ABC \& C \mathbf{C}_{2} EP Formula/Conversion Table for Wastewater Treatment, Industrial, Collection, \& Laboratory Exams

Alkalinity, as $\mathrm{mg} \mathrm{CaCO}_{3} / \mathrm{L}=\frac{(\text { Titrant Volume, } \mathrm{mL})(\text { Acid Normality })(50,000)}{\text { Sample Volume, } \mathrm{mL}}$
Amps $=\frac{\text { Volts }}{\text { Ohms }}$
*Area of Circle $=(.785)\left(\right.$ Diameter $\left.^{2}\right)$

$$
=(\pi)\left(\text { Radius }^{2}\right)
$$

Area of Cone (lateral area) $=(\pi)($ Radius $) \sqrt{\text { Radius }^{2}+\text { Height }^{2}}$
Area of Cone (total surface area) $=(\pi)($ Radius $)\left(\right.$ Radius $+\sqrt{\text { Radius }^{2}+\text { Height }^{2}}$)
Area of Cylinder (total exterior surface area) $=[$ Surface Area of End \#1] + [Surface Area of End \#2] + $[(\pi)$ (Diameter) (Height or Depth)]
*Area of Rectangle $=($ Length $)($ Width $)$
*Area of a Right Triangle $=\frac{(\text { Base })(\text { Height })}{2}$
Average (arithmetic mean) $=\frac{\text { Sum of All Terms }}{\text { Number of Terms }}$
Average (geometric mean) $=\left[\left(\mathrm{X}_{1}\right)\left(\mathrm{X}_{2}\right)\left(\mathrm{X}_{3}\right)\left(\mathrm{X}_{4}\right)\left(\mathrm{X}_{n}\right)\right]^{1 / n} \quad$ The n th root of the product of n numbers
Biochemical Oxygen Demand (unseeded), mg/L $=\frac{[(\text { Initial DO, mg/L) }-(\text { Final DO, mg/L) }][300 \mathrm{~mL}]}{\text { Sample Volume, } \mathrm{mL}}$
Chemical Feed Pump Setting, \% Stroke $=\frac{\text { Desired Flow }}{\text { Maximum Flow }} \times 100 \%$
Chemical Feed Pump Setting, $\mathrm{mL} / \mathrm{min}=\frac{\text { (Flow, MGD) }(\text { Dose, } \mathrm{mg} / \mathrm{L})(3.785 \mathrm{~L} / \mathrm{gal})(1,000,000 \mathrm{gal} / \mathrm{MG})}{(\text { Liquid, } \mathrm{mg} / \mathrm{mL})(24 \mathrm{hr} / \text { day })(60 \mathrm{~min} / \mathrm{hr})}$
Circumference of Circle $=(\pi)($ Diameter $)$

$$
=2(\pi) \text { (Radius) }
$$

Composite Sample Single Portion $=\frac{(\text { Instantaneous Flow })(\text { Total Sample Volume })}{(\text { Number of Portions) })(\text { Average Flow })}$
Cycle Time, $\min =\frac{\text { Storage Volume, gal }}{\text { Pump Capacity, gpm - Wet Well Inflow, gpm }}$

