

## Advanced Mathematics Support Programme®





## About the AMSP

- A government-funded initiative, managed by <u>MEI</u>, providing national support for teachers and students in all state-funded schools and colleges in England.
- It aims to increase participation in AS/A level Mathematics and Further Mathematics, and Core Maths, and improve the teaching of these qualifications.
- Additional support is given to those in priority areas to boost social mobility so that, whatever their gender, background or location, students can choose their best maths pathway post-16, and have access to high quality maths teaching.





## MEI holds the NCETM CPD Standard

The CPD Standard supports maths teachers to access information about the wide range of CPD provision on offer and to be assured of its appropriateness and quality.

ncetm.org.uk/cpdstandard

Continuing Professional Development Standard

#### National Centre

for Excellence in the Teaching of Mathematics







# 2 Stage Simplex James Morris James.morris@mei.org.uk

#### To think about:

In the example on the left, the origin isn't on the boundary of the feasible region. Starting at the origin, how do we get to the boundary so that we can apply the simplex algorithm?





| Discrete/Decision Mathematics Topics                  | AQA     | Edexcel    | MEI | OCR A   |
|-------------------------------------------------------|---------|------------|-----|---------|
| Formulating constrained problems into Linear programs | AS      | AS D1      | MwA | AS      |
| Graphical solution using an objective function        | AS      | AS D1      | MwA | AS      |
| Integer solution                                      |         | AS D1      | MwA | A Level |
| Slack variables                                       | A Level | A Level D1 | MwA | A Level |
| Simplex Method                                        | A Level | A Level D1 | MwA | A Level |
| Interpretation of Simplex                             | A Level | A Level D1 | MwA | A Level |
| Big M method                                          |         | A Level D1 |     |         |
| Integer programming, branch-and-bound method          |         |            |     | A Level |
| Post-optimal analysis                                 |         |            | MwA | A Level |
| Formulate a range of network problems as LPs          |         |            | MwA |         |
| Use of software and interpretation of output          |         |            | MwA |         |





## In this session:

- $\geq$  constraints
- Artificial variables
- Surplus variables
- Two stage Simplex
- Playtime!
- Technology





## Two stage simplex

- The simplex algorithm relies on (0,0) being a feasible solution.
  - This isn't possible if there are ≥ constraints (we maintain the trivial constraints eg y ≥ 0)







## Slack and Surplus

- For ≤ constraints we add slack variables (how much is '*missing*')
- For ≥ constraints we subtract <u>surplus</u> variables (how much '*extra*' we have).
- As with other constraints these will be positive.







#### Maximise P= x+ 0.8y Subject to $x + y \le 1000, \quad 2x + y \le 1500, \quad 3x + 2y \le 2400$ $x + y \ge 800, \qquad x, y \ge 0$

$$P - x - 0.8y = 0$$
  

$$x + y + s_{1} = 1000$$
  

$$2x + y + s_{2} = 1500$$
  

$$3x + 2y + s_{3} = 2400$$
  

$$x + y - s_{4} = 800$$
  

$$x, y, s_{1}, s_{2}, s_{3}, s_{4} \ge 0$$







Maximise P= x+0.8y Subject to  $x + y \le 1000$ ,  $2x + y \le 1500$ ,  $3x+2y \le 2400$   $x + y \ge 800$ ,  $x, y \ge 0$ P - x - 0.8y = 0  $s_4$  is a surplus variable

P - x - 0.8y = 0  $x + y + s_{1} = 1000$   $2x + y + s_{2} = 1500$   $3x + 2y + s_{3} = 2400$   $x + y - s_{4} = 800$  $x, y, s_{1}, s_{2}, s_{3}, s_{4} \ge 0$ 







Maximise P= x+0.8y Subject to  $x + y \le 1000, \quad 2x + y \le 1500, \quad 3x+2y \le 2400$  $x + y \ge 800, \quad x, y \ge 0$ 

P - x - 0.8y = 0  $x + y + s_{1} = 1000$   $2x + y + s_{2} = 1500$   $3x + 2y + s_{3} = 2400$   $x + y - s_{4} = 800$  $x, y, s_{1}, s_{2}, s_{3}, s_{4} \ge 0$ 









#### Maximise P= x+0.8y Subject to $x + y \le 1000, \quad 2x + y \le 1500, \quad 3x+2y \le 2400$ $x + y \ge 800, \quad x, y \ge 0$

P - x - 0.8y = 0  $x + y + s_{1} = 1000$   $2x + y + s_{2} = 1500$   $3x + 2y + s_{3} = 2400$   $x + y - s_{4} + a_{1} = 800$  $x, y, s_{1}, s_{2}, s_{3}, s_{4}, a_{1} \ge 0$ 

Add artificial variables with each surplus variable  $x + y - s_4 + a_1 = 800$ 







Maximise P= x+0.8y Subject to  $x + y \le 1000$ ,  $2x + y \le 1500$ ,  $3x+2y \le 2400$  $x + y \ge 800$ ,  $x, y \ge 0$ 

$$P - x - 0.8y = 0$$

$$x + y + s_{1} = 1000 = 1000$$

$$2x + y + s_{2} = 1500 = 1500$$

$$3x + 2y + 00$$

$$x + y - s_{4} + a_{1} = \$ 0 = a_{1} = 300$$

$$x, y, s_{1}, s_{2}, s_{3}, s_{4}, a_{1} \ge 0$$





## Two stage simplex

- The simplex algorithm relies on (0,0) being a feasible solution.
- If there are ≥ constraints, add artificial variables and subtract surplus variables
- Two stage simplex has a second objective that is equal to the sum of the artificial variables
- The first stage makes the second objective zero, the second stage is as normal





#### Greater than or equal to constraints

- Simplex always starts at the origin.
- If there are ≥ constraints, add artificial variables introduce a new objective function

 $A = a_1 + a_2 + ...$ which you must minimise, since when A = 0 you are in the feasible region







## Greater than or equal to constraints

Once in the feasible region:

- Surplus variables give a measure of the perpendicular distance from each ≥ inequality
- Slack variables give a measure of the perpendicular distance from each ≤ inequality.
- Complete the simplex in the normal way.







