


ABSTRACT

Ultralong-Range Molecules and Rydberg Blockade in Ultracold 84Sr

by

Brian J. DeSalvo

This dissertation describes experiments on two-photon excitation of ultracold Sr

to the 3S1 Rydberg series and represents the first experiments exciting Rydberg atoms

via an intermediate triplet excited state. Due to the narrow linewidth (7.5 kHz) of

the 1S0 →3 P1 transition in Sr, this excitation scheme yields longer coherence times

and less loss from the intermediate state compared to methods using the usual dipole

allowed transitions. This is advantageous for realizing the possibility of Rydberg

dressing, where a small amount of Rydberg character is admixed to ground state

atoms allowing for continuously tunable long-range interactions. With this goal in

mind, we explore the interplay of Rydberg blockade, Rydberg-Rydberg interactions,

and ground-Rydberg interactions in high density, ultracold gases through Autler-

Townes spectroscopy and photoassociation of ultralong-range Rydberg molecules.

First, we study ultra-long range Sr2 Rydberg molecules comprising one Rydberg

atom and one ground-state atom. Molecules are photo-associated from an optically

trapped thermal gas of 84Sr with lasers far-off resonance from the intermediate state

and red-detuned from the atomic transition. The formation of molecules is detected

as atom loss and the narrow spectroscopic features allow accurate determination of

molecular binding energies as a function of principal quantum number. Comparison

to theory yields good agreement and allows the first precision measurement of the



electron-Sr scattering length.

We then explore the density-dependent atomic photo-excitation line shapes in a

thermal gas of 84Sr in an EIT configuration in the Autler-Townes regime. This is a

promising configuration for Rydberg dressing. In this configuration we find fast loss

due to Rydberg-Rydberg interactions in the form of energy level shifts and dephasing.

To describe these effects, we employ a modified mean-field treatment taking in the

effects of correlations and are able to capture the early time dynamics of the spectra.

Finally, we propose a method to detect Rydberg dressing in a BEC via low momen-

tum transfer Bragg spectroscopy. We show preliminary results showing the sensitivity

of this technique as well as calculations of the expected signal that it would detect.
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Chapter 1

Introduction

Within the last 20 years, the study of quantum degenerate gases in atomic systems

has grown to a booming industry. The extraordinary control afforded by this system

has enabled great advances in the study of interacting many-body systems. Examples

include the study of the the BEC-BCS crossover [1], the creation of imbalanced Fermi

superfluids [2] and the observation of the superfluid Mott-insulator phase transition

in an optical lattice [3].

Despite the richness of this system and myriad of applications that exist, the

scope of the physics we can access is ultimately limited. The interactions dominant

in ultracold atom systems are short-ranged contact interactions that are relatively

weak and simple in structure. Dipolar interactions, found in Rydberg atoms [4], po-

lar molecules [5], and atoms with large magnetic moments [6, 7], are much stronger,

long-ranged and in some cases anisotropic. This suite of features has led to the predic-

tion that dipolar systems will exhibit a variety of fundamentally new and important

phenomena. This includes phase transitions to strongly correlated classical crystals

[8, 9, 10, 11, 12], roton-maxon excitations [9, 13], exotic spin and magnetic states [14],

three-dimensional solitons [15] and supersolids [16, 17, 18, 11, 19, 13].

This thesis will focus on the use of Rydberg atoms as a dipolar interacting system.

Strontium, with its divalent electron structure, yields advantages over alkali atoms for

these purposes, however there is very little previous work done in exciting Rydberg
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atoms in strontium. The work presented here represents a number of important first

steps in studying Rydberg atoms in Sr, and hopefully builds a firm foundation for

future work in the field.

1.1 Rydberg Atoms 101

We will begin with a brief overview of Rydberg atoms and their properties, which

will help set the stage for the rest of this thesis. A Rydberg atom is simply an atom

with an electron in a highly excited state characterized by the principal quantum

number n. The first evidence of Rydberg atoms dates back to the late 1800’s when it

was realized that the wavelength of spectral lines (which corresponds to the binding

energy of the excited states) of atomic hydrogen could be explained using a simple

formula which we now know as the Rydberg formula [20].

Rydberg atoms are large in size and feature a number of exaggerated properties

compared to ground state atoms. These properties scale with the principal quantum

number, and a few useful scaling relations are given below for low angular momentum

Rydberg atoms.

Property n-scaling

Binding Energy EB n−2

Orbital Radius n2

Lifetime n3

Polarizability n7

Rydberg atoms are not only confined to hydrogen, our simplest atom, and they

have been studied in alkali and alkaline-earth metal atoms as well. Despite these
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flavors of Rydberg atoms having much more complicated internal structure, it turns

out that the binding energy is only slightly modified

EB =
Ry

(n− δ)2
(1.1)

where Ry is the Rydberg constant and δ is the quantum defect. This quantum defect

varies between atomic species and for a given species shows a strong dependence on

l, the angular momentum quantum number, with the largest value for s states and

decreasing for higher angular momentum states.

This observation tells us a lot about the nature of Rydberg atoms. The internal

structure of the atom does not play a huge role in their properties. This makes sense

as the majority of the atom’s properties will come from the valence electron which will

spend the majority of its time far away from the core. Since the quantum defect tells

us about the interaction between the Rydberg electron and the core, it also makes

sense that it is largest for s states as they have the largest overlap with the core.

Higher angular momentum states will have a diminishing interaction with the core,

so their quantum defect is smaller. Once we know the quantum defect, it is useful to

define n∗ = n − δ, the effective principal quantum number. All of the above scaling

relations hold for non-hydrogenic Rydberg atoms with the replacement of n by n∗.

So far we have only talked about the structure of Rydberg atoms, however we

mentioned in the beginning that we are most interested in them for their interactions.

At zero field, low l Rydberg atoms possess no permanent dipole moment. Therefore at

long-range, the interaction between Rydberg atoms (at zero field and in the absence

of a Forster resonance) is characterized by induced dipole-induced dipole (or van der

Waals) interactions typically given as V = C6/r6 where r is the internuclear spacing.



4

C6 will vary from atomic species to atomic species and can be positive or negative

yielding repulsive or attractive interactions respectively. C6 scales extremely strongly

with principal quantum number as n11 and is on the order of 1 GHzµm6 at n =

25. This is an enormous energy scale in cold atoms systems so interactions in this

system play a truly dominant role. It is also important to note that interactions

between Rydberg atoms need not be isotropic. They are for s states owing to the

spherical symmetry of the electron’s orbit, however it is generally not the case for

higher angular momentum states.

Figure 1.1 : Physical origin of Rydberg blockade. a.) Two identical two-level atoms

under the influence of resonant light. b.) Rydberg-Rydberg interactions shift the

doubly excited state out of resonance for closely spaced atoms.

A fascinating consequence of these strong interaction is the concept of Rydberg

blockade. The concept of blockade is easily understood in just a two atom picture. As

shown in figure 1.1, we begin by considering two, two-level atoms under the influence
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of a laser coupling them to a Rydberg state. In the case of no interactions, our laser

is resonant with transitions from |00⟩ → |01⟩ , |10⟩ and |01⟩ , |10⟩ → |11⟩. However

this is not the case if our upper state is interacting. Interactions shift the energy level

of the |11⟩ state as a function of interatomic spacing. Therefore at close interatomic

spacings, the laser is off resonant with the |01⟩ , |10⟩ → |11⟩ transition. The effect

of this is that if one atom is in a Rydberg state, the other atom cannot be excited

within a certain radius known as the blockade radius. This effect makes spectroscopy

of Rydberg atoms a rich field with many applications, and particularly close ties with

quantum information and computing.

1.2 Why use Sr?

If you believe what I’ve said so far about Rydberg atoms and their properties, you are

probably wondering why it matters that we are using strontium for our experiments.

To understand the advantages that strontium affords us, we need to go beyond our

basic treatment of Rydberg atoms.

The first advantage that Sr offers is variety. Single valence electron systems offer

a number of Rydberg series with different values of l. However, divalent electron

systems have both singlet and triplet configurations which each come different values

of l, more than doubling the number of Rydberg states we have access to. Assuming

we only want to restrict ourselves to s states with their isotropic interactions, Sr

offers two flavors, ns1S0 and ns3S1 that feature attractive and repulsive interactions,

respectively. So while an experiment dedicated to trapping and cooling of an alkali

will be limited to either attractive or repulsive interactions, our strontium experiment
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offers both.

A second major advantage comes from the way that we excite Rydberg atoms.

Equation 1.1 implies that to excite a high n Rydberg atom from the ground state, we

will need photon energies which are only slightly smaller than the ionization threshold

for the atom. For most atomic species, single photon excitation to a Rydberg level

requires a deep UV photon. Since the oscillator strength for a transition from the

ground state to the Rydberg state is small, we also require a lot of power. High power

CW UV lasers are difficult systems to come by, so this is only practical for certain

atomic species. Also,with a single photon transition, one is forced to excite to p state

Rydberg atoms. Two-photon excitation yields more flexibility (as one can couple to

s or d states) and requires lower energy photons. This scheme is also preferable as it

makes use of a strong intermediate transition and can yield improved coupling to the

Rydberg state.

Figure 1.2 : Schematic diagram of typical two-photon excitation scheme.

However, two-photon excitation comes with a price. Atoms can be heated by the

scattering of photons and two-photon excitation adds an additional channel for this
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process to occur. For many applications, this heating is undesirable so we would like

to minimize its effect. This is typically achieved by detuning the first laser far from

the intermediate state as shown in figure 1.2. In the limit of far detuning and weak

excitation, the total scattering rate due to the two lasers is given as

γ =
Ω2

01

4∆2
01

[

γ1 +
Ω2

12

4∆2
γ2
]

(1.2)

where Ωij is the Rabi frequency of the laser driving the |i⟩ → |j⟩ transition, ∆01 is

the detuning from the intermediate state, ∆ is the two-photon detuning from the

Rydberg state, and γi is the decay rate from the state |i⟩.

From equation 1.2, we see that the total scattering rate is the sum of scattering

rates off of the two states involved, and therein lies the advantage of Sr. Narrow

intercombination line transitions have decay rates which are orders of magnitude

smaller that those of the usual electric dipole allowed transitions. So for the same

coupling strength to a Rydberg level, Sr will suffer significantly less from off-resonant

heating. On top of that, the value of C6 for an interacting pair of ns3S1 Sr atoms [21]

is almost twice that of a pair of ns2S1/2 Rb atoms at the same principal quantum

number. Overall, Sr promises a much more robust route to strong interactions.

Finally, there is a more subtle advantage that Sr offers. Again, due to the presence

of two valence electrons in the atom, the Rydberg core remains optically active.

Making use of this fact, one can actually directly image the core of the Rydberg

atom as an alternate route of all optical detection of Rydberg atoms [22]. Also,

this core provides necessary oscillator strength allowing for the creation of magic

wavelength lattices where the ground state and Rydberg state see the same potential.

The presence of doubly excited states allows for studies of auto-ionization [23] and can
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strongly perturb Rydberg series. It has been postulated that these perturbations can

lead to accidental degeneracies of Rydberg states and may allow stronger excitation

rates of ultralong-range Rydberg molecules with large permanent dipole moments

[24].

1.3 Rydberg Dressing

So far, I have focussed on the benefits of Rydberg atoms in allowing us to study

strongly interacting dipolar gases. However, there is one tricky caveat which needs

to be addressed in order to realize some of the more exciting proposals described in

the introduction of this chapter. The n3 scaling of the lifetime of Rydberg atoms

tells us that they can have a long lifetime. At n = 25, this corresponds to a few

µs. While this is long compared to excited states we are used to working with, it is

still unfortunately short on the timescale of typical dynamical timescales of ultracold

atom experiments.

To overcome this challenge, an idea has been developed which is referred to as

Rydberg dressing. A number of the proposals mentioned earlier make use of this idea.

The basic principle is that rather than creating Rydberg atoms directly, we try to

admix a small fraction of Rydberg character into the ground state, creating the state

|Ψ⟩ ∼ |g⟩+
√
f |r⟩ where f is the fraction of Rydberg character. By working with this

state, the lifetime can be greatly enhanced by a factor of 1/f.

Consequently, the strength of the interactions also suffers by using this scheme.

Interactions between Rydberg dressed atoms then take the form

V =
f 2C6

R6
B + r6

(1.3)
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where RB is the blockade radius and r is the interparticle spacing. However, recall

that the bare Rydberg-Rydberg interactions are enormous (GHz) on the energy scale

we are concerned with for ultracold atoms. Therefore, we only need f on the order of

10−3 to make meaningful changes to the behavior of a gas, which extends the lifetime

out to milliseconds. This simple picture breaks down if the density and fraction of

Rydberg atoms is high enough such that there would be more than two Rydberg

atoms per blockade volume in the absence of blockade effects as described in [25], but

most experiments do not reach beyond this regime. As an added bonus, within this

regime of validity, controlling the Rydberg fraction allows continuous tuning of the

interaction strength, which is a powerful control knob to have on our experiment.

There are two schemes that can be used in order to implement Rydberg dressing.

The first and more commonly referred to is off-resonant excitation. This method

employs two-photon excitation with the first laser far detuned from the intermediate

state to minimize off-resonant heating. The second laser is then tuned to the red

(blue) of a repulsively (attractively) interacting Rydberg state respectively. This

allows the creation of the desired dressed state. The fraction of Rydberg character is

controlled by a combination of the two photon Rabi frequency Ω and the two photon

detuning, ∆ as f = Ω2/4|∆|2. This is advantageous as the two control parameters

allow more flexibility with which to find a regime of low loss.

Alternatively, one can use electromagnetically induced transparency, which for

the parameters we work with in strontium results in Aulter-Townes splitting of the

excitation spectrum. For this scheme, both lasers of the two photon transition are

exactly resonant with the transitions they are driving. With a strong laser coupling

on the intermediate to excited state transition, two dressed states are created that
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are a superposition of the intermediate and excited state and are split by the Rabi

frequency of the strong laser. If driven strongly enough, there will be negligible loss

on resonance and the Rydberg fraction will be controlled as f = Ω2
01/Ω

2
12.