Degrees Celsius $=($ Degrees Fahrenheit - 32) $(5 / 9)$

$$
=\frac{\left({ }^{\circ} \mathrm{F}-32\right)}{1.8}
$$

Degrees Fahrenheit $=($ Degrees Celsius $)(9 / 5)+32$

$$
=(\text { Degrees Celsius })(1.8)+32
$$

Detention Time $=\frac{\text { Volume }}{\text { Flow }}$ Units must be compatible
Dose $=$ Demand + Residual
*Electromotive Force (EMF), volts $=($ Current, amps $)($ Resistance, ohms) or $\quad \mathrm{E}=\mathrm{IR}$
*Feed Rate, $\mathrm{lbs} /$ day $=\frac{(\text { Dosage, } \mathrm{mg} / \mathrm{L})(\text { Capacity }, \mathrm{MGD})(8.34 \mathrm{lbs} / \mathrm{gal})}{\text { Purity }, \% \text { expressedas a decimal }}$
Filter Backwash Rise Rate, $\mathrm{in} / \mathrm{min}=\frac{\left(\text { Backwash Rate, } \mathrm{gpm} / \mathrm{ft}^{2}\right)(12 \mathrm{in} / \mathrm{ft})}{7.48 \mathrm{gal} / \mathrm{ft}^{3}}$
Filter Flow Rate or Backwash Rate, $\mathrm{gpm} / \mathrm{ft}^{2}=\frac{\text { Flow, } \mathrm{gpm}}{\text { Filter Area, } \mathrm{ft}^{2}}$
Filter Yield, $\mathrm{lbs} / \mathrm{hr} / \mathrm{ft}^{2}=\frac{(\text { Solids Loading, lbs/day })(\text { Recovery, \% expressed as a decimal) }}{(\text { Filter Operation, } \mathrm{hr} / \text { day })\left(\text { Area, } \mathrm{ft}^{2}\right)}$
*Flow Rate, $\mathrm{cfs}=\left(\right.$ Area, $\left.\mathrm{ft}^{2}\right)($ Velocity, $\mathrm{ft} / \mathrm{sec}) \quad$ or $\quad \mathrm{Q}=\mathrm{AV} \quad$ Units must be compatible
Food/Microorganism Ratio $=\frac{\mathrm{BOD}_{5}, \mathrm{lbs} / \mathrm{day}}{\mathrm{MLVSS}, \mathrm{lbs}}$
*Force, $\mathrm{lbs}=($ Pressure, psi$)\left(\right.$ Area, $\left.\mathrm{in}^{2}\right)$
Gallons/Capita/Day $=\frac{\text { Volume of Water Produced, gpd }}{\text { Population }}$
Hardness, as $\mathrm{mg} \mathrm{CaCO}_{3} / \mathrm{L}=\frac{(\text { Titrant Volume, } \mathrm{mL})(1,000)}{\text { Sample Volume, } \mathrm{mL}}$ Only when the titration factor is 1.00 of EDTA
Horsepower, Brake $(\mathrm{bhp})=\frac{(\text { Flow, gpm })(\text { Head, } \mathrm{ft})}{(3,960)(\text { Pump Efficiency, } \% \text { expressed as a decimal })}$
Horsepower, Motor (mhp) =
(Flow,gpm)(Head,ft)
$\overline{(3,960)(P u m p E f f i c i e n c y, ~ \% ~ e x p r e s s e d a s ~ a ~ d e c i m a l)(M o t o r ~ E f f i c i e n c y, ~ \% ~ e x p r e s s e d a s ~ a ~ d e c i m a l) ~}$
$*$ Horsepower, Water $(\mathrm{whp})=\frac{(\text { Flow, gpm })(\text { Head, } \mathrm{ft})}{3,960}$
Hydraulic Loading Rate, $\mathrm{gpd} / \mathrm{ft}^{2}=\frac{\text { Total Flow Applied, } \mathrm{gpd}}{\text { Area, } \mathrm{ft}^{2}}$

Leakage, gpd $=\frac{\text { Volume, gallons }}{\text { Time, days }}$
*Mass, $\mathrm{lbs}=($ Volume, MG$)($ Concentration, $\mathrm{mg} / \mathrm{L})(8.34 \mathrm{lbs} / \mathrm{gal})$
*Mass Flux, lbs/day $=($ Flow, MGD) $($ Concentration, $\mathrm{mg} / \mathrm{L})(8.34 \mathrm{lbs} / \mathrm{gal})$

Mean Cell Residence Time (MCRT) or Solids Retention Time (SRT), days $=\frac{\text { AerationTank TSS, lbs }+ \text { Clarifier TSS, lbs }}{\text { TSS Wasted, lbs/day }+ \text { Effluent TSS, lb/day }}$
Milliequivalent $=(\mathrm{mL})($ Normality $)$
Molarity $=\frac{\text { Moles of Solute }}{\text { Liters of Solution }}$
Motor Efficiency, $\%=\frac{\text { Brake } \mathrm{hp}}{\text { Motor } \mathrm{hp}} \times 100 \%$
Normality $=\frac{\text { Number of Equivalent Weights of Solute }}{\text { Liters of Solution }}$
Number of Equivalent Weights $=\frac{\text { Total Weight }}{\text { Equivalent Weight }}$
Number of Moles $=\frac{\text { Total Weight }}{\text { Molecular Weight }}$