# Two Stage SimplexMaximise P = x + 0.8ySubject to $x + y \le 1000, 2x + y \le 1500, 3x + 2y \le 2400$ $x + y \ge 800$

$$P - x - 0.8y = 0$$
  

$$x + y + s_{1} = 1000$$
  

$$2x + y + s_{2} = 1500$$
  

$$3x + 2y + s_{3} = 2400$$
  

$$x + y - s_{4} + a_{1} = 800$$

Subtract surplus variables and add artificial variables





## **Two Stage Simplex**

Maximise P - x - 0.8y = 0, Subject to  $x + y + s_1 = 1000$  $2x + y + s_2 = 1500$ ,  $3x + 2y + s_3 = 2400$  $x + y - s_4 + a_1 = 800$ 

Sometimes this is '*I*' Check with your board

Minimise  $A = a_1 + a_2 + a_{3+...}$ 

If A = 0 we get back to the boundary of the feasible region.

but we write this in terms of the other variables:

$$A = -x - y + s_4 + 800$$
$$A + x + y - s_4 = 800$$

AE Version 2.0 11/09/18.





## **Difference in specs**

- Some specs wish you to:
  - Minimise  $A = a_1 + a_2 + a_{3+...}$  (eg MEI)
  - Maximise  $I = -(a_1 + a_2 + a_{3+...})$  (eg Edexcel)
- This is effectively the same, but you should know which you board expects
- In the tableaux it will adjust how you select the pivot column:
  - A positive number if minimising (eg MEI)
  - A negative number if maximising (eg Edexcel)





## **Two Stage Simplex**

Maximise 
$$P - x - 0.8y = 0$$
,  
Subject to  $x + y + s_1 = 1000$   
 $2x + y + s_2 = 1500$ ,  $3x + 2y + s_3 = 2400$   
 $x + y - s_4 + a_1 = 800$ 

Minimise  $A = a_1 + a_2 + a_{3+...}$ but we write this in terms of the other variables:

$$A = -x - y + s_4 + 800$$
$$A + x + y - s_4 = 800$$





| 1    | SIMPLEX 2  |       |       | Ma   | ximising | subject  | to ≤       | and/or     | ≥ const    | raints | Setup                  | Reset       | Auto *  | 1       |         |
|------|------------|-------|-------|------|----------|----------|------------|------------|------------|--------|------------------------|-------------|---------|---------|---------|
| 2    |            |       |       |      |          |          |            |            |            |        |                        | 96.00       |         |         |         |
| 3    | No. varia  | bles: | 2     | < >  |          | No. ≤ co | nstraints: | 3          | < )        | >      | Stage 1                | Pivot 1     | Pivot 2 | Pivot 3 | Pivot 4 |
| 4    |            |       |       |      |          | No. ≥ co | nstraints: | 1          | < )        | >      | Stage 2                | Pivot 1     | Pivot 2 | Pivot 3 | Pivot 4 |
| 5    | Initial Ta | bleau |       |      |          |          |            |            |            |        |                        |             |         |         |         |
| 6    |            | A     | Р     | х    | V        | s1       | s2         | <b>s</b> 3 | s4         | a1     | RHS                    | Min ratio   |         |         |         |
| 7    |            | 1     | 0     | 1    | 1        | 0        | 0          | 0          | -1         | 0      | 800                    | 0.000000000 |         |         |         |
| 8    | 10         | 0     | 1     | -1   | -0.8     | 0        | 0          | 0          | 0          | 0      | 0                      |             |         |         |         |
| 9    | 23         | 0     | 0     | 1    | 1        | 1        | 0          | 0          | 0          | 0      | 1000                   | 3           |         |         |         |
| 10   |            | 0     | 0     | 2    | 1        | 0        | 1          | 0          | 0          | 0      | 1500                   | 750         |         |         |         |
| 11   |            | 0     | 0     | 3    | 2        | 0        | 0          | 1          | 0          | 0      | 2400                   |             |         |         |         |
| 12   |            | 0     | 0     | 1    | 1        | 0        | 0          | 0          | -1         | 1      | 800                    |             |         |         |         |
| 13   | 28         |       | 1441  |      |          | 1.1.1    |            | 111        |            |        | CEN S                  | 5           |         |         |         |
| 14   | Stage 1    |       | Pivot | 1    |          |          |            |            |            |        |                        |             |         |         |         |
| 15   |            | A     | Р     | x    | v        | s1       | s2         | s3         | <b>s</b> 4 | a1     | RHS                    | Min ratio   |         |         |         |
| 16   |            | 1     | 0     | 0    | 0.5      | 0        | -0.5       | 0          | -1         | 0      | 50                     |             |         |         |         |
| 17   | -          | 0     | 1     | 0    | -0.3     | 0        | 0.5        | 0          | 0          | 0      | 750                    |             |         |         |         |
| 18   | 10         | 0     | 0     | 0    | 0.5      | 1        | -0.5       | 0          | 0          | 0      | 250                    |             |         |         |         |
| 19   |            | 0     | 0     | 1    | 0.5      | 0        | 0.5        | 0          | 0          | 0      | 750                    |             |         |         |         |
| 20   |            | 0     | 0     | 0    | 0.5      | 0        | -1.5       | 1          | 0          | 0      | 150                    |             |         |         |         |
| 21   |            | 0     | 0     | 0    | 0.5      | 0        | -0.5       | 0          | -1         | 1      | 50                     | 100         |         |         |         |
| 22   |            |       |       |      |          |          |            |            |            |        | and the                |             |         |         |         |
| 23   | Stage 1    |       | Pivot | 2    |          |          |            |            |            |        |                        |             |         |         |         |
| 24   | 1          | A     | Р     | x    | У        | s1       | s2         | <b>s</b> 3 | s4         | a1     | RHS                    | Min ratio   |         |         |         |
| 25   |            | 1     | 0     | 0    | 0        | 0        | 0          | 0          | 0          | -1     | 0                      |             |         |         |         |
| 26   |            | 0     | 1     | 0    | 0        | 0        | 0.2        | 0          | -0.6       | 0.6    | 780                    |             |         |         |         |
| 27   | 100        | 0     | 0     | 0    | 0        | 1        | 0          | 0          | 1          | -1     | 200                    |             |         |         |         |
| 28   |            | 0     | 0     | 1    | 0        | 0        | 1          | 0          | 1          | -1     | 700                    |             |         |         |         |
| 29   |            | 0     | 0     | 0    | 0        | 0        | -1         | 1          | 1          | -1     | 100                    | 100         |         |         |         |
| 30   |            | 0     | 0     | 0    | 1        | 0        | -1         | 0          | -2         | 2      | 100                    |             |         |         |         |
| 1000 | 1.1.1      |       | CC PR | 1000 |          | 1000     | 1.00       | 1000       | 104-1-1    | 10000  | 01100 DOC <b>9</b> 1 D | S           |         |         |         |

