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any Birds and 
insects possess a 
“number sense.”1 “If 
… a bird’s nest con-

tains four eggs, one may be safely taken; 
but if two are removed, the bird becomes 
aware of the fact and generally deserts.”2 
The fact that many forms of life “sense” 
number or symmetry may connect to 
historic evolution of quantity in differ-
ent human societies. We begin with the 
distinction between cardinal (counting) 
numbers and ordinal ones (that show 
position as in 1st or 2nd).

Humans sought greater understand-
ing of numerical properties to better deal 
with daily occupations. One means of 
representing numbers uses the fingers. 
The matching principle involved in indi-
cating a finger for each object is called 
one-to-one correspondence. The importance of man’s ten 
fingers in numeration is indicated by the fact that “…
those savages who have not reached the stage of finger 
counting are almost completely deprived of all perception 
of number.”1 

First Attempts
The cardinal concept implied in matching was the basis of 
the first attempts to keep a record of number. Pebbles or 
sticks were cast into a pile, notches cut in wood or knots 
made in cord. The early origin of written number records 
is shown by pieces of carved bone. Making a notch on a 

bone with a carved head of 
some particular animal at 
the end, is almost record-
ing a word message like 
“taken, one more such 
animal.”

Etymology indicates 
how recently our ancestors 
made use of these simple 
methods of recording num-
ber. Tally comes from the 
French tailler, to cut, which 
was derived from the Latin 
talea, a stick or cutting. 
Similarly, calculate/calculus 
come from the Latin word 
for pebble— calculus.
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Representation of quantity by the 
principle of one-to-one correspondence 
was undoubtedly accompanied, and per-
haps preceded, by creation of number-
words. These can be divided into two 
main categories: those that arose before 
the concept of number unrelated to 
concrete objects, and those that arose 
after it. 

An extreme instance of the devel-
opment of number-words before the 
abstract concept of number is that of the 
Tsimshian language of a tribe in British 
Columbia. This language has seven 
distinct classes of number-words: for 
flat objects and animals, round objects 
and time, long objects and trees, men, 
canoes, measurements and, as a recent 
development, for counting when no 
definite object is referred to.1 This was 

shown in studies by German-American anthropologist 
Franz Boas.3 In a like manner, the English language has 
many words for types of collections (set, flock, herd, lot, 
bunch, etc.) but the more general collection and aggre-
gate are of foreign origin. 

Another peculiarity of English, the many words for 
two things, led  to the comment, “It must have required 
many ages to discover that a brace of pheasants and a 
couple of days were both instances of the number two.”4

Some number-words developed as an abstraction of 
a general quality of quantity. That is the case of number 
word five. It  had the original meaning hand in many lan-
guages: pantcha was five in Sanskrit—modern Persian 
uses pentcha for hand; five in Russian is piat—piast is 
Russian for the outstretched hand. 

Abstract Nature
Many societies found it difficult to develop number-
words besides “one,” “two,” and “many.” 

The idea of number as opposed to the number of a 
specific set of things was not completely comprehended 
in early societies even when there was but a single word 
to express a particular quantity. The collection word for 
five brought forth the image of a hand (or another group 
of five objects). This image was compared with the set of 
things whose number was to be determined. 

The difficulty in grasping the idea of the abstract 
nature of number may lie in its being a logical, rather 
than numerical, concept. Some experiments with children 
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performed by Swiss psy-
chologist Jean Piaget seem 
to indicate this.5 

When a child is asked 
to lay out a number of blue 
chips equal to the number 
of red chips that are in 
a row spaced at uniform 
intervals, his reaction will 
depend on his age. If the 
child is five or younger, he 
will lay out a row of chips 
of the same length as the 
model row but will disre-
gard spacing (placing them 
very close to each other) 
indicating that he believes 
the number of them is the 
same if the lengths of the 

rows are equal. At the age of 
six, the child will match his chips to those on the table. 
But if the length of one row is increased (by changing the 
spacing) he believes that row has more than the other. A 
third stage is reached by the time the child is six-and-a-
half to seven: he realizes that the number of chips is inde-
pendent of their spacing. “In short, children must grasp 
the principle of conservation of quantity before they can 
develop the concept of number.”

Numeration would be a cumbersome process if it were 
necessary to form model collections and special words for 
every number. Fortunately, that is not the case because 
of the principle of forming large numbers by combining 
smaller ones. The last simple number is known as the 
base or radix of its number system. Our system is deci-
mal: all numbers after ten are compounded of the first 
ten numerals (eleven and twelve are compound numbers 
whose forms are unrecognizable because they are Anglo-
Saxon in origin.) 

