
ABAP

#abap

Table of Contents

About 1

Chapter 1: Getting started with ABAP 2

Remarks 2

Versions 2

Examples 2

Hello World 2

Hello World in ABAP Objects 3

Chapter 2: ABAP GRID List Viewer (ALV) 4

Examples 4

Creating and Displaying an ALV 4

Optimize ALV Column Width 4

Hide Columns in an ALV 4

Rename Column Headings in an ALV 4

Enable ALV Toolbar Functionality 5

Enabling Every Other Row Striping in ALV 5

Setting the Title of a Displayed ALV 5

Chapter 3: ABAP Objects 7

Examples 7

Class declaration 7

ABAP Classes can be declared Globally or Locally. A global class can be used by any object 7

Constructor, methods 7

Method with parameters (Importing, Changing, Exporting) 8

Method with returning parameter 8

Inheritance - definition 9

Information 9

Class implementation 9

Inheritance - Abstract and Final Methods and Classes 9

Information 9

Class implementation: 9

Method call example: 10

Chapter 4: Comments 11

Examples 11

End of Line 11

Full Line 11

Chapter 5: Control Flow Statements 12

Examples 12

IF/ELSEIF/ELSE 12

CASE 12

CHECK 12

ASSERT 12

COND/SWITCH 13

COND 13

Examples 13

SWITCH 13

Examples 13

Chapter 6: Data Declaration 15

Examples 15

Inline Data Declaration 15

Single Variable Declaration 15

Multiple Variable Declaration 15

Inline Data Declaration in SELECT Statement 15

Variable Declaration Options 15

Chapter 7: Dynamic Programming 17

Examples 17

Field-Symbols 17

Data references 18

RunTime Type Services 19

Chapter 8: Internal Tables 20

Examples 20

Types of Internal tables 20

Declaration of ABAP Internal Tables 20

Internal Table Declaration Based on Local Type Definition 20

Declaration based on Database Table 21

Inline Internal Table Declaration 21

Internal Table with Header Lines Declaration 21

Read, Write and Insert into Internal Tables 21

Chapter 9: Loops 23

Remarks 23

Examples 23

Internal Table Loop 23

While Loop 23

Do Loop 23

General Commands 24

Chapter 10: Message Classes/MESSAGE keyword 26

Introduction 26

Remarks 26

Examples 26

Defining a Message Class 26

MESSAGE with Predefined Text Symbol 26

Message without Predefined Message Class 26

Dynamic Messaging 27

Passing Parameters to Messages 27

Chapter 11: Naming Conventions 28

Syntax 28

Examples 28

Local variable 28

Global variable 28

Chapter 12: Open SQL 29

Examples 29

SELECT statement 29

Chapter 13: Regular Expressions 30

Examples 30

Replacing 30

Searching 30

Object-Oriented Regular Expressions 30

Evaluating Regular Expressions with a Predicate Function 30

Getting SubMatches Using OO-Regular Expressions 31

Chapter 14: Strings 32

Examples 32

Literals 32

String templates 32

Concatenating strings 32

Chapter 15: Template Programs 34

Syntax 34

Examples 34

OO Program with essential event methods 34

Chapter 16: Unit testing 35

Examples 35

Structure of a test class 35

Separate data access from logic 35

Credits 37

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: abap

It is an unofficial and free ABAP ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official ABAP.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/abap
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with ABAP

Remarks

ABAP is a programming language developed by SAP for programming business applications in
the SAP environment.

Previously only procedural, ABAP is now also an object-oriented language thanks to the ABAP
Objects enhancement.

Versions

Version Release Date

ABAP 7.50 2015-10-20

ABAP 7.40 2012-11-29

ABAP 7.0 2006-04-01

ABAP 6.40 2004-04-01

ABAP 6.20 2002-04-01

ABAP 6.10 2001-07-01

ABAP 4.6C 2001-04-01

ABAP 4.6A 1999-12-01

ABAP 4.5 1999-03-01

ABAP 4.0 1998-06-01

ABAP 3.0 1997-02-20

Examples

Hello World

PROGRAM zhello_world.
START-OF-SELECTION.
 WRITE 'Hello, World!'.

Instead of printing to the console, ABAP writes values to a list which will be displayed as soon as
the main logic was executed.

https://riptutorial.com/ 2

https://help.sap.com/http.svc/rc/abapdocu_751_index_htm/7.51/en-US/index.htm?file=abennews-75.htm
https://help.sap.com/http.svc/rc/abapdocu_751_index_htm/7.51/en-US/index.htm?file=abennews-740.htm
https://help.sap.com/http.svc/rc/abapdocu_751_index_htm/7.51/en-US/index.htm?file=abennews-70_ehps.htm
https://help.sap.com/http.svc/rc/abapdocu_751_index_htm/7.51/en-US/index.htm?file=abennews-640.htm
https://help.sap.com/http.svc/rc/abapdocu_751_index_htm/7.51/en-US/index.htm?file=abennews-620.htm
https://help.sap.com/http.svc/rc/abapdocu_751_index_htm/7.51/en-US/index.htm?file=abennews-610.htm
https://help.sap.com/http.svc/rc/abapdocu_751_index_htm/7.51/en-US/index.htm?file=abennews-46c.htm
https://help.sap.com/http.svc/rc/abapdocu_751_index_htm/7.51/en-US/index.htm?file=abennews-46a.htm
https://help.sap.com/http.svc/rc/abapdocu_751_index_htm/7.51/en-US/index.htm?file=abennews-40.htm
https://help.sap.com/http.svc/rc/abapdocu_751_index_htm/7.51/en-US/index.htm?file=abennews-40.htm
https://help.sap.com/http.svc/rc/abapdocu_751_index_htm/7.51/en-US/index.htm?file=abennews-21.htm

Hello World in ABAP Objects

PROGRAM zhello_world.

CLASS main DEFINITION FINAL CREATE PRIVATE.
 PUBLIC SECTION.
 CLASS-METHODS: start.
ENDCLASS.

CLASS main IMPLEMENTATION.
 METHOD start.
 cl_demo_output=>display('Hello World!').
 ENDMETHOD.
ENDCLASS.

START-OF-SELECTION.
 main=>start().

