AB38.3.1 A commentary on the ALGOL 60 Revised Report AB38 p 5

R.M. De Morgan, I.D. Hill., B.A. Wichmann

A draft of this document was produced for a meeting of the
IFIP Working Group 2.1 held in Breukelen, August 1974.
Changes have been made as a result of comments received at that
meeting. ‘

The authors would Like comments on whether the primitive
IFIP based input-output system is worth including in this document.
Comments would also be welcome on 5.2.4.3 which permits the
declaration of arrays containing no element.

The authors have failed to reach agreement on whether subscripted
controlled variables should continue to be allowed, or whether a
restriction should be made (as in the IFIP subset) to allow only a
variable identifier to be a controltied variable.

For the present this commentary has been written to make the
restriction, although under 4.6.4.2 an explanation is given of how
the operations on a subscripted controlled variable should be
defined if allowed. If it is to be allowed, various consequential
changes would be needed elsewhere in the document.

Comments on this issue would be welcomed.

Would AB readers please send comments to:
B. A. Wichmann, National Physical Laboratory,
Teddington, Middlesex., TW11 OLW U.K.

Owing to the lLimitations of the ISO-code printing device,
the following representations are used:
space

string quotes ()
or or
and and
not not
implies impl
equivalent equiv
not equals ne
integer divide div
ten &
*

multiplication

also syntactic brackets are not distinguished from
less than and greater than. '

AB38 p 6
A commentary on the ALGOL 60 Revised Report

R.M. De Morgan, I.D. Hill, B.A.Wichmann

“For, as on the one side common experience sheweth., that
where a change hath been made of things advisedly
established (no evident necessity so requiring) sundry
inconveniences have thereupon ensued; and those many times
more and greater than the evils. that were intended to be
remedied by such change: So on the other side, the
particular Forms being things in their own nature
indifferent, and alterable, and so acknowledged; it is but
reasonable, that upon weighty and important
considerations, according to the various exigency of times
and occasions, such changes and alterations should be made
therein, as to those that are in place of Authority should
from time to time seem either necessary or expedient

And therefore of the sundry alterations proposed unto
us,» we have rejected all such as were either of dangerous
consequence or else of no consequence at all. but
utterly frivolous and vain

Our general aim therefore in this undertaking was. not
to gratify this or that party in any their unreasonable
demands; but to do that. which to our best understandings
we conceived might most tend to the preservation of Peace
and Unity

If any man, who shall desire a more particular account
of the several Alterations shall take the pains to
compare the present Book with the former; we doubt not but
the reason of the change may easily appear.”

Preface to Book of Common Prayer 1662.

Over the past eleven years. various defects have been noted in the
‘Revised Report on the Algorithmic Language ALGOL 60'. In general. these
defects are of little consequence, but have resulted in unnecessary
variations in the various implementations of ALGOL 60 thus impairing the
portability of ALGOL 60 algorithms. The body responsible for ALGOL 60,
Working Group 2.1 of the International Federation for Information
Processing. therefore asked a small group under the chairmanship of C.A.R.
Hoare to examine the maintenance of ALGOL 60. As a result of an appeal by
Professor Hoare. about a dozen letters were received expressing views on
the work that should be undertaken. Unfortunately, the views were often
conflicting so it has not been possible to satisfy them all.

Although ALGOL 60 shows signs of being swamped by the expanding use of
FORTRAN, and although ALGOL 68 exists, the remaining usage of the language
is still significant and it remains much loved by its users.

The constancy of the language over many years should be regarded as one
of its assets, not lightly to be disturbed. Changes should be kept to the
minimum of necessary clarifications. Any large extensions, at this stage.
would be doomed to be ignored. whereas we hope that the relatively small
changes that we are suggesting may be incorporated into existing compilers.

AB38 p 7

It would seem wreng:, after the Revised Report has existed unchanged for
so many years, to try to force any changes by. for example, withdrawing
IFIP recognition from the 1962 version in favour of any new proposals.

The suggestion, therefore. is that these proposals should be taken as
defining a new language, to be called ALGOL 60.1. which, at least for
awhile, would exist in parallel with Revised ALGOL 60, and reactions would
be evaluated before reaching any final conclusion.

Two items that we have rejected, as being a lLittle too radical, but
that we should regard as strong candidates for consideration if it were
decided to be bolder are (i) the iterative statement: while <Boolean
expression> do <statement> (ii) the conditional string, defined by:

<simple string> ::= (<open string>)] (<string>)
<string> ::= <simple string>]<if clause><simple string>else<string>

We believe that there would be general (though not quite universal)
rejoicing among ALGOL devotees if the extended input-output procedures of
Knuth et al. (1964). and of ISO/R 1538 Part Il B, were to be repudiated.
In our commentary we have simply ignored them for the present.

We have not attempted to change the structure of the subsets, as
defined in the IS0 Recommendation. but in some instances (as detailed
below) we believe that the present subset restrictions should apply to the
full language (level 0). Also, having only six significant characters in
an identifier at level 1 (ECMA subset with recursion) we feel is unduly
restrictive. At levels 2 and 3 (the ECMA and IFIP subsets). it may be more
difficult to ensure adherence to the additional restrictions than compile
the full language.

This paper is in the form of a commentary on the Revised Report
although most of these comments are expressed in the form of amendments. A
booklet containing this paper, the Revised Report and our amendments
applied to the Revised Report will be availablel[9].

A summary of our suggestions for language modification (as distinct
from changes of wording without any change of intention) is as follows:

1. own variables are to be regarded as static. own arrays may
only have fixed bounds. ALl own variables are to be
initialised to zero or false. ‘

2. The for statement is to be dynamic, but a step expression
will be evaluated only once each time around the loop. The
controlled variable cannot be a subscripted variable.

3. The controlled variable of a for statement will remain
defined after exit from the loop.

4. Comments and strings are to consist of characters, not of
ALGOL basic symbols, the characters allowed being
implementation dependent.

5. Some new standard functions and procedures are introduced.
including environmental enquiries and elementary transput.

AB38 p 8

6. Numerical labels are abandoned.

7. The effect of a go to statement leading to an undefined
switch designator is to become undefined.

8. ALl formal parameters must be specified.

9. The exponentiation operator is to become undefined if both
operands are of integer type, and the exponent is
negative.

