ABR DELIVERY
ARCHITECTURES
AND
VIRTUALIZATION

SANTHANA CHARI, SENIOR DIRECTOR OF ENGINEERING FOR
THE DIGITAL VIDEO COMPRESSION AND PROCESSING GROUP

NIRANJAN SAMANT, PRINCIPAL SYSTEMS ENGINEER, VIDEO
SYSTEMS GROUP

ARRIS

ARRIS

TABLE OF CONTENTS
INTRODUCGTION ...ttt e et e e e ee e e e e eena s 3
ABR PROCESSING & DELIVERY FUNCTIONAL BLOCKS.......cctvteereereereeeeeeeeeeeeenns 3
TYPES OF ABR SERVICES/APPLICATIONS.......ovtieiiiee et eee et 5
ABR DELIVERY ARCHITECTURES.......uieiee e 7
ADVANTAGES OF VIRTUALIZATION ...ttt 11
VIRTUALIZATION REQUIREMENTSeeiiiee e 12
VIRTUALIZATION OF ABR PROCESSING.......ciiiiiiiiieeieeiieeeeeeeie e 13
Caching and StreamiNg: ... e e e e e e e e e e 13
1ol V=T o T U PPPRRT 14
TrANSCOTINE: .ttt e et e e e e e eeaeeeeeeese e s saabbasaeareeeeeaaaaaeaeesenaaannnns 15
Live and File based TransCOdiNgG:ccooiiiiiieciceeeee e e e e 15
Software and ASIC based TransCodiNg:eeeieeiiiiiiei i 15
RELATED READINGSceiiiieeeeee ettt e e e e e eeeas 17
REFERENCES ...ttt e e e e e e e e ennaes 18

Copyright 2014 — ARRIS Enterprises, Inc. All rights Reserved.

INTRODUCTION

This paper discusses two emerging trends in video processing delivery, namely,
migration of various video processing functions to the network cloud to leverage
advances in virtualization and dynamic packaging techniques for adaptive bitrate (ABR)
delivery of video.

ABR delivery requires various functional processing blocks such as transcoding,
packaging, encryption, caching and eventual delivery to clients. Details of individual
functional blocks are presented. Today, linear and on-demand video services are being
offered using IP based ABR delivery by means of protocols such as HTTP Live Streaming,
Smooth Streaming, or Dynamic Adaptive Streaming over HTTP (DASH.) These services
are growing at a very healthy rate and are expected to continue to grow in the coming
years as the delivery to the main screen starts using IP based video delivery. In addition
to classic services such as linear TV and Video on Demand, IP based services such as
network DVR, StartOver, and Lookback are becoming increasingly popular. As the scale
of delivery and the type of new services grow, the need for performing certain functions
such as transcoding and packaging in an on-demand or just-in-time (JIT) fashion will
arise. We present different architectures using static and just-in-time packaging and
describe their applicability to different services.

This paper further discusses the advantages, key requirements and challenges in
implementing various processing functions in software and hosting them in a virtualized
environment. Certain functions like caching, CDN based delivery and packaging are
naturally amenable to virtualization. On the other hand, more computationally-
intensive operations such as video and audio transcoding have historically been
performed on custom hardware. However, there are several recent developments in
general purpose processors that are making software based- and hence virtualized
processing- of video compression possible, the details of which are presented herein.

ABR PROCESSING & DELIVERY FUNCTIONAL
BLOCKS

The primary functional blocks that make up an Adaptive Bitrate Delivery pipeline are
multibitrate transcoding, packaging, content protection (encryption and DRM), storage,
streaming and client playback. These are quite well known but described very briefly
below for completeness. ABR formats considered in this paper are Apple’s HTTP Live
Streaming (HLS) [R1], Microsoft’s IS Smooth Streaming (HSS) [R2], and the MPEG
group’s Dynamic Adaptive Streaming over HTTP (DASH) [R3]. Within DASH we may
further differentiate as DASH-TS, which covers MPEG-2 Transport Stream based DASH

Copyright 2014 — ARRIS Enterprises, Inc. All rights Reserved.

profiles, and DASH-ISOBMFF, which covers ISO Base Media File Format [R4] based
profiles. Figure 1 shows the functional blocks that make up the ABR processing, delivery
and playback pipeline.