Primitive Language
Among the bases in use are two, three, four, five, six, 
eight, ten, twelve, twenty, and sixty. Of these, the most 
common today are five, ten and twenty. 

The decimal base mechanism follows from the literal 
meaning of eleven in a primitive language: a man and one 
on the hand of another man. Of the non-decimal number 
systems, a typical binary system is that of a tribe of the 
Torres Straits between Australia and New Guinea:
(1) urapun   (4) okosa-okosa 
(2) okosa                 (5) okosa-okosa-urapun
(3) okosa-urapun                  (6) okosa-okosa-okosa

A typical quinary system is that of the Api language of 
the New Hebrides:
(1) tai  (6) o tai (other one)
(2) lua  (7) o lua (other two)
(3) tolu  (8) o tolu (other three)
(4) vari  (9) o vari (other four)
(5) luna (hand) (10) luna luna (two hands)

Quinary, decimal and vigesimal number systems arose 
from finger counting, the “whole man” being regarded, 
respectively, as a hand, both hands, or the hands and 
feet. Binary systems are probably based on the symme-
try of man’s body; a Brazilian tribe developed a tertiary 
number system because they counted on the joints of 
the fingers; the quaternary system arose in California 
because of the religious significance of the four quarters 
of the sky. A system using eight basic numbers arose 
because counting was performed on the spaces between 
fingers not on the fingers themselves.

Apparently the simplest system, the binary, was 
adopted initially and discarded in favor of a system of 
higher radix in many parts of the world. The need for 
a system using a higher base arises from the difficulty 
of expressing large numbers in the binary system. The 
decimal and quinary systems have developed and been 
rapidly adopted in regions that previously used simpler 
systems of numeration. The existence of remnants of 
other number bases in our decimal system is readily ap-

Jean Piaget

RIGHT: The Maya numbering system of dots and dashes is 
shown in this page of a pre-Columbian Maya book of the 11th 
or 12th century. It is believed to be a copy of an original text 
of some three or four hundred years earlier, and is the oldest 
book written in the Americas known to historians. It is located 
at the Saxon State Library in Dresden, Germany.
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parent: having sixty minutes in an hour, dozen and gross, 
and the Biblical “three score and ten” are among the 
many examples.

Examination of the number base from a mathematical 
standpoint yields several criteria for a satisfactory radix: 
it should be sufficiently large to express large figures 
concisely, but small enough to lessen the words to be 
memorized to a reasonable amount. The next quality is 
how factorable the base should be. Mathematicians are 
divided on this point. Some favor a prime number so as 
to eliminate the ambiguity that arises in the expression 
of fractions (3/25 represents itself, 6/50, 12/100, etc.). This 
type of radix makes all decimals non-terminating (e.g. 
1/3 =  0.3333 …) and is impractical from the standpoint of 
everyday use. 

Other mathematicians favor a base that is evenly 
divisible by many numbers. The radix fulfilling the other 
requirements and that of factorability best is twelve. A 
duodecimal system would employ two additional symbols 
(e.g. X for ten and L for eleven) and would represent 12 
by 10, 144 by 100, etc. The many factors of twelve sim-
plify calculations by making quotients “come out even” 
more frequently and facilitate mental calculations: if a 
number ends in 0 in the decimal system we know it is di-
visible by 2 and 5; if it ends in 0 in the duodecimal system 
we know that it is divisible by 2, 3, 4, and 6. At any rate, 
ten would not be used as the mathematically chosen radix 
since it is neither prime nor highly factorable.

The universal need for describing quantity led to rep-
resentation by one-to-one correspondence, development 
of number words, and a method for limiting the amount 
of words needed to express large figures. An important 
contribution to this was the development of a group of 
symbols.

Written numeration is probably as old as private 
property. There is little doubt that it originated in man’s 
desire to keep a record of his flocks and other goods. 
Archeological researchers trace such records to times im-
memorial, and they are found in the caves of prehistoric 
man in Europe, Africa, and Asia. Numeration is at least 
as old as written language, and there is evidence that it 
preceded this. Perhaps, even, the recording of numbers 
suggested the recording of sounds.1

First Written Numbers
The first written numbers that were not solely tally 
marks probably occurred in Egypt about 3,400 B.C.6 The 
Egyptian numerals employed the tally principle, as did 
most early systems, and were mainly straight lines. The 
distinction between simple tallying and the Egyptian 
numeration is made because the Egyptians used spe-
cial symbols to signify large quantities. The Egyptians 
had basic symbols for one, ten, one hundred, and other 
powers of ten. The value of a number was the sum of the 
values of the symbols comprising it, the value of a symbol 
being repeated the number of times that the symbol was 
repeated. 