Of course, these schemes are not perfect and we have ignored possible issues with

them. For off-resonant excitation, a major concern is the creation of ultralong-range

Rydberg molecules. These are molecules comprised of one Rydberg and one or more

ground state atom(s) that can be photoassociated when the lasers are detuned to the

red of the atomic transition. Therefore it is essential that one measures the binding

energy of these molecules so that enhanced loss due to creating molecules can be

avoided. Autler-Townes splitting yields no concern for the creation of molecules,

however one needs to be careful about how we apply our theory. Observed Autler-

Townes spectra can be heavily influenced by interactions and dephasing, so the loss

rates for an interacting Rydberg system are not as simple as expected from naive

non-interacting theory.

So far, there have only been two reported experiments that have attempted to see

the effects of Rydberg dressing. The first attempt was made in the group of Tilman

Pfau with Rb [25]. Due to the loss rates that were seen in this experiment, they

conclude that it is highly unlikely that Rydberg dressing will ever be observed in a bulk

gas of Rb. The second was successful, however it avoided many of the complications

described by only using a system of two atoms [26]. While this experiment is an

important first step, it does not represent the realization of long range interacting

many-body system as we would ultimately like to achieve.
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1.4 Thesis Organization

With the ultimate goal of Rydberg dressing of a BEC in mind, we can understand

the framework of this thesis. In chapter 2, I develop the experimental tools and

tricks used in our system. I provide a brief introduction to laser trapping and cooling

and the preparation of ultracold samples of 84Sr. Then a detailed description of the

laser systems used to excite Rydberg atoms is given as well as an explanation of the

methods we use to detect them. With the basics of how to perform an experiment

in place, chapter 3 discusses our measurement of the binding energy of ultralong-

range Rydberg molecules. This work aids in understanding how best to implement

Rydberg dressing in the off-resonant scheme. Chapter 4 then discusses Autler-Townes

spectroscopy and provides a minimal model in which to understand the extremely

large loss rates we observe. Finally, in chapter 5, I discuss a plausible method with

which one can eventually detect and measure the effects of Rydberg dressing in a

BEC.



12

Chapter 2

Experimental Methods

2.1 Introduction

In our quest to create a Rydberg-dressed BEC, we need methods to produce a quan-

tum degenerate sample of Sr, and methods to create and detect Rydberg atoms. My

earliest experiments during my PhD career were creating BECs and degenerate Fermi

gases of all of the isotopes of Sr, so between our work and that of Florian Schreck’s

group, the former has been well established [27, 28, 29, 30, 31, 32]. As such I will only

provide a brief outline. The apparatus used here has been described in more detail

in the PhD theses of Sarah Nagel, Natali Martinez de Escobar, Pascal Mickelson and

Mi Yan. Note for all work described here, we work with the bosonic isotope 84Sr,

so I will only discuss cooling and trapping of this isotope. For a discussion of the

complications of working with fermonic 87Sr, refer to my master’s thesis and Pascal

Mickelson’s PhD thesis.

Making and detecting Rydberg atoms is also not new territory. However, there

are interesting peculiarities of working with Sr that demand attention. Also, as our

apparatus was not originally intended for this application, we have found creative

solutions to the detection of Rydberg atoms and molecules. These techniques are

easily applicable and should be of interest to the Rydberg community at large.
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2.2 Trapping and Cooling of Sr

2.2.1 461 nm Cooling and Magnetic Trapping

At room temperature, Sr is a solid metal. For laser trapping and cooling, we need to

work with gaseous Sr, so we begin by heating a sample in an oven up to ∼ 350◦C to

obtain a significant vapor pressure. The resulting gas of atoms escapes the oven via

an array of 0.4” long capillary tubes formed from size AWG-21 hypodermic needles.

These tubes collimate the gas into a beam directed towards the main chamber. This

nozzle is similar in design to the one described in the master’s thesis of Francisco

Camargo, however it has one key difference. Our nozzle does not use a heat shield and

is therefore not able to achieve the same high temperature resulting in a reduced atom

flux. Directly out of the nozzle, the atoms undergo a stage of two dimensional optical

molasses to further collimate the beam. After the transverse cooling, the atoms are

decelerated in a Zeeman slower to velocities suitable for capture in a magneto-optical

trap (MOT).

These initial cooling stages, and our first stage MOT, utilize the 1S0 →1P1 transi-

tion in Sr, which requires a laser operating at a wavelength of 461 nm. Until recently,

diodes that directly generate 461 nm light were only available at low power. The broad

linewidth of the transition results in a large saturation intensity, 40.5 mW/cm2, so

laser powers on the order of 100 mW are necessary for the initial cooling stages.

Our system is based on frequency doubling of IR diode lasers, which can provide the

power necessary. High powered 461 nm diodes are now available, and are used on

the new apparatus in the Killian lab. For more information on the advantages (and

headaches) of the all diode system, please refer to the master’s thesis of Francisco
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Camargo.

Figure 2.1 : Partial level diagram of Sr showing all transitions for laser trapping and

cooling.

We use a 922 nm Littrow-configuration diode laser from Sacher Lasertehnik as

a master laser for the system. Light from this diode is fiber coupled and then split

with an acousto-optic modulator (AOM) into two separate tapered amplifiers (TA)

from Eagleyard. Typically 20 - 25 mW of IR is used to seed each TA, which ul-

timately provides 300 - 350 mW. Light from each TA is then coupled into separate

frequency-doubling cavities using potassium niobate as the non-linear medium for sec-

ond harmonic generation. When well optimized, each cavity is capable of providing ∼

100 mW of 461 nm light. All power from one cavity is dedicated to Zeeman slowing,
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while the other is split using AOMs to create beams for the transverse cooling, MOT,

imaging, and saturated-absorption spectroscopy.

We lock the laser to the zero crossing of an error signal from a magnetically

tunable, saturated-absorption cell via feedback to the current of the master laser. A

good description of the principles of the magnetically tunable saturated-absorption

cell can be found in the undergraduate senior thesis of Mike Perron. As 88Sr is

overwhelmingly the most abundant isotope, we always lock the laser to the error

signal from this isotope. For trapping 84Sr, we use a combination of AOMs and the

magnetic tuning of the cell to get the cooling beams on resonance with the isotope

we are interested in trapping.

Laser cooling on the 1S0 →1 P1 transition is ideal for the initial cooling stage

owing to the fast cooling rate and large capture velocity which results from the short

lifetime of the excited state and short wavelength of the transition. This lifetime

yields a broad (30.5 MHz) linewidth. However, laser cooling on this transition also

comes with the significant drawback that the Doppler temperature is high by ultracold

atom standards, TD = !γ
2kB
≃ 1 mK. The lack of nuclear spin in bosonic Sr means

that sub-Doppler cooling is not possible in this system. Therefore the temperature

of the 461 nm MOT cannot be reduced below this limit. Even worse, the isotopic

abundance of 84Sr is extremely small, only 0.6%. This means that for our best loading

efforts, the steady state number of atoms in the MOT is only ∼ 106, which is too

small for our needs.

This obstacle can be overcome by taking advantage of a peculiar feature of the

level structure of Sr. The 1S0 →1 P1 transition is not completely closed, and atoms

from the 1P1 state can decay via the 1D2 state to the 3P2 state with a probability
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of 1 × 10−5. This state is metastable and has a long lifetime, limited in experiment

by blackbody radiation to about 25 s. Within the 3P2 manifold, atoms in low-field

seeking mj states can be magnetically trapped by the quadrupole field of the MOT

where they remain for their lifetime while being dark to the cooling light [33]. The

observed 25 s lifetime of this trap is is orders of magnitude longer than the lifetime

of the MOT, which allows us to use long loading times. While the loading rate of

atoms into the magnetic trap is clearly reduced compared to the loading rate of the

MOT (we need to scatter 105 photons for an atom to end up in the magnetically

trapable state), the loss rate is reduced further. Therefore, for long load times we get

an increase of overall number of atoms and can typically trap between 10− 15× 106

84Sr atoms in this trap, which is sufficient for our purposes. It is also worthwhile to

note that optimization of our system for number of atoms in the magnetic trap is not

equivalent to optimization of number of atoms in the MOT, and in practice we use

the former to collect the largest samples.

After this collection phase, the atoms are returned to the ground state via a

repumping transition. Within the last few years, we have begun repumping along

the (5s5p)3P2 → (5p2)3P2 using a 481 nm laser. This transition has a few advantages

over other schemes used so far for repumping Sr. Other schemes include using 497

nm [34] or 3 µm [35], which require expensive laser systems for such an uninteresting

purpose. Another popular choice is the combination of 707 nm and 679 nm. While

these are less expensive diode lasers, the requirement of two independent laser systems

makes this scheme more complicated than desired. By using the (5s5p)3P2 → (5p2)3P2

transition, only a single diode laser is necessary.

Another advantage to this repumping transition is the relative ease of stabilizing
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the laser. It is difficult to prepare a large number of atoms in the 3P2 state in a

reference cell, so it is challenging to directly lock the laser to a transition from this

state. However, it is a fortunate coincidence that there is an absorption line in ground

state tellurium within 0.01 cm−1 of the transition in Sr [36, 37]. The laser can then

be referenced to the tellurium transition which is easily driven in a vapor cell and

detuned to be on resonance with Sr by a number of means. Details on the reference

cell and spectroscopy done in our lab can be found in the undergraduate senior thesis

of Pakorn Wongwaitayakornkul.

Since the Doppler-broadened line in a Te2 vapor cell overlaps the transition we

want to drive in Sr, we use a low-bandwidth side-of-peak lock to the Doppler-broadened

line while rapidly dithering the laser over many MHz to cover a broad frequency range.

As the repumping laser is currently shared between the three experiments in the Kil-

lian lab (which at any given time might be working with any isotope of Sr), this

allows us to repump multiple isotopes simultaneously. Unfortunately, as temperature

drifts in the vapor cell cause the lock point to move, the repumping efficiency can

change. While the temperature of the cell is controlled, it has been found that it is

not stable enough for our purposes. As such, we monitor the wavelength of the laser

on a wavemeter to make sure the laser does not drift too far, and we change the lock

point on the circuit to adjust for the drift, however, this is far from ideal. With the

laser being dithered over such a broad range, repumping is slow. We typically repump

atoms for 50 ms to return them to the ground state where they can be recaptured in

the 461 nm MOT and are prepared for further cooling.

A future improvement to this scheme would use use Doppler-free Te2 spectroscopy

to eliminate sensitivity to temperature changes and hopefully stop the drift. With this
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improved laser stabilization, we would be able to perform more precise spectroscopy

on the (5s5p)3P2 → (5p2)3P2 transition for all isotopes of Sr, and use a combination

of AOMs to directly address each transition individually, which should improve the

repumping rate.

2.2.2 689 nm Laser Cooling

With the atoms retuned to the ground state, we employ a second MOT operating on

the 1S0 →3P1 transition which features a narrow 7.5 kHz linewidth. This significantly

reduces the Doppler temperature to a few hundred nK and in practice we regularly

obtain samples between 1 - 2 µK after 200 ms of laser cooling. It should be noted that

for 84Sr, with its low abundance, the transfer from the magnetic trap to the 1S0 →3P1

MOT is essentially lossless. This is not the case for more abundant isotopes as light-

assisted collisions limit the number of atoms in the 1S0 →3P1 MOT.

Light for driving the 1S0 →3 P1 transition is derived from a homebuilt Littman-

Metcalf configuration diode laser and a series of injection-locked slave lasers (3 dedi-

cated to forming MOT beams for various isotopes and 1 for generating spectroscopy

beams). To get the full benefit of the narrow linewidth transition we are driving, it

is important to have a narrow laser source. Even in Littman-Metcalf configuration,

a typical extended cavity diode laser will still have a linewidth on the order of a few

hundred kHz. To improve on this, we stabilize the master to a high finesse cavity

with a high bandwidth servo on the laser current. This allows narrowing of the laser

spectrum to approximately 30 kHz. A low bandwidth lock on the PZT voltage is

used to keep the correction voltage to the current small to prevent the system from

unlocking.
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The high finesse cavity mirrors are mounted on PZTs to allow a variation of the

length of the cavity. With the laser locked to the cavity, light from an injection-locked

slave is then sent to a saturated absorption cell which produces an error signal. The

length of the cavity is then locked to the zero crossing of this error signal, which

keeps the laser on resonance with the atoms. As was the case for the 461 nm light,

we always lock the laser to the error signal from 88Sr and use AOMs to make up the

isotope shift for working with other isotopes

As mentioned, our laser system is still broad with respect to the transition. For

all applications we have found so far, this is not much of a limitation. However, a

narrower laser should lead to more precise spectroscopy and laser cooling to colder

temperatures. As such, at the time of this writing, a Toptica DL Pro is being installed

on the experiment as a new master laser. This system should provide a narrower

intrinsic linewidth and higher bandwidth for feedback to allow further narrowing of

the spectrum.

2.2.3 Optical Dipole Trap

Following this cooling stage, we load atoms into a crossed optical dipole trap (ODT).

The ODT is derived from a multimode 18 W IPG fiber laser at 1064 nm. The trap

is formed by two cylindrically focussed beams with waists 300 µm (65 µm), and

440 µm (38 µm) in the horizontal (vertical) dimension respectively. These beams

propagate in the horizontal plane and are crossed at a 90◦ angle. Each beam is

controlled by an independent AOM that provide a 5 MHz frequency difference between

the beams to minimize interference effects, which can distort the shape of the trap.

Interference effects are also mediated by using orthogonal polarizations on the two
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beams. Independent AOMs also allow for more freedom when designing an effective

evaporation trajectory. After a 1 s hold in the ODT, we typically have trapped

2 − 4 × 106 atoms at a temperature of 700 nK. Evaporative cooling for 5-6 seconds

in this trap produces pure condensates of 3− 5× 105 atoms. This trap was initially

designed for creating BECs of 86Sr, which requires low densities for evaporation due

to the high three-body loss rate of this isotope. While other trap geometries we have

available might produce condensates of 84Sr faster or in larger numbers, this trap

allows us to easily make low density samples, which is more important for the studies

at hand.

For the experiments described here, we halt the evaporation before a BEC forms.