AL Version 2.0 11/09/18.





| 1   |        | SIMPLEX 2 |       |     | Ma | ximising | subject    | t to ≤ | and/or ≥   | const | raints  | Setup     | Reset   | Auto 🔻  | 1       |
|-----|--------|-----------|-------|-----|----|----------|------------|--------|------------|-------|---------|-----------|---------|---------|---------|
| 2   |        |           |       | -   |    |          |            |        |            |       |         |           |         |         |         |
| 3   | No. va | riables:  | 2     | < > |    | No. ≤ co | nstraints: | 3      | < >        |       | Stage 1 | Pivot 1   | Pivot 2 | Pivot 3 | Pivot 4 |
| 4   |        |           |       |     |    | No. ≥ co | nstraints: | 1      | < >        |       | Stage 2 | Pivot 1   | Pivot 2 | Pivot 3 | Pivot 4 |
| 23  | Stage  | 1         | Pivot | 2   |    |          |            |        |            |       |         |           | -       |         |         |
| 24  |        | A         | Р     | x   | у  | s1       | s2         | s3     | s4         | a1    | RHS     | Min ratio |         |         |         |
| 25  |        | 1         | 0     | 0   | 0  | 0        | 0          | 0      | 0          | -1    | 0       |           |         |         |         |
| 26  |        | 0         | 1     | 0   | 0  | 0        | 0.2        | 0      | -0.6       | 0.6   | 780     |           |         |         |         |
| 27  |        | 0         | 0     | 0   | 0  | 1        | 0          | 0      | 1          | -1    | 200     |           |         |         |         |
| 28  |        | 0         | 0     | 1   | 0  | 0        | 1          | 0      | 1          | -1    | 700     |           |         |         |         |
| 29  |        | 0         | 0     | 0   | 0  | 0        | -1         | 1      | 1          | -1    | 100     | 100       |         |         |         |
| 30  |        | 0         | 0     | 0   | 1  | 0        | -1         | 0      | -2         | 2     | 100     |           |         |         |         |
| 31  |        | 4         |       |     |    | 1013     |            |        |            | Α.    | 189 A   |           |         |         |         |
| 32  | Stage  | 2         | Pivot | 1   |    |          |            |        |            |       | an s    |           |         |         |         |
| 33  |        | A         | Р     | х   | у  | s1       | s2         | s3     | <b>s</b> 4 | a1    | RHS     | Min ratio |         |         |         |
| 34  |        |           |       | Los |    |          |            |        |            |       |         |           |         |         |         |
| 35  |        | 0         | 1     | 0   | 0  | 0        | -0.4       | 0.6    | 0          | 0     | 840     |           |         |         |         |
| 36  |        | 0         | 0     | 0   | 0  | 1        | 1          | -1     | 0          | 0     | 100     | 100       |         |         |         |
| 37  |        | 0         | 0     | 1   | 0  | 0        | 2          | -1     | 0          | 0     | 600     |           |         |         |         |
| 38  |        | 0         | 0     | 0   | 0  | 0        | -1         | 1      | 1          | -1    | 100     |           |         |         |         |
| 39  |        | 0         | 0     | 0   | 1  | 0        | -3         | 2      | 0          | 0     | 300     |           |         |         |         |
| 40  |        | 13<br>    |       |     |    |          |            |        |            |       |         |           |         |         |         |
| 41  | Stage  | 2         | Pivot | 2   |    | 0.00     |            |        |            |       | 3       |           |         |         |         |
| 42  |        | A         | Р     | x   | у  | s1       | s2         | s3     | <b>s</b> 4 | a1    | RHS     |           |         |         |         |
| 43  |        |           |       |     |    |          |            |        |            |       |         |           |         |         |         |
| 44  |        | 0         | 1     | 0   | 0  | 0.4      | 0          | 0.2    | 0          | 0     | 880     |           |         |         |         |
| 45  |        | 0         | 0     | 0   | 0  | 1        | 1          | -1     | 0          | 0     | 100     |           |         |         |         |
| 46  |        | 0         | 0     | 1   | 0  | -2       | 0          | 1      | 0          | 0     | 400     |           |         |         |         |
| 47  |        | 0         | 0     | 0   | 0  | 1        | 0          | 0      | 1          | -1    | 200     |           |         |         |         |
| 48  |        | 0         | 0     | 0   | 1  | 3        | 0          | -1     | 0          | 0     | 600     |           |         |         |         |
| 40. |        | 12        |       |     |    |          |            |        |            |       |         |           |         |         |         |

AE Version 2.0 11/09/18.





## Solution



#### So the solution is

- x = 400
- y = 600
- P = 880

s<sub>2</sub> = 100

Note that  $s_4$  is also basic meaning that the solution does not lie on an intersection with the  $\geq$  constraint







amsp<sup>®</sup> Edexcel Tableaux Managed by Mathematics<sup>®</sup>



| Row Ops              | B.V.           | x     | У | S <sub>1</sub> | S <sub>2</sub> | S₃ | S <sub>4</sub> | $a_1$ | RHS  | θ    |
|----------------------|----------------|-------|---|----------------|----------------|----|----------------|-------|------|------|
| $R_1 = R_1$          | S <sub>4</sub> | 0     | 0 | 1              | 0              | 0  | 1              |       | 200  | -    |
| $R_2 = R_2 - R_1$    | S <sub>2</sub> | 1     | 0 | -1             | 1              | 0  | 0              |       | 500  | 500  |
| $R_3 = R_3 - 2R_1$   | S <sub>3</sub> | 1     | 0 | -2             | 0              | 1  | 0              |       | 400  | 400  |
| $R_4 = R_4 + R_1$    | у              | 1     | 1 | 1              | 0              | 0  | 0              |       | 1000 | 1000 |
| $R_5 = R_5 + 0.8R_1$ | Р              | - 1/5 | 0 | 4/5            | 0              | 0  | 0              |       | 800  |      |





## **Minimising Problems**

Minimise C = -4x + ySubject to:

 $-3x + 2y \le 6$  $x \le 3$  $3x + y \ge 6$  $x, y \ge 0$ 

Minimise 
$$C = -4x + y$$
  
 $\Rightarrow$  Maximise  $P = -C = 4x - y$ 

#### 

AE version 2.0 11/09/18.