Another system was the cuneiform symbols developed 
in Mesopotamia about 3,000 B.C. The system used by 

YBC 7289 is an Old Babylonian clay tablet (circa 1800–1600 BCE) 
from the Yale Babylonian Collection. An approximately 8-cm 
diameter hand tablet, it appears to be a practice school exercise 
undertaken by a novice scribe. But, mathematically speaking, it is 
one of the most fascinating extant clay tablets because it contains 
not only a constructed illustration of a geometric square with 
intersecting diagonals, but also, in its text, a numerical estimate of 
2√ correct to three sexagesimal or six decimal places. The value 
is read from the uppermost horizontal inscription and demon-
strates the greatest known computational accuracy obtained 
anywhere in the ancient world. It is believed that the tablet’s 
author copied the results from an existing table of values and did 
not compute them himself. The contents of this tablet were first 
translated and transcribed by Otto Neugebauer and Abraham 
Sachs in their 1945 book, Mathematical Cuneiform Texts (New 
Haven, CT: American Oriental Society). Photos: Bill Casselman, 
www.math.ubc.ca/~cass/euclid/ybc/ybc

Modern-day Arab telephone keypad with two forms of Arabic 
numerals: Western Arabic/European numerals on the left and 
Eastern Arabic numerals on the right
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the Babylonians was both sexagesimal and decimal. 
Ordinary computation was carried on in the decimal 
system and astronomical work in the sexegesimal. 
The Babylonians used the wedge-like imprint that 
the stylus made in the clay as one, sixty, three 
hundred sixty, and, in general, sixty raised to any 
power, the meaning of the symbol being derived 
from the context. Similarly, the symbol for ten 
served as ten times sixty raised to any power. 

As a later development, the Babylonians at-
tempted to eliminate the indefinite representation 
that their system produced. In lists where we make 
the entry ‘0’, as an alternative to leaving blank, the 
Babylonians in some cases make use of the sign ul, 
meaning ‘not,’ ‘nothing.’ The Babylonian “zero” was 
a punctuation mark like our dash. About 400 B.C., 
the Babylonian mathematician Naburianu realized 
the significance of ul and used it as we use our zero. 
This development was lost to the world because it 
was in the sexagesimal system which was incom-
prehensible to the neighboring peoples who used 
decimal systems.2

The Greeks and Hebrews used fundamentally 
different numeration systems. Both were derived 
from the Phoenician; they followed an ordinal 
scheme of written numbers. Each of these civiliza-
tions used alphabetic elements—letters—to repre-
sent numbers. The Greeks originally represented 
numerals by the initial letter of the number word, 
but adopted the Phoenician convention of using the 
letters of the alphabet in their natural succession 
to represent numbers. The first nine letters of the 
Greek alphabet were, successively, symbols for one 
through nine, the next nine represented ten and its 
multiples through nine hundred (the Greeks added 
three letters to their alphabet in order to have 
twenty-seven symbols).

Return to Cardinal
The Roman numeral system was a return to the 
cardinal principle, and was similar to the Egyptian. 
Two interesting theories have been proposed to ex-
plain the derivation of the Roman symbols for five 
and ten. The first considers the symbol for ten as two 
fives. This theory is based on the fact that the Roman 
“V” is heavier on the left side. Consequently, the five 
is regarded as a hand. The idea is that the left side of 
the symbol represents the four fingers and the right 
side the thumb. The second theory is based on the tal-
lying origin of cardinal systems of numeration: “X” is 
considered an abbreviation for “||||||||| over written by 
a /,” and “V” is understood as one half of “X.”

While these number systems were developed in 
the Old World, the Mayan Indians of the Yucatan 
Peninsula developed a vigesimal system which em-
ployed place notation.  The Mayans wrote numbers 
in vertical columns, using only three symbols: . 
(one), _ (five) and (a version of an oval) (zero). Sym-
bols on the lowest level were units, the next higher 

level, multiples of twenty, and successively, multiples of 
360 and 7,200. One could try to represent these four ex-
amples 11,  60, 47, and 723 following Mayan three-symbol 
notation.

It is interesting to note the pebble and stick form that 
the Mayan system takes. The use of “stick” or straight 
line numerals was extremely common. The Egyptian and 
Roman symbols were vertical lines but horizontal forms 
were used in the Far East. Our “2” and “3” are derived 
from the cursive forms of the corresponding horizontal 
line symbols, “z” (two horizontal lines, one on top of the 
other, joined by an oblique line) and three horizontal lines 
stacked together. 