It is essential for us to know the density distribution of the atoms in the trap, and

this boils down to knowing the number and temperature of the atoms in the trap

as well as the trap oscillation frequencies. Absorption imaging after a long time of

flight allows us to measure the atom number and temperature accurately, so all that

remains is measuring the trap oscillation frequencies.

In previous versions of our ODT, we used a recycled a beam though the cham-

ber to form the crossed beam trap. While this makes good use of the laser power

and creates deep traps, it limits the options available for accurately measuring trap

frequencies. Specifically, we were forced to rely on the method of parametric heat-

ing for our measurements. Using this technique, one modulates the intensity of the

laser beams to heat atoms out of the trap. When the modulation frequency matches

the trap oscillation frequency, one sees a large heating and loss of atoms from the

trap. This technique has a few problems. As atoms can be excited at harmonics

and subharmonics of the trap frequency, there is a bit of detective work that goes
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into truly extracting the trap frequencies. This was complicated by the fact that our

trap was nearly spherical resulting in almost degenerate trap frequencies. Strange

lineshapes also make determination of the line center difficult, so a large amount of

data is usually needed to get a good measurement.

However, with the ODT used here, measuring trap oscillation frequencies is a

breeze. Two things work to our advantage here: First, the independent control of each

beam allows more degrees of freedom to excite modes than just intensity modulation.

Second, as the beams are perpendicular to one another and mutually orthogonal to

gravity, the principal axes of the trap are aligned with gravity and the propagation

direction of the beams. Using this, we can measure the trap oscillation frequencies

by simply initiating a sloshing motion along a principal axis in the trap and fitting

the time dependent position to a decaying sinusoid. For the vertical direction, this

is done by briefly turning off one or both of the ODT beams for 1 ms, which is long

enough for the atoms to acquire some velocity but not displace too far from the center

of the trap. For the horizontal axes, we abruptly change the driving frequency of one

of the AOMs creating the arms of the ODT. This translates the beam slightly in the

horizontal direction and starts the motion. As the motion in the trap is small, it is

helpful to look at the atoms after a time of flight. This amplifies the motion as a

change in velocity results in a change in final position and makes it easier to resolve

the motion.

A typical measurement of the vertical axis trap oscillation frequency is shown in

figure 2.2 with a fit to the data. As can be seen, the agreement between the data and

the fit is excellent. Typically, we measure our trap frequencies at the conclusion of an

experiment to calibrate the density and obtain agreement with the model developed
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Figure 2.2 : Example measurement of the vertical trap oscillation frequency. Data

(red dots) is fit with a decaying sinusoid (blue dashed line) which yields an excellent

fit. The slow decay of the envelope allows the observation of many oscillation periods

yielding high sensitivity of the fit to the frequency.

in [38] to within 20%. Deeper traps typically show better agreement as they are less

sensitive to misalignment and gravity. However, whenever there is a disagreement

between the model and the measurement, we use the measured values.

2.3 Creating Rydberg Atoms

With an ultracold sample prepared, we now need to excite the atoms to a Rydberg

state. As discussed in the introduction, there are many flavors of Rydberg states to
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choose from in Sr. For the work described here, we will be exciting atoms exclusively

to the 3S1 Rydberg series. This state provides isotropic repulsive interactions and is

accessed via the narrow 1S0 →3P1 transition.

2.3.1 689 nm Photon Source

The first photon for our two-photon excitation comes from a source that we have

already discussed, the 689 nm laser. Depending on the specifics of the experiment we

are performing, we have very different needs for this laser source. For excitation far off

resonance with the intermediate state, we need large detunings and high intensities.

However, for Autler-Townes spectroscopy, we need on-resonance low intensity beams.

To allow this flexibility, we find it useful to have an injection-locked slave dedicated

entirely to this purpose. With a combination of AOMs on the light used to injection

lock the slave as well as AOMs on the output of the laser, we can achieve detunings

between -70 and + 250 MHz. For all applications, we couple the beams into single-

mode, polarization-maintaining fibers and typically obtain about 6-10 mW of light

to deliver to the atoms.

Fiber coupling is useful for a number of reasons. First, it cleans up the spatial

mode of the laser, which is important if one wants to have a reliable and smooth laser

intensity pattern. More importantly, fiber coupling is extremely helpful for aligning

the laser to the atoms. A typical technique is to use atom loss from the ODT to

aid in alignment, however, for far-off-resonance light, this is not practical. By using

fiber coupled light, we are able to first use light resonant with the atoms to align the

output of the fiber, and then couple in the light we need for our application.

As the 689 nm system is locked to an atomic reference and all beams derived from
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it come from AOMs driven by stable RF sources, we know the detuning of our laser

extremely accurately. However, to understand the dynamics of the system, we will

also need to know the Rabi frequency of the light. Recall that the Rabi frequency is

defined as Ωij = eE
!
µij where e is the charge of the electron, E is the magnitude of

the oscillating electric field, and µij is the matrix element connecting states |i⟩ and

|j⟩. The 1S0 →3P1 transition has been extensively studied, so the matrix element of

the transition is well known [37]. Therefore, we only need to know the intensity of

the beam (and therefore the magnitude of the electric field) accurately to calculate

the Rabi frequency. For small beams, this is easily achieved. We measure the profile

of the laser beam on a rotating slit beam profiler and calibrate the power with a

photodiode. However, for experiments on Autler-Townes spectroscopy, we need very

low Rabi frequencies, which requires the use of very large beams. As the waist of these

beams are too large to measure on a beam profiler, we need an alternative method.

This can be done by recalling a classic result which is taught in any AMO class

worth its salt, Rabi oscillations. A two-level atom that is subject to on-resonance

light will oscillate between states |1⟩ and |2⟩ at a frequency exactly equal to the Rabi

frequency. If we are able to detect the state of the atom and drive our atoms on

resonance, we should be able to see this effect. As Rabi oscillations are a coherent

phenomenon, it is important to have a sense of decoherence rates that will damp the

oscillations. One primary concern is the finite lifetime of the excited state. Fortu-

nately for us, the 3P1 state has a 21 µs lifetime, which yields a long coherence time

during which we can see Rabi oscillations.

To perform this measurement we begin with a cold, trapped sample of 84Sr in the

ODT. We release the atoms from the trap and then immediately expose the atoms
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to a pulse of 689 nm light. Within a few µs of the excitation we then image the

atoms using 461 nm light. Atoms in the 3P1 state will not absorb light from the 461

nm laser, so we expect that the number of atoms measured via absorption imaging

will oscillate as the population oscillates between the ground and excited state. The

results of one such experiment are shown in figure 2.3.
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Figure 2.3 : Example data of Rabi oscillation used to calibrate the intensity of the

689 nm laser.

There are a few important things to note about the data shown in figure 2.3.

First, the finite time necessary to image the atoms (a few µs) allows some population

to return to the ground state, which results in a less than 100% contrast of the

oscillations. Second, as we need to image the atoms within the 21 µs lifetime of the

excited state, the optical depth of the sample is very high which causes problems for
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absorption imaging. For high densities, the optical depth causes us to undercount the

number of atoms in the cloud. In the data above, this is apparent as the population

in the ground state does not tend to 50% of the original population. While this skews

the data, it only affects the amplitude of the oscillations and final steady state value,

but does not affect the measured frequency. There are ways around this issue, such

as using far-detuned imaging light to reduce the optical depth or using a blow away

pulse to clear out atoms in the ground state and then image the remaining atoms after

a long time of flight. However, here we are only concerned with measuring the Rabi

frequency so our imperfect measurement will suffice. Finally, it should be noted that

the decay rate of the oscillations is significantly faster than the spontaneous decay rate

of the excited state. This implies that something other than spontaneous emission

is causing decoherence in the system. The most likely candidate is the linewidth of

the laser, as it was previously known that the laser had a 30 kHz linewidth and the

observed decay rate matches this timescale well.

2.3.2 319 nm Photon Source

To drive the second leg of the two-photon transition, we need a 319 nm photon source.

As this laser is coupling to a Rydberg state, the specifications for this laser are no less

demanding than those of our 689 nm laser. The wave functions of the (5s5p)3P1 state

and the 3S1 Rydberg series have relatively small overlap, so the oscillator strength

of these transitions is small. To overcome this hurdle, it is necessary to drive the

transition with a significant amount of laser power. Also, similar to our concerns

with driving the 1S0 →3P1 transition, the long lifetime of Rydberg states (∼ 5µs near

n = 25) necessitates using a narrow-linewidth laser. High output power and narrow
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linewidth usually do not go hand in hand, and it is only through a complicated

multistage laser system that we are able to meet these needs. A schematic layout of

the system is shown in figure 2.4.

Figure 2.4 : Schematic layout of laser system used to generate 319 nm light for

excitation to the 3S1 Rydberg series. A small fraction of the 638 nm light is used to

lock the laser via an optical transfer cavity, while the remainder is frequency doubled

and delivered to the atoms.

Our system begins with an Argos Orange system from Lockheed-Martin (originally

provided by Acculight before the company was purchased by Lockheed-Martin). This

system uses a fiber-laser seed at 1064 nm which is amplified in an IPG fiber amplifier
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to 8W. This light is then coupled to a bow-tie cavity that contains two sections

of non-linear crystal. The first performs frequency down conversion whereby the

1064nm photon is down converted into signal and idler photons of ∼ 1.5 µm and 3

µm respectively. In the second section of crystal, the signal and 1064 nm photons are

then summed to create 638 nm. The output power depends on the exact wavelength

used, but is typically between 0.8 - 1.2 W.

To achieve efficient conversion efficiency to 638 nm, one needs to temperature

tune the crystal to satisfy the phase matching condition for both nonlinear processes.

For the crystal in our system, this was found to be near 33 ◦C. Unfortunately, the

temperature control of the Argos system is designed to only heat, and with the heat

load due to the high-power pump, the system cannot maintain this temperature on its

own. To work around the problem, we have affixed a water-cooling block to the cavity

housing which provides additional cooling such that the Argos system can maintain

the temperature needed. It should also be noted that while the system can be run

with much higher pump powers (up to 12 W), it is difficult to keep the laser single

mode at these high powers. Therefore, we always opt to run at 8 W of pump power

or lower. The system is temperamental and prone to mode hops, however with time

and patience, it can be mastered.

The 638 nm light passes through a window to pick off a small fraction of the beam

that is used to lock the laser, while the remainder is beam shaped via a telescope and

directed into a Toptica SHG Pro frequency doubling cavity to create 319 nm light.

The Toptica system works well and can provide a conversion efficiency of up to 20%.

When the system was first installed, we found the alignment of the 638 nm into

the SHG Pro needed to be adjusted every other day. It was later determined that
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this instability was caused by the beam passing very near the edge of the non-linear

crystal inside the cavity. By translating the crystal, the output power of the cavity

is much more stable and can run for weeks without readjustment, unless the desired

wavelength is changed.

There has not been much spectroscopy done on the 3S1 Rydberg series, and so

there is not as much information available on these transitions. Again, we need a

technique to directly measure the Rabi frequency. Measuring Rabi oscillations is

not practical here, but Autler-Townes spectroscopy provides a direct route to this.

In a later chapter, we will see that Autler-Townes spectroscopy with large densities

of Rydberg atoms leads to very complicated spectra. But, as long as we keep the

initial density low, the excitation time short and the Rabi frequency of the probe

beam small, then we can essentially see non-interacting Autler-Townes spectra that

are easy to interpret.

The classic picture of the Autler-Townes spectrum is easy to understand in the

dressed state picture. We can begin by just thinking about a two level atom under the

influence of near resonant light with a Rabi frequency Ω and a detuning ∆. Within

the rotating wave approximation Hamiltonian for this system is H = Hatom + Hint

where

Hatom = !∆ |1⟩ ⟨1| (2.1)

Hint =
−!
2

(Ω |2⟩ ⟨1|+ Ω∗ |1⟩ ⟨2|). (2.2)

Clearly the states of the atom |0⟩ and |1⟩ are not the eigenstates of this system. We

can diagonalize the Hamiltonian to find its eigenstates, which are the so called dressed



30

Figure 2.5 : Autler-Townes spectra at various detunings of the 319 nm laser. As a

function of 319 nm laser detuning, the relative weight and position of the peaks varies

and can be used to find resonance.

states |+⟩ and |−⟩ and have the eigenenergies

E± =
−!∆
2

±
√
Ω2 +∆2

2
(2.3)

From this equation we can see that on resonance, the dressed states are split in energy

by exactly the Rabi frequency.

To see Autler-Townes splitting in our system, we need a strong coupling laser

on the 3P1 → ns3S1 transition with a weak probe on the 1S0 →3 P1 transition. To

measure the Rabi frequency accurately, we also need to know that the UV laser is

directly on resonance. This is done by taking a series of Autler-Townes spectra and

measuring the spacing between the peaks. Examples of the obtained spectra are seen

in figure 2.5. As the detuning of the UV laser varies, the relative weight of the peaks
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Figure 2.6 : Autler-Townes spectra are used to accurately find the 3P1 → 24s3S1

resonance and measure the Rabi frequency of the 319 nm laser.

varies. However, the spacing between these peaks is always
√
Ω2 +∆2. By fitting the

data we can determine the resonance position, as shown in figure 2.6. On resonance

the loss peaks are symmetric and their spacing is exactly the Rabi frequency, so this

method serves as a direct measurement of the Rabi frequency. An example spectrum

on resonance is shown in greater detail in figure 2.7.

2.3.3 Locking the Laser

So far, I have not described how we actually lock the 319 nm laser. As the light

is resonant with a transition from a metastable state, there is no absorption feature

that we can easily use to derive an error signal. Instead, we stabilize the laser with

an optical transfer cavity.

