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Abstract 

Utility modeled as a power function is commonly used in the literature despite the fact 
that it is unbounded and generates asset pricing puzzles. The unboundedness property 
leads to St. Petersburg paradox issues and indifference to compound gambles, but these 
problems have largely been ignored. The asset pricing puzzles have been solved by 
introducing habit formation to the usual power utility. Given these issues, we believe it is 
time re-examine exponential utility.   Exponential utility was abandoned largely because 
it implies increasing relative risk aversion in a cross-section of individuals and non-
stationarity of the aggregate consumption to wealth ratio, contradicting macroeconomic 
data. We propose an alternative preference specification with exponential utility and 
relative habit formation. We show that this utility function is bounded, consistent with 
asset pricing facts, generates near-constant relative risk aversion in a cross-section of 
individuals and a stationary ratio of aggregate consumption to wealth.  
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1. Introduction  

 Exponential utility functions have been mostly abandoned from economic theory 

despite their analytical convenience. On the other hand, power utility, which is also 

highly tractable, has become the workhorse of modern macroeconomics and asset 

pricing. This apparent preference of power utility over exponential utility by the literature 

was mainly motivated by two important economic observations: 

First, most empirical studies suggest risk aversion among individuals with 

different levels of wealth is roughly constant [Friend and Blume (1975)]. The exponential 

utility function given by  
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exhibits constant absolute risk aversion (equal to A > 0), hence generates increasing 

relative risk aversion (IRRA). The cross-sectional implication of this is that wealthier 

people are more risk-averse and in their portfolio choice invest a smaller proportion of 

their wealth in the risk-free asset [Merton (1992)]. This prediction is counterintuitive and 

is contradicted by empirical studies. Constant relative risk aversion (CRRA), power 

utility which is given by  
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on the other hand, exhibits constant relative risk aversion (equal to 0! > ) and hence is 

immune from this criticism.1 

The second observation motivating the use of CRRA power utility over 

exponential utility is that aggregate consumption to wealth ratio is stationary in the data. 

                                                
1 Merton for example states that he finds CARA utility “behaviorally less plausible than” CRRA due to 
their different portfolio choice implications (Merton [1969]). 
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With exponential utility, optimal consumption is linear in wealth, but not proportional to 

wealth, hence their ratio is not stationary [Merton (1992)].2 With CRRA power utility, 

optimal consumption is proportional to wealth and therefore consumption-wealth ratio is 

stationary and thus consistent with a balanced growth path. 

Despite the aforementioned strengths, the CRRA, power utility also has its 

weaknesses.   The best known weakness of the CRRA power utility is that it has 

undesirable asset pricing implications. In particular, it has a hard time matching the high 

risk-premium observed in the data unless one assumes very high values of relative risk 

aversion; this is known as the equity premium puzzle [Mehra and Precott (1985)]. In a 

Consumption-based Capital Asset Pricing Model (C-CAPM) with CRRA power utility, 

an asset is risky if the covariance of its returns with consumption growth is high. Agents 

prefer to hold assets which give high returns when times are bad (i.e. when consumption 

is low and marginal utility of consumption is high) and would like to avoid assets which 

give low returns when times are bad. To hold assets which co-vary positively with 

consumption growth, agents require a higher risk-premium. 

Even if one accepts high relative risk aversion, the CRRA, power utility still 

generates problems, this time in accounting for the low risk-free rates observed in the 

data. With power utility, the risk aversion parameter !  is also the inverse of the 

intertemporal elasticity of substitution. High risk aversion therefore implies a very small 

elasticity of intertemporal substitution: people who wish to avoid volatile consumption 

will also wish to avoid secular growth in consumption. Since consumption actually grows 

over time, people should be demanding high interest rates in compensation. The low risk-

                                                
2 Note however that optimal consumption is linear in wealth, hence the consumption-wealth ratio does 
approach a constant asymptotically.  
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free rates observed in the data are thus a puzzle; i.e. the risk-free rate puzzle [Weil 

(1989)].  

