
“It all started with ABC, a wonderful teaching language that I had
helped create in the early eighties. It was an incredibly elegant and

powerful language, aimed at non-professional programmers.”

ABC language
the mother of Python

1. Foreword for "Programming Python" (1st ed.) http://www.python.org/doc/essays/foreword/

ABC 1.05
>>> HOW TO SIEVE TO n:
HOW TO SIEVE TO n:
 PUT {2..n} IN numbers
 WHILE numbers <> {}:
 PUT min numbers IN p
 WRITE p
 FOR m IN {1..floor(n/p)}:
 IF m*p in numbers:
 REMOVE m*p FROM numbers

>>> SIEVE TO 50
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Python 3.2

>>> def sieve(n):
... numbers = set(range(2, n+1))
... while numbers:
... p = min(numbers)
... print(p, end=' ')
... for m in range(1, int(n/p)+1):
... if m*p in numbers:
... numbers.remove(m*p)
...
>>> sieve(50)
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

SIEVE TO procedure definition

condition must be a test

Guido van Rossum, ABC team member and creator of Python1

21 years later, Python still
has a lot of ABC in it

http://www.python.org/doc/essays/foreword/

Basic Types
Numbers
▪ Numbers are either exact or inexact.
▪ Exact numbers are stored as ratios of

integers of arbitrary length.
▪ Basic arithmetic (+, -, *, /) with exact

numbers always produce exact results.
▪ Some functions, such as root, sin, log etc.

give inexact results.

ABC 1.05
>>> PUT 0.70 IN charge
>>> PUT 0.05 IN tax
>>> PUT charge * (1+tax) IN total
>>> WRITE total
0.7350
>>> WRITE 2 round total
0.74
>>> WRITE */total
147
>>> WRITE /*total
200

Python 3.2

>>> charge = 0.70
>>> tax = 0.05
>>> total = charge * (1+tax)
>>> print(total)
0.735
>>> print(round(total, 2))
0.73
>>> print(format(total,'.18f'))
0.734999999999999987

Text
▪ Mutable ASCII strings of arbitrary length.
▪ First character position is @ 1.
▪ Slicing is done with operators @ and | (pipe),

see examples below.

ABC 1.05
>>> PUT 'mutable' IN text
>>> PUT 'nt' IN text@5
>>> WRITE text
mutant
>>> PUT 'ili' IN text@2|1
>>> WRITE text
militant

ABC 1.05
>>> WRITE 'elephant'@3
ephant
>>> WRITE 'elephant'|3
ele
>>> WRITE 'elephant'@2|3
lep
>>> WRITE 'elephant'|3@2
le

numerator /
denominator

rounding error

similar to list slice
assigment in Python

Collection Types

Compound
▪ Collection of values of same

or different types, assigned
to a single address.

▪ A compound may unpacked
into several addresses.

▪ There is no other way to get
at the individual parts.

List
ABC 1.05

>>> PUT now IN start
>>> WRITE start
(2012, 3, 5, 6, 19, 46.359)
>>> PUT start IN y, m, d, hour,
min, sec
>>> WRITE hour, ":", min, ":",
round sec
6 : 19 : 46

now = compound

with date and time ▪ Sequence of ordered
values of same type.

▪ Individual items may
be retrieved and
removed.

ABC 1.05
>>> PUT {7; 2; 3; 1; 4} IN lotto
>>> FOR number IN lotto: WRITE number
1 2 3 4 7
>>> INSERT 'coin' IN lotto
*** Can't cope with problem in your command
 INSERT 'coin' IN lotto
*** The problem is: incompatible types "" and 0
>>> WRITE #lotto \ length of list
5
>>> WRITE lotto item 5 \ 5th item
7

type check

\ comments

Table
▪ Mapping of sorted, unique

keys and values.
▪ Every key must have the

same type; values also. But
keys and values need not be
of the same type.

▪ Iteration obtains the values.
Use keys to get a list of keys.