The transfer cavity is a non-degenerate optical cavity with highly reflective mirrors
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Figure 2.7 : Autler-Townes spectra with 319 nm laser on resonance with the 3P1 →

24s3S1 transition. Here we see symmetric loss peaks spaced by the Rabi frequency,

Ω12.

for both 689 nm and 638 nm mounted on an invar spacer. The linewidth of the cavity

for these two wavelengths is 7.3 MHz and 5.1 MHz respectively. Since the 689 nm

light is stabilized to the 1S0 →3 P1 transition, this serves as an absolute frequency

reference. The mirrors of the cavity are mounted on PZTs which allow control of the

length of the cavity. On one side, a stack of 4 PZTs are driven with a static voltage

of 0 - 350 V to allow scanning over 3-4 free spectral ranges of the cavity (1 FSR = 735

MHz). The other side uses only 2 PZTs driven with 0-150 V which are used for fast

timescale feedback. We use the Pound-Drever-Hall method [39] to generate an error

signal and feedback to the shorter stack PZTs to stabilize the length of the cavity to

the 689 nm light.

As depicted in figure 2.4, light from the 638 nm laser is passed through a 200
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MHz AOM in a double pass configuration and fiber coupled to the transfer cavity

setup. The output of the fiber is mode matched to the cavity and combined with

the 689 nm light via a dichroic mirror. We again use the Pound-Drever-Hall method

to generate an error signal for the 638 nm light and lock the laser. Fine tuning of

the laser frequency is then achieved by modifying the driving frequency of the double

pass AOM, and more coarse tuning is achieved by locking the laser to a different

transmission peak. This system is shown schematically in figure 2.8.

Figure 2.8 : Schematic diagram of transfer cavity used to lock 319 nm laser. 689 nm

light stabilized to the 1S0 →3 P1 transition provides an absolute frequency reference

for this system.

Achieving a high-bandwidth lock of this laser has been a challenge, and we have

ultimately succeeded using a two stage system. The fundamental problem is with the

tuning characteristics of the fiber-laser seed. Of the methods available to tune the

wavelength of the 638 nm laser, the fastest response comes from tuning the PZT on
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the fiber laser seed. However, there is a significant phase shift that appears in the

frequency response of the PZT starting around 1 Hz. This limits the bandwidth of

our feedback to only a few Hz resulting in a very weak lock and linewidth of 550 kHz.

To improve this, we have placed an AOM directly after the Argos module. By

using the 1st diffracted order of the AOM, we can now feedback to the drive frequency

of the AOM to lock the laser with kHz feedback bandwidth. One problem with this

scheme is that changing the drive frequency will change the angle of the beam which is

undesirable. As this angle changes, we see a change in the conversion efficiency of 638

nm to 319 nm. To mitigate this effect, our circuit only allows the frequency to change

by a few hundred kHz so the resulting power changes are relatively small. Also, the

UV light passes through another AOM before entering the chamber, and we then

use the UV AOM to power control that beam and remove the intensity fluctuations.

Large, slow-timescale drifts are compensated by a low-bandwidth lock on the fiber

laser PZT. The scheme is more complicated than one might desire, but it has allowed

us to narrow the laser to 300 kHz. Replacing the fiber-laser seed with another laser

with better tuning characteristics should also be able to solve the problems that we

have had.

One last note of importance is that we have found it essential to isolate the cavity

from pressure fluctuations. The differing indices of refraction of air at 689 nm and

638 nm makes the relative position of the transmission peaks sensitive to pressure

changes in the lab. The simple act of opening or closing a door was seen to shift

the lock point of the 638 nm light by about 1 MHz, which is too large for precision

spectroscopy. To mitigate this problem, we have sealed the cavity by affixing caps

on either end of the invar spacer to create an airtight seal. This has reduced the
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frequency fluctuations to below our measurement resolution.

2.4 Detecting Rydberg Atoms

Now that we have a method to excite Rydberg atoms, we need a way of detecting

them. The most common technique of detecting Rydberg atoms is field ionization

followed by charged-particle detection. Rydberg atoms are so weakly bound that it is

possible to apply an electric field large enough to detach the Rydberg electron from

the core. Using smaller guiding electric fields, either the ion or electron is deflected

towards a detector and the charge deposited on the detector heralds that a Rydberg

atom was created.

Our apparatus does not have electric field plates inside of the chamber or a charge

sensitive detector, so an alternate method is needed. It turns out, due to the level

structure of Sr, measuring ground state atom loss will give us a signal proportional

to the number of Rydberg atoms created.

There are a few different reasons why the creation of a Rydberg atom would lead

to the loss of a ground-state atom. The first is that the excitation has given the atom

enough energy to leave the trap. The recoil energy of a 689 nm photon plus that of

a 319 nm photon combined is 1.36 µK with the recoil energy defined as !2k⃗2

2m . This

is sufficient to eject an atom from a shallow trap; however for deep traps, it is not

enough. Subsequent emission of the photons can up to double this energy, but only

for atoms which emit photons in a direction opposite that of the absorbed photon.

Another reason for loss is that Rydberg atoms can decay into metastable dark states.

This is more useful because loss in this channel works equally well at all trap depths.
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Atoms in a 3S1 Rydberg state can radiatively decay via many channels to lower

lying states, however for simplicity we’d like to only consider the dominant decay

paths. From a semiclassical treatment, the rate of spontaneous emission for a dipole

allowed transition is given by

ΓJi,Mi→Jf ,Mf
=

ω3
i,f

3πϵ0!c3

∑

Mf

| ⟨Jf ,Mf | d⃗ |Ji,Mi⟩ |2 (2.4)

where ωi,f is the frequency difference between the initial and final states and d⃗ is the

dipole operator. The ω3
i,f dependence in the above equation tells us that the rate of

spontaneous emission is largest when the energy difference between the states is the

largest. The dominant decay channels in our case are from the Rydberg state to the

lowest lying states connected via dipole allowed transitions, the (5s5p)3P0,1,2 states.

All three of the states are metastable as they cannot decay to the ground state

via dipole-allowed transitions. However, we know from the fact that we drive the

1S0 →3 P1 transition that it is possible to break these selection rules. This is due

to the fact that the spin-orbit interaction breaks down the LS coupling scheme such

that the 3P1 state actually has some 1P1 character, so the transition becomes weakly

allowed. However, transitions from the 3P2 and 3P0 state are forbidden by two dipole-

selection rules and have lifetimes of minutes. As a result of this, atoms that decay

from the Rydberg state to the 3P1 state will subsequently decay to the ground state

within 21 µs, while Rydberg atoms that decay to the 3P2 or 3P0 state will not return

to the ground state on the timescale of our experiment and are seen as loss of ground

state atoms when we image, even after a long time of flight.

It turns out that the polarizability of the 3P2 state at 1064 nm is similar to that

of the ground state, therefore these atoms actually remain trapped in the ODT. To
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verify that our loss is coming from the creation of metastable atoms, we perform

the following experiment. In the first scan, we use our two-photon excitation far off

resonant with the intermediate state to excite atoms to the Rydberg state for 6 ms and

count the number of ground-state atoms after a long time of flight, confirming that our

excitation shows ground-state atom loss. We then repeat the same sequence, except

immediately after the Rydberg excitation we illuminate the cloud with resonant 461

nm light for 3 ms, which is longer than the lifetime of the Rydberg state used as well

as the 3P1 state. This rapidly clears out remaining ground state atoms while leaving

3P2 atoms unaffected. After this clearout pulse we expose the repump laser for 15

ms before releasing the atoms from the trap and imaging. With this procedure, we

will only see atoms which were in the 3P2 state during the clearout pulse. Figure 2.9

shows that the loss of atoms from the trap coincides with the creation of 3P2 atoms

as expected. Atoms should also decay to the 3P0 state and remain trapped, however

we do not have the necessary repump laser available to detect these atoms.

From figure 2.9, we know that a significant fraction of Rydberg atoms decay to

the 3P2 state, but it is difficult to be quantitative about the number of Rydberg atoms

created. We need to know the trap depth for 3P2 atoms as well as the efficiency of

repumping to make quantitative statements, and this is difficult to do. So instead,

we will use atom loss as our probe, and turn to theory to figure out the number of

Rydberg atoms which will decay back to the ground state and which will end up in

metastable states. Using equation 2.4, we can calculate the branching ratio of decay

to these three states.

The states we are concerned about are only separated in energy by a small amount,

so the effect of differing ω3
i,f for these states is relatively small. Instead the dominant
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Figure 2.9 : Spectroscopic measurement showing that excitation to a Rydberg state

causes loss of atoms from the ODT. Repumping atoms from the 3P2 state shows that

radiative decay to metastable dark states is at least partially responsible for this loss.

Note the same normalization is used for both data sets.

source of the difference in decay rates comes from evaluating the dipole matrix ele-

ment. To simplify our calculation of the branching ratio, we make use of the reduced

dipole matrix element. Using the Wigner-Eckart theorem [40], the relevant matrix

element can be rewritten as

⟨Jf ,Mf | erq |Ji,Mi⟩ = ⟨Jf | |er⃗| |Ji⟩ (−1)Ji−1+Mf
√

2Jf + 1

(

Ji 1 Jf

Mi q −Mf

)

(2.5)

where ⟨Jf | |er⃗| |Ji⟩ is the reduced matrix element, q labels the polarization of the

emitted photon, and the brackets denote the Wigner 3J symbol. This can be further
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simplified by expressing the reduced matrix element as

⟨Jf | |er⃗| |Ji⟩ = ⟨Lf | |er⃗| |Li⟩ (−1)Ji+Lf+1+S
√

(2Ji + 1)(2Lf + 1)

{

Lf Li 1

Ji Jf S

}

(2.6)

where L labels the orbital angular momentum quantum number of the state, S la-

bels the spin, and the curly brackets denote the Wigner 6J symbol. By combining

these equations, the matrix element can be expressed as a number we can calculate

multiplied by a reduced matrix element which depends only on L. Since all states we

are interested in are p states, the reduced matrix element cancels out in the calcu-

lation of branching ratios. All that remains is careful book keeping to appropriately

sum over the possible Mf values for each 3PJ manifold and look up the appropriate

Wigner 6J and 3J symbols. Neglecting the energy difference of the emitted photons,

we find that the population will decay from the 3S1 state to the 3P2(3P1)[3P0] state

with a probability of 5/9(1/3)[1/9], respectively. If the energy difference is taken into

account we obtain 58.8% to the 3P2, 32.6% to the 3P1 and 8.6% to the 3P0 manifolds.

This calculation tells is that there is a significant probability of an atom decaying

to a metastable state and not returning to the ground state, so atom loss is a useful

technique in this system to detect the creation of a Rydberg atom.

2.5 Electric Field Control

As mentioned previously, Rydberg atoms are sensitive to electric fields, so it is impor-

tant to have some control over the field in the chamber. Unfortunately, our apparatus

was not designed with this application in mind, so our control over fields is limited.

The primary limitation is the design of our chamber. The top and bottom flanges

of the UHV chamber where the experiment takes place feature recessed windows that
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sit approximately 1 inch from the atoms. Glass is particularly troubling as patch

charges can develop on the glass yielding inhomogeneous fields in the chamber. To

reduce our sensitivity to this, we choose to work at low principal quantum number

where the DC polarizability of the Rydberg atoms is smaller (recall this scales as n7).

Fortunately, for the level of sensitivity we have for Rydberg levels near n = 30, the

field inside the chamber is relatively stable from day to day.

Figure 2.10 : Schematic cross section of chamber (not to scale). When not in use,

the MOT coils sit at a voltage of 5.6 V. Applying a voltage to the plate between

one MOT coil and the glass window allows limited control of the electric field in the

chamber.

To control the field inside the chamber, we place an annular ring between one of

the MOT coils and the glass window as shown in figure 2.10, and apply a voltage to
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it. This only allows control of the field in one dimension which severely limits our

ability to make quantitative measurements of the polarizability of Rydberg atoms.

However, as will be shown later it is sufficient to make relative measurements of the

polarizability of Rydberg atoms and molecules. Also, it can give us a lower bound on

the field experienced by any ions which might be created to allow estimation of the

timescale it takes them to leave the trap.

It is noticed that the absolute value of the voltage we apply to the ring must

remain below 8 V otherwise a charging effect is evident on the glass and the field can

no longer be controlled. However, if this occurs, we have seen that the charging of

the glass dissipates over the course of a few hours. Due to the limitations of charging

of the glass and the potential of the MOT coils, it should be noted that there is an

asymmetry in the value of the field we can apply.

2.6 Finding a Rydberg Line

This final section is dedicated to the art of finding a Rydberg line. As I previously

mentioned, there has been limited spectroscopy on the triplet Rydberg series in Sr,

so there is not much data to guide the hunt. Therefore one needs to be willing to

be patient and persistent when looking for a new line. In the spirit of full disclosure,

it took about two weeks of constant searching to find the first Rydberg line on our

experiment. I hope that the knowledge I pass on here helps other grad students avoid

that particular trauma.

Between previous work [41, 42] and calculations from knowledge of the quantum

defect [21], it is easy to get within a few GHz of the line position. Assuming you
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know the position of the line within this range there are a few ways to proceed. First,

you can try two-photon excitation of atoms trapped in the 461 nm MOT, however

this technique is only efficient for 88Sr. As 88Sr is the most abundant isotope, it is

easy to create a large MOT with a few 108 atoms in steady state. With that many

atoms fluorescing, the fluorescence can be monitored on a photodiode as the MOT

is loaded continuously. With both laser beams aligned to the MOT, one will see a

decrease in fluorescence as the UV laser scans across resonance. Unfortunately, we

cannot create large enough MOTs of the other isotopes to monitor the fluorescence,

so this technique is not useful for other isotopes.

A second technique, which can be applied to all isotopes, is to excite atoms from

the 689 nm MOT. This only requires the UV laser as the first photon of the two-

photon transition will come from the MOT beams. Typically, we manually scan the

UV laser frequency by changing the voltage to the seed PZT with the laser unlocked.

While monitoring the number of atoms at the end of the 689 nm MOT, we can

identify the approximate position of the line and note the wavelength that is read

on the wavemeter. We then find the transmission mode of the transfer cavity which

allows us to lock the laser to as close to that value as possible and scan the laser using

the double pass AOM as usual. This allows determination of the line position to MHz

accuracy. Finally, to get the most accurate spectra, we use a low temperature sample

in the ODT excited using our typical two-photon excitation scheme.