Read Getting started with ABAP online: https://riptutorial.com/abap/topic/1196/getting-started-with-
abap

https://riptutorial.com/ 3

https://riptutorial.com/abap/topic/1196/getting-started-with-abap
https://riptutorial.com/abap/topic/1196/getting-started-with-abap

Chapter 2: ABAP GRID List Viewer (ALV)

Examples

Creating and Displaying an ALV

This example portrays the most simple ALV creation using the cl_salv_table class and no
additional formatting options. Additional formatting options would be included after the TRY ENDTRY
block and before the alv->display() method call.

All subsequent examples using the ABAP Objects approach to ALV creation will use this example
as a starting point.

DATA: t_spfli TYPE STANDARD TABLE OF spfli,
 alv TYPE REF TO cl_salv_table,
 error_message TYPE REF TO cx_salv_msg.

" Fill the internal table with example data
SELECT * FROM spfli INTO TABLE t_spfli.

" Fill ALV object with data from the internal table
TRY.
 cl_salv_table=>factory(
 IMPORTING
 r_salv_table = alv
 CHANGING
 t_table = t_spfli).
 CATCH cx_salv_msg INTO error_message.
 " error handling
ENDTRY.

" Use the ALV object's display method to show the ALV on the screen
alv->display().

Optimize ALV Column Width

This example shows how to optimize the column width so that column headings and data are not
chopped off.

alv->get_columns()->set_optimize().

Hide Columns in an ALV

This example hides the MANDT (client) field from the ALV. Note that the parameter passed to
get_column() must be capitalized in order for this to work.

alv->get_columns()->get_column('MANDT')->set_visible(if_salv_c_bool_sap=>false).

Rename Column Headings in an ALV

https://riptutorial.com/ 4

The column text may change upon the horizontal resizing of a column. There are three methods to
accomplish this:

Method Name Maximum Length of Heading

set_short_text 10

set_medium_text 20

set_long_text 40

The following example shows usage of all three. A column object is declared and instantiated as a
reference to the result of alv->get_columns()->get_column('DISTID'). The column name must be
in all capital letters. This is so that this method chaining is only called once in its instantiation,
instead of being executed every time a column heading is changed.

DATA column TYPE REF TO cl_salv_column.
column = alv->get_columns()->get_column('DISTID').

column->set_short_text('Dist. Unit').
column->set_medium_text('Unit of Distance').
column->set_long_text('Mass Unit of Distance (kms, miles)').

Enable ALV Toolbar Functionality

The following method call enables usage of many advanced features such as sorting, filtering, and
exporting data.

alv->get_functions()->set_all().

Enabling Every Other Row Striping in ALV

This method increases readability by giving consecutive rows alternating background color
shading.

alv->get_display_settings()->set_striped_pattern(if_salv_c_bool_sap=>true).

Setting the Title of a Displayed ALV

By default, when an ALV is displayed, the title at the top is just the program name. This method
allows the user to set a title of up to 70 characters. The following example shows how a dynamic
title can be set that displays the number of records displayed.

alv->get_display_settings()->set_list_header(|Flight Schedule - { lines(t_spfli) }
records|).

Read ABAP GRID List Viewer (ALV) online: https://riptutorial.com/abap/topic/4660/abap-grid-list-

https://riptutorial.com/ 5

https://riptutorial.com/abap/topic/4660/abap-grid-list-viewer--alv-

viewer--alv-

https://riptutorial.com/ 6

https://riptutorial.com/abap/topic/4660/abap-grid-list-viewer--alv-

Chapter 3: ABAP Objects

Examples

Class declaration

ABAP Classes can be declared Globally or Locally. A global
class can be used by any object within the ABAP repository.
By contrast, a local class can only be used within the scope
it is declared.

CLASS lcl_abap_class DEFINITION.
 PUBLIC SECTION.
 PROTECTED SECTION.
 PRIVATE SECTION.
ENDCLASS.

CLASS lcl_abap_class IMPLEMENTATION.
ENDCLASS.

Constructor, methods

Class implementation:

CLASS lcl_abap_class DEFINITION.
 PUBLIC SECTION.
 METHODS: constructor,
 method1.
 PROTECTED SECTION.
 PRIVATE SECTION.
 METHODS: method2,
 method3.
ENDCLASS.

CLASS lcl_abap_class IMPLEMENTATION.
 METHOD constructor.
 "Logic
 ENDMETHOD.

 METHOD method1.
 "Logic
 ENDMETHOD.

 METHOD method2.
 "Logic
 method3().
 ENDMETHOD.

 METHOD method3.
 "Logic

https://riptutorial.com/ 7

 ENDMETHOD.
ENDCLASS.

Method call example:

DATA lo_abap_class TYPE REF TO lcl_abap_class.
CREATE OBJECT lo_abap_class. "Constructor call
lo_abap_class->method1().

Method with parameters (Importing, Changing, Exporting)

Class implementation:

CLASS lcl_abap_class DEFINITION.
 PRIVATE SECTION.
 METHODS method1 IMPORTING iv_string TYPE string
 CHANGING cv_string TYPE string
 EXPORTING ev_string TYPE string.
ENDCLASS.

CLASS lcl_abap_class IMPLEMENTATION.
 METHOD method1.
 cv_string = iv_string.
 ev_string = 'example'.
 ENDMETHOD.
ENDCLASS.

Method call example:

method1 (
 EXPORTING iv_string = lv_string
 IMPORTING ev_string = lv_string2
 CHANGING cv_string = lv_string3
).

Method with returning parameter

Class implementation:

CLASS lcl_abap_class DEFINITION.
 PRIVATE SECTION.
 METHODS method1 RETURNING VALUE(rv_string) TYPE string.
ENDCLASS.

CLASS lcl_abap_class IMPLEMENTATION.
 METHOD method1.
 rv_string = 'returned value'.
 ENDMETHOD.
ENDCLASS.

Method call example:

lv_string = method1().

https://riptutorial.com/ 8

Note that parameters declared with RETURNING are passed by value only.

Inheritance - definition

Information

Inheritance allows you to derive a new class from an existing class. You do this using
the INHERITING FROM addition in the

CLASS subclass DEFINITION INHERITING FROM superclass.

statement. The new class subclass inherits all of the components of the existing class
superclass. The new class is called the subclass of the class from which it is derived.
The original class is called the superclass of the new class. A class can have more
than one direct subclass, but it may only have one direct superclass.

Class implementation

CLASS lcl_vehicle DEFINITION.
ENDCLASS.

CLASS lcl_vehicle IMPLEMENTATION.
ENDCLASS.