Multibitrate (MBR) Transcoding is most commonly the process of creating multiple
versions of a single media stream or asset. Media typically consists of video and audio
components; it may also contain closed captions or subtitles. An MBR transcoder will
ingest a single such MPEG-SPTS (Single Program Transport Stream) stream [R5] and
create multiple SPTS outputs, each containing the same audio, but the video component
in each output stream is of a different resolution and or bitrate. For a given service or
asset, MBR transcoded outputs are IDR (Instantaneous Decoding Refresh) frame and PTS
(Presentation Timestamp) aligned.. For ABR streaming the video is encoded in H.264
[R6] format and the audio is encoded in one of the version of AAC (Advanced Audio
Coding) [R7] standard.

Content ’
Transcode Package Protection Storage & Client
CA / DRM Streaming Playback

* Retrieve &

* Live or File * Generate MP4 * Encrypt— * Origin Server b Manif
Ingest orTS AES128 Cipher « Edge Caching arse Manifest
*H.264 Video Segments « DRM— * Request Chunks

* AAC Audio * Generate Playready, . 'l(xequgst
« Segment IDR- playlist, SecureMedia, eys/licenses
. client/server Several others * Decrypt
Alignment : o
manifest files « Usage policies « Play

Packagers ingest MBR transcoded content and convert it to one or more ABR streaming
formats. Each ABR format output essentially consists of temporally aligned
chunks/segments/fragments of each constituent MBR transcoded stream and one or
more accompanying text files, called manifests or playlists. In DASH the playlists are
called Media Presentation Descriptions (MPD). Playlists contain details about different
types of streams available in the ABR output and information in the form of URLs for
how to request them in chunks. Packagers usually publish their ABR outputs to Origin
Servers (0OS) in a Content Delivery Network (CDN). Depending upon the ABR format and
its specifications packager output chunks are either Transport Stream (TS) segments or

Copyright 2014 — ARRIS Enterprises, Inc. All rights Reserved. 4

MP4 fragments. MP4 fragments are based on the ISO Base Media File format (ISOBMFF)
[R4].

In order to protect ABR content before it is made available to subscribers and their
client devices, it may be encrypted and DRM rules may be applied. Packagers most often
perform encryption of ABR content. Most ABR formats today require certain modes of
AES-128 encryption. HLS specifies the AES-128 Cipher Block Chaining (CBC) mode for
encryption. HSS specifies the AES-128 Counter (CTR) mode for encryption. MPEG-DASH
output is encrypted based on Common Encryption (CENC). There are two CENC
specifications either released or in progress also based on AES-128 modes of encryption,
one for ISOBMFF-CENC [R8] and the other for MPEG2-TS-CENC [R9]. Many DRM vendors
offer key and license servers to enable encryption at packagers, support delivery of keys
securely to clients as well as application of DRM policies.

Packagers publish ABR content to origin servers, which are central entry points into
Content Distribution Networks (CDN). CDNs provide storage and distribution of ABR
content in an efficient manner. At the edge of CDNs are edge servers which may deliver
content directly to clients, or the edge servers may terminate into MSO/Telco access
networks that deliver the content to subscriber premises/devices.

In ABR streaming, clients request content for playback via HTTP [R10]. When clients first
tune to any ABR channel or asset they receive a compatible playlist. Clients parse the
playlist and then use URLs within the playlist to request content chunks. They also use
information in the playlist to retrieve keys/licenses necessary to decrypt ABR content.
An ABR playlist provides the client multiple choices for playout of the same ABR stream,
each at a different resolution/bitrate. ABR clients apply heuristics to determine the most
optimal stream to request, given current network conditions.

Besides the above mentioned functional blocks, there are supporting functions that
enable ad-insertion, black-out or other content replacement, analytics and reporting,
watermarking, and more.

TYPES OF ABR SERVICES/APPLICATIONS

Today ABR streaming services complement high quality TV delivery to the STB (Set Top
Box) by making the same services available on second and third screens. In the future
they also hold the promise of supplementing high quality TV delivery to STBs, resulting
in unified IP delivery to all devices inside and outside the home/business. In this section
we discuss the various applications in which ABR streaming is/can be deployed or the
types of services that ABR streaming enables.

Copyright 2014 — ARRIS Enterprises, Inc. All rights Reserved.

Live Linear Applications (Live to Live): Linear broadcast (BC) services are delivered to
ABR clients via this application. This includes off-air broadcast services, linear
Cable/Telco TV services including sports and premium content channels.