Introduction

The Revised Report explicitly notes in the Introduction that five
issues have been left unresolved and await further clarification. Our
views on these matters are as follows:-

Side effects of functions

Side effects of functions should be permitted without restriction,
since it does not seem feasible to outlaw foolish uses without at the same
time outlawing sensible uses. It is the programmer’'s responsibility not to
employ the foolish uses.

It should be noted, in particular, that the Revised Report does not
always specify the order in which expressions, or primaries within an
expression. are to be evaluated. For instance, 3.3.5 specifies the order
of execution of operations, but leaves undefined the order of evaluation
of the primaries for those operations.

If different permitted orders of evaluation will produce different
results, due to the action of side effects, then the action of the program
must be regarded as undefined, in the sense of the footnote to the Revised
Report, section 1. It should be noted that in the evaluation of a simple
expression (either Boolean or arithmetic) all the primaries of the
expression must be evaluated unless a jump out of a function is taken. A
primary may contain expressions. The evaluation of a primary does not
necessarily require the evaluation of all such expressions.

The ‘call by name' concept

There appears to be a need to modify to only a minor extent the
detailed description of the execution of a procedure statement in 4.7. The
exact effect of the call-by—-name mechanism is there defined. See the
commentary on 4.7.3.2 for the detailed amendment.

Own: static or dynamic

The static interpretation of own is now accepted as standard. Ehat is
to say: an own variable behaves exactly as if it had been declared in a
block head immediately preceding the program. except that it is accessible
only within its own scope. An extra end., corresponding to this fictitious
block head, is assumed to follow the final end of the program. Possible
conflicts between identifiers, resulting from this process, are resolved
by suitable systematic changes of the identifiers involved.

AB38 p 9

It follows that: (i) an own variable, declared in a block within a
procedure, which is called from different parts of the program. represents
the same variable every time., not a separate variable for each place of
catl; (ii) an own variable, declared within a procedure that is activated
recursively, represents the same variable at every level of the recursion;
(iii) if a complete program is labelled, a go to leading to this label
does not affect the values of own variables.”

Furthermore. we recommend that this fictitious block should serve not
only to declare any own variables, but also to assign initial values to
them. All integer and real own variables should be assigned the value 0,
while all Boolean own variables should be assigned the value false.

The bounds of an own array must be of the form <integer>. The second
example of 5.2.2 must therefore be regarded as incorrect.

For statement: static or dynamic

The dynamic interpretation of the for statement has become accepted as
standard, to such an extent that to many ALGOL 60 users it comes as a
severe shock to be told that the Revised Report does not specify that this
is the required interpretation. Having accepted the dynamic version,
however: it still needs to be settled whether the step-expression has to
be evaluated more than once per cycle, when a step-until element is being
executed. The exact meaning of a subscripted controlled variable is also a
matter of difficulty. It is now to be regarded as standard that the step
expression should be evaluated once only per cycle, and that subscripted
controlled variables should be forbidden. See the commentary on 4.6 below
for the detailed amendments.

Conflict between specification and declaration

The Revised Report section 4.7.5 requires that the kind and type of
each actual parameter be compatible with the kind and type of the
corresponding formal parameter. This compatibility is defined by means of
a table which appears under the commentary on that section.

In addition, the Introduction recognizes three different levels of
Language, Reference, Publication and Hardware. We propose that these
should be reduced to Reference and Hardware only.

Publication Language

The concept of publication language should no longer be recognised. It
has become the universal practice that ALGOL 60 publications use reference
language. with occasional minor variations in representation. These
variations however (such as and for A, or * for x) are rarely, if ever,
those recommended in the Revised Report for publication language.

Furthermore the wording of the Revised Report does not agree with what
was presumably the intention, since removal of the upward arrow, as well
as raising the exponent, was surely intended for exponentiation.

There is also an ambiguity introduced. since in reference language 2&5

AB38 p 10

is a number of real type. whereas 2*1015 is an expression of integer type.
Yet both become 2*105 in publication language.

1 Structure of the language

The environmental block

A program is always considered to be contained within an additional
level of block structure. This block is called the environmental block.
and contains declarations of standard functions., input and output
procedures., and possibly other procedures to be made available without
declaration within the program as well as the fictitious declaration of
own variables.

The environmental block includes declarations of at least the following
procedures:
abs, iabs, sign, entier,
sqrt, sin, cos, arctan, ln, exp.
maxreal, minreal, maxint, epsilon,
fault, stop.
insymbol, outsymbol., inreal., outreal. ininteger,
outterminator, outinteger, outstring. length.

It should be noted that since the environmental block is simply an
ALGOL block, these identifiers may be redeclared within any other block if
desired, with the usual scope rules applying.

The penultimate paragraph of section 1 should be amended to read:

‘A program is a block or a compound statement that is contained only
within a fictitious block, always assumed to be present, called the
- environmental block, and that makes no use of statements not contained
within itself, except that it may invoke such procedure identifiers and
function designators as may be assumea to be declared in the environmental
block.

The environmental block contains procedure declarations of standard
functions., input and output operations, and possibly other operations to
be made available without declaration within the program. It also contains
the fictitious declaration, and initialisation, of own variables (see
section 5).° :

The fictitious structure surrounding the program is:

begin

<declaration of standard functions and procedures>;

<fictitious declaration of own variables>;

<initialisation of own variables>;

<program>;

L1 :
end

where f1 is a label that is not accessible within the program but may be used
by standard functions or procedures. Note that with this amendment the
program ‘sin: begin end’ is no longer valid.

AB38 p 11
2 Basic symbols,identifiers.numbers and strings. Basic concepts

2.3 Delimiters

Footnote concerning do

The footnote to 2.3, and the symbol that refers to this footnote (at
the end of the definition of <sequential operator>). should both be
deleted. It is unnecessary and confusing to readers who have no knowledge
of the preliminary report, and also causes unnecessary ambiguity in the
interpretation of the metalinguistic formulae. How can one tell that 'do "'
(in the Comp.J. version), ‘do 7' (in the Comm. ACM. version), 'do ' (in the
Num. Math. version), or 'do *' (in the ISO version) is not the required
basic symbol? -

Space symbol

In line with the other modifications concerning strings (see 2.6).,
there is now no need for the space symbol in the Reference Language. Hence
;] can now be deleted from the list of separators in 2.3. However:, it is
recommended that a visible character is used to represent a space so that
typographical features are ignored throughout the language.

