
AB38.3.1 A commentary on the ALGOL 60 Revised Report AB38 p 5

R.M. De Morgan, I.D. Hill, B.A. Wichmann

A draft of this document was produced for a meeting of the

IFIP Working Group 2.1 held in Breukelen, August 1974.

Changes have been made as a result of comments received at that

meeting.

The authors would like comments on whether the primitive

IFIP based input-output system is worth including in this document.

Comments would also be welcome on 5.2.4.3 which permits the

declaration of arrays containing no element.

The authors have failed to reach agreement on whether subscripted

controlled variables should continue to be allowed, or whether a

restriction should be made (as in the IFIP subset) to allow only a

variable identifier to be a controlled variable.

For the present this commentary has been written to make the

restriction, although under 4.6.4.2 an explanation is given of how

the operations on a subscripted controlled variable should be

defined if allowed. If it is to be allowed, various consequential

changes would be needed elsewhere in the document.

Comments on this issue would be welcomed.

Would AB readers please send comments to:

B. A. Wichmann, National Physical Laboratory,

Teddington, Middlesex, TW110LW U.K.

Owing to the limitations of the ISO-code printing device,

the following representations are used:

space
string quotes ()

or or

and and
not not

implies impl
equivalent equiv
not equals ne

integer divide ~'v
ten &

multiplication *

also syntactic brackets are not distinguished from

less than and greater than.

AB38 p 6

A commentary on the ALGOL 60 Revised Report

R.M. De Morgan, I.D. Hill, B.A.Wichmann

"For, as on the one side common experience sheweth, tha t
where a change hath been n~ade of th ings advisedly
es tab l i shed (no evident necess i ty so requ i r i ng) sundry
inconveniences have thereupon ensued; and those many times
more and grea te r than the e v i l s , tha t were intended to be
remedied by such change: So on the o ther s ide , the
particular Forms being things in their own nature

indifferent, and alterable, and so acknowledged; it is but

reasonable, that upon weighty and important

considerations, according to the various exigency of times

and occasions, such changes and alterations should be made

t he re in , as to those tha t are in place of Au tho r i t y should
from time to time seem e i t h e r necessary or expedient

And the re fo re of the sundry a l t e r a t i o n s proposed unto
us, we have re jec ted a l l such as were e i t h e r of dangerous
consequence or e lse of no consequence at a l l , but
u t t e r l y f r i vo l ous and vain

Our general aim the re fo re in t h i s undertak ing was, not
to g r a t i f y t h i s or tha t par ty in any t h e i r unreasonable
demands; but to do t h a t , which to our best understandings
we conceived might most tend to the p reserva t ion of Peace
and Unity

If any man, who shall desire a more particular account

of the several Alterations shall take the pains to

compare the present Book with the former; we doubt not but

the reason of the change may easily appear."

Preface to Book of Common Prayer 1662.

Over the past eleven years, var ious defects have been noted in the
'Revised Report on the A lgor i thmic Language ALGOL 60 ' . In genera l , these
defects are of l i t t l e consequence, but have resu l ted in unnecessary
va r i a t i ons in the var ious implementat ions of ALGOL 60 thus impai r ing the
p o r t a b i l i t y of ALGOL 60 a lgor i thms. The body responsib le fo r ALGOL 60,
Working Group 2.1 of the I n t e r n a t i o n a l Federat ion fo r In format ion
Processing, the re fo re asked a small group under the chairmanship of C.A.R.
Hoare to examine the maintenance of ALGOL 60. As a r e s u l t of an appeal by
Professor Hoare, about a dozen l e t t e r s were received expressing views on
the work tha t should be undertaken. Un fo r tuna te ly , the views were o f ten
c o n f l i c t i n g so i t has not been poss ib le to s a t i s f y them a l l .

Although ALGOL 60 shows signs of being swamped by the expanding use of
FORTRAN, and although ALGOL 68 e x i s t s , the remaining usage of the language
is s t i l l s i g n i f i c a n t and i t remains much loved by i t s users.

The constancy of the language over many years should be regarded as one
of i t s assets , not l i g h t l y to be d i s tu rbed . Changes should be kept to the
minimum of necessary c l a r i f i c a t i o n s . Any large extens ions, at t h i s stage,
would be doomed to be ignored, whereas we hope tha t the r e l a t i v e l y small
changes tha t we are suggest ing may be incorporated in to e x i s t i n g compi lers.

AB38 p 7

It would seem wrong, after the Revised Report has existed unchanged for

so many years, to try to force any changes by, for example, withdrawing

IFIP recognition from the 1962 version in favour of any new proposals.

The suggestion, therefore, is that these proposals should be taken as

defining a new language, to be called ALGOL 60.1, which, at least for

awhile, would exist in parallel with Revised ALGOL 60, and reactions would

be evaluated before reaching any final conclusion.

Two items that we have rejected, as being a little too radical, but

that we should regard as strong candidates for consideration if it were

decided to be bolder are (i) tile iterative statement: while <Boolean

expression> do <statement> (ii) the conditional string, e~ined by:

<simple string> ::= (<open string>) I (<string>)

<string> ::= <simple--string>~<if cTausexsimple string>else<string>

T

We believe that there would be general (though not quite universal)

rejoicing among ALGOL devotees if the extended input-output procedures of

Knuth et al. (1964), and of ISO/R 1538 Part II B, were to be repudiated.

In our commentary we have simply ignored them for the present.

We have not attempted to change the structure of the subsets, as

defined in the ISO Recommendation, but in some instances (as detailed

below) we believe that the present subset restrictions should apply to the

full language (level 0). Also, having only six significant characters in

an identifier at level 1 (ECMA subset with recursion) we feel is unduly

restrictive. At levels 2 and 3 (the ECMA and IFIP subsets), it may be more

difficult to ensure adherence to the additional restrictions than compile

the full language.

This paper is in the form of a commentary on the Revised Report

although most of these comments are expressed in the form of amendments. A

booklet containing this paper, the Revised Report and our amendments

applied to the Revised Report will be available[9].

A summary of our suggestions for language modification (as distinct

from changes of wording without any change of intention) is as follows:

1. own variables are to be regarded as static, own arrays may

only have fixed bounds. All own variables are to be

initialised to zero or false.

2. The for statement is to be dynamic, but a step expression

will'~ evaluated only once each time aroun~he loop. The

controlled variable cannot be a subscripted variable.

3. The controlled variable of a for statement will remain

defined after exit from the loop.

4. Comments and strings are to consist of characters, not of

ALGOL basic symbols, the characters allowed being

implementation dependent.

5. Some new standard functions and procedures are introduced,

including environmental enquiries and elementary transput.

AB38 p 8

6. Numerical labets are abandoned.

7. The effect of a~.ot_.ostatement 	leading to an undefined

switch designator is to become undefined.

8. All formal parameters must be specified.

9. The exponentiation operator is to become undefined if both

operands are of integer type, and the exponent is

negative.

Introduction

The Revised Report exp l ic i t ly notes in the Introduction that five
issues have been left unresolved and await further c lar i f icat ion. Our
views on these matters are as follows:-

Side e f f ec t s of func t ions

Side effects of functions should be permitted without restriction,

since it does not seem feasible to outlaw foolish uses without at the same

time outlawing sensible uses. It is the programmer's responsibility not to

employ the foolish uses.

It should be noted, in particular, that the Revised Report does not

always specify the order in which expressions, or primaries within an

expression, are to be evaluated. For instance, 3.3.5 specifies the order

of execution of operations, but leaves undefined the order of evaluation

of the primaries for those operations.