In this application, live linear services are ingested and passed through the ABR delivery
pipeline where, after packaging, they are published to an origin server/CDN. Authorized
clients wanting to playback any of the available channels are directed to appropriate
edge caches on the CDN to retrieve the service in ABR format. Edge cache “misses” for
content are fulfilled by the origin server. This application can support content
protection, ad-insertion, black-out and emergency alert.

Live on-Demand Applications (Live to File): These applications of ABR streaming
delivery cover those services that straddle the boundary of on-Demand and live TV.
These applications are created around live BC services where a subscriber may watch
live linear BC TV but the next moment he may scroll back in time to watch the same
program from its starting point. This allows the subscriber to watch a live program and
also its partially recorded version on-Demand.

Based on the Live on-Demand application a service provider may offer its subscribers
services such as or similar to StartOver TV or dynamic cDVR (cloud Digital Video
Recorder). In an ABR service similar to StartOver TV a service provider may offer
selected channels to subscribers where they can watch a live program already in
progress from its starting point. In the cDVR application a subscriber selected program is
stored in the cloud by the service provider and made available on-demand at any time
for delivery over ABR streaming. If a subscriber starts watching a cDVR recording while
the program and recording is in progress, this is called dynamic cDVR, and if a subscriber
starts watching a cDVR recording after the live BC of the program is over it becomes a
static cDVR recording.

Offline on-Demand Applications (File to File): These applications of ABR streaming
delivery cover those services that are static at the time of streaming. Programs or
channel content may be stored in the network or cloud by the service provider and a
subscriber may request streaming of those stored services in an on-demand fashion at
any time.

ABR streaming services that fall under this category are Video on-Demand (VOD), static
cDVR, and LookBack TV/CatchUp TV like services. Classic VOD service does not need any
further explanation. Static cDVR is streaming of a cDVR recording after the recording is
complete and the asset has become static. LookBack or CatchUp TV is a type of service
where a service provider makes content from selected broadcast channels available for
on-demand viewing for a fixed period into the past, say one week into the past.
Subscribers may scroll back up to one week or a few days in the past and view any
program.

Copyright 2014 — ARRIS Enterprises, Inc. All rights Reserved.

In the next section we shall explore architectures that make ABR delivery of the
services/applications discussed above possible.

ABR DELIVERY ARCHITECTURES

In this section we start with a simple ABR delivery architecture with a linear packager
and then successively build on it to come up with an architecture that supports all
services/applications mentioned in the previous section in the most efficient manner,
using linear and just-in-time packagers (JITP). Figure 2 shows a linear packager
publishing ABR streams to an origin server that feeds a CDN. ABR client devices are first
directed to edge servers and cache misses at the edge are fulfilled by the origin. In this
architecture live multibitrate (MBR) transcoded streams may be converted to live or
VOD assets by the packager and posted to the origin. Pre-transcoded MBR files also may
be ingested by the packager, packaged and published to the origin or storage that sits
off the origin, for retrieval by clients. The linear packager can support live to file and also
file to file type of applications.

This basic architecture can be configured to support live to file services as follows. The
linear packager can convert incoming live services to VOD assets in real time and publish
them to the origin. This architecture requires a large amount of storage at the origin and
at the edges. Some of the control plane functional blocks are assumed and not shown in
the figures. The linear packaging architecture may not be the most efficient for all types
of applications. Live to live services should be served by the linear packaging
architecture but for the other applications the linear packaging architecture is a good fit
when the size of the deployment in terms of the amount of content and the total
number of client devices or sessions is relatively small. Larger deployments providing all
types of ABR applications should consider adding Just-in-Time Packaging (JITP).

Copyright 2014 — ARRIS Enterprises, Inc. All rights Reserved.

ARRIS

(| | o
<
.-

Figure 2. Basic ABR Delivery of Services with Linear Packager

The addition of Just-in-Time Packaging or Repackaging (JITP) enables many of the ABR
delivery applications in a more efficient manner. Efficiency gains are realized in the form
of less storage and less bandwidth requirements, thereby enabling the service provider
to offer a larger selection of content in a more flexible manner. In addition, since
packaging for a specific client is done at the time of playback, personalization of content
and advertisements is efficacious.