- Maximise P = -C
- $\therefore C = -P = 12$





## SAMs

Three liquid medicines, X, Y and Z, are to be manufactured. All the medicines require ingredients A, B, C and D which are in limited supply. The table below shows how many grams of each ingredient are required for one litre of each medicine. It also shows how much of each ingredient is available.

|                                                | Α  | В  | С  | D  |
|------------------------------------------------|----|----|----|----|
| Each litre of X requires                       | 2  | 0  | 2  | 4  |
| Each litre of Y requires                       | 5  | 2  | 4  | 3  |
| Each litre of Z requires                       | 3  | 1  | 2  | 2  |
|                                                |    |    |    |    |
| Amount, in grams, of each ingredient available | 20 | 10 | 70 | 30 |

When the medicines are sold, the profits are £5 per litre of X manufactured, £2 per litre of Y and £3 per litre of Z.

(i) Formulate an LP to maximise the total profit subject to the constraints imposed by the availability of the ingredients. Use x as the number of litres of X, y as the number of litres of Y and z as the number of litres of Z.
 [3] OCR(B) – MEI, Modelling with Algorithms, Paper Y433, SAM Version 2





(i) Formulate an LP to maximise the total profit subject to the constraints imposed by the availability of the ingredients. Use x as the number of litres of X, y as the number of litres of Y and z as the number of litres of Z.

The simplex algorithm is used to solve this LP. After the first iteration the tableau below is produced.

|   | Р | x | у    | Z    | $\boldsymbol{s}_1$ | <b>s</b> <sub>2</sub> | <b>S</b> 3 | <b>S</b> 4 | RHS  |
|---|---|---|------|------|--------------------|-----------------------|------------|------------|------|
| 2 | 1 | 0 | 1.75 | -0.5 | 0                  | 0                     | 0          | 1.25       | 37.5 |
|   | 0 | 0 | 3.5  | 2    | 1                  | 0                     | 0          | -0.5       | 5    |
|   | 0 | 0 | 2    | 1    | 0                  | 1                     | 0          | 0          | 10   |
|   | 0 | 0 | 2.5  | 1    | 0                  | 0                     | 1          | -0.5       | 55   |
|   | 0 | 1 | 0.75 | 0.5  | 0                  | 0                     | 0          | 0.25       | 7.5  |

- (ii) (A) Perform a second iteration.
  - (B) Give the maximum profit, and the number of litres of X, Y and Z which should be manufactured to achieve this profit.[1]
- (iii) An extra constraint is imposed by a contract to supply at least 5 litres of Y. Produce an initial tableau which could be used to solve this new problem by using the two-stage simplex method. [3]

#### OCR(B) – MEI, Modelling with Algorithms, Paper Y433, SAM Version 2

AE Version 2.0 11/09/18.



[2]





| 6     | (i)   |              | Max           | imis   | se       | 5x +              | -2y +                   | 3 <i>z</i>            |                       |       |        |                       |           |      | M1        | 3.3  | objective           |
|-------|-------|--------------|---------------|--------|----------|-------------------|-------------------------|-----------------------|-----------------------|-------|--------|-----------------------|-----------|------|-----------|------|---------------------|
|       |       |              | sub           | ject t | to 2.    | x+5y              | $+3z \leq$              | ≤ <b>20</b>           |                       |       |        |                       |           |      | A2        | 3.3  | constraints         |
|       |       |              |               |        |          | 2v                | $+ z \leq$              | ≤ <b>10</b>           |                       |       |        |                       |           |      |           | 1.1  | -1 each error       |
|       |       |              |               |        | 2        | r+4v              | + 27 <                  | 70                    |                       |       |        |                       |           |      |           |      |                     |
|       |       |              |               |        | 1        | r + 2y            | 1 2 -                   | < 30                  |                       |       |        |                       |           |      |           |      |                     |
|       |       |              |               |        | ч.       | л <del>-</del> Ју | T 22 2                  | ≥ <b>3</b> 0          |                       |       |        |                       |           |      |           |      |                     |
|       |       |              |               |        |          | х                 | , <i>y</i> , <i>z</i> ∠ | 20                    |                       |       |        |                       |           |      |           |      |                     |
| -     | (11)  |              |               |        |          |                   |                         |                       |                       |       |        | DIK                   |           |      | [3]       |      |                     |
| 6     | (11)  | (A)          | P             | x      | <i>y</i> |                   | $S_1$                   | <i>S</i> <sub>2</sub> | <i>S</i> <sub>3</sub> | 1     | S4     | 20 75                 | 5         |      | MI        | 3.4  | Pivot               |
|       |       |              |               | 0      | 2.025    | <u>5 0</u><br>1   | 0.25                    | 0                     | 0                     |       | 125    | 25                    |           |      | Al        | 1.1  | all correct         |
|       |       |              | 0             | 0      | 0.25     | 0                 | -0.5                    | 1                     | Ő                     | 0.2   | 25     | 7.5                   |           |      |           |      |                     |
|       |       |              | 0             | 0      | 0.75     | 0                 | -0.5                    | 0                     | 1                     | -0.2  | 25     | 52.5                  |           |      |           |      |                     |
|       |       |              | 0             | 1 -    | - 0.125  | 50                | -0.25                   | 0                     | 0                     | 0.3   | 375    | 6.25                  |           |      |           |      |                     |
|       |       |              |               |        |          |                   |                         |                       |                       |       |        |                       |           |      | [2]       |      |                     |
| 6     | (ii)  | ( <i>B</i> ) | Max           | imur   | m prof   | fit of £          | 38.75                   | man                   | ufac                  | turin | g 6.25 | 5 litres              | s of X, r | none | <b>B1</b> | 3.2a |                     |
|       |       |              | of Y          | and    | 2.5 lit  | tres of           | Z.                      |                       |                       |       |        |                       |           |      |           |      |                     |
|       |       |              |               |        |          |                   |                         |                       |                       |       |        |                       |           |      | [1]       |      |                     |
| 6     | (iii) |              |               | D      | r        | 11 7              | . g.                    | <b>G a</b>            | <i></i>               | g .   |        | a                     | рис       | 1 1  | <br>      | 1    |                     |
| U     | (111) |              | $\mathcal{L}$ | 1      | л<br>0   | $\frac{y}{1}$     | 31                      | <b>S</b> <sub>2</sub> | 33                    | 34    | 35     | <i>u</i> <sub>5</sub> | K115      |      | B1<br>R1  | 33   | Sumlus              |
|       |       |              | 1             | 0      | 0        | $\frac{1}{2}$     | 0                       | 0                     | 0                     | 0     | -1     | 0                     | 3         |      | B1        | 5.5  | Surpius             |
|       |       |              | 0             | 1 ·    |          | -2 -3             | 0                       | 0                     | 0                     | 0     | 0      | 0                     | 0         |      | DI        |      |                     |
|       |       |              | 0             | 0      | 0        | 1 0               | 0                       | 0                     | 0                     | 0     | -1     | 1                     | 5         |      |           |      |                     |
|       |       |              | 0             | 0      | 2        | 5 3               | 1                       | 0                     | 0                     | 0     | 0      | 0                     | 20        |      |           | 2.50 | Additional variable |
|       |       |              | 0             | 0      | 0        | 2 1               | 0                       | 1                     | 0                     | 0     | 0      | 0                     | 10        |      |           | 3.50 | Additional variable |
|       |       |              | 0             | 0      | 2        | 4 2               | 0                       | 0                     | 1                     | 0     | 0      | 0                     | 70        |      |           | 1.1  | New objective       |
|       |       |              | 0             | 0      | 4        | 3 2               | 0                       | 0                     | 0                     | 1     | 0      | 0                     | 30        |      |           |      |                     |
|       |       |              | 2             |        |          |                   |                         |                       |                       |       |        |                       |           |      | [3]       |      |                     |
| 12-22 |       |              |               |        |          |                   |                         |                       |                       |       |        |                       |           |      |           |      |                     |





