
ABCD-L: Approximating Continuous Linear Systems
Using Boolean Models

Aadithya V. Karthik‡ and Jaijeet Roychowdhury
Department of Electrical Engineering and Computer Sciences, The University of California, Berkeley, CA, USA

‡Contact author. Email: aadithya@berkeley.edu

Abstract—We present ABCD-L, a scalable technique for Analog/Mixed Signal
(AMS) modelling/verification that captures the continuous dynamics of Linear
Time-Invariant (LTI) systems, using purely Boolean approximations, to any
desired level of accuracy. ABCD-L’s models can be used in conjunction with
existing techniques for Boolean synthesis/verification/fast logic simulation, or
with hybrid systems frameworks, to represent LTI dynamics without incurring
the penalty of adding continuous variables. Unlike existing state-enumeration
approaches like DAE2FSM [1], ABCD-L scales practically linearly with system
size. We apply ABCD-L to I/O links composed of RC/RLGC units, capturing
important analog effects like inter-symbol interference, overshoot/undershoot,
ringing, etc. – all using purely Boolean models. We also present a continuous-
time differential equalizer example, where ABCD-L accurately reproduces key
design-relevant AMS metrics, including the eye diagram correction achieved by
the circuit. Furthermore, for real-world LTI systems, we demonstrate that ABCD-
L can be applied in conjunction with Model Order Reduction (MOR) techniques;
we use this to produce accurate Boolean models of an industry-scale power grid
network (with 25849 nodes) made available by IBM. We also demonstrate that
Boolean simulation using ABCD-L’s models offers considerable speed-up over
standard circuit simulation using linear multi-step numerical methods.

I. INTRODUCTION

In today’s advanced process technologies (32nm and below), Analog/Mixed-
Signal (AMS) components (e.g., interconnect, I/O and equalization circuitry,
PLLs, DLLs, etc.) are becoming key bottlenecks that determine system-level
performance [2], [3]. Moreover, an increasingly significant proportion of
overall design bugs are now attributable to on-chip AMS components. For
example, a recent internal study at Intel concluded that AMS modules account
for over 20% of all design bugs in cutting edge microprocessors. Furthermore,
such bugs tend to be difficult and costly to identify and correct, typically
requiring extensive time-consuming SPICE-level simulations.

For early detection and timely correction of the above AMS-related design
bugs, it is desirable to carry out functional validation and formal verification
of AMS components at or near SPICE-level accuracy. However, in most
existing approaches to AMS verification (see the accompanying supplement
for an overview), the underlying model that is verified is usually a highly
simplified abstraction that does not attempt to capture any of the SPICE-
level subtleties (e.g., layout-dependent parasitics, cross-talk, inter-symbol
interference, ringing) that are responsible for bringing about design bugs/loss
of performance. Thus, while the simplified models currently in use by AMS
verification tools can be useful for gaining intuition about the circuit’s
operation as a whole (as intended by the designer), they are of limited use
when it comes to debugging AMS designs or issuing performance guarantees.

Here, it is useful to draw a distinction between two kinds of formal verification
techniques: Boolean techniques and Hybrid systems techniques. Boolean
techniques (e.g., [4]) represent each underlying circuit signal as a discrete
(usually binary) quantity, whereas hybrid systems techniques (e.g., [5]–[11])
offer the capability to represent signals as either discrete or continuous-valued
quantities. However, the ability to represent and reason about continuous
variables often comes at an enormous computational cost, which renders
hybrid systems techniques typically orders of magnitude slower than their
Boolean counterparts. Indeed, while Boolean techniques are routinely used in
the industry to verify circuits with millions of logic gates, even state-of-the-art
hybrid systems techniques are unable to verify systems with more than a
few (e.g., 5 to 10) continuous variables.
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The limited scalability of hybrid systems techniques is the main reason why
AMS circuits are typically not modelled/verified at SPICE-level accuracy;
instead, existing hybrid systems methodologies are forced to adopt over-
simplified “behavioural” AMS component models that often do not bear
close resemblance to SPICE. This drastically limits their applicability in the
context of AMS debugging/performance verification: without SPICE-accurate
modelling, the predictions made by hybrid systems based AMS verification
engines are not reliable enough for designers. As a result, the prevailing
practice amongst AMS designers today is to carry out time-consuming
SPICE simulations rather than place their trust in AMS verification tools.
To overcome such “designer skepticism”, we believe that it is necessary
to significantly scale up existing hybrid systems techniques, so that they
embrace SPICE-accurate models even for large AMS designs.

In this paper, we propose a technique (called ABCD-L1) to bridge the
gap between SPICE-level detail and the models used by AMS verification
engines, for an important subclass of AMS circuits, namely, Linear Time
Invariant (LTI) systems2. The key idea behind ABCD-L is to approximate the
continuous-time, continuous-valued dynamics of LTI systems using purely
Boolean/discrete models. That is, given a set of differential equations for an
LTI system (or alternatively, measured data, transfer function characteristics,
scattering parameters, reduced order models, etc.), ABCD-L is a “push-
button” style technique that produces as output a Boolean circuit abstraction
(comprised entirely of Boolean logic elements such as registers, counters, etc.),
that compactly encodes the analog behaviour of the given system, in a
completely scalable fashion. Another important feature of ABCD-L is that it
can approximate LTI systems to any desired level of accuracy (see §II).

Briefly, ABCD-L works by discretizing each underlying circuit signal, as well
as the circuit’s inputs, using as many bits as necessary to achieve the desired
accuracy. These discretized values are stored in Boolean registers. Given the
contents of each register at a particular time instant, ABCD-L uses Boolean
logic to approximate the next time instant at which these contents must be
updated (e.g., in response to changing input). Thus, ABCD-L transforms the
underlying LTI system into an event-based discrete formulation, realizable
as a Boolean circuit (more details can be found in §II).