Figure 3 shows the addition of Just-in-Time Packagers to the ABR delivery architecture.
As can be seen, the JITPs can be located both centrally in the architecture and at the
CDN edges. For the applications that are supported by JIT Packaging, the linear packager
processes either live or VOD content and publishes it in a mezzanine ABR format to the
origin. A typical mezzanine ABR format could be a MPEG-DASH TS profile or
interoperability point. When a client wants to play an asset or service that is supported
by JITP, the manifest URL it is given, triggers a JITP instance. The JITP instance locates
the mezzanine ABR files and packages them for the specific device profile based on
individual requests from the client. The JITP processes and packages only the segments
of the bitstream variant that are being requested by the client. It does not publish all
segments of all bitstream variants.

Copyright 2014 — ARRIS Enterprises, Inc. All rights Reserved. 8

o
-E-aw B
N—— o </_>

JITPs in the architecture may be utilized to support ABR streaming applications such as
live to file and file to file. The linear packager may continue to support live to live
applications. In addition, since the JITPs package content for the requesting device on
the fly in a just-in-time fashion, their output can be highly customized or personalized;
more on this later. The centrally located JITP can package content for a specific client
device but due to its central location it may be leveraged to package popular content in
such a fashion that it may be cached in the CDN or edge servers downstream from it for
playout by multiple requesting clients. JIT packaging starts only when at least one client
requests a given asset, as the JITP packages for the client its output is cached in the
CDN. Any new clients requesting the same content may access the cached content.
Cache misses in the edge or CDN are directed to the JITP instance and it fulfills the
requests. Because the origin only stores a single mezzanine format and the JITP only
packages and delivers specific segments requested by clients, considerable storage
savings are realized at the origin. Further since the JIT packaged content is cached at the
edges CDN bandwidth is used more efficiently. This centralized JIT packaging with
caching at the edge is best suited for popular content. This type of ABR delivery is not
suited for long-tail content since it does not require caching in the CDN; however the
use case is not precluded.

The centrally located JITP is suited for packaging of popular content for the following
ABR streaming applications such as StartOver TV, LookBack TV, and the popular VOD. In
countries where network DVR (nDVR) or cloud DVR (cDVR) content storage is common,
copies of the central JITP can be utilized for packaging both dynamic cDVR and static
cDVR services.

The JITP at the CDN edge is suitable for packaging either long-tail content or for

packaging content that is meant only for a specific client/subscriber or is highly
personalized for a specific client/subscriber. Live or offline content is pre-packaged by

Copyright 2014 — ARRIS Enterprises, Inc. All rights Reserved. 9

ARRIS

the linear packager and published to the origin server in a mezzanine ABR format, such
as a given MPEG-DASH TS profile or interoperability point format. When a client that is
authorized to access this content makes a request for playout, the packaging request is
directed to a JITP instance at the edge. The JITP instance locates the mezzanine content
from the origin and starts JIT repackaging for the client on a request by request basis.
The JITP only packages specific content requested by the client and the JIT packaged
output need not be cached in the CDN for consumption by other clients.

It is quite clear that the edge JITP is predisposed to serve applications such as static and
dynamic cDVR where unique copy requirements have to be met. Further the JITP at the
edge may be deployed for services such as StartOver TV, LookBack TV, and VOD for
long-tail content (i.e., content that does not need to be cached.) The edge JITP
architecture also results in considerable storage savings at the origin or the edge.

Even though we have presented specific roles for the JIT packagers at the center and at
the edge, they do not have to be exactly so and may be interchanged. Further, for very
popular content the mezzanine ABR format may be pre-positioned at the edges at times
when the CDN bandwidth needs are low. Then, during peak periods JITPs at the edge
can serve clients on request. This spreads out bandwidth usage in the CDN over peak
and non-peak periods.

“+

-

MM : Manifest Manipulator

Figure 4. ABR Delivery Eco-System

Copyright 2014 — ARRIS Enterprises, Inc. All rights Reserved. 10

A more complete ABR delivery eco-system is shown in Figure 4. DRM and license servers
are used to provide encrypt/decrypt support. ABR streams are encrypted at the linear
packager or the JITPs. They are decrypted at the end client just before playout. Ad-
insertion in the ABR delivery architecture is performed at the regional level or at the
individual subscriber/client device level. The manifest manipulator (MM) performs ad-
insertion for multiple ABR formats by manifest manipulation. Ad-insertion is mainly
achieved using SCTE-130 methods or using the VAST (Video Ad-Serving Template)
specification. In linear packaging the manifest manipulator provides targeted manifests
or playlists to clients. The JITPs can also provide ad-insertion support. Advertisement or
other targeting/personalization may be at the individual subscriber/device level or at
the regional level. Content blackout and replacement is implemented in a manner
similar to ad-insertion by manifest manipulation. Additional safeguards to prevent
spoofing of blacked-out content can be implemented via manipulation of encryption
keys.

