

Advanced Mathematics Support Programme ${ }^{\text {® }}$

About the AMSP

- A government-funded initiative, managed by MEI, providing national support for teachers and students in all state-funded schools and colleges in England.
- It aims to increase participation in AS/A level Mathematics and Further Mathematics, and Core Maths, and improve the teaching of these qualifications.
- Additional support is given to those in priority areas to boost social mobility so that, whatever their gender, background or location, students can choose their best maths pathway post-16, and have access to high quality maths teaching.

MEI holds the NCETM CPD Standard

The CPD Standard supports maths teachers to access information about the wide range of CPD provision on offer and to be assured of its appropriateness and quality.
ncetm.org.uk/cpdstandard
Continuing Professional
Development
Standard
National Centre
for Excellence in the
Teaching of Mathematics

2 Stage Simplex James Morris James.morris@mei.org.uk

To think about:
In the example on the left, the origin isn't on the boundary of the feasible region. Starting at the origin, how do we get to the boundary so that we can apply the simplex algorithm?

Discrete/Decision Mathematics Topics	AQA	Edexcel	MEI	OCR A
Formulating constrained problems into Linear programs	AS	AS D1	MwA	AS
Graphical solution using an objective function	AS	AS D1	MwA	AS
Integer solution		AS D1	MwA	A Level
Slack variables	A Level	A Level D1	MwA	A Level
Simplex Method	A Level	A Level D1	MwA	A Level
Interpretation of Simplex	A Level	A Level D1	MwA	A Level
Big M method		A Level D1		
Integer programming, branch-and-bound method				A Level
Post-optimal analysis			MwA	A Level
Formulate a range of network problems as LPs			MwA	
Use of software and interpretation of output			MwA	

In this session:

- \geq constraints
- Artificial variables
- Surplus variables
- Two stage Simplex
- Playtime!
- Technology

Two stage simplex

- The simplex algorithm relies on $(0,0)$ being a feasible solution.
- This isn't possible if there are \geq constraints (we maintain the trivial constraints eg $\mathrm{y} \geq 0$)

Slack and Surplus

- For \leq constraints we add slack variables (how much is 'missing')
- For \geq constraints we subtract surplus variables (how much 'extra' we have).
- As with other constraints these will be positive.

()lams

Maximise $P=x+0.8 y$
Subject to
$x+y \leq 1000, \quad 2 x+y \leq 1500, \quad 3 x+2 y \leq 2400$
$x+y \geq 800, \quad x, y \geq 0$
$P-x-0.8 y=0$
$x+y+s_{1}=1000$
$2 x+y+s_{2}=1500$
$3 x+2 y+s_{3}=2400$
$x+y-s_{4}=800$
$x, y, s_{1}, s_{2}, s_{3}, s_{4} \geq 0$

amp ${ }^{\circ}$

Maximise $P=x+0.8 y$
Subject to
$x+y \leq 1000, \quad 2 x+y \leq 1500,3 x+2 y \leq 2400$ $x+y \geq 800, \quad x, y \geq 0$
$\mathrm{P}-\mathrm{x}-0.8 y=0$
S_{4} is a surplus variable
$x+y+s_{1}=1000$
$2 x+y+s_{2}=1500$
$3 x+2 y+s_{3}=240$
$x+y-s_{4}=800$
$x, y, s_{1}, s_{2}, s_{3}, s_{4} \geq 0$

()dams

Maximise $P=x+0.8 y$
Subject to
$x+y \leq 1000, \quad 2 x+y \leq 1500,3 x+2 y \leq 2400$ $x+y \geq 800, \quad x, y \geq 0$
$\mathrm{P}-\mathrm{x}-0.8 y=0$
$x+y+s_{1}=1000$
$2 x+y+s_{2}=1500$
$3 x+2 y+s_{3}=2400$
$x+y-s_{4}=800$
$x, y, s_{1}, s_{2}, s_{3}, s_{4} \geq 0$

amp ${ }^{\circ}$

Maximise $P=x+0.8 y$
Subject to
$x+y \leq 1000, \quad 2 x+y \leq 1500,3 x+2 y \leq 2400$
$x+y \geq 800, \quad x, y \geq 0$
$\mathrm{P}-x-0.8 y=0$
Add artificial variables with each surplus variable