Organic Loading Rate- $\mathrm{RBC}, \mathrm{lbs}_{\mathrm{BOD}}^{5} / \mathrm{day} / 1,000 \mathrm{ft}^{2}=\frac{\text { Organic Load, } 1 \mathrm{lbs} \mathrm{BOD}_{5} / \text { day }}{\text { Surface Area of Media, } 1,000 \mathrm{ft}^{2}}$
Organic Loading Rate-Trickling Filter, $\mathrm{lbs}_{\mathrm{BOD}}^{5} / \mathrm{day} / 1,000 \mathrm{ft}^{3}=\frac{\text { Organic Load, } 1 \mathrm{bs} \mathrm{BOD}_{5} / \text { day }}{\text { Volume, } 1,000 \mathrm{ft}^{3}}$
Oxygen Uptake Rate or Oxygen Consumption Rate, $\mathrm{mg} / \mathrm{L} / \mathrm{min}=\frac{\text { Oxygen Usage, } \mathrm{mg} / \mathrm{L}}{\text { Time, } \min }$
Population Equivalent, Organic $=\frac{(\text { Flow, MGD })(\mathrm{BOD}, \mathrm{mg} / \mathrm{L})(8.34 \mathrm{lbs} / \mathrm{gal})}{\mathrm{BOD} / \text { day } / \text { person, } \mathrm{lbs}}$
Recirculation Ratio-Trickling Filter $=\frac{\text { Recirculated Flow }}{\text { Primary Effluent Flow }}$
Reduction in Flow, $\%=\left(\frac{\text { Original Flow }- \text { Reduced Flow }}{\text { Original Flow }}\right) \times 100 \%$
Reduction of Volatile Solids, $\%=\left(\frac{\mathrm{In}-\mathrm{Out}}{\operatorname{In}-(\operatorname{In} \times \mathrm{Out})}\right) \times 100 \% \quad$ All information (In and Out) must be in decimal form
Removal, $\%=\left(\frac{\text { In }- \text { Out }}{\text { In }}\right) \times 100 \%$

Return Rate, $\%=\frac{\text { Return Flow Rate }}{\text { Influent Flow Rate }} \times 100 \%$
Return Sludge Rate-Solids Balance $=\frac{(\text { MLSS })(\text { Flow Rate })}{\text { Return ActivatedSludge Suspended Solids - MLSS }}$
Slope, $\%=\frac{\text { Drop or Rise }}{\text { Distance }} \times 100 \%$
Sludge Density Index $=\frac{100}{\text { SVI }}$
Sludge Volume Index (SVI), mL/g $=\frac{\left(\mathrm{SSV}_{30}, \mathrm{~mL} / \mathrm{L}\right)(1,000 \mathrm{mg} / \mathrm{g})}{\mathrm{MLSS}, \mathrm{mg} / \mathrm{L}}$
Solids, $\mathrm{mg} / \mathrm{L}=\frac{\text { (Dry Solids, grams) }(1,000,000)}{\text { Sample Volume, } \mathrm{mL}}$
Solids Concentration, $\mathrm{mg} / \mathrm{L}=\frac{\text { Weight, } \mathrm{mg}}{\text { Volume, } \mathrm{L}}$
Solids Loading Rate, $\mathrm{lbs} / \mathrm{day} / \mathrm{ft}^{2}=\frac{\text { Solids Applied, } \mathrm{lbs} / \mathrm{day}}{\text { Surface Area, } \mathrm{ft}^{2}}$
Solids Retention Time (SRT): see Mean Cell Residence Time (MCRT)
Specific Gravity $=\frac{\text { Specific Weight of Substance, } \mathrm{lbs} / \mathrm{gal}}{\text { Specific Weight of Water, lbs } / \mathrm{gal}}$
Specific Oxygen Uptake Rate or Respiration Rate, $(\mathrm{mg} / \mathrm{g}) / \mathrm{hr}=\frac{\mathrm{OUR}, \mathrm{mg} / \mathrm{L} / \mathrm{min}(60 \mathrm{~min})}{\text { MLVSS, } \mathrm{g} / \mathrm{L}(1 \mathrm{hr})}$
Surface Loading Rate or Surface Overflow Rate, gpd/ $\mathrm{ft}^{2}=\frac{\text { Flow, gpd }}{\text { Area, } \mathrm{ft}^{2}}$
Three Normal Equation $=\left(\mathrm{N}_{1} \times \mathrm{V}_{1}\right)+\left(\mathrm{N}_{2} \times \mathrm{V}_{2}\right)=\left(\mathrm{N}_{3} \times \mathrm{V}_{3}\right) \quad$ Where $V_{1}+V_{2}=V_{3}$

Two Normal Equation $=\mathrm{N}_{1} \times \mathrm{V}_{1}=\mathrm{N}_{2} \times \mathrm{V}_{2} \quad$ Where $N=$ normality, $V=$ volume or flow

Velocity, $\mathrm{ft} / \mathrm{sec}=\frac{\text { Flow Rate, } \mathrm{ft}^{3} / \mathrm{sec}}{{\text { Area, } \mathrm{ft}^{2}}^{\text {r }} \quad \text { or } \quad \frac{\text { Distance, } \mathrm{ft}}{\text { Time, sec }}}$
Volatile Solids, $\%=\left(\frac{\text { Dry Solids, } \mathrm{g}-\text { Fixed Solids, } \mathrm{g}}{\text { Dry Solids, } \mathrm{g}}\right) \times 100 \%$
*Volume of Cone $=(1 / 3)(.785)\left(\right.$ Diameter $\left.^{2}\right)($ Height $)$

$$
=(1 / 3)\left[(\pi)\left(\text { Radius }^{2}\right)(\text { Height })\right]
$$