If different permitted orders of evaluation will produce different

results, due to the action of side effects, then the action of the program

must be regarded as undefined, in the sense of the footnote to the Revised

Report, section 1. It should be noted that in the evaluation of a simple

expression (e i t h e r Boolean or a r i t hme t i c) a l l the pr imar ies of the
expression must be evaluated unless a jump out of a func t ion is taken. A
primary may conta in express ions. The eva luat ion of a primary does not
necessar i l y requ i re the eva luat ion of a l l such expressions.

The 'call by name' concept

There appears to be a need to modify to onlya minor extent the

detailed description of the execution of a procedure statement in 4.7. The

exact effect of the call-by-name mechanism is there defined. See the

commentary on 4.7.3.2 for the detailed amendment.

Own: static or dynamic

The static interpretation of own is now accepted as standard. Ehat is

to say: an own variable behaves exactly as if it had been declared in a

block head immediately preceding the program, except that it is accessible

only within its own scope. An extra end, corresponding to this fictitious

block head, is assumed to follow the'~Tnal end of the program. Possible

conflicts between identifiers, resulting from this process, are resolved

by suitable systematic changes of the identifiers involved.

AB38 p 9

It follows that: (i) an own variable, declared in a block within a

procedure, which is called from different parts of the program, represents

the same variable every time, not a separate variable for each place of

call; (ii) an own variable, declared within a procedure that is activated

recursiv~ly, represents the same variable at every level of the recursion;

(iii) if a complete program is labelled, a go to leading to this label

does not affect the values of own variables'~----

Furthermore, we recommend that this fictitious block should serve not

only to declare any own variables, but also to assign initial values to

them. All integer an~'-~eal own variables should be assigned the value O,

while all Boolean own varia~'~s should be assigned the value false.

The bounds of an own array must be of the form <integer>. The second

example of 5.2.2 must therefore be regarded as incorrect.

For statement: static or dynamic

The dynamic interpretation of the for statement has become accepted as

,t

standard, to such an extent that to many ALGOL 60 users it comes as a

severe shock to be told that the Revised Report does not specify that this

is the required interpretation. Having accepted the dynamic version,

however, it still needs to be settled whether the step-expression has to

be evaluated more than once per cycle, when a step-until element is being

executed. The exact meaning of a subscripted controlled variable is also a

matter of difficulty. It is now to be regarded as standard that the step

expression should be evaluated once only per cycle, and that subscript~

controlled variables should be forbidden. See the commentary on 4.6 below

for the detailed amendments.

Conflict between specification and declaration

The Revised Report section 4.7.5 requires that the kind and type of

each actual parameter be compatible with the kind and type of the

corresponding formal parameter. This compatibility is defined by means of

a table which appears under tile commentary on that section.

In addition, the Introduction recognizes three different levels of

language, Reference, Publication and Hardware. We propose that these

should be reduced to Reference and Hardware Only.

Publication language

The concept of publication language should no longer be recognised. It

has become the universal practice that ALGOL 60 publications use reference

language, with occasional minor variations in representation. These

variations however (such as and forA, or * for ~)are rarely, if ever,

those recommended in the Revised Report for publication language.

Furthermore the wording of the Revised Report does not agree with what

was presumably the intention, since removal of the upward arrow, as well

as raising the exponent, was surely intended for exponentiation.

There is also an ambiguity introduced, since in reference language 2&5

AB38 p i0

is a number of real type, whereas 2,10f5 is an expression of integer type.

Yet both become 2,105 irl publication language.

1 Structure of the language

The environmental block

A program is always considered to be contained within an additional

level of block structure. This block is called the environmental block,

and contains declarations of standard functions, input and output

procedures, and possibly other procedures to be made available without

declaration within the program as well as the f i c t i t ious declaration of

own variables.

The environmental block includes declarations of at least the following
procedures :

abs, iabs, sign, entier,

sqrt, sin, cos, arctan, In, exp,

maxreal, minreal, maxint, epsilon,

fault, stop,

insymbol, outsynbol, inreal, outreal, ininteger,

outterminator, outinteger, outstring, length.

It should be noted that since the environmental block is simply an
ALGOL block, these identifiers may be redeclared within any other block if
desired, with the usual scope rules applying.

The penultimate paragraph of section I should be amended to read:

'A program is a block or a compound statement that is contained only

within a fictitious block, always assumed to be present, called the

environmental block, and that makes no use of statements not contained

within itself, except that it may invoke such procedure identifiers and

function designators as may be assumeG to be declared in the environmental

block.

The environmental block contains procedure declarations of standard

functions, input and output operations, and possibly other operations to

be made available without declaration within the program. It also contains

the fictitious declaration, and initialisation, of own variables (see

section 5).'

The fictitious structure surrounding the program is:

bet

<declaration of standard functions and procedures>;

<fictitious declaration of own variables>;

<initialisation of own variables>;

<program>;

It:

end

whereI'l is a label that is not accessible within the program but may be used

by standard functions or procedures. Note that with this amendment the

program 'sin: be~i n end' is no longer valid.

AB38 p 11

2 Basic symbols,identifiers,numbers and str ings. Basic concepts

2.5 Delimiters

Footnote concerning do

The footnote to 2.3, and the symbol that refers to this footnote (at

the end of the definition of <sequential operator>), should both be

deleted. It is unnecessary and confusing to readers who have no knowledge

of the preliminary report, and also causes unnecessary ambiguity in the

interpretation of the metalinguistic formulae. How can one tell that 'do "'

(in the Comp.J. version), 'do 7. (in the Comm. ACM. version), 'do ~' (i"~ the

Num. Math. version), or 'doT' (in the ISO version) is not the re--quired

basic symbol?

Space symbol

In line with the other modifications concerning strings (see 2.6),
there is now no need for the space symbol in the Reference Language. Hence
--'I can now be deleted from the l i s t of separators in 2.3. However, i t is
recommended that a v is ib le character is used to represent a space so that
typographical features are ignored throughout the language.

Characters in comments

Section 2.3 allows only basic symbols within comments, although most

compilers allow any hardware character and published ALGOL 60 often allows

anything except semicolon. Indeed, the Revised Report examples contain

several additional characters.

The relevant part of 2.3 should now read:
'The sequence is equivalent to

;comment <any sequence of zero or more
characters not containing ;>;

begin comment <any sequence of zero
or more characters not containing ;>; begin

end <any sequence of zero or more
basic symbols not con ta in ing end or
e lse or ;> end

This permits any characters after comment. It should be noted that the
third type of comment (following end) is still restricted, since seeking
for end or ; or else is more difficult for a compiler than merely seeking
for ; . '

2.6 St r ings AB38 p 12

2.6.1 Syntax

ALGOL 60 is not , and is not intended to be, a s t r i n g manipulat ion
language. The only use of s t r i n g s is in communication to and from fo re ign
media. I t must be recognised tha t such fo re ign media deal in charac ters ,
not in ALGOL basic symbols. To be use fu l , the concept of a s t r i n g must be
put in touch wi th r e a l i t y and be def ined in terms of charac ters .

Characters are already recognised as e x i s t i n g in sec t ion 2.1 which says
tha t the 'a lphabet may . . . be . . . extended w i th any o ther d i s t i n c t i v e
c h a r a c t e r ' . What characters are ava i lab le must be a matter of hardware
represen ta t ion and be l e f t undefined by the reference language j us t as
'code' is (see 5 .4 .6) , except in i n s i s t i n g tha t s t r i n g quotes must match,
so tha t the end of a s t r i n g can be detected.