ABC 1.05
>>> PUT {} IN tel
>>> PUT 11 IN tel['Jack']
>>> PUT 12 IN tel['Abe']
>>> PUT 13 IN tel['Bob']
>>> WRITE tel
{["Abe"]: 12; ["Bob"]: 13; ["Jack"]: 11}
>>> FOR name IN keys tel:
 WRITE name << 7, tel[name] /

Abe 12
Bob 13
Jack 11
>>> PUT 'We are all mad.' IN quote
>>> WRITE split quote
{[1]: "We"; [2]: "are"; [3]: "all"; [4]: "mad."}

sorted keys

How To's
HOW TO «KEYWORD» ... :
 «statements»
 QUIT

«refinements»

Define a command (procedure) «KEYWORD». The
signature may be formed by multiple uppercase keywords
interleaved with lowercase parameter names.
The QUIT command is optional: it is used to terminate
the procedure before falling off the end. Refinements are
code blocks which start with an identifier and a colon.
The example shows the definition of a command named
DISPLAY/INDENTED which takes a train and a number
(n) as arguments; spaces is a function refinement: it
returns a text made of n spaces.

>>> HOW TO DISPLAY train INDENTED n:
HOW TO DISPLAY train INDENTED n:
 FOR item IN train:
 WRITE spaces, item /
spaces: RETURN ' '^^n

>>> DISPLAY {11; 22; 33} INDENTED 10
 11
 22
 33

HOW TO RETURN «name» ... :
 «statements»
 RETURN «value»

«refinements»

Define a function «name». The signature is formed by one
name with 0, 1 or 2 arguments according to the syntax:
• no arguments: «name»
• one argument: «name» «arg»
• two arguments: «arg1» «name» «arg2».
A mandatory RETURN command terminates the function.

>>> HOW TO RETURN side1 hypotenuse side2:
HOW TO RETURN side1 hypotenuse side2:
 RETURN root (side1*side1 + side2*side2)

>>> WRITE 3 hypotenuse 4
5

HOW TO REPORT «name» ... :
 «statements»
 SUCCEED
 FAIL
 REPORT «test»

«refinements»

Define a predicate «name». The signature may be formed
by one name with 0, 1 or 2 arguments according to the
function syntax (see above). Predicate execution must
terminate with SUCCEED (test condition is true), FAIL
(test condition is false) or REPORT «test», in which case
the condition evaluates to the result of «test».
The example shows a predicate named only.consonants
which succeeds if given a text argument with no vowels.
Within only.consonants there is a predicate refinement
named vowel which reports whether the value of char at
the point of invocation is one of ‘AEIOU’ (after
converting char to uppercase).

>>> HOW TO REPORT only.consonants text:
HOW TO REPORT only.consonants text:
 FOR char IN text:
 IF vowel: FAIL
 SUCCEED
vowel: REPORT upper char in 'AEIOU'

>>> CHECK only.consonants 'Ni!'
*** Your check failed in your command
 CHECK only.consonants 'Ni!'
>>> PUT 'Ng' IN name
>>> IF only.consonants name:
 WRITE "I can't pronounce ", name

I can't pronounce Ng

Environment

“[…] the integrated
structured editor,

which [ABC] users
almost universally

hated.1”
Guido van Rossum

1. Foreword for "Programming Python" (1st ed.) http://www.python.org/doc/essays/foreword/

first: default workspace
>> list workspaces

>ex.text: select workspace
== list permanent locations

:: list how to's

:keyword: edit how to

syntax directed editor

workspace files

http://www.python.org/doc/essays/foreword/

Expressions
x < y, x <= y, x >= y, x > y
x = y, x <> y, x <= z < y
Order tests (<> is 'not equals')

«pred», «pred» x, x «pred» y
Outcome of predicate «pred» (no permanent effects)

«pred»
Outcome of refinement predicate «pred» (no permanent effects)

«test» AND «test» AND ...
Fails as soon as one of the tests fails

«test» OR «test» OR ...
Succeeds as soon as one of the tests succeeds

NOT «test»
Succeeds if «test» fails

Tests

ABC 1.05

>>> WRITE s1
{0; 2; 4; 6}
>>> WRITE s3
{3; 4}
>>> HOW TO REPORT all.even train:
HOW TO REPORT all.even train:
 REPORT EACH n IN train HAS even
even: REPORT n mod 2 = 0

>>> CHECK all.even s1
>>> CHECK all.even s3
*** Your check failed in your command
 CHECK all.even s3
>>> HOW TO FIND.ODD train:
HOW TO FIND.ODD train:
 SELECT:
 EACH n IN train HAS n mod 2 = 0:
 WRITE "no odd number found"
 ELSE:
 WRITE "found:", n