ADVANTAGES OF VIRTUALIZATION

Virtualization has become all too prevalent in conventional IT environments that utilize
data centers. With virtualization, the notion of tight association between server
hardware and the application running on it has been replaced by abstracting out the
hardware and making the operating systems independent of the underlying hardware.
This is accomplished by running a virtualization layer of software called the hypervisor
directly on the hardware, which in turn manages one or more guest operating systems
that can be run on top of the hypervisor. Both commercial (VMware ESX, Citrix
Xenserver, etc.) and open source hypervisors (Xen, KVM, etc.) are available. Most
hypervisors support x86 processors which come with built-in support for virtualization.
Support for other processors such as the ARM and Atom are available in some of the
hypervisors.

Virtualization offers several operational advantages in IT data centers that extend to
video processing delivery. Given the rapid increase in the processing power available on
general purpose processor, video processing has been increasingly performed on
commercial off-the shelf servers. Details of virtualization in the context of video
transcoding and packaging will be presented in greater detail in the following sections.
Main advantages of virtualization are:

* Efficient utilization of hardware resources: The clock frequency of CPUs has been
increasing for decades due to improvement in processor technologies. More
recently the number of cores available on a single CPU die has gone up
significantly. Today server-grade CPUs can have up to 10 or 12 x86 cores, with
the number of cores increasing with each successive generation of processors.
This means that applications running on these CPUs do not use up all the existing

Copyright 2014 — ARRIS Enterprises, Inc. All rights Reserved.

11

server resources such as the processor, memory and storage. Some applications
may manage to use all the resources for a small amount of time during high peak
loads, but the average usage still remains to be relatively small. Virtualization
allows us to consolidate and utilize the unused server resources by running
several operating systems and applications on the same server.

* Application Isolation: Improved utilization of server resources can be
accomplished by running multiple applications on the same operating system.
This approach, however, opens up the possibility of one application corrupting or
affecting the operation of other applications running under the same OS.
Running individual applications on their own dedicated Virtual Machines
guarantees application isolation.

* High Availability: Most virtualization platforms offer high availability solutions
that continuously monitor the health of the hardware. When a server node fails,
the VMs running on that node are restarted on another healthy node with
minimal downtime.

* Operational Simplicity: Virtualization vastly improves and simplifies the day-
today operations. Having different applications run on custom hardware devices
with unique management functionalities require operators to be trained on
various platforms. Supporting a single or class of servers simplifies training,
maintenance, and support for high availability and redundancy.

VIRTUALIZATION REQUIREMENTS

To enable cloud based delivery of ABR services, various processing functions shown in
Figure 1 need to be virtualized. An application or a processing function can be
successfully virtualized if they meet certain design and performance requirements listed
in Table 1 below:

Copyright 2014 — ARRIS Enterprises, Inc. All rights Reserved.

operating under varying amount of resources
such as CPU cores, memory, storage, network
bandwidth, etc. Any performance penalty
resulting from reduced resource availability
should be well understood and documented.

Feature Requirements Advantages

Modularity Processing function should be partitioned into | Modularity allows matching the
well-defined modular sub-functions. Individual | processing functions to available
modules should be composable to achieve resources.
required high-level functionality.

Scalability Processing functions should be capable of Scalability allows managing peak

vs. average loading scenarios.

Data handling

Processing functions should be designed to be
stateless as much as possible. Any common
data should be stored outside the scope of the
individual processing modules without
unnecessary data replication. Processing
functions should be driven by well-defined API
interfaces.

Improves data integrity and helps
data persistence. In case of
failures, allows for quick recovery.

High Throughput

Processing functions should be capable of
providing high throughputs (data processing
capability) in software on commercial off-the
shelf hardware without requiring specialized
hardware or interfaces.

High throughput allows managing
large number of services in a
centralized operations center
allowing for incremental addition
of hardware resources as the
services grow.

VIRTUALIZATION OF ABR PROCESSING

In this Section, we will start with the functional blocks shown in Figure 1 and assess the
amenability of the individual functions to be virtualized.