To conform with the suggested change in s t r i n g s to a sequence of
characters and also to c l a r i f y the d e f i n i t i o n of <open s t r i ng> , the syntax
now becomes:-

<proper s t r i ng> : := <any sequence of characters not con ta in ing
(or) >l<empty>

<open st'F'ing>--:: = <proper s t r ing> l<open s t r i n g x s t r i n g x p r o p e r s t r i ng>

2.6.2 Examples

The character., which is not now a basic symbol, is used to represent

the position in a-string at which a space is required.

2.6 .3 Semantics

This sect ion should now read: -

' I n order to enable the language to handle sequences of characters the
s t r i n g quotes (and) are in t roduced.

The characters ava i l ab le within a s t r i n g are a quest ion of hardware
represen ta t ion , and f u r t h e r ru les are not given in the reference language.
However i t is recommended t h a t , in s t r i n g s as elsewhere, typograph ica l
features such as blank space or change to a new l ine should have no
s i g n i f i c a n c e , and tha t the charac ter . should be used to represent a
space.

St r ings are used as actual parameters of procedures (see Sections 3.2
Function des ignators and 4.7 Procedure s ta tements) . '

3 Expressions

In the i n t r o d u c t i o n to t h i s sec t i on , the l i s t of cons t i t uen ts of
expressions omit ted labels and swi tch des ignators . The second sentence
should the re fo re read: 'Cons t i t uen ts of these express ions, except f o r
ce r t a i n d e l i m i t e r s , are log ica l values, numbers, va r i ab les , func t ion
des ignators , labe ls , swi tch des ignators , and elementary a r i t hme t i c ,
r e l a t i o n a l , l o g i c a l , and sequent ia l ope ra to r s . '

3.1 Variables AB38 p 13

3.1.3 Semantics

Add to this section:

'The value of a variable, not declared own, is undefined from entry

into the block in which it is declared untfl an assignment is made to it.'

This brings variables into line with function values (see 5.4.4).

3.2.4 Standard functions

Replace the existing sections 3.2.4 and 3.2.5 by

°3.2.4 Standard functions and procedures

Certain standard funct ions and procedures are declared in the
environmental block wi th the fo l low ing procedure i d e n t i f i e r s :

abs, iabs, s ign, en t i e r , sq r t , s in , cos, arctan, ln , exp,
insymbol, outsymbol, length, ou t s t r i ng , ou t te rminator ,
stop, f a u l t , i n in teger , ou t in teger , i n rea l , ou t rea l ,
maxreal, minreal , maxint, and epsi lon.

For de ta i l s of these funct ions and procedures, see the spec i f i ca t i on of
the environmental block given as Example 3, at the end of the r e p o r t . '

The identifiers maxreal, minreal, maxint, and epsilon def ine funct ions,
not standard var iab les , pa r t l y to avoid in t roducing a new concept
unnecessar i ly , but mainly so as to make i t impossible to assign to them.

3.2.5 Transfer functions

As with the other standard functions 'entier' must be provided in the

environmental block and is not just a recommendation.

Section 3.2.5 should be deleted, since its purpose is now included in

the new version of 3.2.4 given above.

3.3 Arithmetic expressions

3.3.3 Semantics

The largest ar i thmet ic expression

The word 'Longest ' should be subs t i tu ted fo r ' l a r g e s t ' in ' (t he largest
a r i thmet i c expression found in th i s pos i t ion is understood) ' , since
' l a r g e s t ' might be taken as re fe r r i ng to the value of the expression.

Meaning of else AB38 p 14

The final sentence of this section should be deleted. It is incorrect

since

else <simple arithmetic expression>
must not be followed by a further else, whereas

else i f true then <simple arlthmetlc expression>
must be'~' [To~d'-~"a-- '~ther else. The two constructions are therefore
not equivalent.

It should be replaced by

'If none of the Boolean expressions has the value true, then the value of

the arithmetic expression is the value of the expression following the

final else'.

3.3.4.2 Division operators

Amend the first sentence by changing 'denote division, to be
understood' to read 'denote division. The operations are undefined if the
facter has the value zero, but are otherwise to be understood'.

It should be noted that the word 'mathematically', in the definition of

integer division, is intended to signify that the specified operations are

to be performed without rounding error.

The result of integer division can be given by means of a function.

Hence the words 'mathematically defined as follows:' to the end of the

section should be replaced by 'if a and b are of integer type, then the

value of a div b is given by the function:

integer procedure div(a, b); value a, b;

integer a, b;

if b = 0 then

-- fau~ (_div._by.zero)_ , a)

else

begin integer q, r;

q := O; r := iebs(a);

for r := r - iabs(b) while r > 0 do

q :=q+l;

div := if a < 0 equiv b > 0 then -q else q

end di

It should be noted that although real expressions could be used as

arguments to the procedure div, the operator div is permitted only with

operands of type integer. It also should be noted that div is not a

standard function.

3.3.4.3 Exponentiation operator

Rather than give a table of values given by this operator, it seems

more appropriate to define the values by means of algorithms. To achieve

this, the second half of this section starting 'Writing i for a number

...' can be replaced by :-

'If r is of real type and x of either real or integer type, then the

value of xfr is given by the function:

AB38 p 15

real procedure expr(x, r) ; value x, r ;
real x, r;

if X > 0.0 then

expr :=exp(r*In(x))

else if x = 0.0 and r > 0.0 then

expr := 0.0

else

fault((expr.undefined~ , x)

If n is of integer type and × of real type, then the value of xfn is

given by the function:

real procedure expn(x, n); value x, n;

real x; integer n;

= 0 and x = 0.0 then

-- fault((O.OfO) ,-'~-

else

begin
real result; integer i;

result := 1.0;

for i := iabs(n) step -I until 1 do

result := re~t*x;

expn := if n<O then 1.0/result else result

end expn

If i and j are both of integer type, then the value of ifj is given by

the function:

i n teger 	 procedure e x p i (i , j) ; value i , j ;
in teger i , j ;
i f j < 0 or i = 0 and j = 0 then
-- fau~t((_expi,undefine_~, j)

else

begin
in teger 	 k, r e s u l t ;
r esu l t := 1;
fo r k := 1 step 1 u n t i l j do

resu l t : = resut ~ i ; - -
expi := 	 r e s u l t
end expi

The ca l l of the procedure f a u l t denotes tha t the ac t ion of the program
is undef ined. The numerical accuracy of p a r t i c u l a r implementat ions of t h i s
operator should be no worse than tha t produced by the above a l go r i t hms . '

The Revised Report conta ins a d i f f i c u l t y wi th t h i s operator in tha t the
type of < in teger> f< in teger> depends upon the s ign of the exponent. The
above implementat ion is undefined i f the fac to r and primary are of type
in teger and the primary is negat ive. I f i t is des i red tha t a real r e s u l t
should be produced then i f j can be w r i t t e n as f l o a t (i) f j where f l o a t is a
func t ion which gives the real value as in the assignment f l o a t := i . I t
should be noted tha t f l o a t is not a standard func t ion .

In many ways a much neater s o l u t i o n would be to have two d i f f e r e n t
symbols, fo r real exponent ia t ion and in teger exponent ia t ion , in a s i m i l a r
manner to real and in teger d i v i s i o n , but the above Seems the best
compromise, as we do not consider tha t i t would be wise to in t roduce any
new basic symbol.