The desirable properties of power utility have been preserved in spite of the 

puzzles by modifying the model to include habit formation.  (see Sunderasan [1989], 

Constantinides [1990] and more recently, Campbell and Cochrane [1999]).  These 

models employ a decreasing relative risk aversion (DRRA) form of power utility:  
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Where Z is the so-called “habit” level of consumption and C-Z is sometimes referred to 

as “surplus” consumption.  The habit level can either be internally generated by 

individual past consumption, as in the models of Sunderasan (1989) and Constantinides 

(1990), or can be externally generated by aggregate consumption, as in Campbell and 

Cochrane (1999).  This formulation can solve the asset pricing puzzles because secular 

growth in consumption leads to roughly proportional growth in surplus consumption, 

where γ determines aversion to secular growth.  Volatility in C does not affect Z and 

aversion to volatility is measured by γ  times the ratio of consumption to surplus 

consumption.3  With assumed surplus consumption between 10 and 20 percent, aversion 

to volatility can be 5-10 times the aversion to secular growth.4,5   

                                                
3 Relative risk aversion is γC/(C-Z) 
4 Abel (1990) and Gali (1990) adopt a relative form of habit, where the argument of the utility function is 
C/Z, but they stick with power utility.  This form of habit leads to a different solution to the risk-free 
puzzle, which we will detail below. 
5 Another idea was to separate the parameters governing risk aversion and the elasticity of intertemporal 
substitution directly by making utility recursive and non-separable across states of nature (Epstein and Zin 
[1991]). 
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But power utility whether of the CRRA or DRRA flavors also has a long known 

weakness due to unboundedness.6 Unbounded utility can result in so-called St. 

Petersburg-style paradoxes where events with vanishingly small probabilities of 

occurrence have a finite effect on behavior. For example, for the familiar case of utility 

being unbounded from above, where agents choose to take on gambles with a large 

probability of considerable losses, but a tiny probability of infinite gains. Similarly, if 

utility is not bounded from below, vanishingly small probabilities of infinite losses may 

preclude agents from taking on an otherwise reasonable gamble [Arrow (1971)]. 

  Exponential utility on the other hand is bounded and is consistent with the 

observed equity-premium without resorting to an extremely high risk aversion parameter. 

The weaknesses of power utility are the strengths of the exponential utility, just as the 

strengths of power utility are their weaknesses. But given the weaknesses of power 

utility, we believe it is worth trying to solve the weaknesses of exponential. In this paper 

we suggest an exponential utility with habit formation where utility is defined over the 

ratio of consumption to the habit level of consumption (relative habit):    
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This utility function preserves the strengths of the standard exponential utility function, 

but solves the weaknesses, namely ensures the stationarity of consumption relative to 

wealth and the near-constancy of relative risk aversion across the population with 

                                                
6 With Z less than zero, power utility implies IRRA.  While this utility function is bounded (for γ >1),  it 
cannot solve the risk-free rate puzzle. One interpretation for this specification is that -Z stands for housing 
services, as in Davis and Martin (2005). They conclude that housing cannot solve the asset pricing puzzles 
if consumption and housing services are not complementary.  We will not consider the IRRA version of 
power utility further.  
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different levels of wealth and solves the risk-free puzzle because of the absence of secular 

growth in C/Z.  

Table 1 provides a brief synopsis on the utility functions we considered and 

summarizes the main points we made so far (an X in a particular box indicates that the 

corresponding utility function is in line with the corresponding issue):  

Table 1: Synopsis on Utility Functions 

           Utility 

Issue 

Power with 
no habit 

Power with 
habit, C-Z 7 

Power with 
relative 
habit, C/Z 8 

Exp. with 
no habit  

Exp. with 
habit,  

C-Z9 

Exp. with 
relative 
habit, C/Z 

Bounded Utility    X X X 

Observed equity 
premium  X X X X X 

Risk-free Rate  X X   X 

Stationarity of 
Cons. / Wealth 

X X X   X 

Similar RRA 
across individuals 

X X X   X 

 
 
 The next section re-examines a long-standing issue for unbounded power utility: 

what we call indifference to compound gambles.  Samuelson (1963) appears to have 

disposed of this issue by convincing the profession that the special results of CRRA, 

power utility made sense.  We show that more plausible results arise from IRRA utility 

functions, such as exponential utility.  In section 3, we look at the equity premium 

puzzles in terms of the properties of the direct utility function of consumption and the 

indirect utility function with of wealth.  This analysis allows us to explain how a simple, 

                                                
7 Sundaresan (1989) and Constantinides (1990). 
8 Abel (1990) and Gali (1990). 
9 Sundaresan (1989) 
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exponential utility function solves our re-stated equity premium puzzle, and also shows 

that indirect utility function of the power utility habit formation model is inconsistent 

with the data.  In section 4, we introduce our version of the exponential utility with 

relative habit formation.  We show the relationship between the direct and indirect utility 

function, and explain how relative habit eliminates the risk-free rate puzzle.   In section 4 

we conclude. 