Using these techniques, we have successfully found eleven Rydberg levels in the

ns3S1 Rydberg series of 84Sr. Combining our measurements of the photon energy

required to excite the transition with previous measurements of the ionization energy

and energy of the 3P1 state [37], we are able to extract an accurate measurement of the
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Figure 2.11 : Measurement of the quantum defect of the ns3S1 Rydberg series in Sr.

The observed energies are fit extremely well using the Rydberg formula.

quantum defect. As shown in figure 2.11, we obtain an excellent fit and our measured

result agrees very will with the prediction of 3.371 from [21]. The dominant source of

uncertainty in our measurement is from our wavemeter, which we use to to measure

the energy of the 638 nm (which is then up converted to our 319 nm) photon. Using

our fit value now usually gives us an even better starting point from which to look

for a new resonance, greatly reducing the amount of time we need to spend hunting.

As seen in the data, the excellent fit to the Rydberg formula shows no evidence of

perturbations of this Rydberg series within the range of principal quantum numbers

we have measured. For the interested reader, below is a table listing the measured

energies for convenience.
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Principal Quantum Number Total Energy [cm−1]

24 45674.289

27 45735.626

28 45751.260

29 45765.105

30 45777.416

31 45788.418

32 45798.284

33 45807.169

34 45815.201

35 45822.478

36 45829.101

Table 2.1 : Experimentally measured energies of selected levels of the ns3S1 Rydberg

series of 84Sr.
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Chapter 3

Ultralong-Range Rydberg Molecules

3.1 Introduction

The first experiment we will discuss is the study of ultralong-range Rydberg molecules.

This work was originally performed over a year ago and through fruitful collaboration

with a number of theorists has resulted in the following submitted paper which I will

include here verbatim. At the time of this writing, the paper is under review.

For the work presented in the paper, all experimental work was performed by my-

self and Jim Aman under the supervision of Drs. Killian and Dunning. All theoretical

calculations have been carried out by our collaborators, Drs. Yoshida, Burgdorfer and

Sadeghpour. The actual writing of the paper has been a shared duty, with the intro-

duction, experimental details and conclusion written collaboratively by myself and

Dr. Killian, figures prepared by Jim Aman, and the theory section written by Drs.

Yoshida and Sadeghpour.
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3.2 Submitted Publication: Ultralong-Range Rydberg Molecules

in a Divalent-Atomic System

3.2.1 Abstract

We report the creation of ultralong-range Sr2 molecules comprising one ground-state

5s2 1S0 atom and one atom in a 5sns 3S1 Rydberg state for n ranging from 29 to 36.

Molecules are created in a trapped ultracold atomic gas using two-photon excitation

near resonant with the 5s5p 3P1 intermediate state, and their formation is detected

through ground-state atom loss from the trap. The observed molecular binding en-

ergies are fit with the aid of first-order perturbation theory that utilizes a Fermi

pseudopotential with effective s-wave and p-wave scattering lengths to describe the

interaction between an excited Rydberg electron and a ground-state Sr atom.

3.2.2 Main Body

Low-energy scattering of the nearly free, excited electron in a Rydberg atom from a

ground-state atom can bind the two atoms into an ultralong-range Rydberg molecule

[43, 44]. The resulting internuclear spacing is on the order of the size of the Rydberg

atom, which scales with the principal quantum number, n, as n2 and can exceed

one micrometer. This class of molecules has attracted significant attention because

it demonstrates a new mechanism for chemical bonding and the molecules possess

surprising features, such as the presence of a permanent electric dipole moment, even

in the homonuclear case [24]. Here, we report the creation and theoretical description

of ultralong-range Sr2 molecules involving a 5sns 3S1 Rydberg atom.

Ultralong-range molecules were originally predicted theoretically [43] and were
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subsequently observed in Rb [44] and Cs [45]. The original observations were of

dimers involving spherically symmetric S Rydberg states [44], but now measurements

have been extended to anisotropic P [46, 47] and D [48, 49] Rydberg states and to

molecules comprising one Rydberg atom and as many as four ground state atoms

[50].

There has been increasing interest in ultracold Rydberg gases of alkaline-earth

metal atoms because of several new possibilities introduced by their divalent electronic

structure. The principal transition of the Rydberg core is typically in the visible range

and can be used to drive auto-ionizing transitions [51], to image Rydberg atoms or

ions [22], and to provide oscillator strength for magic-wavelength optical trapping of

Rydberg atoms [52]. Doubly excited states serve as strong perturbers of Rydberg

states, creating a much richer assortment of electronic configurations than found in

alkali-metal atoms. The existence of triplet and singlet excited levels provides many

Rydberg series, giving access to attractive and repulsive interactions [21]. Two-photon

excitation to triplet Rydberg levels via the intermediate 3P1 state, as used here, can

also reduce the overall decoherence from light scattering for a given strength of optical

coupling to the Rydberg level as compared to two-photon transitions available in

alkali-metal atoms [13]. The results reported here represent the first experiments

involving ultracold Rydberg atoms excited via intermediate triplet excited states.

Within the framework of a two-active-electron approximation, one of the two

valence electrons can be excited to a Rydberg state. The interaction between the

excited Rydberg electron and a neighboring ground-state atom can be described using

the Fermi pseudopotential [53, 54]
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Vpseudo(r1, r2,R) =
2
∑

i=1

2π!2As[k(R)]

me
δ(ri −R) (3.1)

+
6π!2A3

p[k(R)]

me

←−
∇δ(ri −R)

−→
∇,

where ri and R specify the positions of the Rydberg-atom valence electron and

ground-state atom, respectively, measured from the Rydberg core. The momentum

dependent s-wave and p-wave scattering lengths are As(k) and Ap(k). The Rydberg-

electron momentum in a semiclassical approximation is !k(r) =
√

2me(e2/(4πε0r)−Eb),

where Eb is the binding energy of the unperturbed Rydberg atom. This approximation

is justified for highly excited 3S1 Rydberg states for which the hydrogenic approxima-

tion is valid at large r. Since only one of the two valence electrons interacts strongly

with the ground-state atom, the molecular potential can be calculated using effective

one-electron wavefunctions similar to alkali atoms. The electron-electron interaction

contributes to the quantum defect affecting the behavior of the wave function at large

r. When the molecular potential forms an attractive well, ground-state atoms can be

bound to a Rydberg atom yielding a Rydberg molecule.

The creation of ultralong-range molecules requires ultracold temperatures so that

thermal energies are lower than their small binding energies (∼ 10MHz). Also, high-

density samples are necessary to ensure a sizeable probability of finding two atoms

with separations less than the radial extent of a Rydberg electronic wavefunction. We

obtain these conditions using 84Sr atoms confined in an optical dipole trap (ODT).

This isotope has collisional properties favorable for evaporative cooling and the cre-

ation of high phase-space-density samples [55]. Details of the cooling and trapping

are given in Ref. [27].
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At the start of the excitation time, the atoms are held in a pancake-shaped ODT

formed by two crossed 1064-nm laser beams both having horizontal and vertical waists

of about 370µm and 40µm respectively. The trap oscillation frequencies are 12 and

158Hz. Typically 7 × 105 atoms are trapped at a temperature of 200 nK yielding a

peak density of ρ = 2.7 × 1012 cm−3. This corresponds to an average interparticle

spacing of 1/ρ1/3 = 0.7µm, which is about 10× the distance from the nucleus to the

outer lobe of the Rydberg electron wave function 2n∗2a0 ≃ 75 nm for n = 30 and

n∗ = n − δ. We determine the 5sns 3S1 state quantum defect δ = 3.372 ± 0.001 by

fitting observed Rydberg lines between n = 24 to 36, and this value agrees well with

the value δ = 3.371 from Ref. [21].

Atoms are promoted to Rydberg states through two-photon 5s2 1S0-5s5p 3P1-5sns 3S1

excitation. The 689 nm laser for the first step is detuned 170MHz to the blue of the

intermediate state to avoid scattering from the atomic line and associated molecular

resonances. Rydberg states with n = 29 − 36 are reached with photons at 319 nm

generated by frequency doubling the red output of a fiber-based optical parametric

oscillator laser. Approximately 200mW of UV power is available. The intensities of

the red and UV light on the atoms are 2.2 × 103W/m2 and 2.3 × 105W/m2 respec-

tively. The UV and 689 nm lasers co-propagate with orthogonal linear polarizations.

This configuration excites a superposition ofm = +1 andm = −1 3S1 Rydberg states.

The frequency of the UV light is controlled by locking the 638 nm fundamental to

an optical cavity stabilized to the 689 nm laser, which is locked to the 5s2 1S0-5s5p 3P1

atomic transition. The UV frequency is scanned using an acousto-optic modulator in

a double-pass configuration in the path of the 638 nm light en route to the stabilization

cavity. The excitation time is precisely controlled using an acousto-optic modulator
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on the 689 nm beam, while the UV light is controlled by a slower mechanical shutter.

After excitation, the atoms are released from the trap and the ground-state atom

population is measured with time-of-flight absorption imaging on the 5s2 1S0-5s5p 1P1

transition at 461 nm. Excitation to atomic Rydberg or molecular levels is detected

as ground-state atom-loss. The exposure time is held constant for the molecular

spectrum for a given quantum number and is approximately ∼ 2 s. This results

in approximately 50% peak loss for excitation to the most deeply bound molecular

level. For atomic resonances (data not shown), 50% peak loss is obtained for ∼ 10ms

excitation. The ODT is left on during excitation, and we assume the AC Stark shift

is the same for the atomic and molecular transitions in our quoted results.
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Figure 3.1 : (Left) Atom-loss spectra and (Right) calculated potentials and

wavefunctions,Rχν(R), for n=30 (top), 33 (middle), and 36 (bottom). The bars at

the top of the molecular spectra indicate the positions of the theoretically-predicted

binding energies of states bound by > 1MHz and the curves at the bottom indicate

their calculated excitation strength. The origin of each frequency axis is set to the

center of the atomic excitation spectrum (see text).

Typical atom-loss spectra are shown in Fig. 3.1. The spectra are relatively simple

because of the closed-shell 1S0 electronic-ground state and lack of nuclear spin for

84Sr. Atom loss is an indirect method of detecting excitation as compared to the
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traditional technique of pulsed-field ionization and charged-particle detection [44,

45, 46, 48, 50], but it can still yield a high signal-to-noise ratio. A comprehensive

understanding of the decay channels of ultralong-range molecules is still lacking, but

it is clear that a large fraction of excitations should lead to measurable ground-

state atom loss. Fluorescent decay after either atomic or molecular excitation has a

sizable probability, approximately two-thirds, of creating long-lived 3P0 or 3P2 atoms.

Such atoms may remain trapped but they are invisible to absorption imaging. The

recoil energies of h2/2m84λ2689kB = 0.24µK and h2/2m84λ2320kB = 1.1µK are smaller

than the 1.9µK depth of the ODT. However, collisional processes involving ground-

state atoms and tunnelling to small internuclear separation can reduce the molecular

lifetime significantly compared to the atomic lifetime for conditions similar to ours

[56]. Such tunnelling should release enough energy to eject one or both atoms from the

trap. For atomic excitation, it is possible that the density of Rydberg atoms becomes

high enough for inelastic Rydberg-Rydberg collisions to lead to atom loss [57]. The

density of molecules, however, is low enough that such processes are negligible.

The threshold for the molecular-binding energy for each principal quantum num-

ber is determined by measuring the resonance position for atomic excitation to the

5sns 3S1 state. This is done with a 10ms excitation time to avoid saturating the

transition, and it results in a ∼ 800 kHz FWHM linewidth, which is likely limited by

the UV laser linewidth. For such short excitation times, no molecular transitions are

visible. For excitation times on the order of 1 s, however, clearly resolved resonances

corresponding to molecular bound states appear to the red of the (highly-saturated)

atomic line. No transitions are observed to the blue or further to the red of the regions

shown. Data are fit to the wing of a Lorentzian to describe the atomic background
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plus a gaussian for each molecular line. Molecular-binding energies are determined

by the frequency difference between molecular and atomic lines.

Typical molecular linewidths are 800 kHz FWHM, again limited by the UV laser

linewidth. Several spectra were recorded for each principal quantum number, al-

ternating between measurement of atomic and molecular lines. The uncertainties

in the molecular line positions with respect to the atomic line are the statistical

1σ uncertainties in the mean for each group of measurements. The typical value is

±150 kHz. DC Stark shifts of the transitions were measured for n = 36 by applying

DC electric fields of up to about 0.5 V/cm. The extracted atomic and molecular DC

polarizabilities were equal at our level of precision ±0.5MHz/(V/cm)2 and calculated

theoretically to be -4.5MHz/(V/cm)2.

For the present range of n and our relatively low densities, the production rate for

trimers is expected to be much lower than for dimers [58, 50] and therefore difficult

to detect with our current methods. The most deeply bound level observed for each

principal quantum number is assigned to the vibrational ground state of one atom in

the potential well formed by the outermost lobe of the Rydberg electron wavefunction.

This is confirmed by calculations of the potentials and molecular wavefunctions (Fig.

3.1(Right)), which show that this state is well localized in this well. The more weakly

bound levels correspond to vibrationally excited states, which are delocalized across

several lobes of the electron probability density.

The electron wave function Ψ(r1, r2) of the 3S1 Rydberg atom can be calculated

by numerically diagonalizing the Hamiltonian within the two-active-electron model.

Spin-orbit interaction is included, but its effects are small [59]. The model potential

is fitted to reproduce the measured energy levels in the singlet sector [60], and yields
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the quantum defect δ = 3.376 for 3S1 states, which agrees well with the more precise

measured value. The calculated wave functions for 3S1 Rydberg states with n ∼ 30

are dominated by a single configuration

Ψ(r1, r2) ≃
1√
2
(φ5s(r1)ψns(r2)− ψns(r1)φ5s(r2)) (3.2)

where φ5s(r) and ψns(r) are the wave functions of the 5s state for Sr+ ions and the

Rydberg ns state for Sr atoms, respectively. The contributions from the other con-

figurations are smaller than 0.01%. Using the first-order perturbative approximation

the molecular potential around R ≃ 1000 a.u. can be evaluated

V (R) ≃
2π!2As(k)

me
|ψns(R)|2 +

6π!2A3
p(k)

me
|∇ψns(R)|2 . (3.3)

Since the second valence electron in the 5s state is rather localized (i.e. φ5s(r) ≃ 0

for r > 20 a.u.), it does not affect the molecular potential at large R and, therefore,

V (R) becomes similar to that for effective one-electron systems.