Characters in comments

Section 2.3 allows only basic symbols within comments., although most
compilers allow any hardware character and published ALGOL 60 often allows
anything except semicolon. Indeed, the Revised Report examples contain

several additional characters.

The relevant part of 2.3 should now read:

‘The sequence is equivalent to
;comment <any sequence of zero or more
characters not containing ;>; :

begin comment <any sequence of zero
or more characters not containing ;>; _ begin

end <any sequence of zero or more
basic symbols not containing end or
else or ;> end

This permits any characters after comment. It should be noted that the
third type of comment (following end) is still restricted, since seeking
for end or ; or else is more difficult for a compiler than merely seeking
for ;.

2.6 Strings AB38 p 12

2.6.1 Syntax

ALGOL 60 is not, and is not intended to be, a string manipulation
language. The only use of strings is in communication to and from foreign
media. It must be recognised that such foreign media deal in characters,
not in ALGOL basic symbols. To be useful. the concept of a string must be
put in touch with reality and be defined in terms of characters.

Characters are already recognised as existing in section 2.1 which says
that the ‘alphabet may ... be ... extended with any other distinctive
character’'. What characters are available must be a matter of hardware
representation and be left undefined by the reference language just as
‘code’ is (see 5.4.6), except in insisting that string quotes must match.
so that the end of a string can be detected. '

To conform with the suggested change in strings to a sequence of
characters and also to clarify the definition of <open string>, the syntax
now becomes:-

<proper string> ::= <any sequence of characters not containing
Lor) >|<empty>
<open string> ::= <proper string>[<open string><string><proper string>

2.6.2 Examples

The character .. which is not now a basic symbol, is used to represent
the position in a string at which a space is required.

2.6.3 Semantics
This section should now read:-

"In order to enable the language to handle sequences of characters the
string quotes (and) are introduced.

The characters available within a string are a question of hardware
representation, and further rules are not given in the reference language.
However it is recommended that, in strings as elsewhere, typographical
features such as blank space or change to a new line should have no
significance, and that the character . should be used to represent a
space.

Strings are used as actual parameters of procedures (see Sections 3.2
Function designators and 4.7 Procedure statements).'

3 Expressions

In the introduction to this section, the list of constituents of
expressions omitted labels and switch designators. The second sentence
should therefore read: ‘Constituents of these expressions, except for
certain delimiters, are logical values, numbers. variables, function
designators, labels, switch designators. and elementary arithmetic,
relational. logical, and sequential operators.’

3.1 variables AB38 p 13

3.1.3 Semantics
Add to this section:

'The value of a variable. not declared own, is undefined from entry
into the block in which it is declared until an assignment is made to it.'

This brings variables into line with function values (see 5.4.4).

3.2.4 Standard functions

Replace the existing sections 3.2.4 and 3.2.5 by

*3.2.4 Standard functions and procedures

Certain standard functions and procedures are declared in the
environmental block with the following procedure identifiers:
abs, iabs, sign., entier, sqrt, sin. cos, arctan, Ln., exp,
insymbol, outsymbol. length, outstring., outterminator,
stop, fault, ininteger, outinteger. inreal, outreal,
maxreal. minreal, maxint, and epsilon.

For details of these functions and procedures, see the specification of
the environmental block given as Example 3, at the end of the report.’

The identifiers maxreal, minreal. maxint., and epsilon define functions,
not standard variables. partly to avoid introducing a new concept
unnecessarily, but mainly so as to make it impossible to assign to them.

- 3.2.5 Transfer functions

As with the other standard functions ‘entier' must be provided in the
environmental block and is not just a recommendation.

Section 3.2.5 should be deleted, since its purpose is now 1ncluded in

the new version of 3.2.4 given above.

3.3 Arithmetic expressions
3.3.3 Semantics

The largest arithmetic expression

The word ‘longest’ should be substituted for ‘lLargest’ in '(the largest
arithmetic expression found in this position is understood) ', since
"largest’ might be taken as referring to the value of the expression.

Meaning of else AB38 p 14

The final sentence of this section should be deleted. It is incorrect
since
else <simple arithmetic expression>
must not be followed by a further else, whereas
else if true then <simple arithmetic expression>
must be followed by a further else. The two constructions are therefore
not equivalent.

It should be replaced by
‘If none of the Boolean expressions has the value true, then the value of
the arithmetic expression is the value of the expression following the
final else’.

3.3.4.2 Division operators

Amend the first sentence by changing ‘denote division, to be
understood’ to read 'denote division. The operations are undefined if the
factcer has the value zero., but are otherwise to be understood’.

It should be noted that the word 'mathematically’, in the definition of
integer division., is intended to signify that the specified operations are
to be performed without rounding error.

The result of integer division can be given by means of a function.
Hence the words °‘mathematically defined as follows:' to the end of the
section should be replaced by 'if a and b are of integer type, then the
value of a div b is given by the function:

integer procedure div(a, b); value a; b;
integer a, b;
if b = 0 then
- fault((div.by.zero) . a)

else

begin integer q, r;

g :=0; r := iabs(a);

for r :=r - jabs(b) while r > 0 do
q:=q+1;
= if a < 0 equivb > 0 then -q else q

It should be noted that although real expressions could be used as
arguments to the procedure div., the operator'gil is permitted only with
operands of type integer. It also should be noted that div is not a
standard function.

3.3.4.3 Exponentiation operator

Rather than give a table of values given by this operator. it seems
more appropriate to define the values by means of algorithms. To achieve
this, the second half of this section starting 'Writing i for a number

... can be replaced by :-

'If r is of real type and x of either real or integer type. then the
value of xtr is given by the function:

AB38 p 15
real procedure expr(x, r); value x, r;
real x, r;
1f x > 0.0 then
expr := exp(rxln(x))
else if x = 0.0 and r > 0.0 then
expr := 0.0

else
fault((expr.undefined) . x)

If n is of integer type and v of real type, then the value of xtn is
given by the function:

real procedure expn(x. n); value x:; n;
real x; integer n;
ifn=10and x = 0.0 then

fault(€0.010) , x)

else

begin

real result; integer i;

result := 1.0;

for i := iabs(n) step -1 until 1 do
result := result*x;

expn := if n<0 then 1.0/result else result

end expn

If i and j are both of integer type, then the value of itj is given by
the function:

integer procedure expi(i, j); value i, j;
integer i, j;
1f 7 <O0ori=0andj=0 then
fault((exp1 undef1nea5 i)

else
begin
integer k. result;
result := 1;
for k := 1 step 1 until] do
T result := result * i;
expi := result
end expi

The call of the procedure fault denotes that the action of the program
is undefined. The numerical accuracy of particular implementations of this
operator should be no worse than that produced by the above algorithms.'

