasma(ρ =
0.25g/cm3 and kbT = 10eV) predicted by TD-OF-DFT calculations(green
circles) compared to the LP, BPS and DF models(b) The calculated down-
shifted spectra of α particles passing through the 50-μm DT slab at the same
warm dense condition from both TD-OF-DFT simulations (green) and the
two stopping power models (red and blue).



CHAPTER 4. STOPPING POWER OF WARM DENSE MATTER 98

The simulation results are shown by Fig. 4.6(a). in which the LP, BPS,

and DF models are also compared with our TD-OF-DFT calculations. Fig.

4.6(a) indicates that the stopping power from TD-OF-DFT calculations is

smaller overall than LP, BPS, and DF models by ∼ 16%, ∼ 25% and ∼ 15%.

The TD-OF-DFT results predict greater stopping power than all the models

near the Bragg peak. For such moderately coupled and partially degenerate

plasmas, many-body effects become more difficult to account for in analytical

models. Similar to the Be case, we also plot the spectral comparisons in Fig.

4.6(b) for the downshifted α-particle spectrum. The α-particle source has a

central energy of E0 = 3.5MeV with a thermal width of ΔE ≈ 200 keV. The

downshifted α-particle spectra predicted by the LP model (blue) and the BPS

model (red) peak at Edown ≈ 1.6 MeV and Edown ≈ 1.3 MeV, respectively.

In contrast to these model predictions, our TD-OF-DFT calculations (green)

give a downshifted peak at Edown ≈ 1.8 MeV. These large differences between

the stopping-power models and TD-OF-DFT calculations may readily facil-

itate experimental verifications since they significantly exceed the current

experimental energy resolution (ΔE ∼ 20 to 50 keV).

4.5.2 ρ = 0.25g/cm3 and kbT = 50eV

Since plasma will undergo various condition during ICF explosion process,

We also launch another calculation that simulate the DT condition that ρ =

0.25g/cm3 and kbT = 50eV. Under these conditions, the coupling parameter

and degeneracy parameter which are close to the hot-spot conditions. The
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target is still a 50-μm-thick solid DT slab that can be isochorically heated

to kbT = 50eV by laser produced soft x rays. The simulation results are

shown by Fig. 4.7, in which the LP, BPS, and DF models are also compared

with our TD-OF-DFT calculations. Similar to previous case, Fig. 4.7(a)

indicates that the stopping power from TD-OF-DFT calculations is weaker

overall than LP and BPS models by ∼ 13%. The TD-OF-DFT results predict

greater stopping power than all the models near the Bragg peak which shift

right compared with temperature kbT = 50eV case. For such moderately

coupled and partially degenerate plasmas, it is more difficult to account for

many-body effects in analytical models. Similar to the previous DT case,

we also plot the spectral comparisons in Fig. 4.7(b) for the downshifted

α-particle spectrum. The α-particle source has a central energy of E0 =

3.5MeV with a thermal width of ΔE ≈ 200 keV. The downshifted α-particle

spectra predicted by the LP model (blue) and the BPS model (orange) peak

at Edown ≈ 1.5 MeV and Edown ≈ 1.3 MeV, respectively. In contrast to these

model predictions, our TD-OF-DFT calculations (green) give a downshifted

peak at Edown ≈ 1.8 MeV.

4.6 Proton stopping in warm Carbon

The slowing of energetic changed particles in warm dense matter is of great

interest for not only numerical studies but also experimental probe. The

research of stopping power is the path to explore of coupling and degen-
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Figure 4.7: (a) The α-particle stopping power of warm dense DT plasma(ρ =
0.25g/cm3 and kbT = 50eV) predicted by TD-OF-DFT calculations(green
circles) compared to the LP and BPS(b) The calculated downshifted spectra
of α particles passing through the 50-μm DT slab at the same warm dense
condition from both TD-OF-DFT simulations (green) and the two stopping
power models (red and orange).

eracy effects on the Coulomb interactions and also closely related to other

charged particles transport properties such as thermal and electrical conduc-

tivity. Researches in LLE is planning precision experimental measurements

of the stopping power of carbon on an isotropic source of monoenergetic 15-

MeV protons. The experiments provides an opportunity to further verify our

model under this specific case which is proton stopping in warm dense carbon.

In our simulation, we are able to simulate the exact condition that experiment

adopted. We use 300 μm-thick solid carbon slab at density ρ = 0.25g/cm3

and kbT = 20eV. The projectile particle which is proton in this case has the

initial energy spectrum centered at 15 MeV.

The simulation results are shown by Fig. 4.8, in which our TD-OF-DFT
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models are compared with LB and BPS models. In both LP and BPS models,

we need to provide the electron number density to calculate the stopping

power. In section 4.2, the derivation process of both models are revisited.

Electron density plays an critical role in determining the accuracy of the

models. In our comparisons we provide two limits of electron density, fully

ionized as upper limit of stopping power and average ionization (average Z) as

lower limit. Fig. 4.8(a) shows stopping power from TD-OF-DFT calculations

comparing with LP and BPS models calculated using average ionization, in

this case the value is 2.86. From the comparison we can clearly see that the

stopping power calculated in this way is significantly lower than our TD-

OF-DFT model.The reason behind it is that we neglect the effects of bound

electrons. If we use fully ionized electron density to calculate the results are

shown as Fig. 4.8 (b), in which we can find that both BPS and LP models

predict high stopping power than out TD-OF-DFT simulations. I believe the

reason behind it is also the ionization level. As least BGP and LP required

accurate modeling of partial ionization to calcuate the stopping power. Our

model could be used as one benchmark to infer the mean ionization potential

used in theoretical plasma models. Similar to Be and DT case, we also plot

the spectral comparison in Fig. 4.8 (c) for downshifted proton spectrum.

The proton particle source has a central energy at energy of E0 = 15 MeV

with a thermal width of ΔE ≈ 200 keV. We plot the downshifted proton

spectra predicted by LP model and BPS model in two ways. first use fully

ionization model and the other one use average ionization. The downshifted
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spectra predicted by our TD-OF-DFT model centered at 10.2 MeV while LP

and BPS fully ionized model downshifted more at 9 MeV and 9.2 MeV and

average Z downshifted less centering at 12.8 MeV.

Figure 4.8: (a) The proton stopping power of Carbon plasma(ρ = 5.6g/cm3

and kbT = 20eV) predicted by TD-OF-DFT calculations(green circles) com-
pared to the LP and BPS models calculated using average ionization (b) The
proton stopping power of Carbon plasma(ρ = 5.6g/cm3 and kbT = 20eV) pre-
dicted by TD-OF-DFT calculations(green circles) compared to the LP and
BPS models calculated using fully ionization electron density (c) The cal-
culated downshifted spectra of proton particles passing through the 300-μm
Carbon slab at the same warm dense condition from both TD-OF-DFT simu-
lations (green) and the two stopping power models calculated using different
ionization level
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