By solving the Schrödinger equation associated with the molecular potential, the

binding energies and the wave functions for Rydberg molecules are obtained. The

effective scattering lengths are taken to be

As(k) = As(k = 0) +
π

3
αk2 Ap(k) = Ap(k = 0) . (3.4)

The measured value, α = 186a30, is used for the polarizability [61]. It is known [58] that

a non-perturbative Green’s function calculation correctly reproduces the measured

molecular energy levels using the true zero-energy s-and p-wave scattering lengths.

Within the first-order perturbative approximation, however, good agreement can be



55

obtained by considering the scattering lengths as effective fitting parameters. For

strontium, while the calculated s-wave scattering length is As(k = 0) = −18 a0 [62],

an effective scattering length of As(k = 0) = −13.2a0 for n = 30 to −13.3a0 for n = 36

yields good agreement with the measured energy levels, especially the most deeply

bound molecular states. Although the depth of the deepest well in the molecular

potential linearly scales with As(k = 0) (Eq. 3.3), the additional contribution from

p-wave scattering becomes non-negligible around the nodes (i.e. |ψns(R)| ≃ 0) and

affects the energies of the weakly bound levels and their density of states. They are

optimally fitted using the value of Ap(k = 0) ≃ 8.4a0.

The molecular formation rate can be calculated as Γν ∝ |⟨Ψ,χν|T |Ψ0,χ0⟩|2 where

T is the transition matrix for two-photon absorption, and Ψ0, χ0, χν are the ground-

state-electron wavefunction, the initial state, and the ν-th vibrational wavefunction of

the Rydberg molecule, respectively. Within first-order perturbation theory, the elec-

tronic part of the transition matrix is independent of the molecular states. Therefore,

the excitation rate is reduced to the Franck-Condon factor

Γν ∝
∣

∣

∣

∣

∫

dRR2 χν(R)χ0(R)

∣

∣

∣

∣

2

. (3.5)

In the present case χ0 can be approximated as the square root of the pair distribution

of two unbound ground-state Sr atoms. The latter can be taken to be approximately

constant for the large R values contributing to the integral Eq. 3.5. Using the exci-

tation rate Γν the excitation spectrum can be derived as f(E) =
∑

ν Γνδ(E − Eν).

The spectrum is convolved with a Gaussian distribution associated with the laser

linewidth and plotted in Fig. 3.1. The agreement between the measured and calcu-

lated spectra is very good. The calculations reveal the existence of more molecular
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levels, but their excitation strengths are too weak to detect in the measurements.

Figure 3.2 shows the n scaling of the observed binding energies together with the

calculated values. The binding energies of deeply bound states follow the approximate

1/(n − δ)6 scaling seen in Rb [50]. Gaps in laser coverage prevented measurement

of spectra for n = 31 and n = 32. Deviations from the scaling are evident for

weakly bound states and are clearly seen in high-quality spectra for n = 30. The

energy scaling reflects the scaling of the probability density |ψns(R)|2 of the Rydberg

electron at the location of the unperturbed Sr atom. The wave functions of the most

deeply bound states for 29 ≤ n ≤ 36 are confined in the most outer well of the

molecular potential (Fig. 3.1). Therefore, the corresponding binding energies scale

with the depth of the well by 1/(n− δ)6 as the quantum number n varies. When the

first-excited state of this potential well is nearly degenerate with the lowest energy

state of the adjacent well, the coupling between two states yields an energy splitting,

∆. If a molecular state confined in a single well for a given n experiences tunneling

to an adjacent well for another value of n, the molecular energy does not scale with

the potential depth showing a deviation ∼ ∆ from the 1/(n − δ)6 scaling. Such a

transition in the wave function is seen for some excited vibrational levels (Fig. 3.1).

For example, although the first excited vibrational state’s wave function is rather

confined within the first two outer wells for the given range of n, the second-excited

state tunnels ever deeper into inner wells as n increases. Thus the deviation from the

scaling is prominent for the latter (Fig. 3.1). Note that data obtained for n = 29 were

of inferior quality, but we were able to identify the three lines indicated in Fig. 3.2.
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Figure 3.2 : Scaling of observed molecular binding energies, showing 1/(n−δ)6 scaling

for higher quantum numbers and more deeply bound levels.

We have presented the first observation of ultralong-range Rydberg molecules in

Sr2 formed by photoexcitation to the 5sns 3S1 Rydberg state for 29 ≤ n ≤ 36. The

observed lines are well described using a Fermi pseudopotential approach to calculate

perturbative molecular potentials and yield the effective s-wave and p-wave e−-Sr

scattering lengths As = −13.2a0 and Ap = 8.4a0.

This work represents the first study of ultralong-range Rydberg molecules in a

divalent-atomic system, and it opens new directions in this emerging research area.

Doubly excited electronic states give rise to dramatic perturbations of the Rydberg

states in divalent atoms. This should lead to new types of ultralong-range molecules

with mixed electronic character that arise from degeneracies of pairs of Rydberg levels

of different angular momenta. This may also lead to very strong transition strengths
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for production of molecules with large dipole moments. If one can form Rydberg

molecules with high electronic angular momenta, it might be possible to optically

trap them using the oscillator strength of the ionic core [52]. High densities of atoms

in metastable triplet levels can be created in these systems [63], allowing the forma-

tion of Rydberg molecules in which triplet atoms serve as the “ground-state” atoms.

Spectroscopy of these molecules will probe the low-energy scattering of electrons from

the metastable states including measuring the electron-triplet scattering length, which

should be sensitive to the greater polarizability compared to closed-shell, ground-state

atoms.

Detection of ultralong-range molecules with atom loss, as demonstrated here,

greatly simplifies the required experimental apparatus compared to charged parti-

cle detection, which may open the way for study of these exotic molecules in many

other species of atomic gases. The measurements reported here also represent an

important step towards future experiments with interacting alkaline-earth Rydberg

atoms because molecular excitations represent loss channels that need to be avoided.
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3.3 Additional Material

In this section, I will include additional supplemental material that was not included

in the paper.

3.3.1 Rydberg Excitation

While described in the text, it is helpful to show the geometry of the system and

discuss the details of our method of excitation of Rydberg atoms and molecules.

Figure 3.3 shows the relative propagation directions and polarizations of the laser

used as well as a simplified level diagram.

Figure 3.3 : a.) Cartoon layout of geometry used in experiment. 689 nm and 319 nm

lasers copropogate with orthogonal linear polarizations. b.) Simplified level diagram

of transitions probed in experiment yielding an effective one photon transition to the

Rydberg state.

As we see, the lasers are far off resonance with the intermediate state, so we can
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think of this as an an effective one-photon transition with an effective Rabi frequency.

With a near zero magnetic field, all three mj levels of the Rydberg state are degen-

erate, so by choosing the polarization we can couple to any mj state at the same

frequency. We use copropogating laser beams with mutually orthogonal linear polar-

izations. By choosing a quantization axis aligned with one of the lasers polarizations,

the polarization of the other laser can be described as an equal superposition of left

and right circular polarization. Therefore our lasers will couple to the mj = ±1 states

equally.

At first glance, this seems like a strange choice as typically we are interested in

exciting only a single Rydberg level. However, with copropogating beams and linear

polarization, this is the only choice that will work. The linear polarization of the

689 nm laser will drive the transition 1S0(mj = 0) →3 P1(mj = 0). With aligned

polarizations, the 319 nm laser would unsuccessfully try to drive the 3P1(mj = 0)→

ns3S1(mj = 0) transition, which has a matrix element of 0. Owing to optical access

considerations at the time of the experiment, using copropogating beams made the

best use of space and therefore crossed polarizations were used to yield a non-zero

coupling to the Rydberg state.

One downside of simultaneously exciting to mj = ±1 states is that both are

sensitive to magnetic fields and will experience equal and opposite shifts. Non-zero

magnetic fields can broaden and eventually split the measured line leading to difficul-

ties in accurately measuring the line center. However, as we see in figure 3.4, even in

this configuration we are able to obtain narrow linewidth spectra which confirms that

the magnitude of stray magnetic fields in the experiment is small. As described in

the main body of the text, the width measured here is consistent with the linewidth
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Figure 3.4 : Example of a narrow atomic spectra taken with during the course of

the Rydberg molecule experiment. The obtained spectrum is well described by a

gaussian with a full width at half max (FWHM) of 550 kHz. This is limited by the

linewidth of the 319 nm laser, and gives confidence that stray magnetic fields do not

cause significant problems in our magnetically sensitive excitation scheme.

of the 319 nm laser at the time of the experiment (it has since been improved with

the aid of our high bandwidth lock described in chapter 2).

3.3.2 Stark Shift Measurements

As discussed in chapter 2, our control over electric fields is limited, so in absolute

terms it is difficult to extract the DC polarizability of a Rydberg state. However, for

the purposes of this work, it is sufficient to measure the relative polarizabilities of the

Rydberg atoms and molecules.

To measure the DC polarizability, we excite Rydberg atoms and molecules in

varying electric fields to see how the resonance position shifts with the applied field.
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Figure 3.5 : Measurement of the polarizability of an n = 36 Rydberg atom and a

ground state Rydberg molecule at n = 36. Both show the same polarizability within

experimental uncertainty.

From simple modeling of the fields in the chamber done by Francisco Camargo using

the software SimIon, we know that the electric field varies linearly with the applied

voltage with a conversion factor of 0.9 V/(V/cm2). This disagrees with a calibration

using the calculated DC polarizability of the 36s3S1 state, which yields a conversion

factor or 1.16 V/(V/cm2). For our measurement here, we use the latter calibration.

Figure 3.5 shows that we see the expected quadratic dependence of both the atomic

and ground state molecular resonance with applied electric field. It should be noted

that zero field does not correspond to zero voltage. As shown in figure 2.10, during

the excitation time the MOT coils are held at a non-zero potential in this case of 5.6

V. From geometry, we see that the zero of the electric field should occur near where
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the voltage on the electric field plate is equal to the voltage on the MOT coils. Since

our calibration uses the calculated value of the polarizability, this does not constitute

an independent measurement of the absolute value of the polarizability. But, within

the error of the fit, the atom and molecular polarizabilities are equal.
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Chapter 4

Rydberg Blockade Effects on Autler-Townes

Spectra in an Ultracold Dense Gas

4.1 Introduction

The study of ultracold gases of Rydberg atoms has grown into a vast field in recent

years. As discussed in the first chapter of this thesis, this is driven by the many novel

effects and potential applications that may arise from the strong, long-range inter-

actions between Rydberg atoms and the Rydberg-blockade phenomenon [64, 65, 4].

Major themes in this research include quantum information [66], quantum optics (e.g.

[67]), dynamics of driven dissipative systems [14, 68, 69, 70, 71, 72], and many-body

physics with long-range interactions. The latter category includes phase transitions

to strongly correlated classical crystals [73, 11, 12, 74], realization of spin-models

on optical lattices [75, 76], and phenomena in bulk gases such as three-dimensional

solitons [15], roton-maxon excitations [13], and super-solids [18, 11, 19, 13]. The use

of Rydberg dressing to control the strength and character of Rydberg interactions

[77, 78, 25, 26] figures prominently in most of these proposals.

In spite of some prominent advances [74, 26], in general the novel many-body

states predicted for strongly interacting Rydberg gases remain elusive because of

large loss and dephasing rates observed experimentally [79, 25]. Much remains to be

understood, especially on how complex dynamics in dense Rydberg gases (beyond
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the ideal quantum optics description) affect these systems, such as plasma formation

[80, 81, 79], non-adiabatic level-crossings at short-range [71], and superradiance [82,

83, 84, 85]. The correct description of Rydberg blockade and Rydberg dressing in very

dense gases with strong Rydberg excitation is also an active area of study [78, 25].

Many of these open questions are probed with experiments studying quantum

interference effects in the optical excitation of interacting, ultracold Rydberg gases,

including coherent population trapping (CPT) [86, 87], electromagnetically induced

transparency (EIT) [83, 88, 89, 87], and Autler-Townes (AT) spectra [90, 91, 92].

This is important background for the work presented in this thesis, and I will discuss

the details of these various experiments later in this chapter.

4.2 Theoretical Groundwork

4.2.1 Interaction Effects

In chapter 2, we discussed the classic picture of Autler-Townes splitting. For our

observable of ground-state atom loss, we found two symmetric loss peaks split by the

Rabi frequency of the strong driving field, Ω12. However, for the case of ultracold

Rydberg atoms in a dense gas, this solution will certainly not always be the case. The

natural question that arises is: How do interactions modify the spectra? To answer

this question, need to modify our treatment.

In the absence of interactions and decoherence, it was sufficient to write down

the Hamiltonian and diagonalize it to find the eigenstates. We did this using only

two states, but it is possible to extend that treatment to the three level problem.

However, interactions and decoherence need to be handled separately and we turn to
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solving for the time evolution of the density matrix, ρ. Fomally, non-unitary terms

such as spontaneous decay and decoherence can be described using the Lindblad su-

peroperator, L(ρ). The exact form of L(ρ) depends on the problem at hand, however

in general one is able to use this method to solve for the dynamics of the density

matrix by solving the master equation,

ρ̇ =
i

!
[ρ, H ] + L(ρ). (4.1)

For our system, including spontaneous decay, finite laser linewidths, and a modi-

fied mean-field treatment of energy-level-shift and dephasing terms affecting the Ry-

dberg state, |2⟩, this yields the following system of equations known as the optical

Bloch equations [93, 85].