The Revised Report contains a difficulty with this operator in that the
type of <integer>t<integer> depends upon the sign of the exponent. The
above implementation is undefined if the factor and primary are of type
integer and the primary is negative. If it is desired that a real result
should be produced then i1j can be written as float(i)+tj where float is a
function which gives the real value as in the assignment float := i. It
should be noted that float is not a standard function.

In many ways a much neater solution would be to have two different
symbols, for real exponentiation and integer exponentiation, in a similar
manner to real and integer division. but the above seems the best
compromise, as we do not consider that it would be wise to introduce any
new basic symbol.

AB38 p 16
3.3.4.4 Type of a conditional expression

Since the type of a conditional expression is not specified in the
Revised Report, a new section is required thus:-

The type of an arithmetic expression of the form
if B then SAE else AE
does not depend upon the value of B. The expression is of type real if
either SAE or AE is real and is of type integer otherwise.

3.3.5 Precedence of operators

It should be noted that although the precedence of operators determines
the order in which the operations are performed. the order of evaluation
of the primaries for these operations is not defined.
3.3.6 Arithmetics of real quantities

The reference to 'hardware representations’' should be replaced by

‘implementations’, since elsewhere in the Revised Report ‘hardware
representation’ refers to the representation of basic symbols.

3.4 Boolean expressions

3.4.5 The operators
Insert as the first sentence "The relational operators <, <, =, >, >

and ne have their conventional meaning (less than, less than or equal to.
equal to., greater than or equal to., greater than, not equal to).’

3.5 Designational expressions

3.5.1 Syntax

Numerical Llabels

Numerical labels add in no way to the power or usefulness of the
language although providing difficulties for the compiler-writer. They
must now be regarded as obsolete in the full language as well as in the
subsets. The syntax should now be

<label> ::= <identifier>

3.5.2 Examples

To conform to the change in labels. in the first and last examples.,
replace 17 by L17.

AB38 p 17
3.5.5 Unsigned integers as labels

Delete this section.

4 Statements
4.1 Compound statements and blccks

4.1.3 Semantics
Replace the last sentence of the second paragraph by:

‘A label is said to be implicitly declared in this block head. as
distinct from the explicit declaration of all other local identifiers. In
this context a procedure body, or the statement following a for clause.
must be considered as if it were enclosed by begin and end and treated as
a block. A Llabel that is not within any block og the program (nor within a
procedure body. or the statement following a for clause) is implicitly
declared in the head of the environmental block.'

4.2 Assignment statements

4,2.3 Semantics

Amend °the body of a procedure defining the value of a function
designator’ to read 'the body of the procedure defining the value of the
function designator denoted by that identifier.' This ensures that an
assignment to a function can occur only within that function.

Yo conform to the requirement on access to a subscripted variable add
to this section:

‘1f assignment is made to a subscripted variable, the values of all the
subscripts must lie within the appropriate subscript bounds. Otherwise the
action of the program becomes undefined.’

4.2.4 Types

Replace the wording "equivalent to entier (E + 0.5)" by ‘which is the
largest integral quantity not exceeding E + 0.5 in the mathematical sense
(i.e. without rounding error).’

4.3 Go to statements AB38 p 18

4.3.2 Examples

The labels 8 and 17 be must replaced by L8 and L17 respectively since
integer labels are no longer permitted.
4.3.5 Go to an undefined switch designator

Replace this section by:

'A go to statement is undefined if the designational expression is a
switch designator whose value is undefined.’

4.4 Dummy statements

4.4.2 Examples

Amend the second example to read
begin statements; John: end
This is necessary since '... ' is not valid ALGOL 60.

4.5 Conditional statements

4.,5.3,.1 If statement
Reword this section as follows:

"An if statement is of the form
if B then Su
where B is a Boolean expression and Su is an unconditional statement. In
execution, B is evaluated; if the result is true, Su is executed; if the
result is false., Su is not executed.

If Su contains a label, and a go to statement leads to the label. then
B is not evaluated. and the computation continues with execut1on of the
labelled statement.

4.5.3.2 Conditional statement
Reword this section as follows:

‘Three forms of unlabelled conditional statement exist, namely:
if B then Su
7T 8 then Sfor
7f B then Su else S
where Su is an unconditional statement, Sfor is a for statement and S is a
statement.

The meaning of the first form is given in 4.5.3.1.

The second form is equivalent to
if B then begin Sfor end

AB38 p 19
The third form is equivalent to

begin
it B then begin Su; goto L4 end;
S;

L4: end

If the use of L& causes any clash of identifiers it must be systematically
changed to some other identifier - in particular, if S is conditional, and
also of this form, a different label must be used in following the same
rule.’
4.,5.4 Go to into a conditional statement

Delete the last three words and substitute ‘execution of a conditional
statement.’
4.6 For statements

The exact interpretation of the ALGOL 60 for loop mechanism is
controversial. The method given below has the advantage of being expressed
in ALGOL 60.
4.6.1 Syntax

Replace the syntax of <for clause> by

<for clause> ::= for <variable identifier> := <for Llist> gg

4.6.3 Semantics

Replace this section by::

‘A for clause causes the statement S which it precedes to be repeatedly
executed zero or more times. In addition it performs a sequence of
assignments to its controlled variable (the variable after for). The
controlled variable must be of real or integer type.'

4.6.4 The for list elements
Replace this section by:
‘If the for list contains more than one element then
for V := X, Y do S where X is a for list element, and Y is a for
list (which may consist of one element or more), is equivalent to

begin
procedure S1; S;

for V := X do $1;
for v := Y do s1
end

Repeated use of this rule enables any for statement with n elements to
be changed to n for statements with one element each. If the use of $1
causes any clash of identifiers it must be systematically changed to some
other identifier.’

AB38 p 20
4.6.4.1 Arithmetic expression element

Replace this section by:
‘If X is an arithmetic expression
for V := X do §

is equivalent to

begin

Vi=X; S

end .
where S is treated as if it were a block (see 4.1.3).