AB38 p 16

3.3.4.4 Type of a conditional expression

Since the type of a conditional expression is not specified in the

Revised Report, a new section is required thus:-

The type of an arithmetic expression of the form

if B then SAE else AE

does not-~epen~pon t ee~alue of B. The expression is of type real if

either SAE or AE is real and is of type integer otherwise.

3.3.5 Precedence of operators

I t should be noted that although the precedence of operators determines
the order in which the operat ions are performed, the order of evaluat ion
of the pr imaries fo r these operat ions is not def ined.

3.3.6 Arithmetics of real quantities

The reference to 'hardware representat ions ' should be replaced by
' implementat ions ' , since elsewhere in the Revised Report 'hardware
representat ion ' refers to the representat ion of basic symbols.

3.4 Boolean expressions

3.4.5 The operators

Inser t as the f i r s t sentence 'The re l a t i ona l operators <, <, =, >, >
and ne have t h e i r conventional meaning (less than, Less than ~r equal to,
equal to , greater than or equal to , greater than, not equal t o) . '

3.5 Designational expressions

3.5.1 Syntax

Numerical Labels

Numerical Labels add in no way to the power or usefulness of the

Language although providing difficulties for the compiler-writer. They

must now be regarded as obsolete in the full Language as well as in the

subsets. The syntax should now be

<Label> ::= <identifier>

3.5.2 Examples

To conform to the change in labels, in the first and Last examples,

replace 17 by L17.

AB38 p 17

3.5.5 Unsigned integers as labels

Delete this section.

4 Statements

4.1 Compound statements and blocks

4.1.3 Semantics

Replace the last sentence of the second paragraph by:

'A Label is said to be implicitly declared in this block head, as

distinct from the explicit declaration of all other local identifiers. In

this context a procedure body, or the statement following a for clause,

must be considered as if it were enclosed by be~and end a~-'treated as

a block. A label that is not within any blockofthe program (nor within a

procedure body, or the statement following a for clause) is implicitly

declared in the head of the environmental bloc."

4.2 Assignment statements

4.2.3 Semantics

Amend "the body of a procedure defining the value of a function

designator' to read 'the body of the procedure defining the value of the

function designator denoted by that identifier.' This ensures that an

assignment to a function can occur only within that function.

To conform to the requirement on access to a subscripted variable add

to this section:

'If assignment is made to a subscripted variable, the values of all the

subscripts must lie within the appropriate subscript bounds. Otherwise the

action of the program becomes undefined.'

4.2.4 Types

RepLace the wording "equivalent to ent ie r (E + 0 .5) ' by 'which is the
Largest in tegral quant i ty not exceeding E + 0.5 in the mathematical sense
(i . e . without rounding e r r o r) . '

' AB38 p 18
4.3 Go to statements

4.3.2 Examples

The Labels 8 and 17 be must replaced by L8 and L17 respect ive ly since
in teger labels are no longer permit ted.

4.3.5 Go to an undefined switch designator

Replace th i s sect ion by:

'A go to statement is undefined i f the designat ional expression is a
switch designator whose value is undef ined. '

4.4 Dummy statements

4.4.2 Examples

Amend the second example to read

be__~statements; John: end

This is necessary since '...' is not valid ALGOL 60.

4.5 Conditional statements

4.5.3.1 If statement

Reword th i s sect ion as fo l lows :

'An i f statement is of the form
i f B then Su

where B is"a Boo--an expression and Su is an uncondi t ional statement. In
execut ion, B is evaluated; i f the resu l t is t rue , Su is executed; i f the
resu l t is fa lse , Su is not executed.

I f Su contains a Label, and a ~ . o t o statement Leads to the Label, then
B is not evaluated, and the computatTon continues wi th execution of the
label led statement. '

4 .5 .3 .2 Condit ional statement

Reword th i s sect ion as fo l lows:

'Three forms of unlabel led condi t iona l statement ex i s t , namely:

i f B then Su

B ~ Sfor

TTB t ~ S u else S

where Su is a"n uncondi t ion- '~statement , Sfor is a fo r statement and S is a
statement.

The meaning of the f i r s t form is given in 4 .5 .3 .1 .

The second form is equivalent to

i...f. B the._..n begin Sfor en__.d

AB38 p lq

The third form is equivalent to

begin

iT B then begin Su; goto L4 en_.~;

S;

L4: end

If the use of L4 causes any clash of identifiers it must be systematically

changed to some other identifier - in particular, if S is conditional, and

also of this form, a different label must be used in following the same

rule.'

4.5.4 Go to into a conditional statement

Delete the last three words and substitute 'execution of a conditional

statement.'

4.6 For statements

The exact interpretation of the ALGOL 60 for loop mechanism is

controversial. The method given below has the advantage of being expressed

in ALGOL 60.

4.6.1 Syntax

Replace the syntax of <for clause> by

<for clause> ::= for <variable identifier> := <for list> do

4.6.3 Semantics

Replace this section by:

'A for clause causes the statement S which it precedes to be repeatedly

executed zero or more times. In addition it performs a sequence of

assignments to its controlled variable (the variable after for). The

controlled variable must be of real or integer type.'

4.6.4 The for list elements

Replace this section by:

'If the for list contains more than one element then

for V := X, Y do S where X is a for list element, and Y is a for

list (whi~ may consis't--of one element or more), is equivalent to

beg i n

procedure $I; S;

for V := X do $I;

o~V := Y~]~ $1

Repeated use of this rule enables any for statement with n elements to

be changed to n for statements with one element each. If the use of $1

causes any clash-N" identifiers it must be systematically changed to some

other identifier.'

AB38 p 20

4.6.4.1 	 Ar i thmet ic expression element

Replace t h i s sec t ion by:

'If X is an a r i t hme t i c expression

fo r V := X do S

is equiva lent to
begin
V := X; S
end

I

where S is treated as if it were a block (see 4 . 1 . 3) .

4 . 6 .4 .2 	 Step -un t i l element

Replace t h i s sec t ion by:

'for V := A step B until C do S

i s equ iva lent to
begin <type of B> D;
V := A; D := B;

L l : i f (V-C)*s ign(D) < 0 then
be~in

S; 	 V := V+D;
D : = B; goto L1
end

end
where S is t r ea te~ as i f i t were a block (see 4 , 1 . 3) .

In the above, <type of B> musk be replaced by real or in teger according
to the type of B. I f the use of D, or of L1, causes any Clash o f
i d e n t i f i e r s , i t must be sys tema t i ca l l y changed to some o ther i d e n t i f i e r . '

I f i t were decided to a l low subscr ip ted c o n t r o l l e d va r i ab les , the
method should be:

fo r V [i] := A s t A B u n t i l C d....o S

is 	to mean

be. ~ in .< type of B> D; in teBer j ;
j := 1; V [j] := A; D := B;

L1 : 	 i f (V [j] - C) * sign(D) < 0 then
m

be in

S; J := i ;

VEj] := V [j] + D; D := B;

e L!
end

and s i m i l a r l y wi th c o n t r o l l e d var iab les having more than one subsc r i p t .

4 .6 .4 .3 While element

RepLace t h i s sec t ion by:

' f o r V := E whi le F do S

is equivalent to 	 AB38 p 21

L3: V := E;

if F then

begi___._n

S; got. L3

end

end
where S is t reate ' -~as i f i t were a b lock (see 4 . 1 . 3) . I f the use of L3
causes any clash of i d e n t i f i e r s i t must be s y s t e m a t i c a l l y changed to some
o ther i d e n t i f i e r . '

4.6.5 The value of the controlled variable upon exit

Replace this section by:

'Upon exit from the for statement, either through a go to statement, or

by exhaustion of the fo~'['ist, the controlled variable'~t'aTns the last

value assigned to it.'