## FM Videos

- Includes minimising problems
- 2 Stage
- Big M (Edexcel)
- Use of technology (MEI)





## Using Excel ③

- Mac: Tools > excel add ins > solver add in
- Windows: File > options > solver add in

|          |        | ມ<br>ເທັບ ປ            | Ŧ                    | Tormat   | Spelling                                  |       |
|----------|--------|------------------------|----------------------|----------|-------------------------------------------|-------|
| Home     | Insert | Page Layou             | t Forn               | nulas Da | Thesaurus へて第日<br>Smart Lookup へて第日       | ł.    |
| Paste    | Cut    | Calibri (Body<br>B I L | y)   •   12<br>J   • | • A • A  | Language<br>AutoCorrect<br>Error Checking | E Wra |
| A1       | \$ × ¬ | / fx                   |                      |          | Translate ^てお1                            |       |
| A        | В      | с                      | D                    | E        | Check Accessibility                       | 1     |
| 2 3      | -      |                        |                      |          | Track Changes Merge Workbooks             |       |
| 4<br>5   |        |                        |                      |          | Protection ►                              |       |
| 6<br>7   |        |                        |                      |          | Goal Seek<br>Scenarios                    |       |
| 9        |        |                        |                      |          | Auditing                                  |       |
| 11 12    |        |                        |                      |          | Macro                                     | 6     |
| 13<br>14 |        |                        |                      | -        | Excel Add-ins                             | -     |
| 15       |        |                        |                      |          |                                           |       |
| 17       |        |                        |                      |          |                                           |       |
| 18       |        |                        |                      |          |                                           |       |
| 20<br>21 | /18    |                        |                      |          |                                           |       |







Objective values are not taken to the LHS





| TRANSP | 905 <b>★</b> × √ fx | Thi<br>cor<br>le <i>l</i> | is calculates<br>nsidered<br>P = 4x - y + | the profit at e<br>⊦ <i>z</i> . | each vertex b | eing |
|--------|---------------------|---------------------------|-------------------------------------------|---------------------------------|---------------|------|
|        | Α                   |                           | В                                         | С                               | D             | E    |
| 1      | x                   |                           | У                                         | z                               | Ρ             |      |
| 2      |                     | 0                         | 0                                         | 0                               |               |      |
| 3      |                     | 4                         | -5                                        | 1                               | C\$2,A3:C3)   |      |
| 4      |                     | 3                         | 0                                         | 4                               | 0             | 24   |
| 5      |                     | 1                         | 1                                         | . 0                             | 0             | 7    |
| 6      |                     | 1                         | 0                                         | 0                               | 0             | 6    |