$$
2 x+y+s_{2}=1500
$$

$$
x+y-s_{4}+a_{1}=800
$$

$$
3 x+2 y+s_{3}=2400
$$

$$
x+y-s_{4}+a_{1}=800
$$

$$
x, y, s_{1}, s_{2}, s_{3}, s_{4}, a_{1} \geqslant 0
$$

Maximise $P=x+0.8 y$
Subject to
$x+y \leq 1000, \quad 2 x+y \leq 1500,3 x+2 y \leq 2400$
$x+y \geq 800, \quad x, y \geq 0$
$\mathrm{P}-x-0.8 y=0$
$x+y+s_{1}=1000=1000$
$2 x+y+s_{2} 5=1500=1500$
$3 x+2 y+$
$x+y-s_{4}+a_{1}=800 a_{1}=000$
$x, y, s_{1}, s_{2}, s_{3}, s_{4}, a_{1} \geq 0$

Two stage simplex

- The simplex algorithm relies on $(0,0)$ being a feasible solution.
- If there are \geq constraints, add artificial variables and subtract surplus variables
- Two stage simplex has a second objective that is equal to the sum of the artificial variables
- The first stage makes the second objective zero, the second stage is as normal

(D)amsp

Greater than or equal to constraints

- Simplex always starts at the origin.
- If there are \geq constraints, add artificial variables introduce a new objective function
$A=a_{1}+a_{2}+\ldots$
which you must minimise, since when $A=0$ you are in the feasible region

(D) amsp

Greater than or equal to constraints

Once in the feasible region:

- Surplus variables give a measure of the perpendicular distance from each \geq inequality
- Slack variables give a measure of the perpendicular distance from each \leq inequality.
- Complete the simplex in the normal way.

Two Stage Simplex

Maximise $P=x+0.8 y$
Subject to
$x+y \leq 1000, \quad 2 x+y \leq 1500,3 x+2 y \leq 2400$
$x+y \geq 800$
$\mathrm{P}-\mathrm{x}-0.8 y=0$
$x+y+s_{1}=1000$
$2 x+y+\mathrm{s}_{2}=1500$
$3 x+2 y+s_{3}=2400$
$x+y-s_{4}+a_{1}=800$

Subtract surplus variables and add artificial variables

Two Stage Simplex

Maximise $\mathrm{P}-x-0.8 y=0$,
Subject to $x+y+\mathrm{s}_{1}=1000$
$2 x+y+s_{2}=1500, \quad 3 x+2 y+s_{3}=2400$
$x+y-s_{4}+a_{1}=800$
Sometimes this is ' 9
Check with your board

Minimise $A=a_{1}+a_{2}+a_{3}+\ldots$
If $A=0$ we get back to the boundary of the feasible region.
but we write this in terms of the other variables:

$$
\begin{gathered}
A=-x-y+s_{4}+800 \\
A+x+y-s_{4}=800
\end{gathered}
$$

Difference in specs

- Some specs wish you to:
- Minimise $A=a_{1}+a_{2}+a_{3+\ldots}$ (eg MEI)
- Maximise $I=-\left(a_{1}+a_{2}+a_{3+\ldots}\right)$ (eg Edexcel)
- This is effectively the same, but you should know which you board expects
- In the tableaux it will adjust how you select the pivot column:
- A positive number if minimising (eg MEI)
- A negative number if maximising (eg

Edexcel)

Two Stage Simplex

Maximise $\mathrm{P}-x-0.8 y=0$,
Subject to $x+y+\mathrm{s}_{1}=1000$
$2 x+y+s_{2}=1500, \quad 3 x+2 y+s_{3}=2400$
$x+y-s_{4}+a_{1}=800$

Minimise $A=a_{1}+a_{2}+a_{3}+\ldots$ but we write this in terms of the other variables:

$$
\begin{gathered}
\mathrm{A}=-x-y+s_{4}+800 \\
\mathrm{~A}+x+y-s_{4}=800
\end{gathered}
$$

Oamsp

[^0]

Solution

Stage $\frac{2}{\text { A }}$	Pivot 2		2					
	P	X	y	s1	s2	s3	S4	RHS
0	1	0	0	0.4	0	0.2	0	880
0	0	0	0	1	1	-1	0	100
0	0	1	0	-2	0	1	0	400
0	0	0	0	1	0	0	1	200
0	0	0	1	3	0	-1	0	600

So the solution is
$x=400$
$y=600$
$P=880$

$$
\mathrm{s}_{2}=100
$$

Note that S_{4} is also basic meaning that the solution does not lie on an intersection with the \geq constraint