4.6.6 Go to leading into a for statement

Replace this section by:

'The statement following a for clause always acts like a block, whether

it has the form of one or not. Consequently the scope of any label within

this statement can never extend beyond the statement.'

In general the rules given above are merely a tidying operation,

removing certain ambiguities and uncertainties. However, there are some

minor changes in what is to be regarded as correct ALGOL 60, as follows:

(i) for viii 	 := <for list> do becomes incorrect, since a

subscripted controlled variable is not allowed;

(ii) for j := A[i] while j=O do i := i+1; examine(j) 	becomes

correct, since j is- defineR'after the for statement;

(i i i) 	 f o r j := k, m, n do q [j] := j ; i := j becomes c o r r e c t , j
h a s - ~ e value n a f te '~- the f o r s ta tement ;

(iv) begin switch m := a ,b ;
. o e m e a m m a e a e e . = = =

= . . = l e e m m e m n e a e m =

for do

b e g i n
. i o e e . . . = o

i i . o ,

a:

b:

end

end

becomes i n c o r r e c t , s ince the scope of a and b does
not extend to the swi tch d e c l a r a t i o n . The swi tch should be
declared a f t e r the second begin i ns tead o f a f t e r the

first; 	 Am38 p 22

(v) • • • • • l e a

b e g i n
. l e m i .

• • m . . m m t

• . a . . . •m;

end;
• • • 	 • • 0 . . . m . •

m : • . . e . . m m e . m

• 0 • 	 • • . . • • m • •

becomes co r rec t , s ince the scope of the inner m does
not extend beyond the fo r statement;

(v i) 	 I f the c o n t r o l l e d var iab le is a name parameter, then the
ru les fo r a procedure ca l l (see 4 .7 .3 .2) p r o h i b i t the
actual parameter from being a subscr ip ted va r i ab le . The
check fo r t h i s r e s t r i c t i o n need be performed only on
i n i t i a l ent ry to the loop and not every time round the
loop;

4.7 Procedure statements

4.7.3.2 Name replacement (call by name)

In the f i r s t sentence replace 'wherever s y n t a c t i c a l l y poss ib le ' by ' i f
i t is an expression but not a v a r i a b l e ' • This avoids the d i f f i c u l t y w i th
the e x i s t i n g wording tha t i f procedure A has a parameter, tha t is passed
to procedure B, procedure B may be unable to assign to i t , s i n c e i t may
have been s y n t a c t i c a l l y poss ib le w i t h i n A to put parentheses around i t .

4.7.5 Restrictions

Amend the second sentence of the second paragraph to read: 'Some

important particular cases of this general rule, and some additional

restrictions, are the following:'

4.7.5.4

Add to this section:

'A label may be called by value, even though variables of type label do

not exist.'

This facility is necessary at Level 3, to allow a switch designator to

be used as the actual parameter.

4 . 7 . 5 . 5 	 AB38 p 23

Add to this section:

'The correspondence between actual and formal parameters should be in

accordance with the following table:

FORMAL PARAMETER MODE VALID ACTUAL PARAMETERS

LEVEL 0 LEVELS 1,2 LEVEL 3

i n t e g e r 	 v a l u e ae ae ae
name a e * i e * i s

real 	 value ae ae ae
name ae* re* rs

Boolean 	 value be be be

name be* be* bs

label 	 value de de l,sd

name de de l

integer array+ 	 value aa ia ia

name ia ia ia

real array+ 	 v a l u e aa ra ra
name ra ra ra

Boolean array+ 	 value ba ba ba

name ba ba ba

typeless procedure+ 	name ap,bp,tp tp tp

integer procedure+ 	 name ap ip ip

real procedure+ 	 name ap rp rp

Boolean procedure+ 	 name bp bp bp

switch 	 name sw sw sw

string 	 name st st st

key:designational:d

arithmetic: a exp res s i on : e

integer: i s i m p l e v a r i a b l e : s

real: r a r r a y : a

Boolean: b p r o c e d u r e : p

typeless: t

label: l

switch designator: sd

switch: sw

actual string or string identifier: st

* Where an assignment is made to the formal parameter, either explicitly

in the body of the procedure, or implicitly by means of a further

procedure call in which such an assignment is made, the actual parameter

must be a variable.

+ With an array parameter, the number of subscripts appearing in any of

AB38 p 24

its subscript lists must agree with those of the actual parameter.

Similarly, the number, kind and type of the parameters of a formal

procedure parameter must agree with the actual parameter.

In a procedure call, for each corresponding pair of actual and formal

parameters, the actual parameter A must satisfy the rules in the above

table, depending on the type and mode of the formal parameter F.

If A is itself a formal parameter, it must satisfy the rules above

depending solely on its specification, irrespective of the nature of its

own actual parameter. Thus, if type conversion (e.g. integer-to-real) is

required by the parameter substitution, this process takes place

independent of the type of the actual parameter substituted for the formal

parameter which is itself the actual parameter in the parameter

substitution under consideration.'

The following example should make this clear:

begi n

real x, y;

procedure p(i); integer i;

- - q (i) ;

procedure q(z); real z;
y := z;

x := 6.2;
p(x)

end

The statement 'y := z' requires the evaluation of the actual parameter
' i ' in p. This in turn requires the evaluation of the actual parameter 'x'
in the outer block. A type conversion (real to integer) is invoked, giving
' i ' a value of 6, and a further conversion (integer to real), giving 'z'
the value 6.0. Hence, y is assigned the value 6.0.

4.7.9 Standard procedures

The Revised Report did not contain any procedures to handle input-
output. To rectify this, and to fac i l i ta te the handling of error
conditions, ten standard procedures are defined below. With the exception
of outternlinator, fault and stop, a l l these procedures appear in the IFIP
recommendations for input-output[5]. However the IFIP procedures inarray
and outarray have not been implemented, since their effect can be achieved
by means of the procedures inreal and outreal within suitable for
statements. The new section, defining these procedures i s : -

'Ten standard procedures are def ined, which are declared in the
environmental block in an i d e n t i c a l manner to the standard func t ions .
These procedures a r e : - insymbol, outsymbol, o u t s t r i n g , i n i n t e g e r , i n r e a l ,
ou t i n t ege r , outreaL, ou t te rm ina to r , f a u l t and stop. The inpu t -ou tpu t
procedures i d e n t i f y physicaL devices or f i l e s by means of channel numbers
which appear as the f i r s t parameter. The method by which t h i s
i d e n t i f i c a t i o n is achieved is outs ide the scope of t h i s repor t . Each
channel is regarded as conta in ing a sequence of charac ters , the basic
method of accessing or ass ign ing these characters being via the procedures
insymbol and outsymbol.

The procedures in rea l and ou t rea l are converses of each o ther in the

sense tha t a channel conta in ing characters from successive c a l l s of

out rea l can be re - i npu t by the sat,le number of c a l l s of i n r e a l , but some

AB38 p 25

accuracy may be lost. The procedures ininteger and outinteger are also a

pair, but no accuracy can be lost. The procedure outterminator is called

at the end of each of the procedures outreal, outinteger and outstring.

Its action is machine dependent but it must ensure separation between

successive output of numeric data.