>>> FIND.ODD s1
no odd number found
>>> FIND.ODD s3
found: 3

Quantifiers
SOME «name»,… IN «train» HAS «test»
Sets «name», ... on success. May unpack compound element

EACH «name»,… IN «train» HAS «test»
Sets «name», ... on failure. May unpack compound element

NO «name»,… IN «train» HAS «test»
Sets «name», ... on failure. May unpack compound element

Built-in Predicates
e in train, e not.in train
Test for presence or absence

exact x
Test if x is exact

Python 3.2

>>> def all_even(seq):
... return all(n%2==0 for n in seq)
...
>>> s1
[0, 2, 4, 6]
>>> s3
[3, 4]
>>> all_even(s1), all_even(s3)
(True, False)
>>> def first_odd(seq):
... for n in seq:
... if n%2: return n
...
>>> def find_odd(seq):
... found = first_odd(seq)
... if found is None:
... print('no odd number found')
... else:
... print('found:', found)
...
>>> find_odd(s1)
no odd number found
>>> find_odd(s3)
found: 3

Commands
Input/Output
WRITE «expr»
Write to screen; / before or after «expr» gives
new line

READ «address» EG «expr»
Read value from terminal to «address»;
«expr» is example of type to be accepted

READ «address» RAW
Read line of text

Data Handling
PUT «expr» IN «address»
Put value of «expr» in «address»

REMOVE «expr» FROM «list»
Remove one element from «list»

INSERT «expr» IN «list»
Insert in right place, keeping the «list» sorted

DELETE «address»
Delete permanent location or table entry

SET RANDOM «expr»
Start random sequence for random and choice

Termination
QUIT
Terminate command or leave the ABC
environment

RETURN «expr»
Leave function returning value of «expr»

REPORT «test»
Leave predicate reporting outcome of «test»

SUCCEED | FAIL
Leave predicate reporting success or failure.

Flow Control
CHECK «test»
Check «test» and stop if it fails (like assert)

IF «test»:
 «commands»
If «test» succeeds, execute «commands»; no ELSE
allowed

SELECT:
 «test»: commands
 ...
 «test»: commands
Select one alternative: try each «test» in order (one
must succeed; the last test may be ELSE)

WHILE «test»:
 «commands»
As long as «test» succeeds execute «commands»

FOR «name», ... IN «train»:
 «commands»
Take each element of «train» in turn and execute
«commands»; may unpack compound elements

PASS
Do nothing

«KEYWORD» «expr» «KEYWORD» ...
Execute user-defined command

«KEYWORD»
Execute refinement command

“We did requirements and task
analysis, iterative design, and
user testing. You'd almost

think programming languages
were an interface between

people and computers.”
Steven Pemberton (CWI)

Jargon
term meaning in ABC Python perspective
address Name or expression that may fill the 2nd hole of PUT/INTO to

receive a value. Examples: total, phones[name], word@3|2.
These are like the expressions that may appear on the left
side of an assignment; also called L-values in CS theory.
Once an address is bound to a value it’s type cannot change.

command A built-in command or a user-defined procedure created with
the HOW TO command, taking any number of arguments.

ABC commands receive the parameters by reference, and
can change the value of all actual arguments passed.
Command names are always uppercase (enforced by the
editor).

compound Similar to a record but without field names. Used in PUT
commands with multiple values, as composite keys in tables
and as arguments for functions or predicates that require
more than two parameters.

ABC compounds are like Python tuples. Packing and
unpacking is supported, but not item access or iteration.

formula An expression composed of one operator or user defined
function and zero, one or two operands or arguments.

Formula syntax is the same for operators and functions. A
function that takes one argument is used like a prefix
operator; if it takes two arguments, it is used like an infix
operator.

function A function that returns a value (of any type). A function may
take zero, one or two arguments. Execution must end with a
RETURN command.

Functions and predicates are side-effect free by definition:
they receive copies of all actual arguments. Function names
are always lowercase (enforced by the editor).

hole In the ABC environment, a hole is a missing element in the
syntax of the line being edited. Holes are marked with ?

Python does not include a syntax-directed console or editor,
so there’s no analog of holes.

how to A user defined subroutine (command, function or
predicate). The command HOW TO «keyword» starts the
definition of a how to, and changes the editing mode of the
environment. If «keyword» is RETURN, a function is
defined; if REPORT, a predicate is defined; otherwise, a
command named «keyword» is defined. See also refinement.