Edexcel Tableaux

(2amsp

Row Ops	B.V.	\mathbf{x}	\mathbf{y}	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{3}}$	$\mathbf{S}_{\mathbf{4}}$	$\mathbf{a}_{\mathbf{1}}$	RHS	$\boldsymbol{\theta}$
$\mathrm{R}_{1}=\mathrm{R}_{1}$	$\mathrm{~S}_{4}$	0	0	1	0	0	1		200	-
$\mathrm{R}_{2}=\mathrm{R}_{2}-\mathrm{R}_{1}$	$\mathrm{~S}_{2}$	1	0	-1	1	0	0		500	500
$\mathrm{R}_{3}=\mathrm{R}_{3}-2 \mathrm{R}_{1}$	$\mathrm{~S}_{3}$	1	0	-2	0	1	0		400	400
$\mathrm{R}_{4}=\mathrm{R}_{4}+\mathrm{R}_{1}$	y	1	1	1	0	0	0		1000	1000
$\mathrm{R}_{5}=\mathrm{R}_{5}+0.8 \mathrm{R}_{1}$	P	$-1 / 5$	0	$4 / 5$	0	0	0		800	

Minimising Problems

Minimise $C=-4 x+y$
Subject to:

$$
\begin{gathered}
-3 x+2 y \leq 6 \\
x \leq 3 \\
3 x+y \geq 6 \\
x, y \geq 0
\end{gathered}
$$

Minimise $C=-4 x+y$
\Rightarrow Maximise $P=-C=4 x-y$

	$B V$	x	y	s_{1}	s_{2}	s_{3}	a_{1}	R Rus	θ.
$R_{1}=R_{1}+R_{2}$	s_{1}	0	$8 / 3$	1	3	0	0	15	
$R_{2}=3 R_{2}$	s_{3}	0	$-2 / 3$	0	3	1	-1	3	
$R_{3}=R_{3}+1 / 3 R_{2}$	x	1	0	0	1	0	0	3	
$R_{4}=R_{4}+4 / 3 R_{2}$	P	0	$13 / 9$	0	$R_{3} 0$	0	0	12	

Max $P=12$

$$
\therefore \min c=-12, x=3, s,=15, s_{3}=3 \text {. }
$$

- Maximise $P=-C$

$$
\therefore C=-P=12
$$

SAMs

Three liquid medicines, X, Y and Z , are to be manufactured. All the medicines require ingredients $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D which are in limited supply. The table below shows how many grams of each ingredient are required for one litre of each medicine. It also shows how much of each ingredient is available.

	A	B	C	D
Each litre of X requires	2	0	2	4
Each litre of Y requires	5	2	4	3
Each litre of Z requires	3	1	2	2
Amount, in grams, of each ingredient available	20	10	70	30

When the medicines are sold, the profits are $£ 5$ per litre of X manufactured, $£ 2$ per litre of Y and $£ 3$ per litre of Z .
(i) Formulate an LP to maximise the total profit subject to the constraints imposed by the availability of the ingredients. Use x as the number of litres of X, y as the number of litres of Y and z as the number of litres of Z .

When the medicines are sold, the profits are $£ 5$ per litre of X manufactured, $£ 2$ per litre of Y and $£ 3$ per litre of Z .
(i) Formulate an LP to maximise the total profit subject to the constraints imposed by the availability of the ingredients. Use x as the number of litres of X, y as the number of litres of Y and z as the number of litres of Z.

The simplex algorithm is used to solve this LP. After the first iteration the tableau below is produced.

P	x	y	z	s_{1}	s_{2}	s_{3}	s_{4}	RHS
1	0	1.75	-0.5	0	0	0	1.25	37.5
0	0	3.5	2	1	0	0	-0.5	5
0	0	2	1	0	1	0	0	10
0	0	2.5	1	0	0	1	-0.5	55
0	1	0.75	0.5	0	0	0	0.25	7.5

(ii) (A) Perform a second iteration.
(B) Give the maximum profit, and the number of litres of X, Y and Z which should be manufactured to achieve this profit.
(iii) An extra constraint is imposed by a contract to supply at least 5 litres of Y. Produce an initial tableau which could be used to solve this new problem by using the two-stage simplex method.

FM Videos

- Includes minimising problems
- 2 Stage
- Big M (Edexcel)
- Use of technology (MEI)

Using Excel ©

- Mac: Tools > excel add ins > solver add in - Windows: File > options > solver add in

$\operatorname{Max} P=4 x-5 y+z$ Initial values (the origin)
s.t.
$3 x+4 z \leq 24$
$x+y \leq 7$
$x \leq 6$

This calculates the profit at each vertex being considered le $P=4 x-y+z$.