These additional procedures are given as examples to illustrate the

environmental block at the end of this report.'

5 Declarations

Delete the last two sentences ('Apart from labels ... one block head')

and substitute the following:

'Apart from labels, formal parameters of procedure declarations, and

identifiers declared in the environmental block, each identifier appearing

in a program must be explicitly declared within the program.

No identifier may be declared either explicitly or implicitly (see

4.1.3) more than once in any one block head.'

5.1 Type declarations and 5.2 Array declarations

The syntax of 5.2.1 allows array, to be understood (5.2.3.3) as meaning

real array. Yet own real array must be written in full, the abbreviation

own array being~hi~e'~-'--

To allow own array the following amendments should be made.

In 5.1.1 delete the definition of <local or own type> and <type

declaration> and substitute:

<type declaration> ::= <typextype list>lown<type><type list>

In 5.2.1 delete the definition of <array declaration> and substitute:

<array declarer> ::= array<array list>l<type>array<array list>

<array declaration> ::= <array declarer>~own<array declarer>

5.1.3 Semantics

Because of the restrictions imposed upon exponentiation at level 3, a
real variable cannot always be replaced by an integer variable. There are
also difficulties at all levels with procedure parameters and hence, at
all levels, the second paragraph of this section should be omitted.

5.2.2 Examples

The second example should be deleted, as an own array may only have

constant bounds.

AB38 p 26
5.2.4 Lower upper bound expressions

Problems a r i se through the scope of i d e n t i f i e r s appearing in these
expressions which we hope are c l a r i f i e d by the fo l l ow ing changes•

Replace sect ion 5 .2 .4 .2 by:

'5.2.4.2 The expression cannot include any ident i f ier that is declared,
either expl ic i t ly or impl ic i t ly (see 4.1.3), in the same block head as the
array in question. The bounds of an array declared as own may only be of
the syn tac t i c form in teger (see 2 . 5 . 1) . '

Section 5.2.4.3 specifies the conditions under which an array is
defined. An undefined array, in the sense of this section, should not be
regarded as a f a u l t but merely as g iv ing an array of zero elements. To
ensure t h i s i n t e r p r e t a t i o n , add to t h i s sec t ion " I f any lower subsc r ip t
bound is g rea te r than the corresponding upper bound, the array has no
elements• '

The array i d e n t i f i e r may then be used (f o r example as an actua l
parameter, even i f ca l led by va lue) , but any reference to an element of
the array w i l l be i nco r rec t •

Thus:
begin array Al l :n] ; i n t e ~ i ;
• • • • • m e • •

• • m o m

for i := I step I unt i l n do

operate(A[i])~

• o i I i i • • •

• m m e o m e l .

end
is valid even i f n=O. The array wi l l not exist, but neither w i l l i ts
elements be accessed•

5.2.5 The i d e n t i t y of subscr ip ted var iab les

This sec t ion should be deleted• The second sentence is no longer
re levant , whereas the meaning, i f any, of the f i r s t sentence is unclear .

5 .4 .3 Semantics

Add to the end of t h i s sec t i on :

'No i d e n t i f i e r may appear more than once in any one formal parameter
l i s t , nor may a formal parameter l i s t conta in the procedure i d e n t i f i e r of
the same procedure heading. '

5 .4 .4 Values of func t ion des ignators

Modify 'in a Left part' (in each of two places) to read 'as a left

part'. This is necessary as a function designator can appear in a

subscript expression in a Left part.

A d i f f i c u l t y a r i ses wi th a ~ .o to leading out of a func t ion des ignator
since i f t h i s jump is executed, no'-~alue fo r the func t ion is def ined. To

AB38 p 2T

clarify that such jumps are permitted, at the end of the section add the

following words:

'If a go to statement within the procedure, or within any other procedure

activa~d"E~y it, leads to an exit from the procedure, other than through

its end, then the execution, of all statements that have been started but

_ L

not yet completed and which do not contain the label to which the go to

statement leads, is abandoned. The values of all variables that stTt'l-'FTave

significance remain as they were immediately before execution of the~.9 t_. ~

statement.

I f a function designator is used as a procedure statement, then the
resulting value is lost, but such a statement may be used, i f desired, for
the purpose of invoking side ef fects. '

Some examples of jumping out of a function are:

(i) 	 j := 3;

j := p(L);

e . o o m e . m

L:
I f the jump is taken, j w i l l s t i l l have the value 3 when L is reached.

(i i) 	 procedure q(k);

Value k; integer k;

m m m m o e m o e

i m m i m a . m .

end q;
. e . .

m . e

q(p(L));
. n l e .

L:
I f the jump is taken, none of the statements of q w i l l be performed.

(i i i) i := m[k] := n[p(L)] := set] := j := 3;
m m m m m a m .

L: i . • m m . . m

I f the jump is taken, none of the variables w i l l have the value 3 assigned
to i t . Any side effects due to evaluation of k w i l l have been performed;
any side effects due to evaluation of t w i l l not (see 4.2.3.1; 4.2.3.2 and
4.2.3.3).

(iv) L:

m m m m l m e l

M: begi n array a[I :p(L)] ;
m m e e m m m m

m m e m m m m .

end
I f the jump is taken, execution of the block labelled M is abandoned. Note
that, by 5.2.4.2, L can only be outside the block (thank goodness).

5.4.5 Specifications

Incomplete specif ication of parameters appears to be inconsistent with
the s p i r i t of ALGOL 60, since with declarations, exp l ic i t type indications
are required. Moreover, incomplete specif ication causes s igni f icant

http:.n....le

AB38 p 28

de f in i t i on and implementation problems. The table given under 4.7.5.5
would no longer specify adequately the val id correspondence between formal
and actual parameters. Hence we believe section 5.4.5 should be replaced
by: ' In the heading a speci f icat ion part , giving information about the
kinds and types of the formal parameters must be included. In th is part no
formal parameter may occur mope than once.'

5.4.6 Code as procedure body

In the f ina l sentence change 'hardware representation' to
"implementation'.

E x a m p l e s

As a fur ther example of the use of ALGOL 60, the structure of the
environmental block is given in de ta i l .

EXAHPLE 3

begin

comment Simple functions;

real procedure abs(E);

value E;

" ~ ' E ;

" ~ - : =

i f E > 0.0 then
E

e l s e

- E;

integer p_rocedure iabs(E)

value E;

integer E;

iabs :=

i f E > 0 then

E

else

- E;

integer procedure sign(E);

value E;

rea~E;

sign :=

i f E > 0.0 then

1

else i f E < 0.0 then

- 1

else

O;

inte~ler procedure ent ier(E) ;

value E;

" ~ ' - E ;

Fq~:~i$ f~ _tu

comment entier := largest integer not greater

than E, i.e. E - 1 < entier < F;

begin

in teger j ;

j := E;

en t i e r :=

i f j > E then

j - 1

else

J

end e n t i e r l

comment Mathematical funct ions;

real procedure sqr t (E) ;
- value E;

~["E;
< 0.0 then

f a u l t (n~a t i ve_ . sq r t~ . , E)

else

sqrt := EfO.5l

real procedure s in (E) l
value El
~ ' [' - E ;

comment sin := sine of E radians;

<body>;

real procedure cos(E)l
value E;

comment cos := cosine of E radiansl

<-~ody > l'

real procedure arc tan(E) l
" " " ~ a t u e El

~ T ' - E i

comment arctan := p r i nc ipa l value, in radians,
- -~Of-arc tangent of E, i . e . - p i / 2 < arctan < p i / 2 ;