4.6.4.2 Step—until element
Replace this section by:
"for V := A step B until C do S

is equivalent to
begin <type of B> D;
V:i=A; D:=B8B;
L1: if (V=-C)*sign(D) < 0 then
T begin -
S; V := V+D;
D :=B; goto L1
end
end
where S is treated as if it were a block (see 4.1.3).

In the above. <type of B> must be replaced by real or integer according
to the type of B. If the use of D, or of L1, causes any clash of
jidentifiers, it must be systematically changed to some other identifier.’

If it were decided to allow subscripted controlled variables, the
method should be:
for VL[il := A step B until C do S
is to mean
begin <type of B> D; integer j;
J = 1d4; VLjl := A; D :=B;

=i;

V[jl +D; D :=8B

end
and similarly with controlled variables having more than one subscript.

4.6.4.3 While element
Replace this section by:

'jg& V := E while F do S

is equivalent to AB38 p 21

begin
S g goto L3
end
end
where S is treated as if it were a block (see 4.1.3). If the use of L3

causes any clash of identifiers it must be systematically changed to some
other identifier.’

4.6.5 The value of the controlled variable upon exit

Replace this section by:

‘Upon exit from the for statement., either through a go to statement., or
by exhaustion of the for list, the controlled variable retains the last
value assigned to it."

4.6.6 Go to leading into a for statement
Replace this section by:

‘The statement following a for clause always acts Like a block. whether
it has the form of one or not. Consequently the scope of any label within
this statement can never extend beyond the statement.’

In general the rules given above are merely a tidying operation,
removing certain ambiguities and uncertainties. However, there are some
minor changes in what is to be regarded as correct ALGOL 60, as follows:

(i) for v[il := <for Llist> do becomes incorrect, since a
subscripted controlled variable is not allowed;

(Gii) for j := A[il while j=0 do i := i+1; examine(j) becomes
correct, since j is defined after the for statement;

(iii) for j == ks ms n do qlj] = j; i := j becomes correct. j
has the value n after the for statement;

Gv) begin switch m := asb;

for do
begin-
goto mlil;

85 v

b: seseesensssans

end
end
becomes incorrect, since the scope of a and b does
not extend to the switch declaration. The switch should be
declared after the second begin instead of after the

first; AB38 p 22

) Ceesesensanas
fOr vnvnrnnn do
begin
M aenerienens
ééé:.
ME eenvnennens

becomes correct, since the scope of the inner m does
not extend beyond the for statement;

(vi) If the controlled variable is a name parameter. then the
rules for a procedure call (see 4.7.3.2) prohibit the
actual parameter from being a subscripted variable. The
check for this restriction need be performed only on
initial entry to the loop and not every time round the
loop;

4.7 Procedure statements

4.7.3.2 Name replacement (call by name)

In the first sentence replace 'wherever syntactically possible’ by ‘if
it is an expression but not a variable'. This avoids the difficulty with
the existing wording that if procedure A has a parameter, that is passed
to procedure B, procedure B may be unable to assign to it.since it may
have been syntactically possible within A to put parentheses around it.

4.7.5 Restrictions

Amend the second sentence of the second paragraph to read: ‘Some
important particular cases of this general rule, and some additional
restrictions, are the following:’

4.7.5.4

Add to this section:
‘A label may be called by value, even though variables of type label do
not exist.’

This facility is necessary at level 3, to allow a switch designator to
be used as the actual parameter.

4.7.5.5 AB38 p 23

Add to this section:
‘The correspundence between actual and formal parameters should be in
accordance with the following table:

FORMAL PARAMETER MODE VALID ACTUAL PARAMETERS
LEVEL O LEVELS 1.2 LEVEL 3
integer value ae ae ae
name aex iex is
real value ae ae ae
name ae* rex rs
Boolean value be be be
name be* bex bs
Label value de de l,sd
name de de L
integer array+ value aa ia ia
name ia ia ia
real array+ value aa ra ra
name ra ra ra
Boolean array+ value ba ba ba
name ba ba ba
typeless procedure+ name ap.,bp,tp tp tp
integer procedure+ name ap ip ip
real procedure+ name ap rp rp
Boolean procedure+ name bp bp ~bp
switch name SwW Sw Sw
string name st st st
key:designational:d
arithmetic: a expression: ‘e
integer: i simple variable: s
real: r array: a
Boolean: b procedure: p
typeless: t
label: L
switch designator: sd
switch: sw

actual string or string identifier: st

* Where an assignment is made to the formal parameter, either explicitly
in the body of the procedure, or implicitly by means of a further
procedure call in which such an assignment is made, the actual parameter
must be a variable.

+ With an array parameter. the number of subscripts appearing in any of

AB38 p 24
its subscript lists must agree with those of the actual parameter.

Similarly, the number, kind and type of the parameters of a formal
procedure parameter must agree with the actual parameter.

In a procedure call, for each corresponding pair of actual and formal
parameters., the actual parameter A must satisfy the rules in the above
table, depending on the type and mode of the formal parameter F.

If A is itself a formal parameter, it must satisfy the rules above
depending solely on its specification. irrespective of the nature of its
own actual parameter. Thus, if type conversion (e.g. integer-to-real) is
required by the parameter substitution, this process takes place
independent of the type of the actual parameter substituted for the formal
parameter which is itself the actual parameter in the parameter
substitution under consideration.’

The following example should make this clear:
begin
real x, y;
procedure p(i); integer i;
q(i);
procedure q€2); real z;
y := 2;
x = 6.2;
p(x)
end
The statement 'y := z' requires the evaluation of the actual parameter
'i* in p. This in turn requires the evaluation of the actual parameter 'x
in the outer block. A type conversion (real to integer) is invoked., giving
‘i’ a value of 6, and a further conversion (integer to real), giving ‘2’
the value 6.0. Hence, y is assigned the value 6.0.