The above approach offers several compelling features. Firstly, because
ABCD-L produces purely Boolean models, it is well-suited for use in
conjunction with existing techniques for Boolean synthesis, verification,
high speed logic simulation, etc. By reducing LTI dynamics to Boolean form,
ABCD-L makes it possible to leverage powerful Boolean techniques for model
checking/reachability analysis of LTI systems3, as well as Boolean systems
coupled with LTI dynamics (e.g., high-speed digital logic with parasitic
interconnect). Secondly, in the context of AMS modelling/verification, we
know that existing hybrid systems approaches are unable to cope with
more than a few continuous variables, whereas they can comfortably handle
thousands of purely Boolean variables. Therefore, by enabling LTI dynamics
to be accurately represented using “cheap” Boolean variables, ABCD-L frees
up “precious” continuous variables for other purposes (e.g., to accurately
model non-linear dynamics). Therefore, with ABCD-L, it may be possible
to expand the scope of hybrid systems approaches to much larger systems
than they can handle at present. Although this notion has been theoretically
studied before (e.g., see [12]), we believe that ABCD-L constitutes the first
practical approach for Booleanizing continuous LTI dynamics in an accurate,
systematic, and scalable manner.

1Accurate Booleanization of Continuous Dynamics - Linear
2LTI systems constitute a fundamental class of AMS systems, including, for example,
on-chip and off-chip interconnect, clock tree networks, filters, linearized small-signal
circuits, channel models, etc.
3In this paper, we confine ourselves to the question of how to construct purely Boolean
models that accurately capture analog LTI dynamics. Formal verification involving
such models is an important next step, and one that is the subject of ongoing research.
In this paper, however, we do not seek to address the verification problem.
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Fig. 1. The ABCD-L flow for producing a Boolean approximation that captures the analog dynamics of an LTI system. As shown in the figure, ABCD-L can also accept
black-box simulation data as input, and it also integrates well with LTI MOR techniques.

Furthermore, ABCD-L also offers significant scalability advantages over
explicit state-enumeration techniques like DAE2FSM [1], which produce
Finite State Machines (FSMs) in State Transition Graph (STG) form, requiring
exponential time and space complexity with respect to LTI system size.
By contrast, ABCD-L’s implicit, circuit-based models are exponentially
more compact than STGs. As a result, ABCD-L scales practically linearly
with respect to both system size and the desired fidelity of the Boolean
approximation, without blowing up in either runtime or model size. In
addition, the above event-based Boolean formulation lends itself to a
new methodology for accurate, high-speed LTI system simulation (covered
in §II). This methodology, as we show in §III, can offer considerable speed-
up over traditional circuit simulation methods based on linear multi-step
integration [13]. Moreover, ABCD-L has been designed to handle stiff systems
efficiently, and it can take full advantage of LTI Model Order Reduction
(MOR) techniques to Booleanize large LTI systems in a scalable manner.

We have applied ABCD-L to representative LTI circuits such as I/O links com-
posed of RC and RLGC units. For these systems, we show that the Boolean
models produced by ABCD-L are able to accurately reproduce the original
system’s continuous dynamics, including important performance-limiting
analog effects such as inter-symbol interference, overshoot/undershoot,
ringing, etc. In addition, we have applied ABCD-L to produce purely Boolean,
small-signal models of a more complex, non-linear AMS system: an LTI
channel followed by a differential equalizer (linearized using small-signal
device models). In this case, too, ABCD-L is able to accurately capture and
reproduce the circuit’s dynamics in SPICE-level detail, using purely Boolean
models all along. Further, ABCD-L is also able to capture higher-level design
relevant AMS metrics, such as the eye diagram correction achieved by the
equalizer. In addition, to accurately Booleanize industry-scale real-world LTI
systems in a computationally viable manner, ABCD-L can be applied in
conjunction with LTI MOR techniques; we demonstrate this for a 25849-node
benchmark power grid network made available by IBM4.

II. ABCD-L’S CORE: A NEW TECHNIQUE FOR BOOLEANIZING
LTI SYSTEMS

In this section, we describe the key ideas behind ABCD-L.

Fig. 1 depicts the ABCD-L flow, which takes as input an LTI system, and
produces as output a Boolean approximation for it. For simplicity, we assume
that the LTI system is specified as an ODE5, of the form:

~̇x = A~x+B~u, ~y = cT~x, (1)

where ~x is the system’s (continuous) analog state (a vector of voltages and
currents), A is a real square matrix, ~u is the system’s (time-varying) input,
and ~y its corresponding output. We note that, if the ODE is not directly
available, but instead only measured data (e.g., from AC excitation at several
frequencies), or S-parameters, or black-box transfer function characteristics,
are available, ABCD-L can still obtain the requisite ODE by applying standard
fitting techniques (e.g., VectorFit [14], table-based methods [15], etc.).

As indicated in Fig. 1, ABCD-L begins with an eigenanalysis [16] of the
above ODE system, which produces a new ODE system of the form:

~̇z = D~z+E~u, ~y = lT~z, (2)

4Please see the supplement at the end of this paper.
5ABCD-L is also capable of Booleanizing more general systems of the form Q~̇x =
A~x+B~u, ~y = cT~x, where Q may or may not be invertible. However, due to space
constraints, we limit our discussion here to LTI systems in ODE form.

where D is a square diagonal matrix containing the eigenvalues of A. The
matrices [A, B, c] are related to the matrices [D, E, l] through the eigenvector
matrix P (the relevant equations can be found in Fig. 1).