<body>l

real procedure ln(E) ;
va lue El

comment Ln := natura l logari thm of El

i f E < 0.0 then

- - f a - u L t (~ . n o t . p o s i t i v e) , E)

else

<statement>;

real procedure exp(E) l
'v'a'['~ El

J

rea l E; AB38 p 30

comment exp := exponent ia l f unc t i on of E;

i f E > ln(maxreal) then

fault((over f low.on.exp~ , E)

else

<statement>;

comment Input - output procedures;

procedure insymbol(channel , s t r , i n t) ;
value channel ; .
i n teger channel, i n t ;
s t r i n g s t r ;

comment Set i n t to value corresponding to the f i r s t

p o s i t i o n in s t r of cur ren t character on channel. Set

i n t to zero i f charac ter not in s t r , unless i t i s

a non -p r i n t i ng charac ter , in which case set i n t to a

negat ive in teger associated wi th the charac ter . Rove

channel po in te r to next charac te r ;

<body>;

procedure outsymbol(channel , s t r , i n t) ;
value channel, i n t ;
i n t ~ er channel, i n t ;
s t r i n g s t r ;

comment Pass to channel the character in s t r ,

corresponding to the value of i n t . I f i n t is

negat ive, pass the associated non -p r i n t i ng charac ter ,

where the assoc ia t i on is the same as fo r insymbol;

i f i n t = 0 or i n t > l e n g t h (s t r) then

- - f a u l t (~ h a r a c t e r . n o t ~ i n . s t r T ~ , i n t)

else

<statement>;

in teger procedure l e n g t h (s t r) ;
s t r i ng -st-r; -

comment length := number of characters in the open

s t r i n g enclosed by the outermost s t r i n g quotes;

<body>;

procedure ou t s t r i ng (channe l , s t r) ;
value channel;

• channel;

s t r ;

inteQer m, n;

n := l e n g t h (s t r) ;

fo r m := 1 step 1 u n t i l n do

o u t s y m b o ~ a n n e ~ , s t r ' 7 - m) ;

out te rmina to r (channe l)

end outst r ing; 	 AB38 p 31

procedure outterminator(channel);
value channel;
integer channel;

comment outputs a terminator for use a f te r every
st r ing or number. To be converted into format
control inst ruct ions in a machine dependent
fashion. The termina~or should be a space or a
semicolon i f in integer and inreal are to be able
to read representations resul t ing from outinteger
and outreal ;

<body>;

pr,oced,ure stop;

comment [) . is assumed to be the label of a dummy
statement immediately preceding the end
of the environmental block;

procedure f a u l t (s t r , r) ;
value r;

nSte~nStr ;

comment sigma is assumed to be an integer
constant that denotes a standard output channel.
The fol lowing cal ls of fau l t appear:

integer divide by zero,
undefined operation in expr,
0.0 f 0 in expn,

undefined operation in expi,

and in 	the environmental block:
sqrt of negative argument,
In of negative or zero argument,
overflow on exp funct ion,
i l l ega l parameter for outsymbol,
inval id character in. in integer(twice) ,
inval id character in inreal (three times);

begin
outstring(sigma, (FAULT));

outstring(sigma, ~ t r) ; --

outreal(sigma, r) ;

comment Addit ional diagnostics may be output here;

stop

end fau l t ;

procedure inintegen(channel, i n t) ;
value channel;
integer channel, i n t ;

comment in t takes the Value of an integer, as defined

AB38 p 32

in 2 .5.1, read from channel. Any number of spaces
or other non-pr in t ing characters may precede
the f i r s t v i s i b l e character . The terminator of
the in teger may be e i t he r a space or other
non-pr in t ing character or a semicolon (i f other
terminators are to be al lowed, they may be added to the
end of the s t r i ng parameter of the ca l l of insymbot.
No other change is necessary);

begin

inteBer k, m;

Boolean b, d;

inte~eer procedure ins;

,pin
inte@er n;

]nsymbol(channet, (0123456789-+~;~, n);

ins := i f n < 0 teen 13 else n

end ins;

fo r 	 k := ins whi le k = 15 do

i f k < 1 or k > 13 then

fau l t '~ ' - (inva l id .~c 'aracter) , k) ;

i f k > 10 then

d : = f a l s e ;

b : = l ~ T 2 ;

m := 0
end

else

begin

:= t rue ;

m := k - 1

end;

for 	" ~ ' = ins whi le k > 0 and k < 11 do

begin

m := 10 * m + k - 1;

d .'= true

end k'-'(~p;

if d"T~pl k < 13 then

fau--TT((inval'T-~'haracter) , k);

int :=

if b then

m

else

- m

end ininteger;

procedure outinteger(channel, int) ;
value channel, int;
integer channel, int;

comment Passes to channel the characters represent ing
the value of i n t , fo l lowed by a terminator ;

begin
procedure d ig i t (in t) ;

value int;

lint ege r int;

begin AB38 p 33

i n t e g e r j ;

j-:='int d iv 10;

i n t := in't - Z 10 * j ;

i f j ne 0 then

-- dTgi t ('] '~ -

outsymbol(channel, (0123456789), in t + 1)

end;

i f in t < 0 then
beg i n

outsymbol(channel, (-), 1);

int := " int

end;

digit~nt) ;

out t ermi nato r (channe l)

end outinteger;

procedure inreal(channel, re);

value channel;

inte9er channel;

real re;

comment re takes the value of a number, as

d e f i n e d in 2 . 5 . 1 , read from channel . Except f o r

the d i f f e r e n t d e f i n i t i o n s of a number and an

i n t e g e r the ru les are e x a c t l y as f o r i n i n t e g e r .

Spaces or o t he r n o n - p r i n t i n g cha rac te rs may

f o l l o w the symbol &;

beg i n
•inte~,g'er j, k, m;

re-a-I r, s;

Boolean b, d;

integer procedure ins;

begin

in-t eger n;

in-symlool(channel, (_0123456789-+.&.;)_, n) ;

ins := i f n < 0 then 15 else n

end ins;

for k := ins while k = 15 do

i f k < I or k > 15 then
fault'T'-(invalid.c-'lTa'racter) , k) ;

b := k ne 11;

d := true;

m : : "~- - ' - -
j : :

i f k < 11 then

2

e lse

i a b s (k + k - 23) ;

r : =
i f k < 11 then

k - 1

e lse

0 .0 ;

i f k ne 1/,. then

• AB38 p 34
:= i n s w h i l e k < 14 do

bey i n
i f k < 1 or k = 11 o r k = 12
- - o r k ~-"13 and j ' ~ 2 t h e n

' ~ ' u t t ((i n v a ~ i d . c h a r a ¢ l : e r) , k) ;
m

i f d t h e n

~ - ~ ' ~ = 13 t h e n
j : = 3 ~

e l s e

~ . J < 3 t h e n
r := t 1 ~ ' ~ * r + k - 1

e l s e
beg! n
s := l O . O f (- m);

m:=m+1;

r := r + s * (k - 1);

d :=rner+s

end;

i f j = 1 o r j = 3 t hen
- - j : = T " + 1 --
end

end
end " ~ ' o o p ;

i f j ' -~- ' l and k ne 14 o r j = 3 t hen
- - fa u l t '~"~' i n va'L'i d. c'h'ara c t e r) - ~ - ~ ')

m m

end;

i f k - ~ " 1 4 t hen

i n i n t e g e r (c h a n n e t , m) ;
r := (i f j = 1 o r j = 5 t hen 1 .0 e l s e r)