TRANSPO؛ $\stackrel{\rightharpoonup}{\nabla} \times f_{x}=$ SUMPRODUCT(AST $\left.\leqslant \leqslant 2, A 3: C 3\right)$

(Damsp

Now consider the LHS of the constraints.
Cells D4, D5, D6 calculate the value of the constraints at the point being considered.

Now we can use the solver!

- Go to the data tab > solver

Oamsp

(D)amsp

	A	B	C D		E	For the constraints click 'add' to get this screen. Cell reference refers to cells D4 \rightarrow D6, constraints to cells $\mathrm{E} 4 \rightarrow \mathrm{E} 6$.
1	X	$y \quad z$	z P			
2	0	0	0			
3	4	-5	1	0		
4	3	0	4	0	24	
5	1	1	0	0	7	
6	1	0	0	0	6	
7	0	- -	Add Constraint	0	0	
8						
9		Add				
10						

Don't forget to tell it to use the simplex algorithm!

Solver Results

Solver found a solution. All constraints and optimality conditions are satisfied.

- Keep Solver Solution

Restore Original Values
\square Return to Solver Parameters Dialog
Reports

```
Answer Sensitivity Limits
```Outline Reports

Save Scenario... Cancel

\section*{Click answer for the details (final profit, values (x, y, z, slack etc) to be stored in a new sheet).}

\section*{Then click ok \(\odot\)}

\section*{M crosoft Excel 16.14 Answer Report \\ Worksheet: [Book1]Sheet1 \\ Report Created: 30/05/2019 12:39:45 \\ Result: Solver found a solution. All constraints and optimality conditions are satisfied. \\ Solver Engine \\ Engine: Simplex LP \\ Solution Time: \(\mathbf{3 6 9 3 6 7 7 8 3 . 8 6 3 \text { Seconds. }}\) \\ Iterations: 1 Subproblems: 2 \\ Solver Options \\ Max Time Unlimited, Iterations Unlimited, Precision 0.000001, Use Automatic Scaling Max Subproblems Unlimited, Max Integer Sols Unlimited, Integer Tolerance 1\%, Assume Non^egative \\

\section*{It'll also work for two Stage}
\[
\begin{aligned}
& \text { Max: } P-x-0.8 y=0, \\
& \text { s.t. } x+y+s_{1}=1000 \\
& 2 x+y+s_{2}=1500, \\
& 3 x+2 y+s_{3}=2400 \\
& x+y-s_{4}+a_{1}=800
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline & A & B & D & E \\
\hline 1 & x & y & P & \\
\hline 2 & 0 & 0 & & \\
\hline 3 & 1 & 0.8 & 0 & \\
\hline 4 & 1 & 1 & 0 & 1000 \\
\hline 5 & 2 & 1 & 0 & 1500 \\
\hline 6 & 3 & 2 & 0 & 2400 \\
\hline 7 & 1 & 1 & 0 & 800 \\
\hline - & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline - 0 & \multicolumn{3}{|c|}{Solver Parameters} & L2 \\
\hline Set Objective: & \$D\$3 & & & \\
\hline To: \(\bigcirc\) Max & \(\bigcirc \mathrm{Min}\) & - Value Of: & 0 & \\
\hline \multicolumn{5}{|l|}{By Changing Variable Cells:} \\
\hline \multicolumn{4}{|l|}{\$A\$2:\$B\$2} & \\
\hline \multicolumn{5}{|l|}{Subject to the Constraints:} \\
\hline \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { \$D\$4 }<=\$ \text { ES } 4 \\
& \$ D \$ 5<=\$ \text { S } \$ 5 \\
& \$ D \$ 6<=\$ \text { SES } \\
& \text { \$D } 7>=\$ \text { SES } 7
\end{aligned}
\]} & & & & Add \\
\hline & & & & Change \\
\hline & & & & Delete \\
\hline & & & & Reset All \\
\hline & & & & Load/Save \\
\hline \multicolumn{5}{|l|}{\(\square\) Make Unconstrained Variables Non-Negative} \\
\hline \multicolumn{2}{|l|}{Select a Solving Method:} & Simplex LP & \(\checkmark\) & Options \\
\hline
\end{tabular}

\section*{http://www.zweigmedia.com/Re} alWorld/simplex.html
- Will do maximise and minimise problems
- Can't do integer programming
- Scrollable box
- Easy to input data

\section*{Type your linear programming problem below. (Press "Example" to see how to set it up.)}
```

maximise P=x+0.8y

```
subject to
\(x+y<=1000\)
\(2 x+y<=1500\)
\(3 x+2 y<=2400\)
\(x+y>=800\)

\section*{Solution:}
```

Optimal Solution: p=880; x=400,y=600
Solve Example Erase Everything Rounding: 6 significant digits
Decimal
Fraction
Mode: Integer

```

The tableaus will appear here.