 

2.  Unboundedness and Indifference to Compound Gambles 

As already noted, CRRA preferences are subject to St. Petersburg-type paradoxes 

because of unbounded utility. A related problem of CRRA, power utility that is due to the 

unbounded utility, is what we call indifference to compound gambles.  With preferences 

that exhibit constant relative risk aversion, an individual’s choice for a gamble does not 

depend on the number of times the gamble is performed.  Consider the gamble where 

wealth will increase by the factor X >1, with probability P > ½ and will decrease by 1/X, 

with probability (1-P) (local relative risk aversion is assumed to be greater than one). 

Assume that the values of P and X have been selected so that our subject is indifferent to 

the one-trial gamble     

(2.1)  [ ] 1
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where 0( )V W is the indirect utility function, the value of lifetime utility after one has 

optimized consumption and portfolio choice. The subscript on W indicates the number of 

trials for the gamble. 
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Now consider an alternative gamble where the outcomes are based on two 

binomial trials with the same values for X and P.  The subject’s expected utility from this 

“compound” gamble is given by 

(2.2) [ ] 2 2 2 2
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We are not imagining the two gambles as being sequential, where the subject could 

choose whether to continue after observing the outcome of the first trial.  Instead, we are 

asking our subject to commit ex ante to the outcomes of the two-trial gamble10  

A constant relative risk aversion subject who is indifferent to the one-trial gamble 

will be also be indifferent to the outcomes based on two binomial trials because the utility 

consequences of the two-trial gamble are just the square of the one-trial gamble. 

(2.3)  0 0( ) ( ) ( ) ,  for any a a
V W X V W V X a=  

Of course, an exactly similar argument can be made for a gamble based on 3 or more 

binomial trials where the outcomes are adjusted accordingly.  

 But herein lies the paradox: with P > 0.511, the probability of a loss gets smaller 

and smaller as the number of trials increases.  As the number of trials increases without 

limit, the probability of a loss approaches zero, but our CRRA subject will value this 

gamble as equal to the first gamble.  While the probability of losses is going to zero, the 

maximum size of those losses is increasing without limit and the utility consequences of 

those losses have finite consequences with constant relative risk aversion.   This strikes 

us as implausible as people do seem to take chances such as those in many everyday 

situations (e.g. driving, flying on an airplane).  Arrow (1971) formalized this in the 

                                                
10 While Samuelson (1963) does not consider proportional gambles, he does assume a one trial gamble 
based on a sequence of trials.  See his footnote 2 section 4. 
 
11 P>0.5 requires relative risk aversion greater than 1. 
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principle that events with vanishingly small probabilities of occurrence should not have 

finite effects on behavior, and this principle is violated by CRRA power utility.   

 These implausible results are specific to constant relative risk aversion 

preferences. Preferences with increasing relative risk aversion can avoid these problems 

because they avoid the problem of unbounded utility at either high or low levels of 

wealth.  For example, exponential utility and IRRA power utility functions are bounded 

and exhibit increasing relative risk aversion:  For subjects with these preferences a two-

trial gamble is preferred to no gamble, even when the subject is indifferent between the 

one-trial gamble and no gamble.  With increasing relative risk aversion (as is shown in 

the Appendix): 
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More generally, our increasing relative risk aversion subject will accept any gamble, 

where P > 0.5, X>1 if one allows a sufficient number of trials.12  DRRA power utility, 

however, makes the situation worse because: 1) A DRRA subject would reject a two-trial 

gamble, if she were indifferent to the one trial gamble; 2) A gamble with any probability 

of hitting the capitalized value of habit consumption will be rejected, no matter how 

favorable the odds because the utility consequence of hitting the capitalized value is 

unbounded. 

                                                
12 Samuelson’s (1963) in an article entitled the “Risk and Uncertainty: A Fallacy of Large Numbers” has a 
sharp criticism of a faculty lunchroom colleague who believes the number of times the gamble is performed 
matters by the “Law of Large Numbers.”  Samuelson is careful (footnote 1 section 8), however, to note: 
“[My theorem] does not state one must always refuse a sequence if one refuses a single venture:  if at 
higher income levels the single tosses become acceptable, and at lower levels the penalty of losses does not 
become infinite, there might well be a long sequence that is optional.”    
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As noted in the introduction, there are problems with exponential utility, but this 

section has shown that there are also problems with the CRRA and DRRA versions of 

power utility.  As a result, we will explore the advantages of exponential utility and ways 

of avoiding its disadvantages 

   

3.  The Equity Premium Puzzle:  

 Since the development of consumption-based portfolio choice models and Mehra 

and Prescott’s (1985) path breaking work, most attention has focused on the asset-pricing 

implications of Euler equations based on the direct utility function.  We believe it is 

important to look at this issue in terms of all of the implied properties of the model, 

including implications for the indirect utility function and the consumption function. 