CLASS lcl_car DEFINITION INHERITING FROM lcl_vehicle.
ENDCLASS.

CLASS lcl_car IMPLEMENTATION.
ENDCLASS.

Inheritance - Abstract and Final Methods and Classes

Information

The ABSTRACT and FINAL additions to the METHODS and CLASS statements allow
you to define abstract and final methods or classes.

An abstract method is defined in an abstract class and cannot be implemented in that
class. Instead, it is implemented in a subclass of the class. Abstract classes cannot be
instantiated.

A final method cannot be redefined in a subclass. Final classes cannot have
subclasses. They conclude an inheritance tree.

Class implementation:

CLASS lcl_abstract DEFINITION ABSTRACT.

https://riptutorial.com/ 9

 PUBLIC SECTION.
 METHODS: abstract_method ABSTRACT,
 final_method FINAL
 normal_method.

ENDCLASS.

CLASS lcl_abstract IMPLEMENTATION.
 METHOD final_method.
 "This method can't be redefined in child class!
 ENDMETHOD.

 METHOD normal_method.
 "Some logic
 ENDMETHOD.

 "We can't implement abstract_method here!

ENDCLASS.

CLASS lcl_abap_class DEFINITION INHERITING FROM lcl_abstract.
 PUBLIC SECTION.
 METHODS: abstract_method REDEFINITION,
 abap_class_method.
ENDCLASS.

CLASS lcl_abap_class IMPLEMENTATION.
 METHOD abstract_method.
 "Abstract method implementation
 ENDMETHOD.

 METHOD abap_class_method.
 "Logic
 ENDMETHOD.
ENDCLASS.

Method call example:

DATA lo_class TYPE REF TO lcl_abap_class.
CREATE OBJECT lo_class.

lo_class->abstract_method().
lo_class->normal_method().
lo_class->abap_class_method().
lo_class->final_method().

Read ABAP Objects online: https://riptutorial.com/abap/topic/2244/abap-objects

https://riptutorial.com/ 10

https://riptutorial.com/abap/topic/2244/abap-objects

Chapter 4: Comments

Examples

End of Line

Any text following a " character on the same line is commented out:

DATA ls_booking TYPE flightb. " Commented text

Full Line

The * character comments out an entire line. The * must be the first character in the line.

* DATA ls_booking TYPE flightb. Nothing on this line will be executed.

Read Comments online: https://riptutorial.com/abap/topic/1644/comments

https://riptutorial.com/ 11

https://riptutorial.com/abap/topic/1644/comments

Chapter 5: Control Flow Statements

Examples

IF/ELSEIF/ELSE

IF lv_foo = 3.
 WRITE: / 'lv_foo is 3'.
ELSEIF lv_foo = 5.
 WRITE: / 'lv_foo is 5'.
ELSE.
 WRITE: / 'lv_foo is neither 3 nor 5'.
ENDIF.

CASE

CASE lv_foo.
 WHEN 1.
 WRITE: / 'lv_foo is 1'.
 WHEN 2.
 WRITE: / 'lv_foo is 2'.
 WHEN 3.
 WRITE: / 'lv_foo is 3'.
 WHEN OTHERS.
 WRITE: / 'lv_foo is something else'.
ENDCASE

CHECK

CHECK is a simple statement that evaluates a logical expression and exits the current processing
block if it is false.

METHOD do_something.
 CHECK iv_input IS NOT INITIAL. "Exits method immediately if iv_input is initial

 "The rest of the method is only executed if iv_input is not initial
ENDMETHOD.

ASSERT

ASSERT is used in sensitive areas where you want to be absolutely sure, that a variable has a
specific value. If the logical condition after ASSERT turns out to be false, an unhandleable exception
(ASSERTION_FAILED) is thrown.

ASSERT 1 = 1. "No Problem - Program continues

ASSERT 1 = 2. "ERROR

https://riptutorial.com/ 12

COND/SWITCH

SWITCH and COND offer a special form of conditional program flow. Unlike IF and CASE, they
respresent different values based on an expression rather than executing statements. That's why
they count as functional.

COND

Whenever multiple conditions have to be considered, COND can do the job. The syntax is fairly
simple:

COND <type>(
 WHEN <condition> THEN <value>
 ...
 [ELSE <default> | throw <exception>]
).

Examples

" Set screen element active depending on radio button
screen-active = COND i(
 WHEN p_radio = abap_true THEN 1
 ELSE 0 " optional, because type 'i' defaults to zero
).

" Check how two operands are related to each other
" COND determines its type from rw_compare
rw_compare = COND #(
 WHEN op1 < op2 THEN 'LT'
 WHEN op1 = op2 THEN 'EQ'
 WHEN op1 > op2 THEN 'GT'
).

SWITCH

SWITCH is a neat tool for mapping values, as it checks for equality only, thus being shorter than COND
in some cases. If an unexpected input was given, it is also possible to throw an exception. The
syntax is a little bit different:

SWITCH <type>(
 <variable>
 WHEN <value> THEN <new_value>
 ...
 [ELSE <default> | throw <exception>]
).

Examples

https://riptutorial.com/ 13

DATA(lw_language) = SWITCH string(
 sy-langu
 WHEN 'E' THEN 'English'
 WHEN 'D' THEN 'German'
 " ...
 ELSE THROW cx_sy_conversion_unknown_langu()
).

Read Control Flow Statements online: https://riptutorial.com/abap/topic/7289/control-flow-
statements

https://riptutorial.com/ 14

https://riptutorial.com/abap/topic/7289/control-flow-statements
https://riptutorial.com/abap/topic/7289/control-flow-statements

Chapter 6: Data Declaration

Examples

Inline Data Declaration

In certain situations, data declarations can be performed inline.

LOOP AT lt_sflight INTO DATA(ls_sflight).
 WRITE ls_sflight-carrid.
ENDLOOP.

Single Variable Declaration

DATA begda TYPE sy-datum.

Multiple Variable Declaration

DATA: begda TYPE sy-datum,
 endda TYPE sy-datum.

Inline Data Declaration in SELECT Statement

When using an inline data declaration inside of a SELECT...ENDSELECT block or SELECT SINGLE
statement, the @ character must be used as an escape character for the DATA(lv_cityto)
expression. Once the escape character has been used, all further host variables must also be
escaped (as is the case with lv_carrid below).