ρ̇00 =Γ10ρ11 − Ω̃01Im(ρ01)

ρ̇11 =− Γ10ρ11 + Γ21ρ22 + Ω̃01Im(ρ01)− Ω̃12Im(ρ12)

ρ̇22 =− (Γ21 + Γ2Loss)ρ22 + Ω̃12Im(ρ12)

ρ̇01 =−
(Γ10 + Γ1

2
+ i∆01

)

ρ01 −
iΩ̃01

2
(ρ11 − ρ00) +

iΩ̃12

2
ρ02

ρ̇12 =−
[Γ10 + Γ21 + Γ2Loss + Γ2Laser + Γ2Ryd(n)ρ22

2
+ i(∆12 − VRyd(n)ρ22)

]

ρ12

−
iΩ̃12

2
(ρ22 − ρ11)−

iΩ̃01

2
ρ02

ρ̇02 =−
[Γ1 + Γ21 + Γ2Loss + Γ2Laser + Γ2Ryd(n)ρ22

2
+ i(∆01 +∆12 − VRyd(n)ρ22)

]

ρ02

+
iΩ̃12

2
ρ01 −

iΩ̃01

2
ρ12 (4.2)

where Γij denotes the spontaneous decay rate from |i⟩ → |j⟩, Γ2Loss denotes spon-

taneous decay from |2⟩ that results in a loss of atoms, and Γ1 and Γ2Laser are the
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dephasing rates due to laser linewidth of |1⟩ and |2⟩, respectively. Note that we

have defined Ω̃ij = ΩijΘ(τij − t) using the Heaviside theta function to accommodate

non-simultaneous laser turn off times. For visualization purposes, a simplified level

diagram, including all terms except dephasing, is included in figure 4.1.

Figure 4.1 : Simplified level diagram of the three level system under consideration.

V = VRyd(n)ρ22 describes energy level shifts and Γ = Γ2Ryd(n)ρ22 describes de-

phasing. As written, the influence of each will depend on the density of Rydberg

atoms through the factor ρ22, but to first understand the effects of these terms on

the spectra, let’s ignore that and see what happens when V and Γ are constants.

In the right panel of figure 4.2, we see that increasing V behaves in a qualitatively

similar way to making ∆12 ̸= 0. This makes sense as this term shifts the energy

of |2⟩. It is important to note that this term can give rise to loss at two-photon

resonance (∆01 = 0), however, this loss is strongly suppressed. In our system, loss



68

0.25
0.5

0.75
1

Γ

Γ/Ω12 =0

0.25
0.5

0.75
1

Γ/Ω12 =0.5

0.25
0.5

0.75
1

R
el

at
iv

e 
A

to
m

 N
um

be
r

Γ/Ω12 =1

∆01/2π
−Ω12 −Ω12/2 0 Ω12/2 Ω12

0.25
0.5

0.75
1

Γ/Ω12 =5

0.25
0.5

0.75
1

V

V/Ω12 =0

0.25
0.5
0.75
1

V/Ω12 =0.5

0.25
0.5
0.75
1

V/Ω12 =1

∆01/2π
−Ω12 −Ω12/2 0 Ω12/2 Ω12

0.25
0.5
0.75
1

V/Ω12 =5

Figure 4.2 : Effects of a constant V or Γ on Autler-Townes spectra. While increasing

V causes asymmetry in the strength of the peaks and shifts their position, increasing

Γ causes a broadening and eventually a strong loss feature at zero detuning.

only occurs from the Rydberg state, as previously discussed, and for the eigenstate

with an eigenenergy moving closer to two-photon resonance, the amount of Rydberg

character in the state diminishes.

In the left panel, we see the effects of increased dephasing are markedly different

from those of V . There is no apparent shift in the positions of the loss features, and

at low values of Γ only a broadening of the peaks is evident. On the other hand, for

large values of Γ, a very strong loss feature arises at two-photon resonance implying a

large fraction of Rydberg character. This can be understood in the limit of extremely

large dephasing, where one can think of the intermediate state as being coupled to
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a broad, decaying continuum. In this picture, excitation to the intermediate state

results in loss without introducing the Autler-Townes structure. From these plots, it

is evident that the effects of V and Γ are different in Autler-Townes spectra, and this

fact allows us to disentangle the two as we look at experimental spectra.

4.2.2 Rydberg-Rydberg Interactions

To go forward with our analysis, we need to consider the functional form of Rydberg-

Rydberg interactions. A detailed treatment of this problem can be found in [4],

but for our purposes it is sufficient to discuss the highlights. In the limit of a large

separation (R⃗ = Rn⃗) between two atoms, the interaction term of the Hamiltonian

can be written as

H12 =
µ⃗1 · µ⃗2 − 3(µ⃗1 · n⃗)(µ⃗2 · n⃗)

4πϵ0R3
(4.3)

where µi the dipole moment of atom i. This Hamiltonian will only connect initial

and final states of two atoms if the initial and final state of each atom individually

are connected according to dipole selection rules.

Let us first consider a two-atom system in a state |r1, r2⟩ close in energy to a

single state |r′1, r′2⟩ connected by matrix elements of equation 4.3. We can rewrite the

Hamiltonian in the convenient form

Hint =

(

!∆ Vdip

V †
dip 0

)

(4.4)

where we have defined Vdip = ⟨r′1, r′2|H12 |r1, r2⟩ and !∆ = (Er′
1
+ Er′

2
)− (Er1 + Er2)

is the Förster energy defect with Er denoting the energy of the single atom Rydberg

state. As we see, Vdip will couple states of opposite parity and its value is related
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to C3. If for example, |r1, r2⟩ = |n1S, n2P ⟩, then |r′1, r′2⟩ = |n2P, n1S⟩ and ∆ = 0.

This leads to a strong flip-flop interaction. If |r1, r2⟩ = |n1S, n1S⟩, then we may have

|r′1, r′2⟩ = |n2P, n3P ⟩ and ∆ ̸= 0.

It is clear that the atomic pair states we have mentioned are not the eigenstates

of the Hamiltonian, but by diagonalizing we find the position dependent eigenvalues

E±(R) =
!∆±

√

(!∆)2 + 4Vdip(R)2

2
. (4.5)

For the case of two interacting s-state Rydberg atoms in the limit of small sep-

aration or small detuning, this reduces to E± = ±C3/R3, resulting in dipole-dipole

interactions. However, for large separations, a Taylor expansion of equation 4.5, or

application of second-order perturbation theory, shows that the leading contribution

to the energy level shift is of van der Waals type, E− = −(C3/R3)2

!∆ = −C6/R6 As can

be seen, the sign of the interaction is then dependent on the sign of the Förster energy

defect, which depends on the the energy of the nearest level. The spacing of Rydberg

levels comes down to knowing the quantum defect of the Rydberg states involved, so

at a simple level, the quantum defects tell us all we need to know.

To illustrate this further (and see where this treatment fails), let’s consider a few

examples of atomic species of Rydberg atoms. Rubidium has a quantum defect of

3.131 for s states and 2.655 for p states [94] which yields a negative Förster energy

defect for |ns, ns⟩ → |(n+ 3)p, (n− 3)p⟩ causing repulsive van der Waals interactions

for the s states. However, it should be noted that due to the presence of a p wave

shape resonance, interactions between Rb Rydberg atoms are more complicated than

this simple treatment. For Sr, we can consider both the singlet and triplet Rydberg

series. In the singlet series the1S0(1P1) quantum defects are 3.269(2.729)[21] that
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yields a positive Förster energy defect and attractive interactions between s states.

The triplet series, with quantum defects for the 3S1(3Pj) of 3.371(2.88)[21], we again

obtain repulsive interactions. For the triplet s states of Sr, the energy defect is

smaller than that for Rb, overall yielding a larger value of C6 for the same principal

quantum number. Also in the case of Sr, there is no p wave shape resonance so this

description accurately captures the interactions between Sr Rydberg atoms. As a

final example, we note the complicated case of Cs. With an s state quantum defect of

4.049 [95], there is a near degeneracy of |ns⟩ and |(n+ 4)g⟩ yielding mixing of levels.

As such interactions between Cs Rydberg s states are very complicated and beyond

the capabilities of this simple approach.

4.2.3 Mean-Field Theory and Beyond

With the basic machinery and some intuition in place to treat level shifts and dephas-

ing, we now will develop an approach to appropriately handle these interactions for

an ultracold Rydberg gas. The Rydberg atoms under discussion are s-state Rydberg

atoms, with repulsive isotropic van der Waals interactions, V = C6

!

1
|r|6 .

Looking at this form, from dimensional analysis we expect a scaling of V ∝ ρ2,

where ρ is the density. However, to get quantitative agreement we will need to go

further. A natural first step is to apply mean field theory.

In mean-field theory, one approximates the real system of many interacting atoms

by simplifying the problem to one atom interacting with some external potential

that captures the average effect of the other particles. Formally, the effective field is

calculated as

Veff =

∫

dr′V (r′)⟨n2(r
′)⟩ (4.6)
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Since our system is translationally invariant, ⟨n2(r′)⟩ is just the average density

of Rydberg atoms, and can be taken out of the integral. This simplifies the problem

and allows us to solve it.

Veff =

∫ ∞

0

dr
C6

!r6
⟨n2(r)⟩

=
C6ρ22ρ

!
4π

∫ ∞

0

drr−4 =∞ (4.7)

Unfortunately, this solution is not very useful to us. The integral diverges at short

range and this mean-field approach fails to provide a finite prediction. Additionally,

we will see in the following sections that our data does not agree with the ρ2 scaling

expected from dimensional analysis.

Mean-field theory is a powerful technique with widespread use in the field, so it is

worth discussing why it fails in the case of interacting Rydberg gases. The first and

most obvious is the short-range divergence of the above integral. In this case, it is

the particular form ( 1
r6 ) of the interactions which causes the problem. In some sense,

this is not too concerning for us. At short-range, van der Waals interactions do not

accurately capture the physics of interacting Rydberg atoms. Other Rydberg levels

can contribute to the interatomic potentials, so the real potential might not diverge

as it approaches r = 0. A more subtle and interesting reason mean-field fails is the

effect of correlations. In applying mean-field, we completely wash out the effect of

correlations when we try to calculate the effective potential. For strongly interacting

Rydberg gases, we know Rydberg blockade plays an important role when interparticle

spacings are on the order of the blockade radius. This adds in an important length

scale for correlations to the system that is not accounted for in a mean field treatment.

If we are to have any hope in describing this complicated system, we need a more
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sophisticated approach.

Figure 4.3 : Excitation strength for exciting two 30s3S1 Rydberg atoms as a function

of internuclear distance. Of primary importance here is that the interatomic potential

is clearly not well behaved for internuclear spacings less than 750 nm. Calculation

performed and figure prepared by Dr. Yoshida.

Both of these problems imply that the problem of the mean-field treatment comes

from our treatment of the short range physics of closely spaced atoms, but which effect

is more important? For Rydberg atoms under our conditions, the blockade radius is

greater than 1 µm, which is larger than the typical length scale on which we need to

consider the effects of other Rydberg levels on the interatomic potential. Figure 4.3

shows a calculation from Dr. Yoshida of the relative excitation strength of exciting

atom pairs of 30s3S1 Rydberg atoms as a function of internuclear distance. The

actual excitation strength is not of concern here, but it is clear that the interatomic

potential remains relatively well behaved for spacings larger than 750 nm, and below
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that threshold becomes more complicated. Therefore, it is most important to concern

ourselves with the effect of correlations coming from the Rydberg blockade.

There are two methods we can use to build blockade physics into our treatment,

and we will describe them both. The first is to alter the potential by introducing

a soft core as V = C6

!

1
R6

B+|r|6
, which reflects the fact that a second atom cannot be

excited within a blockade radius of an atom in a Rydberg state [77, 13, 78]. For the

case at hand, the blockade radius is defined as RB = (C6/2!Ω12)1/6. Following our

previous treatment,

Veff =

∫ ∞

0

dr
C6

!

1

R6
B + r6

⟨n2(r)⟩

=
C6ρ22ρ

!
4π

∫ ∞

0

dr
r2

R6
B + r6

(4.8)

=
2π2C6

3R3
B

ρ22ρ.

Alternatively, we can use our usual form of the interactions and add a short range

cutoff to the integral.

Veff =

∫ ∞

RB

dr
C6

!r6
⟨n2(r)⟩

=
C6ρ22ρ

!
4π

∫ ∞

RB

drr−4 (4.9)

=
4πC6

3R3
B

ρ22ρ.

Both techniques are successful in rendering the integral finite and predict a linear

density scaling in contrast to the quadratic dependence expected from dimensional

analysis. The results of these two techniques only differ in the numerical pre-factor,
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and this difference is of order unity. This slight difference is not of concern for this

work as our initial goal is to simply understand the density scaling of the effects we

see. Therefore, for the sake of concreteness, we will use the results of equation 4.9

from here on. This yields VRyd =
4πC6

3R3
B
ρ in equation 4.2.

Figure 4.4 : Interaction energy as a function of density for a few principal quantum

numbers

4.2.4 Density Scaling

Before even turning on our experiment, we can look at the density scaling of interac-

tions via simulation to know that we are on the right track with our simple approach.

It is important to realize that even in the case of a homogeneous gas, there exists

a distribution of interparticle spacings and therefore a distribution of interactions

felt by given particles. Our goal is to explore how this varies with density in the

experimentally relevant regime, where ρ > ρB with ρB = 1
4π
3
R3

B

.

Using Matlab, we randomly distribute 104 particles within a cubic box and define

length to yield a density of 1. For every particle i, we then calculate the interaction
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felt as a result of all of the other particles in the box greater than one blockade radius

away. Explicitly, we calculate

Vi =
∑

j ̸=i

C6

!

1

|rij|6
Θ(|rij|− RB) (4.10)

where Θ is the Heaviside theta function, used to cut off the sum for particles spaced

closer than one blockade radius apart. This is done for a number of blockade radii

with values chosen to vary ρ/ρB from 1 to 50.
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Figure 4.5 : Histogram of shifts for a homogeneous gas of 104 particles at varying

ρ/ρB. In appropriately scaled units, the data collapses onto a common curve for large

ρ/ρB.

To explore the scaling, we create a histogram of Vi with the x axis scaled by the

expected factor and look for the data to collapse onto a single curve. This is plotted

in figure 4.5 and we see that the scaling needed to get the data to collapse is C6

!

ρB
ρ ρ

2.

Note that the scaling is not perfect as the width of the distribution in scaled units is
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decreasing as we increase ρ/ρB, however the peak of the distribution remains fixed.