The ith equation of the new ODE is a “de-coupled” scalar linear differential
equation of the form:

żi = λizi +bi(t), (3)

where λi is the matrix entry Di,i and bi(.) is the ith entry of the vector E~u(.).
Given the initial condition zi(t0), the solution to the above equation is known
analytically, and is given by:

zi(t) = zi(t0)eλi(t−t0)+
∫ t

t0
bi(τ)eλi(t−τ)dτ (4)

At this point, we would like to make some observations:

◦ On some (extremely rare, Lebesgue measure zero) occasions, the given
LTI system may not be diagonalizable, i.e., the matrix D above, instead of
being diagonal, may take a Jordan form. It is possible (though tedious) to
develop a general theory for Booleanizing such systems; however, because
this almost never happens in practice, we do not consider it in this paper.

◦ In some cases, the size of the given system makes eigenanalysis impractical.
In such situations, we first use an LTI MOR technique (e.g., Arnoldi
iteration [17], [18]), to reduce the system size, and then subject the reduced
system to eigenanalysis. The theory of LTI MOR is well-developed, and
many large LTI systems encountered in practice can successfully be
reduced using the MOR techniques available today. Also, as Fig. 1 shows,
it is relatively straightforward to integrate virtually any MOR technique
into the ABCD-L flow; we demonstrate this for a 25849-node benchmark
power grid network made available by IBM, in the supplemental material
at the end of the paper.

◦ Many real-world LTI systems are stiff, i.e., their underlying signals evolve
at widely different timescales because the systems’ eigenvalues span several
orders of magnitude. ABCD-L can efficiently handle such systems by
using different timescales to Booleanize the dynamics corresponding to
different eigenvalues. However, due to space constraints, and for notational
simplicity, we do not elaborate on this here.

Resuming the ABCD-L flow, the key idea behind ABCD-L is to transform the
analytical solution of Eq. (4) into Boolean operations that can be expressed
using digital logic constructs (registers, counters, etc.). This transformation
is achieved by a set of Boolean Logic Units (LUs), one for each component
of~z. Each LU is either a real LU (RLU) or a complex LU (CLU), depending
on the corresponding eigenvalue. The output sequence of the ith such LU is
a (multi-bit) Boolean approximation of the ith component of~z(t). In addition,
a combinational Domain Transformation Unit (DTU) combines the outputs
of the LUs into a multi-bit Boolean approximation of y(t) (which can be
mapped back into a piecewise constant analog signal as a post-processing
step). Below, we describe how the DTU and the individual LUs are structured.

The DTU’s output is simply a Booleanized linear combination of its inputs.
This is a combinational function whose Boolean specification/synthesis has
been well-studied (e.g., see [19]).

The LUs, on the other hand, are sequential systems, and their construction
is more challenging. Each LU implements, using purely Boolean logic, a
scalar linear differential equation ż = λ z+ b(t). The signals z(t) and b(t)
are encoded as bit-vectors of length m (where m is a parameter passed
to ABCD-L, called the signal resolution). The LU is designed so that its



Fig. 2. Sequential logic schematic for discretizing a real scalar linear differential
equation ż = λ z+b(t) in the eigendomain.

bit-vector approximation to z(t), when mapped back into the analog domain,
closely matches the actual system response z(t) for all input sequences b(t).
This is achieved by the logic structures depicted in Figs. 2 and 3, for real
and complex eigenvalues respectively.

Let us first consider the real eigenvalue scenario, i.e., the problem of
Booleanizing ż = λ z+ b(t), where all quantities are real. Fig. 2 shows a
Boolean schematic for this, which includes (a) a Signal Register SR that
maintains an m-bit representation of z, (b) a 1-bit Direction Register DR, that
denotes whether z is increasing/decreasing, (c) a Count Limit Register CLR
that indicates the time at which SR must be incremented/decremented, (d) a
set/reset counter with a count C, which measures time by counting up to the
limit CLR, and (e) an m-bit Input Register IR that stores the input b. The
whole unit is clocked at a pre-determined, fixed time-step ∆ (in practice, it
is usually straightforward to choose ∆ to ensure that it is small enough to
capture the dynamics of the scalar system above). For stiff systems, one can
boost computational efficiency by using different ∆s for the different LUs.

The above unit works as follows: as long as the input b(t) remains constant,
it is, in some sense, already “planned for”. That is, the above structure stores
enough information to know when, and in which direction, the register SR
must be incremented/decremented. In this case, the count C keeps ticking
up until it eventually becomes equal to the count limit CLR, at which time
the register SR (and all the other registers as well) are updated accordingly.
Analytical expressions, based on Eq. (4), are known for the “time to next
change in SR mod ∆” operation, which can be either computed on the fly,
or stored in a truth-table, etc.

For non-constant b(t), as Fig. 2 indicates, the logic unit responds by
considering the latest sampled input to be a new DC input, and updates
all the registers using the analytical “time to next change mod ∆” function,
making an intelligent estimate about the current value of z using the contents
of registers SR, C, CLR, and DR (note that the count can be reset to any
value by passing the RESET signal to the counter).

Fig. 3. Sequential logic implementation schematic for discretizing a complex scalar
linear differential equation ż = λ z+b(t) in the eigendomain.

For the complex eigenvalue case, a CLU (Fig. 3) essentially consists of two
copies of each RLU register, storing the real and imaginary parts of each
underlying signal. Whenever the registers need to be updated (for example, if
the input has changed or if the limit CLR is reached by one of the counters),
both the real and the imaginary sets of registers are updated simultaneously,
based on the analytical solution given by Eq. (4).

From the above discussion, ABCD-L’s accuracy clearly increases with the
signal resolution m (which is a designer-specified parameter that determines
how finely the underlying signals are discretized). In principle, this allows
ABCD-L to abstract the given LTI system to any desired level of accuracy.
In practice, for a designer, it is usually straightforward to determine an
appropriate value for m through trial and error.