DATA lv_carrid TYPE s_carr_id VALUE 'LH'.
SELECT SINGLE cityto FROM spfli
 INTO @DATA(lv_cityto)
 WHERE carrid = @lv_carrid
 AND connid = 2402.
WRITE: / lv_cityto.

Outputs BERLIN.

Variable Declaration Options

Different types of variables may be declared with special options.

DATA: lv_string TYPE string, " standard declaration
 lv_char TYPE c, " declares a character variable of length 1
 lv_char5(5) TYPE c, " declares a character variable of length 5
 l_packed TYPE p LENGTH 10 DECIMALS 5 VALUE '1234567890.123456789'. " evaluates to
1,234,567,890.12346

https://riptutorial.com/ 15

Read Data Declaration online: https://riptutorial.com/abap/topic/1646/data-declaration

https://riptutorial.com/ 16

https://riptutorial.com/abap/topic/1646/data-declaration

Chapter 7: Dynamic Programming

Examples

Field-Symbols

Field-Symbols are ABAP's equivalent to pointers, except that Field-Symbols are always
dereferenced (it is not possible to change the actual address in memory).

Declaration

To declare a Field-Symbol the keyword FIELD-SYMBOLS must be used. Types can be generic (ANY
[... TABLE]) to handle a wide variety of variables.

FIELD-SYMBOLS: <fs_line> TYPE any, "generic
 <fs_struct> TYPE kna1. "non-generic

Assigning

Field-Symbols are unassigned on declaration, which means that they are pointing to nothing.
Accessing an unassigned Field-Symbol will lead to an exception, and, if uncaught, to a short
dump. Therefore, the state should be checked with IS ASSIGNED:

IF <fs> IS ASSIGNED.
*... symbol is assigned
ENDIF.

As they are only references, no real data can be stored inside. So, declared DATA is needed in
every case of use.

DATA: w_name TYPE string VALUE `Max`,
 w_index TYPE i VALUE 1.

FIELD-SYMBOLS <fs_name> TYPE any.

ASSIGN w_name TO <fs_name>. "<fs_name> now gets w_name
<fs_name> = 'Manni'. "Changes to <fs_name> now also affect w_name

* As <fs_name> is generic, it can also be used for numbers

ASSIGN w_index TO <fs_name>. "<fs_name> now refers to w_index.
ADD 1 TO <fs_name>. "w_index gets incremented by one

Unassigning

Sometimes it could be useful to reset a Field-Symbol. This can be done using UNASSIGN.

UNASSIGN <fs>.
* Access on <fs> now leads to an exception again

https://riptutorial.com/ 17

Use for internal tables

Field-Symbols may be used to modify internal tables.

LOOP AT itab INTO DATA(wa).
* Only modifies wa_line
 wa-name1 = 'Max'.
ENDLOOP.

LOOP AT itab ASSIGNING FIELD-SYMBOL(<fs>).
* Directly refers to a line of itab and modifies its values
 <fs>-name1 = 'Max'.
ENDLOOP.

Attention! Field-Symbols stay assigned even after leaving the loop. If you want to reuse them
safely, unassign them immediately.

Data references

Essential for data references is the addition REF TO after TYPE.

Dynamic Creation of Structures

If the type of a structure should be decided on runtime, we can define our target structure as
reference to the generic type data.

DATA wa TYPE REF TO data.

To give wa a type we use the statement CREATE DATA. The addition TYPE can be specified by:

Reference:

CREATE DATA wa TYPE kna1

Static checks are active so it's not possible to create an unknown type•

Name:

CREATE DATA wa TYPE (lw_name_as_string)

The parentheses are needed and lw_name_as_string contains the types name as
string.

•

If the type was not found, an exception of type CX_SY_CREATE_DATA_ERROR will be
thrown

•

For instancing dynamically created types the HANDLE addition can be specified. HANDLE receives an
object which inherits from CL_ABAP_DATADESCR.

CREATE DATA dref TYPE HANDLE obj

obj can be created using the RunTime Type Services•
because dref is still a datareference, it has to be dereferenced (->*) to be used as •

https://riptutorial.com/ 18

datacontainer (normally done via Field-Symbols)

RunTime Type Services

RunTime Type Services (short: RTTS) are used either for:

creating types (RunTime Type Creation; short: RTTC)•
analysing types (RunTime Type Identification; short: RTTI)•

Classes

CL_ABAP_TYPEDESCR
 |
 |--CL_ABAP_DATADESCR
 | |
 | |--CL_ABAP_ELEMDESCR
 | |--CL_ABAP_REFDESCR
 | |--CL_ABAP_COMPLEXDESCR
 | |
 | |--CL_ABAP_STRUCTDESCR
 | |--CL_ABAP_TABLEDESCR
 |
 |--CL_ABAP_OBJECTDESCR
 |
 |--CL_ABAP_CLASSDESCR
 |--CL_ABAP_INTFDESCR

CL_ABAP_TYPEDESCR is the base class. It implements the needed methods for describing:

DESCRIBE_BY_DATA•
DESCRIBE_BY_NAME•
DESCRIBE_BY_OBJECT_REF•
DESCRIBE_BY_DATA_REF•

Read Dynamic Programming online: https://riptutorial.com/abap/topic/4442/dynamic-programming

https://riptutorial.com/ 19

https://riptutorial.com/abap/topic/4442/dynamic-programming

Chapter 8: Internal Tables

Examples

Types of Internal tables

DATA: <TABLE NAME> TYPE <SORTED|STANDARD|HASHED> TABLE OF <TYPE NAME>
 WITH <UNIQUE|NON-UNIQUE> KEY <FIELDS FOR KEY>.

Standard Table

This table has all of the entries stored in a linear fashion and records are accessed in a linear way.
For large table sizes, table access can be slow.

Sorted Table

Requires the addition WITH UNIQUE|NON-UNIQUE KEY. Searching is quick due to performing a binary
search. Entries cannot be appended to this table as it might break the sort order, so they are
always inserted using the INSERT keyword.

Hashed Table

Requires the addition WITH UNIQUE|NON-UNIQUE KEY. Uses a proprietary hashing algorithm to maintain
key-value pairs. Theoretically searches can be as slow as STANDARD table but practically they are
faster than a SORTED table taking a constant amount of time irrespective of the size of the table.