ABC distinguishes between commands (procedures which
can change the environment and do not return a value),
functions (which cannot affect the environment and must
return a value) and predicates (cannot affect the environment
either, and can only be used in tests). A refinement is yet
another subroutine-like construct.

predicate A function that tests a condition on zero, one or two
arguments. Execution of a predicate must end with REPORT,
SUCCEED or FAIL

It is not possible to store the result of a predicate: there is no
boolean data type in ABC. Predicates can only be called
where a test is expected and the result is used immediately.

refinement A subroutine defined and accessible only within the body of
another subroutine. Refinements provide syntactic support to
“stepwise refinement” in top-down programming.
Refinements are written at the end of a HOW TO, and do not
have parameters or local variables; they share the names
defined in the enclosing scope.

There is no good analog for ABC refinements in Python. A
refinement is like a function defined within another function,
sharing the same scope of the outer function, and therefore
able to change any variable of the outer function. ABC
refinements are an example of dynamic scoping: free
variables in refinements are bound at the point of invocation.
See the predicate example in the How To’s panel.

test Expressions used as conditions in the IF, SELECT, WHILE
and CHECK commands. Tests are built using comparison
operators (=, <>, >, >=, <, <=) or predicate calls. Tests may
be combined with the boolean operators AND, OR and NOT.

There is no boolean data type in ABC. Tests can only appear
where a condition is expected. There is no way to assign the
result of test to a variable.

train The iterable data types, which can be used with the FOR
command: text, list and table.

Similar to sequences in Python. However, iterating over a
table gets the values, not the keys.

workspace ABC programs are organized in workspaces, where HOW
TOs and the contents of global variables are stored. Because
of this feature, global variables are called “persistent
locations” in ABC. The layout of a workspace in the
filesystem is an implementation detail.

Each workspace is a directory with several files, one per
HOW TO and global variable, plus an index and other
auxiliary files. ABC has no support for file handling under
user control. The only way to move bulk data in and out of
an ABC program is by reading and writing the workspace
files, which store readable representations of ABC data
structures.

History
▪ ABC is the fourth iteration of

work started in 1975 by Lambert
Meertens and Leo Geurts at the
CWI, then Stichting Mathematisch
Centrum, in Amsterdam.

“[ABC] began as an attempt to
design a suitable alternative to

Basic for beginner programmers –
a language that was still easy to
learn, still interactive, but was

easier to use and offered program
structure.”

Steven Pemberton (CWI)

▪ After 5 years of experience using
and teaching B, the first and final
version, called ABC, was released
in 1987. Steven Pemberton and L.
Meertens led the team during this
time. Guido helped with design and
implementation from 1982 to 1986.

▪ The third iteration, called B, was
developed in 1979-1981 with the
collaboration of Robert Dewar of
NYU, who brought ideas (such as
mappings) from the SETL language.

“[B is] easy to use because it
has powerful constructs without

the restrictions professional
programmers are trained to put
up with but a newcomer finds

irritating, unreasonable, or silly.”
Steven Pemberton (CWI)

▪ ABC 1.05 is copyrighted 1991. Funding was withdrawn around that time.
As of Feb. 2012, the newest binary package has files dated Feb. 7, 2005.

SETL
1969

B
1981

ABC
1987

Python
1991

Modula-3
1988

C
1971 Perl

1987

Tcl
1988

iterative
development,
user testing,

refining

“[ABC] was designed by first doing a
task analysis of the programming

task and then doing several
iterations that included serious user

testing. My own role in the ABC
group was mainly that of

implementing the language and its
integrated editing environment..”

Guido van Rossum

Python 3.2

>>> text = "I'm sure I'm not Ada"
>>> words = text.split()
>>> words
["I'm", 'sure', "I'm", 'not', 'Ada']
>>> index = set(words)
>>> index
{'not', "I'm", 'sure', 'Ada'}
>>> for word in sorted(index):
... count = words.count(word)
... print('{:12}{:3}'.format(word, count))
...
Ada 1
I'm 2
not 1
sure 1

Example

ABC 1.05

>>> HOW TO RETURN set train:
HOW TO RETURN set train:
 PUT {} IN result
 FOR item IN train:
 IF item not.in result:
 INSERT item IN result
 RETURN result

>>> PUT "I'm sure I'm not Ada" IN text
>>> PUT split text IN words
>>> WRITE words
{[1]: "I'm"; [2]: "sure"; [3]: "I'm"; [4]: "not"; [5]: "Ada"}
>>> PUT set words IN index
>>> WRITE index
{"Ada"; "I'm"; "not"; "sure"}
>>> FOR word IN index:
 WRITE word << 12, word#words >> 3 /

Ada 1
I'm 2
not 1
sure 1

c
ou

nt

definition of a function called set

table

lists are kept sorted

iterating over a table gets the
values, not the keys

“The power of ABC is largely
due to its carefully designed

system of data types and
associated operations2.”