4.,7.9 Standard procedures

The Revised Report did not contain any procedures to handle input-
output. To rectify this, and to facilitate the handling of error
conditions, ten standard procedures are defined below. With the exception
of outterminator, fault and stop. all these procedures appear in the IFIP
recommendations for input—outputl[5]. However the IFIP procedures inarray
and outarray have not been implemented, since their effect can be achieved
by means of the procedures inreal and outreal within suitable for
statements. The new section, defining these procedures is:-

‘Ten standard procedures are defined, which are declared in the
environmental block in an identical manner to the standard functions.
These procedures are:— insymbol, outsymbol, outstring, ininteger. inreal,
outinteger, outreal, outterminator, fault and stop. The input-output
procedures identify physical devices or files by means of channel numbers
which appear as the first parameter. The method by which this
identification is achieved is outside the scope of this report. Each
channel is regarded as containing a sequence of characters, the basic
method of accessing or assigning these characters being via the procedures
insymbol and outsymbol.

The procedures inreal and outreal are converses of each other in the
sense that a channel containing characters from successive calls of
outreal can be re-input by the same number of calls of inreal, but some

AB38 p 25

accuracy may be lost, The procedures ininteger and outinteger are also a
pair. but no accuracy can be Lost. The procedure outterminator is called
at the end of each of the procedures outreal. outinteger and outstring.
Its action is machine dependent but it must ensure separation between
successive output of numeric data.

These additional procedures are given as examples to illustrate the
environmental block at the end of this report.’
S5 Declarations

Delete the last two sentences ('Apart from labels ... one block head’)
and substitute the following:

‘Apart from labels, formal parameters of procedure declarations., and
jdentifiers declared in the environmental block., each identifier appearing
in a program must be explicitly decltared within the program.

No identifier may be declared either explicitly or implicitly (see
4.1.3) more than once in any one block head.’
5.1 Type declarations and 5.2 Array declarations

The syntax of 5.2.1 allows array, to be understood (5.2.3.3) as meaning

real array. Yet own real array must be written in full, the abbreviation
own array being prohibited.

To allow own array the following amendments should be made.

In 5.1.1 delete the definition of <local or own type> and <type
declaration> and substitute:

<type declaration> ::= <type><type List>jown<type><type list>

In 5.2.1 delete the definition of <array declaration> and substitute:
<array declarer> ::= array<array tist>|<type>array<array list>
<array declaration> ::= <array declarer>]own<array declarer>
5.1.3 Semantics

Because of the restrictions imposed upon exponentiation at level 3, a
real variable cannot always be replaced by an integer variable. There are
also difficulties at all levels with procedure parameters and hence, at
all levels, the second paragraph of this section should be omitted.

5.2.2 Examples

The second example should be deleted, as an own array may only have
constant bounds.

AB38 p 26
5.2.4 Lower upper bound expressions

Problems arise through the scope of identifiers appearing in these
expressions which we hope are clarified by the following changes.

Replace section 5.2.4.2 by:

'5.2.4.2 The expression cannot include any identifier that is declared,
either explicitly or implicitly {see 4.1.3), in the same block head as the
array in question. The bounds of ain array declared as own may only be of
the syntactic form integer (see 2.5.1).°'

Section 5.2.4.3 specifies the conditions under which an array is
defined. An undefined array. in the sense of this section. should not be
regarded as a fault but merely as giving an array of zero elements. To
ensure this interpretation, add to this section ‘If any lower subscript
bound is greater than the corresponding upper bound., the array has no
elements.’

The array identifier may then be used (for example as an actual
parameter, even if called by value), but any reference to an element of
the array will be incorrect.

Thus: .

begin array Al1:nl; integer i;

for i := 1 step 1 until n do
operate(A[il);

end
is valid even 1f n=0. The array will not exist, but neither will its
elements be accessed.

5.2.5 The identity of subscripted variables

This section should be deleted. The second sentence is no longer
relevant, whereas the meaning, if any, of the first sentence is unclear.
5.4.3 Semantics

Add to the end of this section:

‘No identifier may appear more than once in any one formal parameter
list, nor may a formal parameter list contain the procedure identifier of
the same procedure heading.'

5.4.4 Values of function designators -

Modify ‘in a left part' (in each of two places) to read "as a left

part’. This is necessary as a function designator can appear in a

subscript expression in a left part.

A difficulty arises with a go to leading out of a function designator
since if this jump is executed, no value for the function is defined. To

AB38 p 27

clarify that such jumps are permitted. at the end of the section add the
following words:

'If a go to statement within the procedure, or within any other procedure
activated by it., leads to an exit from the procedure., other than through
its end. then the execution, of all statements that have been started but
not yet completed and which do not contain the label to which the go to
statement leads, is abandoned. The values of all variables that still have
significance remain as they were immediately before execution of the go to
statement.

If a function designator is used as a procedure statement, then the
resulting value is lost., but such a statement may be used, if desired, for
the purpose of invoking side effects.'

Some examples of jumping out of a function are:
(i)
If the jump is taken, j will still have the value 3 when L is reached.

(i1) procedure q(k);
value k; integer k;

begin

menessnee

end q;
alp(L)) ;-

L ceecvnnes

If the jump is taken. none of the statements of g will be performed.

(i1i) 1 = mlk) := nlp(L)] == slt] := j := 3;

Le ceeessen

If the jump is taken, none of the variables will have the value 3 assigned
to it. Any side effects due to evaluation of k will have been performed;
any side effects due to evaluation of t will not (see 4.2.3.1, 4.2.3.2 and
4.2.3.3).

(iv) L seeeceee
M: begin array al 1:p(L) 1;

end
If the jump is taken., execution of the block Llabelled M is abandoned. Note
that, by 5.2.4.2, L can only be outside the block (thank goodness).

5.4.5 Specifications
Incomplete specification of parameters appears to be inconsistent with

the spirit of ALGOL 60, since with declarations, explicit type indications
are required. Moreover:, incomplete specification causes significant

http:.n....le

AB38 p 28

definition and implementation problems. The table given under 4.7.5.5
would no longer specify adequately the valid correspondence between formal
and actual parameters. Hence we believe section 5.4.5 should be replaced
by: ‘In the heading a specification part, giving information about the
kinds and types of the formal parameters must be included. In this part no
formal parameter may occur more than once.'

5.4.6 Code as procedure body

In the final sentence change 'hardware representation' to
‘implementation’.
Examples

As a further example of the use of ALGOL 60, the structure of the
environmental block is given in detail.