Declaration of ABAP Internal Tables

Internal Table Declaration Based on Local
Type Definition

" Declaration of type
TYPES: BEGIN OF ty_flightb,
 id TYPE fl_id,
 dat TYPE fl_date,
 seatno TYPE fl_seatno,
 firstname TYPE fl_fname,
 lastname TYPE fl_lname,
 fl_smoke TYPE fl_smoker,
 classf TYPE fl_class,
 classb TYPE fl_class,
 classe TYPE fl_class,
 meal TYPE fl_meal,
 service TYPE fl_service,
 discout TYPE fl_discnt,
 END OF lty_flightb.

https://riptutorial.com/ 20

" Declaration of internal table
DATA t_flightb TYPE STANDARD TABLE OF ty_flightb.

Declaration based on Database Table

DATA t_flightb TYPE STANDARD TABLE OF flightb.

Inline Internal Table Declaration

Requires ABAP version > 7.4

TYPES t_itab TYPE STANDARD TABLE OF i WITH EMPTY KEY.

DATA(t_inline) = VALUE t_itab((1) (2) (3)).

Internal Table with Header Lines Declaration

In ABAP there are tables with header lines, and tables without header lines. Tables with header
lines are an older concept and should not be used in new development.

Internal Table: Standard Table with / without header line

This code declares the table i_compc_all with the existing structure of compc_str.

DATA: i_compc_all TYPE STANDARD TABLE OF compc_str WITH HEADER LINE.
DATA: i_compc_all TYPE STANDARD TABLE OF compc_str.

Internal Table: Hashed Table with / without header line

DATA: i_map_rules_c TYPE HASHED TABLE OF /bic/ansdomm0100 WITH HEADER LINE
DATA: i_map_rules_c TYPE HASHED TABLE OF /bic/ansdomm0100

Declaration of a work area for tables without a header

A work area (commonly abbreviated wa) has the exact same structure as the table, but can
contain only one line (a WA is a structure of a table with only one dimension).

DATA: i_compc_all_line LIKE LINE OF i_compc_all.

Read, Write and Insert into Internal Tables

Read, write and insert into internal tables with a header line:

" Read from table with header (using a loop):

https://riptutorial.com/ 21

LOOP AT i_compc_all. " Loop over table i_compc_all and assign header line
 CASE i_compc_all-ftype. " Read cell ftype from header line from table i_compc_all
 WHEN 'B'. " Bill-to customer number transformation
 i_compc_bil = i_compc_all. " Assign header line of table i_compc_bil with content of
header line i_compc_all
 APPEND i_compc_bil. " Insert header line of table i_compc_bil into table
i_compc_bil
 " ... more WHENs
 ENDCASE.
ENDLOOP.

Reminder: Internal tables with header lines are forbidden in object oriented contexts.
Usage of internal tables without header lines is always recommended.

Read, write and insert into internal tables without a header line:

" Loop over table i_compc_all and assign current line to structure i_compc_all_line
LOOP AT i_compc_all INTO i_compc_all_line.
 CASE i_compc_all_line-ftype. " Read column ftype from current line (which as
assigned into i_compc_all_line)
 WHEN 'B'. " Bill-to customer number transformation
 i_compc_bil_line = i_compc_all_line. " Copy structure
 APPEND i_compc_bil_line TO i_compc_bil. " Append structure to table
 " more WHENs ...
 ENDCASE.
ENDLOOP.

" Insert into table with Header:
INSERT TABLE i_sap_knb1. " insert into TABLE WITH HEADER: insert table
header into it's content
insert i_sap_knb1_line into table i_sap_knb1. " insert into HASHED TABLE: insert structure
i_sap_knb1_line into hashed table i_sap_knb1
APPEND p_t_errorlog_line to p_t_errorlog. " insert into STANDARD TABLE: insert structure /
wa p_t_errorlog_line into table p_t_errorlog_line

Read Internal Tables online: https://riptutorial.com/abap/topic/1647/internal-tables

https://riptutorial.com/ 22

https://riptutorial.com/abap/topic/1647/internal-tables

Chapter 9: Loops

Remarks

When looping over internal tables, it is generally preferable to ASSIGN to a field symbol rather than
loop INTO a work area. Assigning field symbols simply updates their reference to point to the next
line of the internal table during each iteration, whereas using INTO results in the line of the table
being copied into the work area, which can be expensive for long/wide tables.

Examples

Internal Table Loop

LOOP AT itab INTO wa.
ENDLOOP.

FIELD-SYMBOLS <fs> LIKE LINE OF itab.
LOOP AT itab ASSIGNING <fs>.
ENDLOOP.

LOOP AT itab ASSIGNING FIELD-SYMBOL(<fs>).
ENDLOOP.

LOOP AT itab REFERENCE INTO dref.
ENDLOOP.

LOOP AT itab TRANSPORTING NO FIELDS.
ENDLOOP.

Conditional Looping

If only lines that match a certain condition should be taken into the loop, addition WHERE can be
added.

LOOP AT itab INTO wa WHERE f1 = 'Max'.
ENDLOOP.

While Loop

ABAP also offers the conventional WHILE-Loop which runs until the given expression evaluates to
false. The system field sy-index will be increased for every loop step.

WHILE condition.
* do something
ENDWHILE

Do Loop

https://riptutorial.com/ 23

Without any addition the DO-Loop runs endless or at least until it gets explicitly exited from inside.
The system field sy-index will be increased for every loop step.

DO.
* do something... get it?
* call EXIT somewhere
ENDDO.

The TIMES addition offers a very convenient way to repeat code (amount represents a value of type i
).

DO amount TIMES.
* do several times
ENDDO.

General Commands

To break loops, the command EXIT can be used.

DO.
 READ TABLE itab INDEX sy-index INTO DATA(wa).
 IF sy-subrc <> 0.
 EXIT. "Stop this loop if no element was found
 ENDIF.
 " some code
ENDDO.

To skip to the next loop step, the command CONTINUE can be used.

DO.
 IF sy-index MOD 1 = 0.
 CONTINUE. " continue to next even index
 ENDIF.
 " some code
ENDDO.

The CHECK statement is a CONTINUE with condition. If the condition turns out to be false, CONTINUE will
be executed. In other words: The loop will only carry on with the step if the condition is true.

This example of CHECK ...

DO.
 " some code
 CHECK sy-index < 10.
 " some code
ENDDO.

... is equivalent to ...

DO.
 " some code
 IF sy-index >= 10.

https://riptutorial.com/ 24

 CONTINUE.
 ENDIF.
 " some code
ENDDO.