#### Now consider the LHS of the constraints.

# Cells D4, D5, D6 calculate the value of the constraints at the point being considered.













|    | А | В         | С        | D       | E     | F | G               | н                      | 1                             | J             |
|----|---|-----------|----------|---------|-------|---|-----------------|------------------------|-------------------------------|---------------|
| 1  | x | У         | z        | Р       |       |   |                 |                        |                               |               |
| 2  | 0 | 0         | 0        |         |       |   |                 |                        |                               |               |
| 3  | 4 | -1        | 1        |         |       |   |                 | So                     | lver Parameters               |               |
| 4  | 3 | 0         | 4        | 0       | 24    | G | 53 Con Ol Louis | Ch                     | utptal                        |               |
| 5  | 1 | 1         | 0        | 0       | 7     |   | Set Objective   | Sheet                  |                               |               |
| 6  | 1 | 0         | 0        | 0       | 6     |   | To: O Ma        | x O Min                | O Value Of:                   |               |
| 7  |   |           |          |         |       |   | By Changing     | Variable Cells         | 5:                            |               |
| 8  |   |           |          |         |       |   |                 |                        |                               | _             |
| 9  |   |           |          |         |       |   | Subject to the  | e Constraints          | :                             |               |
| 10 |   | Tell it v | where    | to plac | e the |   |                 |                        |                               | Add           |
| 11 |   |           |          |         |       |   |                 |                        |                               | Change        |
| 12 |   | value     | of the ( | objecti | ve    |   |                 |                        |                               | Delete        |
| 13 |   | functio   | n (tha   |         |       |   |                 |                        |                               |               |
| 14 |   | Tuncuc    | m (me    | RDS)    |       |   |                 |                        |                               | Reset All     |
| 15 |   |           |          |         |       |   |                 |                        |                               | Load/Save     |
| 16 |   |           |          |         |       |   | 🛛 Make Und      | onstrained V           | ariables Non-Negative         |               |
| 17 |   |           |          |         |       |   | Select a Solvin | ng Method:             | GRG Nonlinear 🔻               | Ontions       |
| 18 |   |           |          |         |       |   |                 | _                      |                               | options       |
| 19 |   |           |          |         |       |   | Solving Meth    | nod<br>IC Nonlinear ei | ngine for Solver Problems th  | at are smooth |
| 20 |   |           |          |         |       |   | nonlinear. Se   | lect the LP Sin        | plex engine for linear Solver | r Problems,   |
| 21 |   |           |          |         |       |   | smooth.         | e evolutionary         | engine for solver problems    | that are non- |
| 22 |   |           |          |         |       |   |                 |                        |                               |               |
| 23 |   |           |          |         |       |   | _               |                        | Close                         | Solve         |
| 24 |   |           |          |         |       |   |                 |                        |                               |               |





|     |           |           |         | U | L                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | G                                          | н         |
|-----|-----------|-----------|---------|---|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------|
| 1 x |           | У         | Z       | Р |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |           |
| 2   | 0         | 0         | 0       |   |                                                                                    | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Solver Parameters                          |           |
| 3   | 4         | -5        | 1       | 0 |                                                                                    | Set Objective:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$D\$3                                     | _         |
| 4   | 3         | 0         | 4       | 0 | 24                                                                                 | To: • Max • Max • To: • To: • Max • | Min Value Of: 0                            |           |
| 5   | 1         | 1         | 0       | 0 | 7                                                                                  | \$A\$2:\$C\$2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | G4                                         | _         |
| 6   | 1         | 0         | 0       | 0 | 6                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            | Add       |
| 7   | 0         | 0         | 0       | 0 | 0                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            | Change    |
| 8   | Toll it w | hich valu | ies can |   |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            | Reset All |
| 9   |           |           |         |   |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            | Load/Save |
| 10  | be chai   | ngea, le  | the     |   |                                                                                    | ✓ Make Unconstration<br>Select a Solving Meth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ned Variables Non-Negative                 | Options   |
| 11  | coordin   | ated of t | he      |   |                                                                                    | Solving Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |           |
| 12  | vertices  | s (A2 B2  | C2)     |   | Select the GRG Nonlin<br>nonlinear. Select the<br>and select the Evolut<br>smooth. | near engine for Solver Problems that<br>LP Simplex engine for linear Solver<br>ionary engine for Solver problems t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | at are smooth<br>Problems,<br>hat are non- |           |
| 13  | Vortioot  |           | -, 22)  |   |                                                                                    | Shouth.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |           |
| 14  |           |           |         |   |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Close                                      | Solve     |

## Non negativity constraints











| 00                                                                             | Solver Parameters                                                                                      |                                                             |                            |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------|
| Set Objective:                                                                 | \$D\$3                                                                                                 | _                                                           |                            |
| To: O Max                                                                      | O Min O Value Of:                                                                                      | 0                                                           | Don't forget to tell it to |
| By Changing Variab                                                             | ole Cells:                                                                                             |                                                             |                            |
| \$A\$2:\$C\$2                                                                  |                                                                                                        |                                                             | ✓ use the simplex          |
| Subject to the Cons                                                            | straints                                                                                               |                                                             |                            |
| \$D\$4:\$D\$6 <= \$<br>✓ Make Unconstr<br>Select a Solving Met                 | ained Variables Non-Nerstiv<br>thod: Simplex LP                                                        | Add<br>Change<br>Delete<br>Reset All<br>Load/Save           | algontnm                   |
| Solving Method                                                                 |                                                                                                        | -                                                           |                            |
| Select the GRG Nonl<br>nonlinear. Select th<br>and select the Evolu<br>smooth. | linear engine for Solver Probler<br>e LP Simplex engine for linear<br>utionary engine for Solver probl | ns that are smooth<br>Solver Problems,<br>ems that are non- |                            |
|                                                                                | Close                                                                                                  | Solve                                                       |                            |
|                                                                                |                                                                                                        | 1                                                           |                            |