EXAMPLE 3
begin
comment Simple functions;

real procedure abs(E);

value E;
real E;
abs :=
ifE>0.0 then
E
else
integer procedure iabs(E);
value E;
integer E;
jabs :=
ii_E > 0 then
E
else
- E;
integer procedure sign(E);
value E;
real E;
sign :=
jj_E > 0.0 then
1
else if E < 0.0 then
-1
else
0;

integer procedure entier(E);
value E;

real E;

comment entier := largest integer not yreater
than E, i.e. E - 1 < entier < E;

begin
integer j;
j = E;

entier :=
if j > E then
j -1
else

j
end entier;

comment Mathematical functions;

real procedure sqrt(Eg);
value E;
real E;
ii E < 0.0 then
fault(Zpegativeégqrtl ¢ B)
else
sqrt := E10.5;

real procedure sin(E);
value E;
real E;

comment sin := sine of E radians;
<body>;

real procedure cos(E);
value E;
real E;

comment cos := cosine of E radians;
<body>;

real procedure arctan(E);
value E;
real E;

comment arctan := principal value, in radians.
of arctangent of E, i.e. —pi/2 < arctan < pi/2;
<body>; . :

real procedure Ln(E);
value E;
real E;

comment ln := natural logarithm of E;

if E < 0.0 then

fault(Sjn;pot;positivel ¢ E)
else

<statement>;

real procedure exp(E);
value E;

B p

29

real E; AB38 p 30

comment exp := exponential function of E;

if E > Ln(maxreal) then

fault((overflow.on.exp) . E)
else ,
<statement>;

comment Input - output procedures;

procedure insymbol(channel, str, int);
value channel; .
ya_ue .
integer channel., int;

string str;

comment Set int to value corresponding to the first
position in str of current character on channel. Set
int to zero if character not in str, unless it is
a non-printing character, in which case set int to a
negative integer associated with the character. Move
channel pointer to next character;

<body>;

procedure outsymbol(channel, str, int);
value channel. int;
integer channel, int;

string str;

comment Pass to channel the character in str,
corresponding to the value of int. If int is
negative, pass the associated non-printing character:
where the association is the same as for insymbol;

if int = 0 or int > length(str) then

T fault(Tcharacter.not.in.string) . int)

else -
<statement>;

integer procedure length(str);
string str;

comment length := number of characters in the open
string enclosed by the outermost string quotes;
<body>;

procedure outstring(channel, str);
value channel;
integer channel;

string str;

5egin

integer m, n;

n := length(str);

for m := 1 step 1 until n do

outsymbol{channel, str, m);
outterminator{(channel)

end outstring; ' AB38 p 31

rocedure outterminator(channel);
value channel;
integer channel;

comment outputs a terminator for use after every
string or number. To be converted into format
control instructions in a machine dependent
" fashion. The terminator should be a space or a
semicolon if ininteger and inreal are to be able
to read representations resulting from outinteger
and outreal;

<body>;

procedure stop;

comment () is assumed to be the label of a dummy
statement immediately preceding the end
of the environmental block;

goto (};

rocedure fault(str. r);
value r;

string str;

rea[r;

comment sigma is assumed to be an integer
constant that denotes a standard output channel.
The following calls of fault appear:
integer divide by zero,
undefined operation in expr.
0.0 + 0 in expn,
undefined operation in expi.
and in the environmental block:
sqrt of negative argument,
ln of negative or zero argument.
overflow on exp function,
illegal parameter for outsymbol,
invalid character in ininteger(twice),
invalid character in inreal(three times);

|

begin

outstring(sigma, (FAULT));
outstring(sigma, str);
outreal(sigma, r);

comment Additional diagnostics may be output here;

stop
end fault;

rocedure ininteger{(channel, int);
value channel;
—_—)
integer channel, int;

comment int takes the value of an integer. as defined

AB38 p 32

in 2.5.1, read from channel. Any number of spaces

or other non-printing characters may precede

the first visible character. The terminator of

the integer may be either a space or other
non-printing character or a semicolon (if other
terminators are to be allowed, they may be added to the
end of the string parameter of the call of insymbol.

No other change is necessary);

begin

integer k., m;

Boolean b, d;

T ————— . .

integer procedure ins;
Eegin

integer n;

insymbol (channel, (0123456789-+.;), n);
ins 1= if n < 0 then 13 else n

end ins;

for k := ins while k =13 do

_11 k'<1ork>13 then
faultT (invalid_character) ., k);

for K= ins while k > 0 and k < 11 do
begin
m:=10 %*m+ k - 1;
d := true
end k Loop;
ii_d mpl k < 13 then
fault(Sjnvalia;pharactegl v k);
j

end ininteger;

procedure outinteger(channel, int);
value channel, int;
integer channel, int;

comment Passes to channel the characters representing
the value of int, followed by a terminator;

begin

rocedure digit(int);
value int;

p—— .
integer int;

integer j;
} == 1int div 10;
int := int - 10 * j;
if j ne 0 then
digit(]);
outsymbol(channel. £0123456789), int + 1)
end;

if int < 0 then
begin
outsymbol(channel, (-), 1);
int := - int
end;
digit{int);
outterminator{channel)
end outinteger;

procedure inreal{channel., re);

value channel;
integer channel;

real re;

comment re takes the value of a number, as
efined in 2.5.1, read from channel. Except for
the different definitions of a number and an
integer the rules are exactly as for ininteger.
Spaces or other non-printing characters may
follow the symbol §&;

begin
integer j, k. m;
real r, s;
Boolean b, d;
integer procedure ins;
integer n;
insymbol (channel . €0123456789-+.&.;)+ n);

ins := if n<0 then 15 else n
end ins;

l-h

k := ins while k = 15 gg

-
-+

k < 1or k > 15 then
fault?’(1nvaL1d character) + k);
k ne 11;

true,

[

— 3 CcT i .
9 00 s as
wouuu

if k < 11 then
2
else
jabs(k + k - 23);

k <11 then

if
k-1
else

0.0;
if k ne 14 then

-
-+
=~
A

ins while k < 14 do

Tork=11o0or k=12
en

or k=13 and | > 2 th
Fault((invalid.character) . k);

if d then
begin
1t k = 13 then
j o=
else
egin
1T J < 3 then
re=T0.0%*r+k-1
else
begin
s := 10.04C - m);
m:=m+1;
r:=r+s*(k-1;
d:=rner+s
end;
ifj=10rj =3 then
je=g o+
end
end
end k loop;
ifj=1and k ne 14 or j =3 then

faultC (invalid.character) s k)

end;
14 then

i
nteger(channel, m);