*Volume of Cylinder $=(.785)\left(\right.$ Diameter $\left.^{2}\right)($ Height $)$

$$
=(\pi)\left(\text { Radius }^{2}\right) \text { (Height) }
$$

*Volume of Rectangular Tank $=$ (Length) (Width) (Height)

$$
\begin{aligned}
& \text { Watts }(\mathrm{AC} \text { circuit })=(\text { Volts })(\text { Amps })(\text { Power Factor }) \\
& \text { Watts }(\mathrm{DC} \text { circuit })=(\text { Volts })(\mathrm{Amps}) \\
& \text { Weir Overflow Rate, gpd/ft }=\frac{\text { Flow, gpd }}{\text { Weir Length, } \mathrm{ft}} \\
& \text { Wire-to-Water Efficiency, } \%=\frac{\text { Water Horsepower, } \mathrm{hp}}{\text { Power Input, hp or Motor hp }} \times 100 \% \\
& \text { Wire-to-Water Efficiency, } \%=\frac{(\text { Flow, gpm })(\text { Total Dynamic Head, } \mathrm{ft})(0.746 \mathrm{~kW} / \mathrm{hp})}{(3,960)(\text { Electrical Demand, } \mathrm{kW})} \times 100 \%
\end{aligned}
$$

Abbreviations:	
BOD	biochemical oxygen demand
CBOD	carbonaceous biochemical
	oxygen demand
cfs	cubic feet per second
COD	chemical oxygen demand
DO	dissolved oxygen
ft	feet
F/M ratio	food to microorganism ratio
g	grams
gpd	gallons per day
gpg	grains per gallon
gpm	gallons per minute
hp	horsepower
hr	hour
in	inches
kW	kilowatt
lbs	pounds
mg / L	milligrams per liter
MCRT	mean cell residence time
MGD	million gallons per day
min	minute
mL	milliliter
MLSS	mixed liquor suspended solids
MLVSS	mixed liquor volatile suspended solid
OCR	oxygen consumption rate
ORP	oxidation reduction potential
OUR	oxygen uptake rate
ppb	parts per billion
ppm	parts per million
psi	pounds per square inch
PE	population equivalent
Q	flow

Abbreviations(continued):

RAS	return activated sludge
RBC	rotating biological contactor
SDI	sludge density index
SRT	solids retention time
SS	settleable solids
SSV $_{30}$	settled sludge volume 30 minute
SVI	sludge volume index
TOC	total organic carbon
TS	total solids
TSS	total suspended solids
VS	volatile solids
WAS	waste activated sludge

Conversion Factors:

1 acre $=43,560$ square feet
1 acre foot $=326,000$ gallons
1 cubic foot $=7.48$ gallons

$$
=62.4 \text { pounds }
$$

1 cubic foot per second $=0.646 \mathrm{MGD}$
1 foot $=0.305$ meters
1 foot of water $=0.433 \mathrm{psi}$
1 gallon $=3.79$ liters
$=8.34$ pounds
1 grain per gallon $=17.1 \mathrm{mg} / \mathrm{L}$
1 horsepower $=0.746 \mathrm{~kW}$

$$
\begin{aligned}
& =746 \text { watts } \\
& =33,000 \text { foot } \mathrm{lbs} / \mathrm{min}
\end{aligned}
$$

1 mile $=5,280$ feet
1 million gallons per day $=694$ gallons per minute

$$
=1.55 \text { cubic feet per second (cfs) }
$$

1 pound $=0.454$ kilograms
1 pound per square inch $=2.31$ feet of water
1 ton $=2,000$ pounds
$1 \%=10,000 \mathrm{mg} / \mathrm{L}$
π or pi $=3.14159$

Wastewater Treatment, Industrial, Collection, \& Laboratory Formula/Conversion Table
*Pie Wheels:

- To find the quantity above the horizontal line: multiply the pie wedges below the line together.
- To solve for one of the pie wedges below the horizontal line: cover that pie wedge, then divide the remaining pie wedge(s) into the quantity above the horizontal line.

Given units must match the units shown in the pie wheel.

Feed Rate, lbs/day

Horsepower, Water (whp)

Area of Right Triangle

Flow Rate, cfs

Volume of Cylinder

Copyright © 2013 by
Association of Boards of Certification

Electromotive Force (EMF), volts

Force, pounds

Volume of Rectangular Tank

Wastewater Treatment, Industrial, Collection, \& Laboratory Formula/Conversion Table