| Mcrosoft Excel 1          | 6.14 Answer Re    | port             |                |                |            |          |          |  |                 |
|---------------------------|-------------------|------------------|----------------|----------------|------------|----------|----------|--|-----------------|
| Worksheet: [Boo           | k1]Sheet1         |                  |                |                |            |          |          |  |                 |
| Report Created: 3         | 30/05/2019 12:3   | 39:45            |                |                |            |          |          |  |                 |
| <b>Result: Solver fou</b> | and a solution.   | All constraints  | and optimal    | ity condition: | s are sati | sfied.   |          |  |                 |
| Solver Engine             |                   |                  |                |                |            |          |          |  |                 |
| Engine: Simple            | x LP              |                  |                |                |            |          |          |  | . <b>r</b> = 25 |
| Solution Time:            | 369367783.863     | Seconds.         |                |                |            |          |          |  |                 |
| Iterations: 1 Su          | ibproblems: 2     |                  |                |                |            |          |          |  | x = 6           |
| Solver Options            |                   |                  |                |                |            |          |          |  |                 |
| Max Time Unlir            | mited, Iterations | s Unlimited, Pre | cision 0.0000  | 01, Use Autom  | natic Scal | ing      |          |  | v = 0           |
| Max Subproble             | ms Unlimited, N   | 1ax Integer Sols | Unlimited, In  | teger Toleran  | ce 1%, A   | sume Non | Negative |  | y = 0           |
|                           |                   |                  |                |                |            |          |          |  | ~ _ 0           |
|                           | 182               |                  |                |                |            |          |          |  | z = 0           |
| Objective Cell (Ma        | x)                |                  |                |                |            |          |          |  |                 |
| Cell                      | Name C            | Driginal Value   | Final Value    | -              |            |          |          |  | Slack           |
| \$D\$3                    | Р                 | 0                | 25             |                |            |          |          |  |                 |
| Variable Cells            | Name (            | Original Value   | Final Value    | breger         |            |          |          |  |                 |
| \$4\$2                    | ×                 | 0                | F              | Integer        | -          |          |          |  |                 |
| \$B\$2                    | X                 | 0                |                | ) Integer      | _          |          |          |  |                 |
| ŚCŚ2                      | ,<br>z            | 0                | 1              | Integer        | _          |          |          |  |                 |
| + 0+2                     | -                 |                  |                | . meger        | -          |          |          |  |                 |
|                           |                   |                  |                |                |            |          |          |  |                 |
| Constraints               |                   |                  |                |                |            |          |          |  |                 |
| Cell                      | Name              | Cell Value       | Formula        | Status         | Slack      |          |          |  |                 |
| \$D\$4                    | Р                 | 22 5             | \$D\$4<=\$E\$4 | Not Binding    | 2          |          |          |  |                 |
| \$D\$5                    | Р                 | 6 5              | \$D\$5<=\$E\$5 | Not Binding    | 1          |          |          |  |                 |
| \$D\$6                    | Р                 | 6 5              | \$D\$6<=\$E\$6 | Binding        | 0          |          |          |  |                 |
| \$A\$2:\$C\$2=Int         | eger              |                  |                |                |            |          |          |  |                 |
| AE VEISIUII 2.0 11/09/10. |                   |                  |                |                |            |          |          |  |                 |





### It'll also work for two Stage

Max: 
$$P - x - 0.8y = 0$$
,  
s.t.  $x + y + s_1 = 1000$   
 $2x + y + s_2 = 1500$ ,  
 $3x + 2y + s_3 = 2400$   
 $x + y - s_4 + a_1 = 800$ 

|   | Α | В   | D | E    |
|---|---|-----|---|------|
| 1 | x | у   | Р |      |
| 2 | 0 | 0   |   |      |
| 3 | 1 | 0.8 | 0 |      |
| 4 | 1 | 1   | 0 | 1000 |
| 5 | 2 | 1   | 0 | 1500 |
| 6 | 3 | 2   | 0 | 2400 |
| 7 | 1 | 1   | 0 | 800  |
| 0 |   |     |   |      |

Select a Solving Method:

|                                                          | Solver Parameters | L                             |
|----------------------------------------------------------|-------------------|-------------------------------|
| Set Objective:                                           | \$D\$3            |                               |
| To: O Max                                                | O Min O Value Of: | 0                             |
| By Changing Var                                          | iable Cells:      |                               |
| \$A\$2:\$B\$2                                            |                   |                               |
| Subject to the Co                                        | onstraints:       |                               |
| \$D\$4 <= \$E\$4                                         | L.                | Add                           |
|                                                          |                   |                               |
| \$D\$5 <= \$E\$5<br>\$D\$6 <= \$E\$6<br>\$D\$7 >= \$E\$7 |                   | Change                        |
| \$D\$5 <= \$E\$5<br>\$D\$6 <= \$E\$6<br>\$D\$7 >= \$E\$7 |                   | Change                        |
| \$D\$5 <= \$E\$5<br>\$D\$6 <= \$E\$6<br>\$D\$7 >= \$E\$7 |                   | Change<br>Delete<br>Reset All |

Simplex LP

Ŧ

Options





|        | А                  | В         | D                | E     |             |                                         |                |             |          |
|--------|--------------------|-----------|------------------|-------|-------------|-----------------------------------------|----------------|-------------|----------|
| 1      | x                  | У         | Р                |       |             |                                         |                |             |          |
| 2      | 400                | 600       |                  |       |             |                                         |                |             |          |
| 3      | 1                  | 0.8       | 880              |       |             |                                         |                |             |          |
| 4      | 1                  | 1         | 1000             | 1000  |             |                                         |                |             |          |
| 5      | 2                  | 1         | 1400             | 1500  | C           | 21 - 22 - 22 - 22 - 22 - 22 - 22 - 22 - |                |             |          |
| 6      | 3                  | 2         | 2400             | 2400  | ive Cell (M | lax)                                    |                |             |          |
| 7      | 1                  | 1         | 1000             | 800   | Name (      | Original Value                          | Final Value    |             |          |
| 0      |                    |           |                  |       | .3 P        | 0                                       | 880            |             |          |
|        |                    |           |                  |       |             |                                         |                |             |          |
|        |                    |           |                  |       |             |                                         |                |             |          |
|        |                    |           |                  | Varia | ble Cells   |                                         |                |             |          |
|        |                    |           |                  | C     | ell Name (  | <b>Original Value</b>                   | Final Value    | Integer     | _        |
|        |                    |           |                  | \$A   | \$2 x       | 0                                       | 400            | Contin      | 29<br>29 |
|        |                    |           |                  | \$B   | \$2 y       | 0                                       | 600            | Contin      |          |
|        |                    |           |                  |       |             |                                         |                |             |          |
|        |                    |           |                  |       |             |                                         |                |             |          |
|        | Sla                | ack 2 (s  | _)               | Const | traints     |                                         |                |             |          |
|        | Sı                 | irnlue (c |                  | e     | ell Name    | Cell Value                              | Formula        | Status      | Slack    |
|        |                    |           | · <sub>4</sub> / | \$D   | \$4 P       | 1000                                    | \$D\$4<-\$E\$4 | Binding     | 0        |
|        |                    |           |                  | \$D   | \$5 P       | 1400                                    | \$D\$5<=\$E\$5 | Not Binding | 100      |
|        |                    |           |                  | \$D   | \$6 P       | 2400                                    | \$D\$6<=\$E\$6 | Binding     | 0        |
|        |                    |           |                  | \$D   | \$7 P       | 1000                                    | \$D\$7>=\$E\$7 | Not Binding | 200      |
| AE Ver | sion 2.0 11/09/18. |           |                  | 0     |             |                                         |                |             |          |