Consider the following portfolio allocation problem: 
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where ρ is the pure rate of time preference;  φ is the share in the risky asset;  α is the return 

on the risky asset, r is the risk-free interest rate, µ  is the expected return on the log of the 

risky asset and σ2 its variance. With CRRA power utility given in (1.2), the equilibrium 

expected risk-premium can be approximated by (in discrete time) 

(3.2)                                     
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In the data, the risk-premium is high, but the covariance of consumption with the risky 

return is low, hence the only way to reconcile this is to entertain a very high ! , i.e. a very 
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high relative risk aversion for the direct utility function [Cochrane (2006)]. This is the 

equity-premium puzzle. 

We also find it informative to look at other implications of this utility 

specification. Note that when the direct utility function U(C) is of the CRRA power 

utility form with constant relative risk aversion γ, the indirect utility function V(W) is also 

characterized by constant relative risk aversion of the same degree. The Euler equation 

can also be expressed in terms of the indirect utility function which would imply 

(3.3)     
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As noted by Cochrane (2006), in fact there is no equity premium puzzle for the CRRA 

indirect utility function.  Notice that, in a two asset world where φ∗ is the optimal share in 

the risky asset, (3.3) reduces to: 
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which is just the equation for optimal portfolio allocation 

(3.5)                                                      
2
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 Kocherlakota (1996)’s data exhibit an average risk premium of 6% with variance 

of slightly under 3%.  Therefore, relative risk aversion of the indirect utility function of 

anything over 2 is consistent with risky asset shares less than one, with the observed risk 

premium and volatility of wealth. 

 The equity risk premium puzzle arises because the volatility of wealth is much 

greater than the volatility of consumption growth (by more than a factor of ten in 

Kocherlakota’s [1996] data).  With CRRA power utility, optimal consumption is 
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proportional to wealth.   So it would be just as accurate to say that with CRRA 

preferences the puzzle is to explain the excessive consumption smoothing. 

 Meyer and Meyer’s (2005) Proposition I is helpful for summarizing this analysis: 

(3.6)    ,( ) ( ) ( )  
V U U C W

dC W
R W R C R C

dW C
!= = " , 

where RV or U  is relative risk aversion for either the indirect or direct utility functions and 

,C W
!  is the elasticity of consumption with respect to wealth.  The data tell us that the left 

hand side of (3.6) needs to be something above and close to 2.  The requirement for 

consumption smoothing can be stated either as a model where 
,C W

!  (equal to the 

marginal propensity to consume out of wealth divided by the average propensity) is 

substantially below 1, or equivalently and more traditionally, where the relative risk 

aversion of the direct utility function is much higher than 2.   

 But Merton shows that for exponential utility as in (1.1), optimal consumption is 

also a linear function of wealth, where the marginal propensity to consume out of wealth 

is the real interest rate and the average propensity varies with the time horizon. For the 

infinite horizon case, the optimal choice for consumption is given by  

 

(3.7)              ( )
2 2
/ 2

*
r r

C rW
Ar

! µ "# $
% &
% &
% &' (

) + )
= + .  

 

Thus the elasticity of consumption with respect to wealth is the real interest times the 

inverse of the APC. In this case (at least for the point estimates of the data)13 the puzzle is 

not why consumption is so smooth, but rather why is it so volatile.  With Kocherlakota’s 

                                                
13 Cochrane (2006) points out that since the equity premium is estimated imprecisely, the confidence 
interval around the required degree of risk aversion is large. 
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[1996] estimate of a real T-bill rate of 1%, the variance of consumption growth should be 

close to zero (this of course ignores the volatility in the “risk-free” interest rate)!  Put in 

the more traditional way and assuming a consumption wealth ratio of somewhere 

between 3 and 4, (local) relative risk aversion of the indirect utility function of around 2, 

by (3.6) implies (local) relative risk aversion for the direct utility function of something 

between 50 and 67.  