Each of the systems of written numbers that we have 
discussed are different from our system in one major 
respect: they were used to record figures but were not 
used directly in calculations. A primitive calculating 
instrument, the abacus, was used in one form or another 
in almost every civilization. The abacus was a method of 
representing numbers in a positional notation. Reduced 
to its basic elements, the abacus consisted of a set of 
parallel columns. The columns successively represented 
units, tens, hundreds, etc. Counters were placed on 
the columns (or marks made on columns in the dust) to 
indicate how many units, tens, or hundreds there were in 
a number. How would the number 13,204 be represented 
on an abacus?

The abacus was used in calculations by adding figures 
to their appropriate column and transferring when the 
marks in a column exceeded nine. Addition and subtrac-
tion as performed on the abacus can be easily visual-
ized, but the processes of multiplication and division are 
too involved to be discussed here. A basic method for 
multiplication, “duplation,” was used in Egypt at an early 
period (c. 3,400 B.C.) and was extremely important in 
Europe, surviving until the Renaissance period. Using 

As a simple, cheap and reliable device, the Russian abacus 
remained in use in shops and markets throughout the former 
Soviet Union. Its use was taught in most schools until the 1990s.
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our notation, multiplication of 32 by 17 using duplation 
was accomplished in this manner:

1  x  32       =       32
2  x  32       =       64
4  x  32       =     128   ( 4  x  32  =  2  x  64 )       
                                                               [1 + 2 + 4  =  7]
8  x  32       =     256
2  x  32       =       64                                
      [7  +  8  +  2   =  17]

   17  x  32       =       32  +  64  +  128  +  256  +  64   =   544  

Division was accomplished by the analogous “media-
tion.” These processes were taught in universities, one 

institution excelling in 
their course in mediation, 
another in duplation. The 
product of thousands of 
years of civilization was 
an inflexible number sys-
tem “so crude as to make 
progress well-nigh impos-
sible” and “a calculating 
device so limited in scope 
that even elementary 
calculations called for the 
services of an expert.”8

In India the use of 
a cardinal system of 
numbers made the abacus 
a fundamental tool. It 
was, however, difficult 

to record counting-board operations: the figure could 
represent 32, 302, 320, and so on. In order to make an 
unambiguous record of a series of calculations it became 
customary to place a mark called sunya (meaning empty 
or blank but having no connotations of void or nothing-
ness) to indicate an empty place on the abacus. The 
symbol used was 0, o, or . and was eventually accepted as 
a number itself. It was placed at the bottom of the ordinal 
series 1, 2, 3, … and was adopted by the Arabs along with 
the rest of the Indian numerals. 

Greatly Simplified
The Arabs, of course, introduced their numbers to 
Europe. The Hindu-Arabic symbols greatly simpli-
fied all calculations; their effectiveness is illustrated by 
multiplication. The example that required the services 
of an expert in duplation is within the capability of most 
children because of the new numerals. The method used 
in multiplication involves separating one of the numbers 
to be multiplied into units and tens, multiplying each of 
these quantities by the second number and adding the 
partial products:

The French mathematician Pierre-Simon, Marquis de 
Laplace, commented on the Hindu-Arabic numerals by 
saying:

“It is India that gave us the ingenious method of 
expressing all numbers by means of ten symbols, each 

symbol receiving a value of position as well as an absolute 
value; a profound and important idea which appears 
so simple to us now that we ignore its true merit. But 
its very simplicity and the great ease which it has lent 
to computations put our arithmetic in the first rank of 
useful inventions; and we shall appreciate the grandeur 
of the achievement the more when we remember that it 
escaped the genius of Archimedes and Apollonius, two of 
the greatest men produced by antiquity.”7 

Our modern unambiguous place notation was devel-
oped to serve practical needs. It was originated in three 
places: Mesopotamia, India, and the Yucatan Peninsula. 
The last step, recognition of zero as a number by the 
public, took place only in India.

We have seen the development of cardinal and ordinal 
number concepts, the creation of the number word, the 
grouping of numerals by using a base, the use of simple 
symbols, the discovery of the principle of place nota-
tion, the development of a symbol for the absence of a 
digit, and the recognition of zero as a number with which 
computations may be made. Each step was important in 
producing our arithmetic, a fundamental tool.

NOTES
This paper has a few of the citations from 1954: for more, 
please see the online pdf. In asking a reader to respond 
to questions it presents issues about number representa-
tions that appear in the original work. Any that seem un-
clear can be resolved by consulting the scanned original 
work at:
http://web.cs.ucla.edu/~klinger/number.pdf 
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