With ABR streaming, the Origin and Edge caching servers- for all practical purposes-
function as web servers. They respond to content request from end clients or
downstream caching servers and deliver manifest file and media chunks over HTTP.
With the current generation of COTS servers, the caching and streaming functionality
can be implemented in software to provide very high throughput. Hence the Origin and
Edge cache servers are naturally amenable to virtualization.

Copyright 2014 — ARRIS Enterprises, Inc. All rights Reserved.

13

As described earlier, packagers ingest MBR video streams to generate IDR aligned ABR
media chunks and manifest files that are used by the client to request media chunks. In
addition they also perform AES-128 encryption to provide authorized access to the
content. These operations can be performed efficiently in software without the need for
any custom hardware. Most current generation x86 processors have built-in support for
encryption that obviates the need for any custom silicon-based processing. With state of
the art COTS hardware it is possible to build packagers with high data throughput, given
the computation requirements needed are relatively lightweight. As an example, we
used a HP Proliant server with dual 6-core Intel Xeon processor to perform packaging.
Figure 5 shows the resource utilization on this server for running different number of
packaging jobs. Here the packager runs HTTP Smooth Streaming jobs by ingesting live
MBR video streams where each MBR video consists of eight media variants. As it can be
seen, hundreds of jobs can be run on a single server and the utilization of CPU and
memory resources increase linearly with increasing number of jobs, making packaging
operation very amenable to virtualization.

Based on the throughput and scalability performance presented above, packager
software can be developed as a virtual appliance that may be scaled on-demand on the
hosting servers. It should be noted that a Just-in-Time Packager (JITP) instance not only
packages but also responds to HTTP requests from clients for content, so a JITP will have
a packaging component and an http streaming component.

Packager Resource Requirements

60
50

40

Resource
Utilization % ==0==CPU Utilization

20 =li=RAM Utlization

10

200 400 600 800

Number of Concurrent Streams

Copyright 2014 — ARRIS Enterprises, Inc. All rights Reserved. 14

Video transcoding is the most computationally intensive part of the ABR processing
pipeline and hence requires a substantially large amount of hardware resources
compared to other ABR processing functions. Therefore successful virtualization of ABR
requires a careful strategy to implement video transcoding in software. Based on the
architectures presented in the previous section, one can see that ABR service delivery
requires both Live and File-based video transcoding.

Video transcoding uses different work-flows depending upon the type of services. Two
major and commonly used work-flows are Live and File based transcoding. These two
work-flows pose different sets of requirements and constraints. Live transcoders ingest
video in either baseband or pre-compressed formats and are required to process the
video in real time, generating transcoded output streams. State of the art video head-
ends at most MSOs have already migrated to ingesting video in pre-compressed format
(either MPEG-2, AVC or a Mezzanine input format) and therefore do not require any
custom interfaces apart from the standard IP interfaces. Live transcoders are required to
operate 24x7 and therefore do not lend themselves to sharing server resources with
other applications or leverage the peak vs average loads. However, all the other
advantages of virtualization mentioned earlier such as application isolation, hardware
independence, high availability, and operational simplicity can still be leveraged for live
transcoding. File based transcoding workflows are required for services such VoD and
nDVR and file based transcoding lends itself naturally to virtualization. Here the video
input that needs to be transcoded is available as a file and the work-flow requires the
transcoder to operate in real-time, faster than real-time or slower than real-time to
complete the transcode operation. Typically, each transcode operation is instantiated as
a “job” in the workflow manager. The number of jobs submitted by the workflow
manager at any given time can vary depending on the time of the day or day of the
month. When several titles become available at the beginning of a view window for a
subscription or pay-per-view based service, the number of concurrent jobs can be high
resulting in a peak utilization of the file-based transcoder. Lack of requirement for 24x7
operation and real-time constraints, and varying loads makes file-based transcoding
leverage all the benefits of software based implementation and virtualization.

Historically, video transcoding and encoding have been implemented using both
software and application specific IC (ASIC). In the early days of video compression using
MPEG-2, general purpose CPUs did not provide enough processing capability or

Copyright 2014 — ARRIS Enterprises, Inc. All rights Reserved.

15

specialized instructions for video processing. Therefore, most -if not all- commercial,
real time encoding was performed using custom ASICs. Over the last decade processing
power on the x86 CPUs has increased dramatically. The increase in processing power
first came in the form of higher clock speeds, followed by improved and specialized
VLIW (Very Long Instruction Word) instructions for handling multiple video pixels in a
single instruction, and more recently in the form of increasing number of cores in a
single CPU. With this increased processing capability, CPU based solutions are now
capable of offering video quality comparable to the ASIC based solution with the
flexibility of using a general purpose processor for video processing.