(if j=10r j =5 then 1.0 else r)

* 10.0 tm ~

-r
end inreal;

rocedure outreal (channel, re);
value channel. re;
integer channel;
real re;

comment Passes to channel the characters representing
the value of re, followed by a terminator;

begin
1nteger n;

n := entier(1.0 - Ln(epsilon) / Ln(10.0));

if re < 0.0 then
begin

outsymbol (channel, (=), 1);

re := - re
end;
if re < minreal then

AB38 p 34

begin
outstring(channel, €0.0) J;
end
else
begin
——— .
integer j+ k. m, p;
Boolean float, nines;

m:=0;
nines := false;
form :=m+ 1 while re > 10.0 gg

1
re :=re / 10.0;
1 while re < 1.0 do
re := 10.0 * re;
if re > 10.0 then
begin
re := 1.0
m:=m+
end;
ifm>norm<=-2 then
" begin
float := true;
p:=1
end
else
begin
float := false;
p =
ifm
-0
else
m+1;
if m < 0 then
begin)
outsymbol (channel, (0). 1);
outsymbol(channetl, T.3, 1);
ifm= -2 then
outsymbol(channel., W. D

- wy

n-10rmc< 0 then

end
S
for j := 1 step 1 until n do

if nines then

= entier(re);
k > 9 then

nines := true
end
else
re := 10.0 * (re - k)
end;
outsymbol(channel, (0123456789), k + 1);
if j = p then - -
outsymbol(channel,) M
end j loop;
if float then

AB38 p 35

begin AB38 p 36

outsymbol(channel, (& . 1);
outinteger(channel, my
end
else
outterminator(channel)
end
end outreal;

comment Environmental enquiries;

real procedure maxreal;
maxreal := <number>;

real procedure minreal;
minreal := <number>;

integer procedure maxint;
maxint := <integer>;

comment maxreal., minreal, and maxint are, respectively
the maximum allowable positive real number, the
minimum allowable positive real number, and the
maximum allowable positive integer, such that any
valid expression of the form

<primary><arithmetic operator><primary>

will be correctly evaluated, provided that each of the
primaries concerned., and the mathematically correct
result Llies within the open interval (-maxreal.-minreal)
or (minreal,maxreal) or is zero if of real type. or within
the open interval (-maxint,maxint) if of integer
type.
If the result is of real type, the words 'correctly
evaluated’ must be understood in the sense of
numerical analysis (see Revised Report 3.3.6);

real procedure epsilon;

comment The smallest positive real number such that the
computational result of 1.0+epsilon is greater than 1.0

and the computational result of 1.0-epsilon is less than
1.0; :

epsilon := <number>;

comment In any particular implementation, further

standard functions and procedures may be added here.,
but no additional ones may be regarded as part of the
reference language;

<fictitious declaration of own variables>;
<initialisation of own variables>;

<program>;

. AB38 p 37
Notes on the standard procedures and functions

The above coding is only to be taken as definitive in terms of its
effect on correct programs, ignoring those questions which are the domain
of numerical analysis. For instance, a call of the procedure °fault’
indicates that the program is in error, and hence after detection of the
error, different action may be taken than that indicated by the above
coding. Actual implementations may produce better diagnostics than are
possible to express conveniently in ALGOL 60.

The procedures sin, cos., arctan, ln, and exp have some coding omitted
because their definition is clear and this report is not concerned with
the methods used in the evaluation of these functions. The bodies of the
procedures insymbol, outsymbol., length, outterminator, maxreal. minreal,
maxint and epsilon are omitted because of their obvious machine
dependence. The procedures insymbol and outsymbol are used on the
assumption that the relevant "ALGOL basic symbols' are single characters.
Appropriate changes must be made if this is not the case., although the
only likely exception is the use of & in "inreal’ and ‘outreal’.

Naturally. implementations should gain significantly in performance
over the coding given above. In particular, the simple functions may be
performed by open code, the variable n in outreal can be assigned the
appropriate constant value, the procedure identifiers maxreal etc can be
replaced by a constant value and the recursive nature of the procedure
digit can be avoided. Also, the numeric properties of the procedures
inreal and outreal can be enhanced by the use of double length working.
although these procedures have been tested and found to be adequate
(within the constraints of single precision).

Index

The following corrections should be made to the index of the Revised
Report:-

. delete entry to conform with amendments.

<arithmetic expression> delete 'synt 3.3.1° as this appears
under def.

<array declarer> add entry containing 'def 5.2.1'
<local or own type> delete entry.

<procedure identifier> insert 4.2.1 under s}nt.
<simple arithmetic expression> insert ‘synt 3.4.1°.
space delete ‘def 2.3’

<type> add ‘synt 5.2.1°

<unsigned integer> delete *3.5.1.°

<variable> delete ‘4.6.1,'

<variable identifier> insert ‘synt 4.6.1'

References AB38 p 38

The documents used to construct this commentary are too numerous to
list, but the principle references are:

[{1] Naur. P (Editor) Revised Report on the Algorithmic
Language ALGOL 60,
Comm ACM. Vol 6 (1963), p1
Comp J, Vol 5 (1963), pZ49
Num Math., Vol 4 (1963), p420

[2} Report on Subset ALGOL 60 (IFIP),
Num Math., Vol 6 (1964), p4S4
comm ACM, Vol 7 (1964), p626

[3] ECMA Subset of ALGOL 60,
Comm ACM, Vol 6 (1963), p595
European Computer Manufacturers Association (1965) ECMA
Standard for a Subset of ALGOL 60.

{4] 1SO/R 1538, Programming Language ALGOL (1972)

[5] Report on Input-Output Procedures for ALGOL 60 (IFIP),
Num Math, Vol 6 (1964)., p459
Comm ACM, Vol 7 (1964), p628

{61 Knuth., D.E. et al, A Proposal for Input-Output
Conventions in ALGOL 60.
Comm ACM, Vol 7 (1964), p273

(71 Knuth, D.E. The Remaining Trouble Spots in ALGOL 60
comm ACM, Vol 10 (1967), pé611

(8] Suggestions on the ALGOL 60 (Rome) Issues,
Comm ACM. Vol 6 (1963), p20

[9] A booklet on ALGOL 60,
Joint IFIP/NPL Publication, to be prepared.