\section*{Tableau \#1}
\begin{tabular}{llllllll}
x & y & s 1 & s 2 & s 3 & s 4 & p \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 1000 \\
2 & 1 & 0 & 1 & 0 & 0 & 0 & 1500 \\
3 & 2 & 0 & 0 & 1 & 0 & 0 & 2400 \\
1 & 1 & 0 & 0 & 0 & -1 & 0 & 800 \\
-1 & -0.8 & 0 & 0 & 0 & 0 & 1 & 0
\end{tabular}

Tableau \#2
\(\begin{array}{llrlcccc}\mathrm{x} & \mathrm{y} & \mathrm{s} 1 & \text { s2 } & \text { s3 } & \text { s4 } & \mathrm{p} & \\ 0 & 0.5 & 1 & -0.5 & 0 & 0 & 0 & 250\end{array}\)
\(\begin{array}{llllllll}1 & 0.5 & 0 & 0.5 & 0 & 0 & 0 & 750\end{array}\)
\(\begin{array}{cccccccc}0 & 0.5 & 0 & -1.5 & 1 & 0 & 0 & 150 \\ 0 & 0.5 & 0 & -0.5 & 0 & -1 & 0 & 50\end{array}\)
\begin{tabular}{llllllll}
0 & -0.3 & 0 & 0.5 & 0 & 0 & 1 & 750
\end{tabular}

Managed by
```

Tableau \#3

x	y	s 1	s 2	s 3	s 4	p	
0	0	1	0	0	1	0	200
1	0	0	1	0	1	0	700
0	0	0	-1	1	1	0	100
0	1	0	-1	0	-2	0	100
0	0	0	0.2	0	-0.6	1	780

```

Tableau \#4
\begin{tabular}{llllllll}
x & y & s 1 & s 2 & s 3 & s 4 & p & \\
0 & 0 & 1 & 1 & -1 & 0 & 0 & 100 \\
1 & 0 & 0 & 2 & -1 & 0 & 0 & 600 \\
0 & 0 & 0 & -1 & 1 & 1 & 0 & 100 \\
0 & 1 & 0 & -3 & 2 & 0 & 0 & 300 \\
0 & 0 & 0 & -0.4 & 0.6 & 0 & 1 & 840
\end{tabular}

Tableau \#5
\begin{tabular}{llllllll}
x & y & s 1 & s 2 & s 3 & s 4 & p & \\
0 & 0 & 1 & 1 & -1 & 0 & 0 & 100 \\
1 & 0 & -2 & 0 & 1 & 0 & 0 & 400 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 200 \\
0 & 1 & 3 & 0 & -1 & 0 & 0 & 600 \\
0 & 0 & 0.4 & 0 & 0.2 & 0 & 1 & 880
\end{tabular}

\section*{Modelling}
- Consider:
- Old spec Edexcel D2 - transportation, allocation and game theory as LPP
- Old spc MEI Discrete Computing - examples of outputs

\section*{Exam advice: simplex}
- Many students can apply simplex accurately
- Some candidates fail to identify variables; there are still a number of candidates who define variables as 'a is crop A' etc,
- Most students can explain given inequalities but have more problems if asked to work them out from information given.
- Interpretation of solution is usually less good. Listing the values taken by the variables does not constitute interpretation, examiners needed to know what was to be made at what profit, and what would be left over.

\section*{Exam tips}
- The most common mistakes are arithmetic.
- Number the rows and write the row operations being used at the side (e.g. R4-3R2). This helps both student and the examiner to keep track of what is happening.
- Know the conditions for a tableau to be optimal; no -ves in the objective row if it is a maximise problem and no +ves in the objective row if it is a minimise problem.
- Be prepared to explain why a particular tableau is or isn't optimal.

\section*{Exam tips}
- Don't forget to write the answer at the end. Too many people lose marks because they don't interpret the solution.
- Make sure students are able to work out the value of slack variables in the tableau. These will tell you if there are any of the 'raw materials' left. This can be asked for in questions.
- Make sure they can read the values of all variables, including the slack variables form any completed tableau, even if it is not the final tableau.```

[^0]: Ât version 2.0 717טצ/78.