CPU

ASIC

Hybrid

Processing Technology

Multi-core CPUs

Fixed-function blocks with
ARM/MIPS core system
control

CPU cores, GPU
Execution units and Fixed
function blocks

Programmability

Highly flexible
programming
architecture

Limited programmability
but offers tunable
controls for various video

CPU cores and GPU are
programmable. Fixed
function blocks are

processing functions tunable
Power requirements High Low Medium
Processor upgrade High Low High
cycle
Software support CPU vendor, ASIC vendor CPU, Third party vendors

Third party
vendors and
Open Source

and Open Source

A more recent trend in x86 based CPUs is to add GPU (graphical processing unit)
execution units to the CPU cores and fixed-function blocks to perform selected video
processing functions [R11]. GPU cores are well suited to perform highly parallel,
repetitive operations without frequent conditional exits. Fixed function blocks are used

to perform operations such as entropy coding (CABAC), pre-processing and pre-filtering.

Table 2 compares various performance/functional criteria against CPU, ASIC and Hybrid
based platforms to be considered when making transcoding decisions. These “hybrid”
CPUs that combine the CPU, GPU, and fixed function blocks are becoming very efficient
in producing tunable video quality transcoders at modest to low power requirements.
The higher processing throughput and flexibility offered by the newer generation of
processors are expected to drive the implementation of transcoding functionality in a
virtualized environment.

Copyright 2014 — ARRIS Enterprises, Inc. All rights Reserved.

16

RELATED READINGS

* PAPER: Transcoding Choices for a Multiscreen World
* PAPER: Efficient Content Processing for Adaptive Video Delivery

MEET ONE OF OUR EXPERTS: Santhana Chari

Santhana Chari, VP of Engineering in the Digital Video Systems group at ARRIS, is
responsible for R&D and product development of various digital video encoding and
transcoding products. Previously, he was the VP Engineering at EG Technology and led
the development of several MPEG2 and H.264 encoding and video processing products.
He has also held various technical and management roles for a decade with Philips
Electronics North America and Comsat Corporation. He has coauthored several technical
papers, book chapters, and holds fifteen patents in these areas. He holds a Ph.D. in
Electrical Engineering from the University of Maryland, College Park.

Copyright 2014 — ARRIS Enterprises, Inc. All rights Reserved.

17

REFERENCES

(1) Pantos, R. P. & May, W. M., “HTTP Live Streaming”, IETF Internet Draft
Specification; Apple Inc.

(2) MS-SSTR: Microsoft Smooth Streaming Protocol; Microsoft Corporation.

(3) ISO/IEC 23009-1: Media Presentation Description & Segment Formats, Dynamic
Adaptive Streaming over HTTP (DASH)

(4) ISO/IEC 14496-12: Coding of Audio-Visual Objects — Part 12: ISO Base Media File
Format

(5) ISO/IEC 13818-1: Generic Coding of Moving Pictures and Associated Audio
Information, Part-1: Systems

(6) ISO/IEC 14496-10: Coding of Audio-Visual Objects — Parts 10: Advanced Video
Coding

(7) 1SO/IEC 13818-7: Generic Coding of Moving Pictures and Associated Audio
Information, Part-7: Advanced Audio Coding (AAC)

(8) ISO/IEC 23001-7: Common Encryption in ISO Base Media File Format File

(9) ISO/IEC 23001-9: Common Encryption Format for MPEG-2 TS

(10) Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and T.

Berners-Lee, “Hypertext Transfer Protocol — HTTP/1.1”, IETF RFC 2616.

(112) Dunphy, R., Lei, R., Liu, Ping., “Utilizing Intel Quick Sync Video for High
Density Video Transcoding in Communications Servers”, Intel Developer Forum,
2013.

©ARRIS Enterprises, Inc. 2014 All rights reserved. No part of this publication may be reproduced in any form or by any means or
used to make any derivative work (such as translation, transformation, or adaptation) without written permission from ARRIS
Enterprises, Inc. (“ARRIS”). ARRIS reserves the right to revise this publication and to make changes in content from time to time
without obligation on the part of ARRIS to provide notification of such revision or change.

Copyright 2014 — ARRIS Enterprises, Inc. All rights Reserved.

18