Read Loops online: https://riptutorial.com/abap/topic/2270/loops

https://riptutorial.com/ 25

https://riptutorial.com/abap/topic/2270/loops

Chapter 10: Message Classes/MESSAGE
keyword

Introduction

The MESSAGE statement may be used to interrupt program flow to display short messages to the
user. Messages content may be defined in the program's code, in the program's text symbols, or
in an independent message class defined in SE91.

Remarks

The maximum length of a message, including parameters passed to it using &, is 72 characters.

Examples

Defining a Message Class

PROGRAM zprogram MESSAGE-ID sabapdemos.

System-defined message may be stored in a message class. The MESSAGE-ID token defines the
message class sabapdemos for the entire program. If this is not used, the message class must be
specified on each MESSAGE call.

MESSAGE with Predefined Text Symbol

PROGRAM zprogram MESSAGE-ID za.
...
MESSAGE i000 WITH TEXT-i00.

A message will display the text stored in the text symbol i00 to the user. Since the message type
is i (as seen in i000), after the user exits the dialog box, program flow will continue from the point
of the MESSAGE call.

Although the text did not come from the message class za, a MESSAGE-ID must be specified.

Message without Predefined Message Class

PROGRAM zprogram.
...
MESSAGE i050(sabapdemos).

It may be inconvenient to define a message class for the entire program, so it is possible to define
the message class that the message comes from in the MESSAGE statement itself. This example will
display message 050 from the message class sabapdemos.

https://riptutorial.com/ 26

Dynamic Messaging

DATA: msgid TYPE sy-msgid VALUE 'SABAPDEMOS',
 msgty TYPE sy-msgty VALUE 'I',
 msgno TYPE sy-msgno VALUE '050'.

MESSAGE ID mid TYPE mtype NUMBER num.

The MESSAGE call above is synonymous to the call MESSAGE i050(sapdemos)..

Passing Parameters to Messages

The & symbol may be used in a message to allow parameters to be passed to it.

Ordered Parameters

Message 777 of class sabapdemos:

Message with type &1 &2 in event &3

Calling this message with three parameters will return a message using the parameters:

MESSAGE i050(sabapdemos) WITH 'E' '010' 'START-OF-SELECTION`.

This message will be displayed as Message with type E 010 in event START-OF-SELECTION. The
number next to the & symbol designates the order in which the parameters are displayed.

Unordered Parameters

Message 888 of class sabapdemos:

& & & &

The calling of this message is similar:

MESSAGE i050(sabapdemos) WITH 'param1' 'param2' 'param3' 'param4'.

This will output param1 param2 param3 param4.

Read Message Classes/MESSAGE keyword online:
https://riptutorial.com/abap/topic/10691/message-classes-message-keyword

https://riptutorial.com/ 27

https://riptutorial.com/abap/topic/10691/message-classes-message-keyword

Chapter 11: Naming Conventions

Syntax

Characters, numbers and _ can be use for variable name.•
Two character using for variable state and object type.•
Local variables start with L.•
Global variables start with G.•
Function input parameter start with I (import).•
Function output parameter start with E (export).•
Structures symbol is S.•
Table symbol is T.•

Examples

Local variable

data: lv_temp type string.
data: ls_temp type sy.
data: lt_temp type table of sy.

Global variable

data: gv_temp type string.
data: gs_temp type sy.
data: gt_temp type table of sy.

Read Naming Conventions online: https://riptutorial.com/abap/topic/6770/naming-conventions

https://riptutorial.com/ 28

https://riptutorial.com/abap/topic/6770/naming-conventions

Chapter 12: Open SQL

Examples

SELECT statement

SELECT is an Open-SQL-statement for reading data from one or several database tables into
data objects.

Selecting All Records

* This returns all records into internal table lt_mara.
SELECT * FROM mara
 INTO lt_mara.

1.

Selecting Single Record

* This returns single record if table consists multiple records with same key.
SELECT SINGLE * INTO TABLE lt_mara
 FROM mara
 WHERE matnr EQ '400-500'.

2.

Selecting Distinct Records

* This returns records with distinct values.
SELECT DISTINCT * FROM mara
 INTO TABLE lt_mara
 ORDER BY matnr.

3.

Aggregate Functions

* This puts the number of records present in table MARA into the variable lv_var
SELECT COUNT(*) FROM mara
 INTO lv_var.

4.

Read Open SQL online: https://riptutorial.com/abap/topic/6885/open-sql

https://riptutorial.com/ 29

https://help.sap.com/abapdocu_731/en/abenbuilt_in.htm
https://riptutorial.com/abap/topic/6885/open-sql

Chapter 13: Regular Expressions

Examples

Replacing

The REPLACE statement can work with regular expressions directly:

DATA(lv_test) = 'The quick brown fox'.
REPLACE ALL OCCURRENCES OF REGEX '\wo' IN lv_test WITH 'XX'.

The variable lv_test will evaluate to The quick bXXwn XXx.

Searching

The FIND statement can work with regular expressions directly:

DATA(lv_test) = 'The quick brown fox'.

FIND REGEX '..ck' IN lv_test.
" sy-subrc == 0

FIND REGEX 'a[sdf]g' IN lv_test.
" sy-subrc == 4

Object-Oriented Regular Expressions

For more advanced regex operations it's best to use CL_ABAP_REGEX and its related classes.

DATA: lv_test TYPE string,
 lo_regex TYPE REF TO cl_abap_regex.

lv_test = 'The quick brown fox'.
CREATE OBJECT lo_regex
 EXPORTING
 pattern = 'q(...)\w'.

DATA(lo_matcher) = lo_regex->create_matcher(text = lv_test).
WRITE: / lo_matcher->find_next(). " X
WRITE: / lo_matcher->get_submatch(1). " uic
WRITE: / lo_matcher->get_offset(). " 4

Evaluating Regular Expressions with a Predicate Function

The predicate function matches can be used to evaluate strings on the fly without use of any object
declarations.

IF matches(val = 'Not a hex string'
 regex = '[0-9a-f]*').

https://riptutorial.com/ 30

 cl_demo_output=>display('This will not display').
ELSEIF matches(val = '6c6f7665'
 regex = '[0-9a-f]*').
 cl_demo_output=>display('This will display').
ENDIF.

Getting SubMatches Using OO-Regular Expressions

By using the method GET_SUBMATCH of class CL_ABAP_MATCHER, we can get the data in the
groups/subgroups.

Goal: get the token to the right of the keyword 'Type'.