We also note that time-domain simulations involving ABCD-L’s Boolean
models can be very efficient, because they can be carried out entirely in the
logical/Boolean domain (if necessary, using specialized logic simulation tools),
without requiring any differential equation solving. To speed up simulation
even further, we can devise an algorithm that jumps directly to the time instant
specified by CLR, instead of incrementing the count C at every time-step.
Indeed, we have implemented this algorithm, and in §III, we demonstrate
that it can be significantly faster than conventional circuit simulation methods
such as linear multi-step integration (even after accounting for the time taken
up by eigenanalysis, model generation, etc.).

III. RESULTS

Having described the core techniques behind ABCD-L, we now apply
them to Booleanize LTI systems that are of interest to AMS designers,
including, (1) I/O links modelled using RC/RLGC chains, and (2) an “LTI
channel followed by a differential equalizer” circuit, linearized using small-
signal analysis. We show that the Boolean models produced by ABCD-L are
able to accurately capture the continuous-time dynamics of such systems,
including important analog effects such as inter-symbol interference (ISI),
overshoot/undershoot, ringing, etc. Also, we show that ABCD-L is able
to faithfully reproduce higher-level AMS-design metrics for such systems,
including the entire shape of the eye diagram opening at key circuit nodes.
Furthermore, from a computational efficiency perspective, we show that
ABCD-L can offer considerable simulation speed-ups over traditional LTI
ODE/DAE simulation methods like linear multi-step integration (especially
for larger LTI systems). Note that the examples in this section do not use LTI
MOR; for examples involving MOR, please see the supplemental material.
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Fig. 4. ABCD-L applied to an RLGC filter, to produce Boolean models of arbitrarily
high accuracy. The continuous system’s response to a step input u(t) (in black) is
computed both analytically (blue), and using ABCD-L (green). In the plots above, the
X-axis denotes time in RC units, and the Y-axis denotes voltages in Volts.

Before presenting the examples described above, we would first like to
highlight an important feature offered by ABCD-L: in spite of using purely
Boolean models, ABCD-L can reproduce the continuous-time dynamics of
LTI systems with arbitrarily high accuracy, simply by increasing the number
of bits used to represent the underlying circuit signals. Fig. 4 illustrates this
using an RLGC filter (shown at the top left of the figure). This is a linear
system of size 2, whose eigenvalues are both complex. As described in §II,
ABCD-L discretizes the circuit’s input u(t) (in this example, a unit step
function), its internal voltages/currents, and its output y(t), into bit vectors of
length m, where higher values of m correspond to finer quantization of the
underlying analog signals (hence greater accuracy). The figure shows that,
as we increase m from 1 to 8, the response predicted by ABCD-L’s Boolean
model (the green waveform) matches the actual system’s response (the blue
waveform) more and more accurately, duplicating important features such as



overshoot and ringing. This is true for LTI systems in general: ABCD-L’s
Boolean approximations can be as close to the original system as desired.

We now apply ABCD-L to chains of RC/RLGC units (Fig. 5); these are
often used to model high-speed I/O links, interconnect networks, on-chip
communication channels, etc. [20], [21].

Fig. 5. RC and RLGC chains of length N, each driving a load capacitance Cload

Our experiments on RC/RLGC chains run as follows:

◦ We build an RC/RLGC chain, and apply several long, randomly generated
bit patterns u(t) at its input. To model both small and large inter-symbol
interference (ISI), we vary the unit-interval T (the time that elapses between
successive bits at the input), which is the inverse of the bitrate. Note that
ISI decreases with increasing T , and vice-versa.

◦ We use ABCD-L to predict the system’s responses y(t) to the above inputs.
Between experiments, we vary ABCD-L’s signal resolution parameter
m (the number of bits used by ABCD-L to quantize the underlying
circuit’s eigendomain signals).

◦ We compare ABCD-L’s time-domain predictions against those of an
ODE/DAE solver, plotting them on top of one another.

◦ Finally, since I/O link/interconnect engineering often makes extensive
use of eye diagrams [22], we also convert ABCD-L’s predictions into
eye diagram form, and compare against eye diagrams generated by an
ODE/DAE solver.

Fig. 6 depicts the results obtained by applying 4-bit ABCD-L to a 10-unit
RC chain, and to a 10-unit RLGC chain, under conditions of both small
ISI and large ISI. We note that, because all signals are quantized using 4
bits, the output of the system, as predicted by ABCD-L, consists of at most
24 = 16 different levels. Moreover, as seen from the figure, in all cases, the
16-level predictions made by ABCD-L (drawn in green) closely match the
system’s actual continuous-time responses (drawn in blue). Therefore, the
Booleanized models produced by ABCD-L appear to be good approximations
of the underlying continuous LTI systems.

In parts (a) and (c) of Fig. 6, the bitrate of the applied input (the black
waveform labelled u(t)) is low enough that the resulting ISI is small. This
is readily seen from the system’s responses: whenever the input bit is high
(low), the output response has enough time to rise (fall) to a reasonably high
(low) level before the next bit arrives. On the other hand, in parts (b) and (d)
of the figure, we increased the input bitrates to a point where the induced
ISI became significant. This can also be seen visually from the figure – even
if an input bit is high (low), the output responses often do not have enough
time to rise (fall) before the next bit arrives. As the figure shows, all these
effects are captured quite accurately by ABCD-L.

Fig. 7. Applying 8-bit ABCD-L to a 10-unit RLGC chain, for the same inputs as
in Fig. 6(d). With the increased signal resolution, it is seen that the deviations between
ABCD-L’s prediction and the system’s actual response are significantly reduced.

In Fig. 6(d), we have drawn attention (with a red circle) to a small time-
interval where there is some deviation between ABCD-L’s prediction and the
system’s response. Although such deviations tend to be “self-correcting” (as
seen from the figure), it may be desirable to reduce the magnitude of these

deviations. As described in §II, this can be achieved simply by increasing the
number of bits used by ABCD-L to discretize the underlying waveforms (this
corresponds to changing a single parameter that is passed as an argument
to ABCD-L). This is illustrated in Fig. 7, where we have applied 8-bit
ABCD-L (instead of 4-bit ABCD-L) to the same RLGC chain, for the same
inputs as in Fig. 6 (d). From the figure, it is readily seen that the deviations
between ABCD-L and the original system have been significantly reduced.
This supports our earlier assertion that ABCD-L can model any LTI system
with arbitrarily high accuracy.