• -TO. o fm - - - -
end;

r e • =

i f b t h e n
r

e l s e
- r

end i n r e a l ;

p r o c e d u r e o u t r e a l C c h a n n e l , re) ;
V a l u e c h a n n e l , r e ;
i n t e g e r c h a n n e l ;
r e a l r e ;

comment Passes t o channe l t he c h a r a c t e r s r e p r e s e n t i n g
t h e v a l u e o f r e , f o l l o w e d by a t e r m i n a t o r ;

b e g i n

n := e n t i e r (1 . 0 - L n (e p s i l o n) / L n (l O . O)) ;

i f re < 0 .0 t hen

o u t s y m b o l (c h a n n e t , (-) , 1) ;

re .= - re

end;

i f re 'T" minreaL t hen

begin 	 AB38 p 35

outs tring(channel, (0.0));

end

else

begin

Integer j, k, m, p;

Boolean float, nines;

m -;=-- O;
nines := false;

for m := ~ while re > I0.0 do

" re := re I ~ -- --

for r,1 := m - 1 while re < 1.0 do

- re := 10.0 * re~;

if re > 10.0 then

-- 	 begin

re := 1.0;

m :=m+l

end;

if m > n or m < - 2 then

-- 	 b ig i n - - - - -

f l o a t := t r u e ;

p : = l

end

e l se
b e e
f l o a t := f a l s e ;

p :=

i f m = n - 1 or m < 0 then

0

e l se

m+l;

if m < 0 then

begin

outsymbol(channel, (0), 1);

outsymbol(channel, "~'.~', 1) ;

if m = -2 then

-- outsymbol~hannel, (0), 1)

end

end;

for ~.= 1 step 1 until n do

IT nlnes then

-- 	 k := ~---

e l s e

k := e n t i e r (r e) ;

i f k > 9 then

k := 9 ;

n ines := t r u e

_ _ _ L

end

e l se

re := 10.0 * (re - k)

end;

ou t sym~o l (channe l , (0123456789), k + 1) ;

i f j = p then

- - o u t s y m ~ (c h a n n e l , (.) , 1)

end j Loop;

i f f o ~ t then

begin AB38 p 36

outsymboL(channeL, (&), 1);

out i ntege r (channe L ,"m'~

end

eLse

outtermi nator (channe L)

end

end out rea I ;

comment Environmental enqu i r ies ;

real procedure mexreaL;

maxreat := <number>;

real procedure minreaL;
m

minreaL := <number>;

in teger procedure maxint;

maxint := < in teger>;

comment maxreaL, minreaL, and maxint are, respect ive ly

the maximum al lowable pos i t i ve real number, the

minimum al lowable pos i t i ve real number, and the

maximum al lowable pos i t i ve in teger , such that any

va l id expression of the form

<pri ma r y x a r i thmet i cope rator><pr i mary>
w i l l be co r rec t l y evaluated, provided that each of the
pr imar ies concerned, and the mathematical ly correct
resu l t Lies w i th in the open in te rva l (-maxreaL,-minreal)
or (minreaL,maxreaL) or is zero i f of real type, or w i t h in
the open i n te rva l (-maxint ,maxint) i f of in teger
type.
I f the resu l t is of real type, the words ' c o r r e c t l y
evaluated' must be understood in the sense of
numerical analysis (see Revised Report 3 .5 .6) ;

real procedure epsi lon;

comment The smallest pos i t i ve real number such that the
computational resu l t of 1.0+epsiLon is greater than 1.0
and the computational resu l t of 1.0-epsiLon is Less than
1.0;

epsiLon := <number>;

comment In any p a r t i c u l a r implementation, f u r t he r

standard funct ions and procedures may be added here,

but no add i t i ona l ones may be regarded as part of the

reference language;

< f i c t i t i o u s dec lara t ion of own var iables>;

< i n i t i a L i s a t i o n of own va r i a~es> ;

<program>;

end

AB38 p 3T
Notes on the standard procedures and functions

The above coding is only to be taken as definitive in terms of its

effect on correct programs, ignoring those questions which are the domain

of numerical analysis. For instance, a call of the procedure 'fault'

indicates that the program is in error, and hence after detection of the

error, different action may be taken than that indicated by the above

coding. Actual implementations may produce better diagnostics than are

possible to express conveniently in ALGOL 60.

The procedures sin, cos, arctan, In, and exp have some coding omitted
because their definition is clear and this report is not concerned with
the methods used in the evaluation of these functions. The bodies of the
procedures insymbol, outsymbol, length, outterminator, maxreal, minreal,
maxint and epsilon are omitted because of their obvious machine
dependence. The procedures insymbol and outsymbol are used on the
assumption that the relevant 'ALGOL basic symbols' are single characters.
Appropriate changes must be made i f this is not the case, although the
only likely exception is the use of & in ' inreal ' and 'outreal'.

Naturally, implementations should gain significantly in performance
over the coding given above. In particular, the simple functions may be
performed by open code, the variable n in outreal can be assigned the
appropriate constant value, the procedure identifiers maxreal etc can be
replaced by a constant value and the recursive nature of the procedure
digit can be avoided. Also, the numeric properties of the procedures
inreal and outreal can be enhanced by the use of double length working,
although these procedures have been tested and found to be adequate
(within the constraints of single precision).

Index

The following corrections should be made to the index of the Revised
Report:-

. delete entry to conform with amendments.

<arithmetic expression> delete 'synt 3.3.1' as this appears

under def.

<array declarer> add entry containing 'def 5.2.1'

<local or own type> delete entry.

<procedure identifier> insert 4.2.1 under synt.

<simple arithmetic expression> insert 'synt 3.4.1'

space delete 'def 2.3'

<type> add 'synt 5.2.1'

<unsigned integer> delete '3.5.1.'

<variable> delete '4.6.1,'

<variable identifier> insert 'synt 4.6.1'

References 	 AB38 p 38

The documents used to cons t ruc t t h i s commentary are too numerous to
l i s t , but the p r i n c i p l e references are:

[1] 	 Naur, P (Ed i to r) Revised Report on the A lgor i thmic

Language ALGOL 60,

Comm ACM, Vol 6 (1963), pl

Comp J, Vol 5 (1963), p349

Num Math, Vol 4 (1963), p420

[2] Report on Subset ALGOL 60 (IFIP),

Num Math, Vol 6 (1964), p454

Comm ACM, Vol 7 (1964), p626

[3] ECMA Subset of ALGOL 60,

Comm ACM, Vol 6 (1963), p595

European Computer Manufacturers Association (1965) ECMA

Standard for a Subset of ALGOL 60.

[4] ISO/R 1538, Programming Language ALGOL (1972)

[5] 	 Report on Input-Output Procedures fo r ALGOL 60 (IF IP) ,

Num Math, Vol 6 (1964), p459

Comm ACM, Vol 7 (1964), p628

[6] 	 Knuth, D.E. et a l , A Proposal fo r Input-Output

Conventions in ALGOL 60,

Comm ACM, Vol 7 (1964), p273

[7] 	 Knuth, D.E. The Remaining Trouble Spots in ALGOL 60

Comm ACM, Vol 10 (1967), p611

[8] 	 Suggestions on the ALGOL 60 (Rome) Issues,

Comm ACM, Vol 6 (1963), p20

[9] 	 A booklet on ALGOL 60,

Jo in t IFIP/NPL Pub l i ca t i on , to be prepared.