DATA: lv_pattern TYPE string VALUE 'type\s+(\w+)',
 lv_test TYPE string VALUE 'data lwa type mara'.

CREATE OBJECT ref_regex
 EXPORTING
 pattern = lv_pattern
 ignore_case = c_true.

ref_regex->create_matcher(
 EXPORTING
 text = lv_test
 RECEIVING
 matcher = ref_matcher
).

ref_matcher->get_submatch(
 EXPORTING
 index = 0
 RECEIVING
 submatch = lv_smatch.

The resulting variable lv_smatch contains the value MARA.

Read Regular Expressions online: https://riptutorial.com/abap/topic/5113/regular-expressions

https://riptutorial.com/ 31

https://riptutorial.com/abap/topic/5113/regular-expressions

Chapter 14: Strings

Examples

Literals

ABAP offers three different operators for declaring string- or char-like-variables

Symbols Internal Type Length Name

'...' C 1-255 Chars text field literals

`...` CString 0-255 Chars text string literals

|...| CString 0-255 Chars template literals

Note that the length-range only applies to hard coded values. Internally CString-variables have
arbitrary length while variables of type C always have a fixed length.

String templates

String templates are a convenient way of mixing literal strings with values from variables:

WRITE |Hello, { lv_name }, nice to meet you!|.

It can also format things like dates. To use the logged on user's date format:

WRITE |The order was completed on { lv_date DATE = USER } and can not be changed|.

Functional method calls and expressions are supported:

WRITE |Your token is { to_upper(lv_token) }|.
WRITE |Version is: { cond #(when lv_date < sy-datum then 'out of date' else 'up to date')
}|.

Attention! Directly implementing temporary results (like method-calls) inside of string
templates can lead to massive performance problems (read more about it here). While
using it inside of rarely executed statements is okay, it causes your program to rapidly
slow down in loops.

Concatenating strings

String and char-like variables can be concatenated using ABAP CONCATENATE command. An extra
variable for storing the results is required.

Example:

https://riptutorial.com/ 32

https://blogs.sap.com/2016/08/15/performance-trap-in-string-concatenations/

CONCATENATE var1 var2 var3 INTO result.
"result now contains the values of var1, var2 & var3 stringed together without spaces

Shorthand

Newer versions of ABAP offer a very short variant of concatenation using && (Chaining operator).

DATA(lw_result) = `Sum: ` && lw_sum.

Attention! It's worth noticing, that using temporary results in combination with the
Chaining operator inside of loops can lead to massive performance problems due to
growing copy instructions (read more about it here).

Read Strings online: https://riptutorial.com/abap/topic/3531/strings

https://riptutorial.com/ 33

https://blogs.sap.com/2016/08/15/performance-trap-in-string-concatenations/
https://riptutorial.com/abap/topic/3531/strings

Chapter 15: Template Programs

Syntax

CLASS DEFINITION ABSTRACT FINAL makes the program class essentially static as
instance methods could never be used. The intention is to keep the class minimal.

•

Examples

OO Program with essential event methods

REPORT z_template.

CLASS lcl_program DEFINITION ABSTRACT FINAL.

 PUBLIC SECTION.

 CLASS-METHODS start_of_selection.
 CLASS-METHODS initialization.
 CLASS-METHODS end_of_selection.

ENDCLASS.

CLASS lcl_program IMPLEMENTATION.

 METHOD initialization.

 ENDMETHOD.

 METHOD start_of_selection.

 ENDMETHOD.

 METHOD end_of_selection.

 ENDMETHOD.

ENDCLASS.

INITIALIZATION.

 lcl_program=>initialization().

START-OF-SELECTION.

 lcl_program=>start_of_selection().

END-OF-SELECTION.

 lcl_program=>end_of_selection().

Read Template Programs online: https://riptutorial.com/abap/topic/10552/template-programs

https://riptutorial.com/ 34

https://riptutorial.com/abap/topic/10552/template-programs

Chapter 16: Unit testing

Examples

Structure of a test class

Test classes are created as local classes in a special unit test include.

This is the basic structure of a test class:

CLASS lcl_test DEFINITION
 FOR TESTING
 DURATION SHORT
 RISK LEVEL HARMLESS.

PRIVATE SECTION.
 DATA:
 mo_cut TYPE REF TO zcl_dummy.

 METHODS:
 setup,

 "********* 30 chars *********|
 dummy_test for testing.
ENDCLASS.

CLASS lcl_test IMPLEMENTATION.
 METHOD setup.
 CREATE OBJECT mo_cut.
 ENDMETHOD.

 METHOD dummy_test.
 cl_aunit_assert=>fail().
 ENDMETHOD.
ENDCLASS.

Any method declared with FOR TESTING will be a unit test. setup is a special method that is executed
before each test.

Separate data access from logic

An important principle for unit testing is to separate data access from business logic. One efficient
technique for this is to define interfaces for data access. Your main class always use a reference
to that interface instead of direct reading or writing data.

in production code the main class will be given an object that wraps actual data access. This could
be select statement, function mudule calls, anything really. The important part is that this class
should not perform anything else. No logic.

When testing the main class, you give it an object that serves static, fake data instead.

https://riptutorial.com/ 35

An example for accessing the SCARR table

Data access interface ZIF_DB_SCARR:

INTERFACE zif_db_scarr
 PUBLIC.
 METHODS get_all
 RETURNING
 VALUE(rt_scarr) TYPE scarr_tab .
ENDINTERFACE.

Fake data class and test class:

CLASS lcl_db_scarr DEFINITION.
 PUBLIC SECTION.
 INTERFACES: zif_db_scarr.
ENDCLASS.

CLASS lcl_db_scarr IMPLEMENTATION.
 METHOD zif_db_scarr~get_all.
 " generate static data here
 ENDMETHOD.
ENDCLASS.

CLASS lcl_test DEFINITION
 FOR TESTING
 DURATION SHORT
 RISK LEVEL HARMLESS.

 PRIVATE SECTION.
 DATA:
 mo_cut TYPE REF TO zcl_main_class.

 METHODS:
 setup.
ENDCLASS.

CLASS lcl_test IMPLEMENTATION.
 METHOD setup.
 DATA: lo_db_scarr TYPE REF TO lcl_db_scarr.

 CREATE OBJECT lo_db_scarr.

 CREATE OBJECT mo_cut
 EXPORTING
 io_db_scarr = lo_db_scarr.
 ENDMETHOD.
ENDCLASS.