Geurts, Meertens & Pemberton

2. Geurts, Meertens; Pemberton, ABC Programmer's
Handbook, ISBN 0-9547239-4-5

Functions
~x
Approximate value of x

exactly x
Exact value of x

exact x
Test if x is exact

+x, x+y, x-y, -x, x*y, x/y, x**y
Arithmetic operators (** = power)

root x, n root x
Square root, n-th root

abs x, sign x
Absolute value, sign (-1, 0, or +1)

round x, floor x, ceiling x
Rounded to whole number

n round x
x rounded to n digits after decimal point

a mod n
Remainder of a when divided by n

*/x, /*x
Numerator, denominator of exact number x

andom
Random approximate number r, 0 <= r < 1

e, exp x
Base of natural logarithm, exponential function

log x, b log x
Natural logarithm, logarithm to the base b

pi, sin x, cos x, tan x, arctan x
Trigonometric functions, with x in radians

angle (x, y), radius (x, y)
Angle of and radius to point (x, y)

c sin x, c cos x, c tan x,
c arctan x, c angle (x, y)
Similar, with the circle divided into c parts
(e.g. 360 for degrees)

x<<n, x><n, x>>n
x converted to text, aligned left, center, right in width n

t^u
t and u concatenated

t^^n
t repeated n times

lower t, upper t
lower "aBc" = "abc"

stripped t
Strip leading and trailing spaces

split t
Split text t into table of words

#train
Number of elements in train

e#train
Number of elements equal to e

e in train, e not.in train
Test for presence or absence

min train
Smallest element of train

e min train
Smallest element larger than e

max train, e max train
Largest element

train item n
n-th element

choice train
Random element

keys table
List of all keys in table

now
e.g. (1999, 12, 31, 23, 59, 59.999)

N
um
er
ic
Text

Train
N
ow

I had been part of the ABC development team in
the early ‘80s, and in my head I had analyzed some
of the reasons it had failed. Failure can be
measured in many ways. On the one hand, upper
management withdrew all funding from the
project; on the other hand, there were few users. I
had some understanding for the reasons for the
latter, and to some extent Python is a direct
response to that.

In part, of course, the reason for ABC's failure was
that it was too early for such a high-level language.
But I believe that several of its early major design
decisions contributed to its demise:

▪ Unconventional terminology intended to
make beginners more comfortable but instead
threw off more experienced users

▪ A monolithic implementation that made it
hard to add new features

▪ Too much emphasis on theoretically optimal
performance

▪ Not enough flexibility in its interaction with
other software running on the same computer
(ABC didn't have a way to open a file from
within a program)

Python addresses several of these issues by its
object-oriented design and by making it really easy
to write extension modules.

An Interview with Guido van Rossum
by Bruce Stewart
06/04/2002
http://onlamp.com/lpt/a/2431

Lessons

Years of task analysis, user
testing and iterative development.

L. Geurts, L. Meertens, S. Pemberton
ABC Programmer's Handbook

ISBN 0-9547239-4-5
Guido explains
why ABC failed3

3

▪ Focus on simplicity.
▪ Suitability for interactive use.
▪ Block structure by indentation.
▪ The for loop (a.k.a “enhanced for

loop” in JSR 201, 25 years later!)
▪ Choice of built-in types.
▪ Tuple unpacking.
▪ Division (thanks to exact numbers)

What ABC got right

How many programming languages
enjoy the fruits of such a legacy?

http://onlamp.com/lpt/a/2431

	Canvas 1
	Canvas 3
	Canvas 6
	Canvas 4
	Canvas 10
	Canvas 12
	Canvas 11
	Canvas 5
	Canvas 7
	Canvas 2
	Canvas 9
	Canvas 8