Having illustrated ABCD-L’s ability to closely match the underlying system’s
responses for short input patterns, we now simulate the ABCD-L-generated
Boolean models on much longer input patterns (thousands of bits), and
convert the resulting predictions into eye diagram form; this representation
is extensively used in I/O link/interconnect design, modelling, analysis, and
simulation, because it provides the design architect with a quick snapshot
of key system properties [22]. Due to space constraints, we present eye
diagrams only for the RLGC chain (and not the RC chain).

Fig. 8. Eye diagrams produced by 4-bit ABCD-L (green), and by an ODE solver
(blue), for the 10-unit RLGC chain.

Fig. 8 depicts the eye diagram produced by applying 4-bit ABCD-L (in
green) to the 10-unit RLGC chain of Fig. 6. This eye diagram is overlaid
on top of the eye diagram produced by an ODE solver (which is in blue).
The red dashed contour traces the shape of the eye opening, as predicted by
the ODE solver. As seen from the figure, ABCD-L’s 4-bit Boolean model is
able to reproduce the entire shape of the eye opening with good accuracy.

Fig. 9. Eye diagrams produced by 8-bit ABCD-L (green), and by an ODE solver
(blue), for the 10-unit RLGC chain. It is seen that the shape of the eye opening is
reproduced with increased accuracy compared to Fig. 8.

However, the eye opening produced by 4-bit ABCD-L is at times a bit
conservative. While this may not be a problem for many applications, it
may sometimes be necessary to obtain a more accurate representation of
the eye opening. As we have indicated before, such increased accuracy can
be achieved simply by asking ABCD-L to use more bits to discretize the
underlying circuit’s signals. This is illustrated in Fig. 9, which depicts the eye
diagram produced by 8-bit ABCD-L for the same RLGC chain. Indeed, as
seen from the figure, the 8-bit ABCD-L model almost perfectly reproduces



Fig. 6. Applying 4-bit and 8-bit ABCD-L to a 10-unit RC chain. The resulting Boolean models are simulated under conditions of both small ISI (parts (a), (c)) and large ISI
(parts (b), (d)), and the Boolean models’ predictions (the green waveforms) are compared against actual system responses (the blue waveforms), for a randomly generated input
pattern (the black waveforms labelled u(t)).

the shape of the entire eye opening (as compared to the red dashed contour
obtained by ODE simulation). This also confirms our assertion that ABCD-L
can approximate LTI systems to any desired level of accuracy.

Fig. 10. LTI channel followed by a differential equalizer.

Fig. 11. ABCD-L accurately reproduces the time-domain continuous dynamics of
the equalizer.

Having applied ABCD-L to RC/RLGC chains, we now consider a more
complex example relevant to AMS-design: an LTI channel followed by
an equalization circuit, as illustrated in Fig. 10. We note that, in this
circuit, both the channel (modelled as an RC chain) and the equalizer use
differential signalling, i.e., the circuit’s inputs and outputs are represented
by the difference between two voltages (instead of a single voltage)6. The
equalizer plays a critical role in this circuit: it partially reverses the distortion
(ISI) produced by the channel, so that one can transmit bits across the channel
at much higher speeds than would be possible otherwise. For example, if the

6Differential signalling has important advantages over single-ended signalling, including
better noise resilience, improved resistance to external interference, etc.

channel’s cut-off frequency is 1 GHz, then reliable transmission can happen
only at bitrates at or below 1Gbps. However, if the combined “channel plus
equalizer” system has an effective cut-off frequency at 3 GHz, then one can
triple the throughput without suffering distortion.

We also note that the circuit in Fig. 10 is non-linear. Therefore, we apply
ABCD-L not to the original circuit, but to a small-signal linearization of
the original circuit around its quiescent operating point, using small-signal
device models obtained from, e.g., the book by Sedra and Smith [23].

Fig. 11 illustrates the application of 6-bit ABCD-L to the small-signal
linearized “channel plus equalizer” circuit (henceforth simply referred to as
“the system”) above (with the channel being a 5-unit RC chain). The blue
waveform of Fig. 11 was obtained by using an ODE solver to simulate the
system, for a random bit pattern applied at the input (the black waveform). As
before, we see from the figure that the Boolean model produced by ABCD-L
is able to accurately duplicate the time-domain behaviour of the system.

For equalizers, an important AMS-relevant design metric is the eye diagram
correction produced by the circuit. In typical AMS applications, the eye
diagram at the input to the equalizer (i.e., the channel output) has a very
small or even non-existent eye opening (Fig. 12(a)). The equalizer offsets
some of the ISI produced by the channel, which can considerably widen the
eye opening; for example, Fig. 12(b) shows the eye diagram produced by a
small-signal SPICE simulation of the above system, using SpiceOPUS [24].
Parts (c) and (d) of Fig. 12 depict the eye diagrams produced by applying 6-
bit and 8-bit ABCD-L to the above “channel plus equalizer” system, overlaid
on top of the (blue) SPICE eye diagram. As the figures show, the eye
diagrams obtained from ABCD-L’s Boolean models are able to accurately
reproduce the eye diagram correction achieved by the equalizer. Thus, we
have demonstrated that ABCD-L is a viable technique to Booleanize the
continuous dynamics of AMS systems.