 Notice, if one compares all of the properties of the DRRA power utility model, 

the complete model has far more trouble with the data.  Merton (1992) has shown that for 

DRRA power utility, the two measures of relative risk aversion can be written as14: 

(3.8)  ( ) ;   ( )
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in Merton’s model Z should be thought of as a time invariant subsistence level.  At a 

moment in time, the distinction between subsistence and time-varying habit is 

unimportant.  We will continue to call C-Z surplus consumption, which suggests calling 

W – Z/r surplus wealth.  This measure is just total wealth less the capitalized value of 

future subsistence needs, using the real interest rate as a discount rate.15 Consequently, 

the ratio of wealth to surplus wealth will be at least as great as the ratio of consumption to 

surplus consumption.  Therefore, the properties of the complete model cannot fit the data.  

Setting RU(C) high enough to match the consumption, Euler equation implies ridiculously 

low levels of holdings of the risky asset.   This is particularly evident when one 

recognizes that the amount held in the risky asset is a fraction based on RV(W) times 

surplus wealth.     

                                                
14 See Merton(1991), pp 138-9, where our γ replaces his 1- γ, our Z replaces his -δη,and his β is equal to 1.  
15 (3.8) uses the infinite horizon version of the model, but the sentence is true for finite horizons as well. 
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The exponential utility model does not match the point estimates of the data 

perfectly; in particular the marginal propensity to consume out of wealth seems low, 

aversion to consumption volatility seems high. However, it is not off by the orders of 

magnitude of the complete DRRA power utility model. Notice also that the exponential 

model solves the equity premium puzzle without imposing a high-degree of relative risk 

aversion on V(W), and it is this indirect utility function that matters when studying issues 

such as insurance.  As opposed to Cochrane’s (2006, p28) pessimistic conclusion that the 

equity premium puzzle can only be solved with high risk aversion, we believe the 

exponential utility model largely solves the puzzle with low risk aversion. 

But the exponential utility model still has a problem:  the high implied relative 

risk aversion for the direct utility function exacerbates the risk-free puzzle.  As we show 

in the next section, the risk-free puzzle can be solved by adopting a form of habit 

formation where utility depends on consumption relative to wealth.  

  

4. Exponential Utility with Habit Formation 

As argued in section 3, when preferences are described by the exponential utility function 

as in  (1.1) the optimal choice for consumption and share of risky asset are given by 
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The first implication from the above optimal consumption rule is that these 

preferences are not consistent with a balanced growth path along which consumption and 

wealth would grow at the same rate. This is clearly at odds with the data and standard 

growth theory. On the other hand, as pointed out in section 3, this optimal consumption 
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rule is consistent with volatile wealth and smooth consumption observed in the data. One 

challenge therefore is to generate an optimal consumption rule that would be consistent 

with a balanced growth, but will still be consistent with volatile wealth and smooth 

consumption. 

The above optimal choice for the share of the risky asset in the portfolio implies 

that wealth is inversely related to the share of risky asset; this is a direct result of 

increasing relative risk aversion property of these preferences. The relative risk aversion 

for the direct and the indirect utility functions are given by  

(4.2)   ( ) ( )  and  
U V
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which imply that wealthier people are more risk averse which is again at odds with 

empirical observations.   

 But the problems with exponential utility disappear if we assume direct utility is a 

function of consumption relative to some habit level of consumption. Consider the 

following lifetime portfolio choice problem given by 
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where the last constraint is describing how the habit level of consumption, Z, evolves 

over time.16 Redefining the variables as /  and /c C Z w W Z= = , the portfolio choice 

problem can be written as: 

(4.4)  
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With the direct utility function defined by (1.4) we can show that the indirect utility 

function is given by  
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 The solution to the optimal portfolio problem is given by 
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Note that the optimal consumption rule is now consistent with balanced growth (since the 

habit level of consumption is growing over time at roughly the same rate), and can still 

generate volatile wealth with much smoother consumption because the marginal 

propensity to spend out of wealth is still the real interest rate. Also note that the relative 

risk aversion factors on the direct and the indirect utility functions are the same as before 

                                                
16 This evolution for the habit level is not standard in the literature, however we use it in order to derive a 
closed form solution for the indirect utility function. All derivations of this section is given in the 
Appendix. 
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except now they are defined over relative consumption and wealth, hence they can 

generate roughly constant relative risk aversion across individuals as long as richer 

people’s habit consumptions are proportionally higher. 