The idea here is that in production code, ZCL_MAIN_CLASS will get a ZIF_DB_SCARR object that does a
SELECT and returns the whole table while the unit test runs against a static dataset defined right
there in the unit test include.

Read Unit testing online: https://riptutorial.com/abap/topic/3999/unit-testing

https://riptutorial.com/ 36

https://riptutorial.com/abap/topic/3999/unit-testing

Credits

S.
No

Chapters Contributors

1
Getting started with
ABAP

Christian, Community, gkubed, Jagger, mkysoft

2
ABAP GRID List
Viewer (ALV)

Achuth hadnoor, gkubed

3 ABAP Objects Community, Michał Majer, Thomas Matecki

4 Comments 4444, Christian, gkubed

5
Control Flow
Statements

Community, gkubed, maillard

6 Data Declaration Christian, gkubed

7
Dynamic
Programming

Community, gkubed

8 Internal Tables
Community, gkubed, Michał Majer, Rahul Kadukar, Thorsten
Niehues

9 Loops Christian, Community, gkubed, Stu G

10
Message
Classes/MESSAGE
keyword

gkubed

11 Naming Conventions mkysoft

12 Open SQL AKHIL RAJ, gkubed

13 Regular Expressions AKHIL RAJ, gkubed, maillard

14 Strings Achuth hadnoor, Community, maillard, nexxus, Suncatcher

15 Template Programs nath

16 Unit testing maillard

https://riptutorial.com/ 37

https://riptutorial.com/contributor/2670792/christian
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/975624/gkubed
https://riptutorial.com/contributor/4411/jagger
https://riptutorial.com/contributor/2847159/mkysoft
https://riptutorial.com/contributor/4267941/achuth-hadnoor
https://riptutorial.com/contributor/975624/gkubed
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3368218/michal-majer
https://riptutorial.com/contributor/3368218/michal-majer
https://riptutorial.com/contributor/4238173/thomas-matecki
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/2670792/christian
https://riptutorial.com/contributor/975624/gkubed
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/975624/gkubed
https://riptutorial.com/contributor/3334477/maillard
https://riptutorial.com/contributor/2670792/christian
https://riptutorial.com/contributor/975624/gkubed
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/975624/gkubed
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/975624/gkubed
https://riptutorial.com/contributor/3368218/michal-majer
https://riptutorial.com/contributor/3368218/michal-majer
https://riptutorial.com/contributor/1083027/rahul-kadukar
https://riptutorial.com/contributor/993494/thorsten-niehues
https://riptutorial.com/contributor/993494/thorsten-niehues
https://riptutorial.com/contributor/2670792/christian
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/975624/gkubed
https://riptutorial.com/contributor/183099/stu-g
https://riptutorial.com/contributor/975624/gkubed
https://riptutorial.com/contributor/2847159/mkysoft
https://riptutorial.com/contributor/6425893/akhil-raj
https://riptutorial.com/contributor/975624/gkubed
https://riptutorial.com/contributor/6425893/akhil-raj
https://riptutorial.com/contributor/975624/gkubed
https://riptutorial.com/contributor/3334477/maillard
https://riptutorial.com/contributor/4267941/achuth-hadnoor
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3334477/maillard
https://riptutorial.com/contributor/3298124/nexxus
https://riptutorial.com/contributor/911419/suncatcher
https://riptutorial.com/contributor/644640/nath
https://riptutorial.com/contributor/3334477/maillard

	About
	Chapter 1: Getting started with ABAP
	Remarks
	Versions
	Examples
	Hello World
	Hello World in ABAP Objects

	Chapter 2: ABAP GRID List Viewer (ALV)
	Examples
	Creating and Displaying an ALV
	Optimize ALV Column Width
	Hide Columns in an ALV
	Rename Column Headings in an ALV
	Enable ALV Toolbar Functionality
	Enabling Every Other Row Striping in ALV
	Setting the Title of a Displayed ALV

	Chapter 3: ABAP Objects
	Examples
	Class declaration

	ABAP Classes can be declared Globally or Locally. A global class can be used by any object within the ABAP repository. By contrast, a local class can only be used within the scope it is declared.
	Constructor, methods
	Method with parameters (Importing, Changing, Exporting)
	Method with returning parameter
	Inheritance - definition

	Information
	Class implementation
	Inheritance - Abstract and Final Methods and Classes

	Information
	Class implementation:
	Method call example:

	Chapter 4: Comments
	Examples
	End of Line
	Full Line

	Chapter 5: Control Flow Statements
	Examples
	IF/ELSEIF/ELSE
	CASE
	CHECK
	ASSERT
	COND/SWITCH

	COND
	Examples

	SWITCH
	Examples

	Chapter 6: Data Declaration
	Examples
	Inline Data Declaration
	Single Variable Declaration
	Multiple Variable Declaration
	Inline Data Declaration in SELECT Statement
	Variable Declaration Options

	Chapter 7: Dynamic Programming
	Examples
	Field-Symbols
	Data references
	RunTime Type Services

	Chapter 8: Internal Tables
	Examples
	Types of Internal tables
	Declaration of ABAP Internal Tables

	Internal Table Declaration Based on Local Type Definition
	Declaration based on Database Table
	Inline Internal Table Declaration
	Internal Table with Header Lines Declaration
	Read, Write and Insert into Internal Tables

	Chapter 9: Loops
	Remarks
	Examples
	Internal Table Loop
	While Loop
	Do Loop
	General Commands

	Chapter 10: Message Classes/MESSAGE keyword
	Introduction
	Remarks
	Examples
	Defining a Message Class
	MESSAGE with Predefined Text Symbol
	Message without Predefined Message Class
	Dynamic Messaging
	Passing Parameters to Messages

	Chapter 11: Naming Conventions
	Syntax
	Examples
	Local variable
	Global variable

	Chapter 12: Open SQL
	Examples
	SELECT statement

	Chapter 13: Regular Expressions
	Examples
	Replacing
	Searching
	Object-Oriented Regular Expressions
	Evaluating Regular Expressions with a Predicate Function
	Getting SubMatches Using OO-Regular Expressions

	Chapter 14: Strings
	Examples
	Literals
	String templates
	Concatenating strings

	Chapter 15: Template Programs
	Syntax
	Examples
	OO Program with essential event methods

	Chapter 16: Unit testing
	Examples
	Structure of a test class
	Separate data access from logic

	Credits