Having presented results pertaining to ABCD-L’s accuracy, we now consider
its computational efficiency. As outlined in §II, the Boolean models produced
by ABCD-L lend themselves to efficient time-domain simulation carried out
entirely in the discrete/logical domain, without having to solve differential
equations. Even after taking into account the time taken to generate the ABCD-
L models, ABCD-L can still be many times faster than conventional circuit
simulation techniques like linear multi-step integration. This is illustrated
in Fig. 13, which compares the total time taken by 4-bit, 5-bit, 6-bit, and
8-bit ABCD-L (total runtime includes pre-processing, model generation,
simulation, and post-processing) against the time taken by Backward Euler
integration, for simulating RC chains of various lengths on a long, randomly
generated input bit pattern. As the figure shows, ABCD-L does offer a
significant speedup advantage. Moreover, as the LTI system size increases,
this advantage becomes even more pronounced7. In addition, as discussed
in §II (and illustrated in the supplemental material), it is straightforward
to integrate linear MOR techniques (e.g., Arnoldi iteration [17], [18]) into

7All the ABCD-L simulations of Fig. 13 have been carried out in C++, on a system
equipped with a 6-core 3.2 GHz AMD R© PhenomTM II X6 1090T processor, and with
a total of 16GB (shared) memory.



Fig. 12. ABCD-L accurately reproduces the entire shape of the eye diagram at the equalizer’s output.

ABCD-L, which can further improve its runtime.

0 100 200 300 400 500
0

100

200

300

400

500

600

LTI system size (RC chain length)

S
im

u
la

ti
o
n

 t
im

e 
(s

)

Runtime comparisons: Backward Euler vs ABCD−L

 

 

Backward Euler ABCD−L

Fig. 13. ABCD-L can offer considerable simulation speed-up over traditional circuit
simulation techniques like Backward Euler integration. The figure illustrates this for
RC chains of varying length, and for 4-bit, 5-bit, 6-bit, and 8-bit ABCD-L.

IV. SUMMARY, CONCLUSIONS, AND FUTURE WORK

In this paper, we have developed and demonstrated ABCD-L, a technique that
automatically produces Boolean approximations of continuous LTI systems,
to any desired level of accuracy, in a completely scalable fashion. We have
applied ABCD-L to representative LTI systems such as RC/RLGC chains,
where it captures important analog effects like inter-symbol interference,
ringing, etc. We have also demonstrated ABCD-L on a small-signal linearized
“channel plus equalizer” circuit, where it is able to reproduce key design-
relevant AMS metrics, including the eye diagram correction achieved by
the circuit. Also, we have shown that ABCD-L generated models can offer
significant simulation speed-up over conventional circuit simulation techniques
like linear multi-step integration.

Through ABCD-L, we have demonstrated that systems specified in purely
Boolean form have the ability to capture continuous-time LTI dynamics
with excellent accuracy and scalability. However, it is important to develop
this idea further, and bring ABCD-L to closure with formal verification
methods, Boolean SAT solvers, etc. The first step in this regard is to develop
techniques for efficiently synthesizing the combinational logic present in
ABCD-L models. To this end, we are actively exploring new ways to exploit
the structure of the underlying floating point computations, using specialized
tools like ABC [4], to come up with compact, gate-level descriptions of
ABCD-L models.

Our long-term future plans are shaped by our belief that ABCD-L possibly
espouses a new route to the longstanding problem of SPICE-accurate AMS
verification. By Booleanizing continuous-time LTI dynamics, ABCD-L capi-
talizes on the ability of existing Boolean/hybrid systems modelling/verification
techniques to handle large numbers of Boolean/discrete variables. At the
same time, ABCD-L attempts to steer clear of the main weakness of existing
formal methods, namely, their scalability limitations while analyzing systems
with more than a few continuous variables. Therefore, in future, we would
like to work on (1) extending ABCD-L to Booleanize strongly non-linear
systems as well (e.g., mixers, oscillators, etc.), and (2) integrating ABCD-L
with state-of-the-art techniques for Boolean and hybrid systems verification,
to develop a new AMS verification methodology founded on Booleanizing
continuous dynamics.
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ABCD-L: Approximating Continuous Linear Systems
Using Boolean Models (Supplement)

Abstract—In this supplement, we provide additional context for ABCD-L and
place our contributions in perspective, relative to the existing body of literature
on topics like AMS modelling/verification, Boolean and hybrid systems frame-
works, etc. Further, we demonstrate that ABCD-L can be applied in conjunction
with Model Order Reduction (MOR) techniques, to Booleanize large LTI systems
whose direct eigendecomposition may be computationally infeasible. For example,
we combine ABCD-L with Arnoldi iteration based MOR to efficiently produce
accurate Boolean models of a real-world power grid network (with 25849 nodes)
obtained from a benchmark set made available by IBM. Due to space constraints,
we were unable to include such material within our main manuscript.

I. ABCD-L IN THE CONTEXT OF EXISTING FORMAL
TECHNIQUES

Much of the existing body of work on the formal analysis and modelling
of AMS systems has been carried out by the Boolean and hybrid systems
verification communities. This literature is too vast to cover in full detail here;
however, we will provide a brief overview highlighting the common features
shared by existing approaches, and how ABCD-L complements them.

One trait that is shared by almost all existing formal verification systems is
that they work with simplified behavioural models for AMS components –
models that do not bear close resemblance to SPICE. Indeed, many general
frameworks have been proposed for formal verification and reachability
analysis of dynamical systems that involve both discrete and continuous
variables; however, the verification involving continuous quantities often
scales much more poorly than verification involving purely Boolean/discrete
quantities. This limits the applicability of the proposed techniques/frameworks
to behavioural models of AMS systems, rather than models that achieve
SPICE-level accuracy.

For example, consider the work by Ghosh and Vemuri [1], who applied the
PVS proof checking tool to simplified analog circuit models (e.g., using
idealized OpAmps, transistors with constant transconductance, etc.). While
this was an important step towards AMS verification, its range of applications
was limited by computational challenges arising from the need to formally
verify arithmetic over real numbers.