 The last remaining problem is to explain the risk-free rate puzzle.  The derivation 

of the Euler equation for the risk-free rate is tedious and relegated to the Appendix, where 

it is shown that: 

(4.7)   ( )
2

/ 2
*

2

W Z
r E g

!
" ! # $% = %  

where γ  is local relative risk aversion of the indirect utility function and gw/z is growth in 

relative wealth.  Notice that relative risk aversion eliminates the risk-free puzzle by 

eliminating secular growth in the argument of the utility functions, i.e., ( )/w z
E g  is 

roughly zero, and the last term helps to explain the low risk-free interest rate.  Again, 

using Kocherlakota’s [1996], (4.7) can be fulfilled with r =.01, γ = 2, φ∗ =1, if the pure 

rate of time preference is 7%.      

 

IV. Conclusion 

  In this paper, we laid out a case for reviving the use of exponential utility. CRRA 

power utility, the workhorse of modern macro macroeconomics and asset-pricing 

literature, leads to St. Petersburg-style paradoxes due to its unboundedness, is indifferent 

to compound gambles and generates asset pricing puzzles. Although adding habit 

formation has solved many of the asset pricing problems of power utility, we think it 

might be worthwhile to start reconsidering the use of exponential utility.  

Exponential utility had been abandoned mainly because it generates increasing 

relative risk aversion in the cross-section and is not consistent with balanced growth. The 
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strengths of exponential are that it is bounded and is consistent with a high risk-premium. 

We augment the standard exponential utility with habit formation and show that these 

preferences are bounded, not indifferent to compound gambles, generate near-constant 

relative risk aversion in the cross-section and are consistent with the high risk-premium 

and low risk-free rate and are consistent with the volatility of consumption and wealth. 

Merton (1969) and Samuelson (1969) clearly made a major contribution by 

placing portfolio choice in the context of a model based on the utility of consumption.  

We believe that the profession, by focusing so much attention on the direct utility 

function, has paid insufficient attention to the model’s consistency with the indirect 

utility function as well as implications for volatility of consumption and wealth.  In 

judging whether a model is broadly consistent with the data, we believe that one must 

examine all aspects of the model; i.e., direct and indirect utility function and consumption 

function.  

Future research should also concentrate on the business cycle implications of 

exponential utility with habit formation alongside with the asset pricing implications to 

ensure applicability of these preferences in a variety of contexts.  
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Appendix: 

A. Compound Gambles and Relative Risk Aversion:   
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B. Exponential Utility with Habit Consumption 

The portfolio choice problem is given by: 
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Hence the portfolio choice problem can be written as 
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Bellman’s optimality condition: 
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Equilibrium conditions: 
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Application to exponential utility with habit: 
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Trial solution: 
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This needs to hold for any w, hence it must be the case that  
 

( )

( ) ( )
( )

( )
( )

( )

( ) ( )
( )

( )
( )

( )

2

2

2

2

2

2

2

log 12 1 2

2

1 2

1
0    

1

1 1 1
(1)  0 log 1 + log   

2

  0 log 1 log    e
1 2

1
 e

1

rAr
r r

r

rAr
r

r

q Ar
qr q

A

q q q r
q p

A A A

rAr
r r r p p

p

µ!
" !

! #

µ!
"

! #

!

!

! ! ! µ
" ! !

#

µ!
" !

! #

!

$
$ $ $ + $

+

$
$ $ $

+

% &+
$ = ' =( )

+( )* +

+ + + $
= $ + + + + +

$
' = $ + + + + + + ' =

+

' =
+

 

 
 
Solution:  
 

( ) ( ){ }
( )

( ) ( )

( ) ( ) ( )( )

2

2

2 2

2 2 2

1 1 1
* log 1 '( ) log 1

1 2

/ 1 / 2
*

'( ) 1
*

''( )

rAr
c V w p qw r rw

A A Ar

r Ar r
c rw

Ar

r V w r r

V w w q w Ar w

µ!
! ! "

! #

" ! ! µ #

µ µ ! µ
$

# # #

% &'
% & % &= ' + = ' + ' = ' ' ' ' +( )* + * + +( )* +

% &' + + + '
, = +( )

( )* +

' ' + '
= ' = =

 



 24 

C.  The Euler Equation for the Risk-free Rate in Continuous Time 
 
In discrete time our model can be written as: 
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The last line above is (4.7) in the text. 