## http://www.zweigmedia.com/Re alWorld/simplex.html

- Will do maximise and minimise problems
- Can't do integer programming
- Scrollable box
- Easy to input data





|                                          | Ту                                                  | pe ye                                 | our lin                 | iear p | rogra  | mmin  | g proble | em below. (Press "Example" to see how to set it up.) |
|------------------------------------------|-----------------------------------------------------|---------------------------------------|-------------------------|--------|--------|-------|----------|------------------------------------------------------|
| max<br>sub<br>x +<br>2x +<br>3x -<br>x + | kimis<br>ject t<br>y <=<br>+ y <:<br>+ 2y -<br>y >= | e P =<br>1000<br>= 150<br><= 2<br>800 | x + 0<br>0<br>00<br>400 | ).8y   |        |       |          |                                                      |
|                                          |                                                     |                                       |                         |        |        |       |          | Solution:                                            |
| Op                                       | timal                                               | Solu                                  | ution:                  | p = 8  | 880; 1 | x = 4 | 00, y =  | 600                                                  |
| 1                                        |                                                     | So                                    | lve                     | Ex     | ample  | e 1   | Erase    | Everything Rounding: 6 significant digits            |
|                                          |                                                     |                                       |                         |        |        |       | N        | Decimal<br>Fraction<br>Mode: Integer                 |
|                                          |                                                     |                                       |                         |        |        |       | The tab  | bleaus will appear here.                             |
| Tab                                      | leau                                                | #1                                    |                         |        |        |       |          |                                                      |
| x                                        | У                                                   | s1                                    | s2                      | s3     | _s4    | р     |          |                                                      |
| 1                                        | 1                                                   | 1                                     | 0                       | 0      | 0      | 0     | 1000     |                                                      |
| 3                                        | 2                                                   | 0                                     | ò                       | 1      | õ      | õ     | 2400     |                                                      |
| 1                                        | 1                                                   | 0                                     | 0                       | 0      | -1     | 0     | 800      |                                                      |
| -1                                       | -0.8                                                | 3 0                                   | 0                       | 0      | 0      | 1     | 0        |                                                      |
| Tab                                      | leau                                                | #2                                    |                         |        |        |       |          |                                                      |
| x                                        | у                                                   | s1                                    | s2                      | _ s3   | s4     | p     | 250      | 3                                                    |
| 1                                        | 0.5                                                 | 0                                     | -0.5                    | 0      | 0      | 0     | 750      |                                                      |
| 0                                        | 0.5                                                 | 0                                     | -1.                     | 5 1    | õ      | õ     | 150      |                                                      |
| 0                                        | 0.5                                                 | 0                                     | -0.                     | 5 0    | -1     | 0     | 50       |                                                      |
| 0                                        | -0.3                                                | 3 0                                   | 0.9                     | 5 0    | 0      | 1     | 750      | 1                                                    |





| -   |       |     |     |      |     |      |     |
|-----|-------|-----|-----|------|-----|------|-----|
| Tak | oleau | #3  |     |      |     |      |     |
| х   | У     | s1  | s2  | s3   | s4  | р    |     |
| 0   | 0     | 1   | 0   | 0    | 1   | 0    | 200 |
| 1   | 0     | 0   | 1   | 0    | 1   | 0    | 700 |
| 0   | 0     | 0   | -1  | 1    | 1   | 0    | 100 |
| 0   | 1     | 0   | -1  | 0    | -2  | 0    | 100 |
| 0   | 0     | 0   | 0.2 | 0    | -0  | .6 1 | 780 |
| Tak | oleau | #4  |     |      |     |      |     |
| x   | У     | s1  | s2  | s3   | s4  | р    |     |
| 0   | 0     | 1   | 1   | -1   | 0   | 0    | 100 |
| 1   | 0     | 0   | 2   | -1   | 0   | 0    | 600 |
| 0   | 0     | 0   | -1  | 1    | 1   | 0    | 100 |
| 0   | 1     | 0   | -3  | 2    | 0   | 0    | 300 |
| 0   | 0     | 0   | -0. | 4 0. | 6 0 | 1    | 840 |
| Tab | oleau | #5  |     |      |     |      |     |
| x   | y     | s1  | s2  | s3   | s4  | p    |     |
| 0   | 0     | 1   | 1   | -1   | 0   | 0    | 100 |
| 1   | 0     | -2  | 0   | 1    | 0   | 0    | 400 |
| 0   | 0     | 1   | 0   | 0    | 1   | 0    | 200 |
| 0   | 1     | 3   | 0   | -1   | 0   | 0    | 600 |
| 0   | 0     | 0.4 | 0   | 0.2  | 2 0 | 1    | 880 |
|     |       |     |     |      |     |      |     |
|     |       |     |     |      |     |      |     |





## Modelling

- Consider:
  - Old spec Edexcel D2 transportation, allocation and game theory as LPP
  - Old spc MEI Discrete Computing examples of outputs





## Exam advice: simplex

- Many students can apply simplex accurately
- Some candidates fail to identify variables; there are still a number of candidates who define variables as 'a is crop A' etc,
- Most students can explain given inequalities but have more problems if asked to work them out from information given.
- Interpretation of solution is usually less good. Listing the values taken by the variables does not constitute interpretation, examiners needed to know what was to be made at what profit, and what would be left over.





## Exam tips

- The most common mistakes are arithmetic.
- Number the rows and write the row operations being used at the side (e.g. R4-3R2). This helps both student and the examiner to keep track of what is happening.
- Know the conditions for a tableau to be optimal; no –ves in the objective row if it is a maximise problem and no +ves in the objective row if it is a minimise problem.
- Be prepared to explain why a particular tableau is or isn't optimal.





## Exam tips

- Don't forget to write the answer at the end. Too many people lose marks because they don't interpret the solution.
- Make sure students are able to work out the value of slack variables in the tableau. These will tell you if there are any of the 'raw materials' left. This can be asked for in questions.
- Make sure they can read the values of all variables, including the slack variables form any completed tableau, even if it is not the final tableau.