Due to the inherent scalability limitations of verifying continuous systems,
many other techniques were developed to abstract analog dynamics using
highly simplified behavioural models, carefully tailored to specific application
domains/circuit classes. For example, Hanna and others [2], [3] developed
new approaches to formally verify digital circuits suffering from analog
non-idealities.

There is also another class of AMS verification approaches; these methods
try to partition the continuous analog state space of voltages and currents into
discrete domains, and the idea is to encode transitions between these domains
using Boolean data structures like Finite State Machines, Binary Decision
Diagrams, etc. For example, the work by Kurshan and Macmillan [4], Hedrich
et. al. [5], [6], etc. fall into this category. The formal verification and model
checking of such abstractions can be carried out using either off-the-shelf
techniques with only small modifications (e.g., as done by Kurshan), or by
specially augmenting existing CTL model-checking tools with extra AMS-
relevant features (as espoused by Hedrich and others). However, in spite
of researchers’ best efforts along these lines, their techniques were scalable
only to small designs (e.g., a single gate [4], or a small tunnel diode [5]),
and were also limited in their power to model real-world analog phenomena
that were of interest to AMS designers.

With a view to scaling up verification techniques to real AMS designs,
several new modelling frameworks, with associated verification methodologies,
were introduced. Together, these fall under the umbrella of “hybrid systems
verification”, a topic that has been extensively studied in the literature,
and mathematically formalised by researchers like Alur, Nerode, and
Henzinger [7]–[10].

The above modelling/formalisation efforts were critical because many
reachability questions on general hybrid systems are, in fact, undecidable.
Therefore, for AMS verification, it is necessary to restrict one’s domain
to classes of hybrid systems that are known to be decidable; the above
formalisation efforts helped develop a strong theory of hybrid systems, that

enabled researchers to ask more meaningful questions, which in turn enabled
new advances in reachability analysis/model checking of AMS systems.

For instance, Al-Sammane et. al. used recurrence relations and difference
equations to simplify analog blocks [11], which were later verified using
interval arithmetic and Taylor approximations [12]. This methodology was
successfully used to check the stability of a third order ∆Σ modulator
(modelled behaviourally). Also of significance is the d/dt tool, developed
exclusively for model checking continuous linear systems [13], although
limited to rather small system sizes.

Other novel hybrid systems modelling frameworks (that restrict themselves to
decidable hybrid systems classes) for AMS include: guarded state machines
as applied to flash memories, verified using the ACL2 theorem prover [14],
linear hybrid automata verified using tools like HyTech [15] and Phaver [16],
Polyhedral invariant hybrid automata, verified using flowpipes and the theory
of quotient transition systems, by tools like Checkmate [17], labelled hybrid
petri-nets, verified using difference bound matrices as part of the LEMA
toolkit developed by Myers et. al. [18]–[21], and many more that we
do not mention here due to space constraints. In addition, several new
algorithmic refinements have improved the accuracy and efficiency of hybrid
systems’ reachability analysis. These include zonotopes [22], hybrid restriction
diagrams [23], and other over-approximation techniques (e.g., using support
functions [24], continuization methods [25], etc.).

Thus, much effort has been devoted to developing and fine-tuning Boolean
and hybrid systems modelling frameworks and verification engines. However,
it is our belief that the question of SPICE-accurate modelling, which ensures
that the circuit models used by verification engines actually reflect underlying
analog reality, has not received adequate scrutiny. Without SPICE-accurate
modelling, the predictions made by verification engines are questionable
and dangerous for designers to rely on. Indeed, this is an important reason
why the prevailing practice amongst AMS designers today is to carry out
time-consuming SPICE simulations rather than place their trust in AMS
verification tools.

To overcome such “designer skepticism”, we believe that it is necessary to
significantly scale up existing hybrid systems techniques, so that they embrace
SPICE-accurate models even for large AMS designs. However, this creates
scalability problems. To circumvent such scalability issues, we suggest that
continuous variables (which introduce major computational challenges that
are orders of magnitude more severe than purely discrete/Boolean variables)
be used as sparingly as possible in the modelling of AMS components.

Thus, in our view, there is a need to develop new techniques that accurately
capture the behaviour of continuous systems using purely discrete/Boolean
variables, even though, in theory, existing hybrid systems approaches can
represent and reason about continuous quantities. Armed with such techniques,
we believe that much of an AMS system’s behaviour will be representable
using “cheap” purely discrete/Boolean variables, which frees up the “precious”
continuous variables for use only when absolutely necessary. This may help
arrest the scalability issues inherent to existing hybrid systems approaches,
and may one day enable the verification of large AMS systems at or near
SPICE-level accuracy.

We view ABCD-L as a step in the above direction, which addresses the
problem of Booleanizing analog dynamics, for LTI systems in particular. In
future, we would like to extend ABCD-L to non-linear systems as well, and
to integrate ABCD-L with existing Boolean and hybrid systems frameworks
for AMS verification, to expand the scope of existing techniques to handle
much larger systems than they can do so at present. This is our hope for the
future of AMS verification, and is also the larger context behind ABCD-L.

II. ABCD-L COMBINED WITH MODEL ORDER REDUCTION

As described in §II of the main manuscript, ABCD-L requires eigendecom-
position of LTI systems as part of the Booleanization process. However,
as LTI system size increases, eigendecomposition can quickly become
computationally infeasible. To address this problem, we suggest an approach
involving Model Order Reduction (MOR). The idea is to first obtain a
Reduced Order Model (ROM) of the original LTI system; many well-
established techniques are available for this, including explicit moment



matching methods such as Asymptotic Waveform Evaluation (AWE) [26],
implicit Krylov subspace methods such as congruent transformation [27],
Padé approximation via the Lanczos method [28], guaranteed-stable methods
based on Arnoldi iteration [29], [30], etc. The next step is to apply ABCD-L
to the ROM, which is typically much smaller than the original LTI system,
and therefore not a barrier for eigendecomposition.

We now apply the above approach to a real-world power grid network,
obtained from a benchmark set made available by IBM [31], [32]. This
LTI network has 25849 nodes, making eigenanalysis slow and impractical.
Therefore, we first carry out Arnoldi iteration [33] based MOR to reduce this
system to a more manageable size. Indeed, as we show below, a ROM of
size ∼20 suffices to capture the dynamics of this system for most frequencies
of interest. We then Booleanize the ROM using ABCD-L, and show that the
resulting Boolean model is able to accurately reproduce the behaviour of the
original system, including such attributes as the power grid’s voltage swings
in the ground plane and in the VDD plane.

A. Arnoldi ROMs for the power grid

Given an LTI system Lorig of size n, and a desired ROM size p (where
p � n), the method of Arnoldi iteration produces an LTI system LROM of
size p, that approximates the behaviour of the original system Lorig. The key
idea behind Arnoldi MOR is to match moments, i.e., the reduced order model
LROM is constructed in such a way that the first p moments of its transfer
function are identical to those of the original system Lorig. In addition to
being fast, Arnoldi iteration has favorable numerical properties (in the context
of fixed-precision computation), as opposed to other techniques like Padé
approximation [33], [34].

Fig. 1. Arnoldi ROM applied to the IBM power grid network. As ROM size p
increases, the reduced order models produced by Arnoldi iteration become better and
better approximations of the original system.

To determine a suitable ROM size p for the IBM power grid, Fig. 1
compares the LTI frequency-domain transfer function (both magnitude and
phase) of the original power grid against those of several different Arnoldi
ROMs, corresponding to different sizes p, over a wide frequency range
(1 Megahertz to 1000 Terahertz). The black waveform (with black square
markers) represents the original system’s transfer function, while the ‘*’
marked color waveforms correspond to the Arnoldi ROMs (with sizes as
labelled in the figure). The figure clearly brings out the effectiveness of
Arnoldi ROM for this network; for example, even though the original system
is of size 25849, a ROM of size ∼20 suffices to accurately capture the system’s
behaviour for input excitations upto 100GHz. Therefore, an Arnoldi ROM of
size ∼20 is more than adequate for most typical power grid applications1.

1We note that Fig. 1 depicts the transfer function for only one output node of the
power grid. In reality, the transfer functions corresponding to all output nodes (both
in the power plane and in the ground plane) must be examined before concluding that
ROM size p = 20 is adequate. For the given network, we have confirmed that this is
indeed the case; however, due to space constraints, we do not include all the transfer
function plots here.

B. ABCD-L + Arnoldi MOR applied to the power grid

We now apply ABCD-L to produce purely Boolean approximations of the
ROMs generated above. As noted earlier, these ROMs are much smaller
systems compared to the original power grid, and hence pose no difficulty
for eigenanalysis.

Fig. 2 shows that the Boolean models produced by ABCD-L are able to
accurately reproduce the transient dynamics of the Arnoldi ROMs generated
for the IBM power grid. Parts (a), (b), (c), and (d) of the figure correspond
to ROM sizes 5, 8, 10, and 20 respectively. In each case, the power grid
was excited by the same input waveform u(t) – a superposition of two
damped sinusoidal excitations at 10GHz, one positive and the other negative
(see Fig. 3).
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Fig. 3. Input current waveform applied to the IBM power grid: a superposition of
two damped sinusoidal excitations at 10GHz, one positive and the other negative.

Each part of Fig. 2 depicts the following: (1) two output waveforms (one
output from the power plane and one from the ground plane) produced by
the original power grid (in dark gray), (2) the same outputs, as predicted by
the respective reduced order model (in blue), and (3) the outputs as predicted
by 5-bit ABCD-L applied to the corresponding ROM (in green).

From the figure, it is clear that the Boolean models generated by ABCD-L
always closely reproduce the corresponding ROM’s response. Moreover,
as the ROM size increases, this response in turn becomes a very good
approximation to the response of the original power grid system, both in the
power plane and in the ground plane.

Furthermore, as expected, the combination of ABCD-L with Arnoldi MOR
resulted in significant computational savings over direct eigendecomposition
of the original system. For instance, even with p = 100, the Arnoldi step
took only about 10 minutes, on a 64-bit Linux machine equipped with
a 3.2GHz AMD R© PhenomTM II X6 1090T processor and 16GB RAM.
Moreover, once the Arnoldi iteration was completed, the time required for
ABCD-L (including pre-processing, model generation, transient simulation,
and post-processing) was well under a minute. This shows that ABCD-L, in
conjunction with MOR, is indeed a viable technique that can be applied to
accurately Booleanize even large LTI systems.
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on Computer-Aided Design of Integrated Circuits and Systems, 14(5):639–649, 1995.

[29] L. Silveira, M. Kamon, I. Elfadel, and J. White. A coordinate-transformed Arnoldi algorithm for generating guaranteed stable
reduced-order models of RLC circuits. Computer Methods in Applied Mechanics and Engineering, 169(3):377–389, 1999.

[30] A. Odabasioglu, M. Celik, and L. T. Pileggi. Prima: Passive reduced-order interconnect macromodeling algorithm. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 17(8):645–654, 1998.

[31] S. R. Nassif. Power grid analysis benchmarks. In ASPDAC ’08: Proceedings of the 13th IEEE/ACM Asia and South Pacific
Design Automation Conference, pages 376–381, 2008.

[32] Download link for the IBM power grid benchmark set: http://dropzone.tamu.edu/∼pli/PGBench/.
[33] W. E. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem. The Quarterly of Applied

Mathematics, 9(1):17–29, 1951.
[34] W. H. A. Schilders, H. A. van der Vorst, and J. Rommes. Model Order Reduction: Theory, research aspects and applications,

volume 13 of Mathematics in Industry. Springer Verlag, 2008.