This result confirms that in the regime of ρ > ρB we expect to see the linear density

scaling that was derived in the previous section.

4.2.5 Local Density Approximation

For all derivations so far, we have assumed a gas of homogeneous density. However,

this is not the case in a real experiment. Our Sr atoms are trapped in a harmonic

trap with a distribution of densities inside where dynamics may proceed differently

in different parts of the trap. One way to handle this density inhomogeneity is to

employ the local density approximation (LDA).

Within the LDA, atoms behave as if they are in a gas of a homogeneous density

which is given by the local density at the position of the atom. Each local den-

sity is then appropriately weighted and then a sum or integral is performed over all

contributing densities to calculate the result we will see in our experiment.

Formally, we are interested in calculating some observable, I, from our inhomo-

geneous gas of atoms. First, we solve for the observable as a function of density

assuming the density is constant to obtain I(ρ). To calculate what we will see in the

experiment, we perform the following integral

I =

∫ ρ0

0

I(ρ)g(ρ) dρ (4.11)

where g(ρ) is the weighting function and ρ0 is the peak density.

We now need to calculate g(ρ), which satisfies the relation N =
∫ ρ0
0 g(ρ)dρ where

N is the total number of particles. This is easily done for a thermal gas of atoms in
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a harmonic trap. For the sake of clarity in this derivation, I will assume spherical

symmetry.

N =

∫

ρ(r)d3r

= 4π

∫

r2ρ(r)dr (4.12)

For thermal atoms in a harmonic trap, ρ(r) = ρ0e−χr2where χ = mω2

2kBT , ω is the

harmonic trap oscillation frequency, m is the mass of a strontium atom, kB is the

Boltzmann constant and T is the temperature. Taking the log of both sides of the

equation for density, we obtain

r2 =
1

χ
ln
(ρ0
ρ

)

(4.13)

r =
1
√
χ

[

ln(
ρ0
ρ
)
]1/2

(4.14)

dr = −
1
√
χ

1

2ρ

[

ln(
ρ0
ρ
)
]−1/2

dρ (4.15)

Using these relations, we can change the variable of integration from r to ρ and obtain

N = 2π
[2kBT

mω2

]3/2
∫ ρ0

0

[ln(
ρ0
ρ
)]1/2dρ (4.16)

By comparing equation 4.16 to our definition of g(ρ), we can recognize that

g(ρ) = 2π
[2kBT

mω2

]3/2
[ln(

ρ0
ρ
)]1/2 (4.17)

In the case of an anisotropic potential, the following can also be derived

g(ρ) =
2π

ω1ω2ω3

[2kBT

m

]3/2
[ln(

ρ0
ρ
)]1/2 (4.18)

where ω1,2,3 are the respective harmonic trap oscillation frequencies.
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A natural question to ask at this point is whether the LDA is an appropriate

approximation for our system. It is obvious that in the case of infinitely long range

interactions, this approximation will break down. It is essential that the dynamics

for one particle only depend on nearby neighbors and not every other particle in the

trap. In typical atomic systems with contact interactions this is usually satisfied.

However it is not exactly clear that this is correct in our case. While the Rydberg-

Rydberg interactions are long-ranged, the 1/r6 potential falls of rapidly such that the

interaction is dominated by nearest neighbors.

Formally, for the LDA to be valid, the length scale for density variation in the

trap (given by the density distribution) should be long compared to the other relevant

length scales (i.e. the blockade radius, the interatomic spacing and the distance the

Rydberg atom travels in its lifetime). The largest of these scales in our experiment

is the blockade radius (∼ 1µm), and the spatial extent of our cloud is only slightly

larger in the tight axis of the trap (∼ 6µm 1/e radius). As we will see in the next

section, while our system is not deep within the regime where we expect the LDA to

hold, we are still able to get good agreement between theory and experiment.

4.2.6 A Quick Word on Γ

In this discussion of treating shifts and dephasing, we have focussed entirely on the

shifts and ignored dephasing. The reason for this is simple, we understand the mi-

croscopic origin of V but we don’t know the microscopic origin of Γ. The following

section will convince you of the necessity of including this term even though we don’t

understand its origin, and from the spectra you will see it is clear that the magnitude

of the dephasing is at least on the order of the magnitude of V . For that reason, we



80

choose to treat Γ in the same manner as V , that is with a linear scaling with density

and within the LDA, yielding Γ2Ryd = β 4πC6

3R3
B
ρ in equation 4.2.

4.2.7 Previous Work

There is great variation in the results and theoretical treatments for experiments

involving interacting Rydberg atoms, and it is important to consider our approach in

this context. This risks introducing some confusion because of the often contradictory

conclusions, but it also highlights the need for more study.

Our treatment of level shifts and dephasing draws upon previous work. The

Adams group introduced a level shift proportional to Rydberg population (V =

VRydρ22) as a mean field treatment of interactions in a master equation describing

the observation of optical bistability in a Rydberg system [84]. The scaling of VRyd

with density was not specified. The same group also introduced a dephasing rate

proportional to Rydberg population (Γ = ΓRydρ22) as a mean field treatment of de-

phasing that was suggestive of superradiance in an interacting Rydberg system [83].

Again, the scaling of ΓRyd was left unspecified. More recently, the Pfau group used

a dephasing rate proportional to Rydberg population as a mean field treatment of

dephasing of Rabi oscillations for Rydberg excitation in a thermal vapor. They found

a linear scaling with density and the numerical value is identical to our treatment

within factors of order unity. They do not discuss the microscopic origin of the de-

phasing, but they note that the scaling breaks down at higher density. None of the

groups perform any density averaging when comparing experiment and theory.

One should note recent work at densities (below a few times 1010 cm−3) studying

coherent effects in interacting, ultracold Rydberg gases excited in a ladder configu-
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ration. Different arrangements lead to coherent population trapping (CPT) [86, 87],

electromagnetically induced transparency (EIT) [83, 88, 89, 87], and Autler-Townes

(AT) spectra [90, 91, 92]. They all use alkali atoms. The AT configurations use a

strong laser driving the principal S-P transition and probe with a weaker laser tuned

near resonance with the transition to the Rydberg level, which differs from our excita-

tion scheme and leads to relatively broad lines. Fixed dephasing rates (not dependent

upon ρ22) are used in a master-equation description of experiments in refs. [88, 91, 92],

and no resonance shifts are observed. Level shifts and no appreciable broadenings are

observed in AT spectra in ref. [90], and they are described with a two-particle density

matrix explicitly putting in a value for the shift of the doubly-excited Rydberg state

with no additional dephasing. This is similar to the treatment of EIT in [89], however

in this configuration a loss of EIT transmission is seen with no shift or broadening.

Ref. [86] similarly sees a reduced contrast but no shift or broadening of CPT signals.

Ref. [87] provides a unified description of EIT [89] and CPT [86] results based on a

Monte-Carlo treatment of interacting three-level atoms [96] and a cluster expansion

of the density matrix treatment for N -atoms that is extended to second (two-atom)

order while retaining some terms for three-atom correlations [86]. These are more

advanced treatments explicitly putting in a value for the shift of the doubly-excited

Rydberg state with no additional dephasing. Agreement is good, but some discrep-

ancy is observed between theory and experiment in high density and strong excitation

EIT spectra. The authors argue that a mean-field description is not valid because

it leads to shifts and broadenings that are not seen in the data. No averaging over

density appears to have been done in any of these papers.
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4.3 Autler-Townes Spectra: Comparison of Experiment and

Theory

4.3.1 Experimental Details

With a firm groundwork of theory laid, we now turn on our experiment and see what

happens in real life. The basics of exciting Rydberg atoms and the tools used to

detect them were laid out in chapter 2, so here we will only cover the details specific

to the measurement of Autler-Townes spectra.

We begin with atoms trapped in an optical dipole trap. Using the trim coils on our

apparatus, we apply a magnetic field along gravity which shifts the frequency of the

1S0 →3P1(mj = 1) transition approximately 3 MHz from its unperturbed frequency.

This field serves as a quantization axis and through a choice of polarization allows

us to couple to only one mj Rydberg state. In order to rapidly remove any charged

particles which may be formed from ionizing Rydberg atoms, we also apply an electric

field of 0.8 V/cm in the same direction as the magnetic field using our electric field

plate.

We use circularly polarized 689 nm light along the axis of the field to drive the

1S0 →3 P1(mj = +1) with a variable Rabi frequency between Ω01 = 2π · 26 and 133

kHz and detuning between ∆01 = −2 and 2 MHz. The excitation time and power of

the 689 nm laser is precisely controlled with an acousto-optic modulator.

The 319 nm light propagates perpendicular to the magnetic field with a linear po-

larization aligned with the field in order to drive the 3P1 (mj = +1)→ 5s24s 3S1 (mj =

+1) transition. For all experiments performed here, the Rabi frequency remains con-

stant at Ω12 = 2π · 2.4 MHz with detuning ∆12 = 0. The timing and power of this
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laser is also precisely controlled with an acousto-optic modulator.

Figure 4.6 : Timing diagram for taking Autler-Townes spectra. Details in text.

For taking spectra data, we employ a pulsed excitation scheme. We first turn

on the 319 nm laser for 5 ms before rapidly pulsing the 689 nm laser a number of

N times to yield approximately 50% peak loss. After the pulse sequence, the atoms

are released from the trap and imaged after a 32 ms time of flight. This timing is

illustrated in figure 4.6.

The pulse sequence is chosen to have a short on time followed by 50 µs of off time

which is essential to investigate the time dynamics of the spectra. Since our method of

detection is counting ground state atoms, shot to shot fluctuations and other technical

sources of noise make it hard for us to detect small numbers of Rydberg atoms. By

employing a pulsed scheme with an off time that is long compared the lifetime of both

the 3P1 and 5s24s 3S1 state, we can assume each pulse is independent. By then using

N pulses we can amplify the loss per pulse out of the noise to get a better signal to

noise ratio. To then compare the data to theory, we use the known number of pulses

to calculate the loss per pulse and subtract that from the initial number of atoms
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before normalizing the spectra to 1. This allows us to only calculate the dynamics

for a single pulse and compare to the experiment.

Figure 4.7 : Timing diagram for taking time evolution. Details in text.

For taking time evolution data, we again first turn on the 319 nm light for 5 ms,

and then apply a single pulse of 689 nm light. This pulse is then followed by 50 µs of

just 319 nm light before both the 319 nm and ODT are extinguished and the atoms

are allowed to fall for a 32 ms time of flight being imaged. This is shown in figure 4.7

The data are then normalized to 1 for comparison to theory.

4.3.2 Calculation Details

In this section, I will provide a bit more detail about the way we have implemented

the previously discussed theory. The solutions to the optical Bloch equations are

not analytic and we have developed code in Matlab to solve the equations and im-

plement the LDA. As with any computer code, we have made a few choices in our

implementation in the interest of calculation speed which I will detail here.
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Our ultimate observable from the experiment is the number of ground state atoms

after a time of flight which is long compared to timescale of the dynamics. To save

time on computation, we only solve the optical Bloch equations until the 319 nm

light is extinguished. At that point there is, in general, population in all three states.

However, we know that prior to imaging, all population from the 3P1 state and 1/3

of the population of the 5s24s 3S1 state will eventually decay to the ground state and

be imaged. Therefore we just add this population to ρ00.

Looking back at equation 4.11 we have assumed that density is a continuous

variable, but we do not treat it that way for our numerical simulations. Instead we

solve the optical Bloch equations for 10 different densities, ρi, that are chosen such

that
∫ ρi+1

ρi

g(ρ)dρ = N/10 (4.19)

where N is the total number of particles. We use these densities to perform a 10 point

trapezoidal-rule approximation of the integral in equation 4.11. This strategy allows

us to get a good approximation of the integral while limiting the number of times we

need to solve the optical Bloch equations.

4.3.3 Short Time Dynamics

First, we will test our theory against the spectra we have obtained for very short

pulses, 2 µs. Using the method described above, we have taken these short time

spectra at two different peak densities, 1.9 × 1012 cm−3 and 1 × 1013 cm−3. At n =

24 with Ω12 = 2.4 MHz, the blockade density ρB = 4.2× 1011 cm−3. Therefore these

densities correspond to ρ
ρB
∼ 5 and 25 respectively, and will from here on be referred

to as low and high density. We note that both low and high density data are taken
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in the same depth ODT and the variation in density was achieved by changing the

length of the initial collection phase in the magnetic trap. This results in a change

in number and a slight change in temperature which gives rise to the two densities

mentioned above.

Recalling equation 4.2, it is clear that there are other parameters in the system

which need to be accounted for. Fortunately, they are either known or easily mea-

sured. From analysis of our laser locks and the narrowest spectra we have obtained,

we know that the linewidth of the 689 nm (319 nm) laser is 30 kHz (300 kHz) respec-

tively. The decay rate of the 3P1 state is known very accurately as 2π · 7.5× 103s−1.

However, there is a bit of uncertainty in the decay rate of the excited state as it has

not been directly measured. We obtain the best agreement for low intensity Autler-

Townes spectra using a decay rate of 2π · 50 × 103s−1, which is slightly higher than

expected from scaling the results of [42]. However, the error could also come from the

fact that our calculation of decay branching ratios might be off as we did not consider

all decay channels.

Since all other parameters in the system are well known, we are able to explore

just the effects of level shifts and dephasing. To allow variation of these two effects, we

have added a scale factor in front of the results of equation 4.5 to define Vryd = α 4πC6

3R3
B
ρ

and Γ2Ryd = β 4πC6

3R3
B
ρ.

First, let’s focus on the low density data. It is clear that for higher excitation

strength (Ω01), the data contains a sizable shift and asymmetry, and this deviates

from the non-interacting case, α = β = 0. α = 1 gives a good agreement with the

shift and asymmetry, however it slightly underestimates the width of the peaks. The

case of α = 1 and β = 1 slightly improves the fit by slightly broadening the peaks.
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Figure 4.8 : Blue squares: Experimental data of ground state population after a single

pulse of excitation with initial peak density, ρ0 = 1.9 × 1012 cm−3. Details in text.

Red lines: Theoretical calculation using LDA for varying strengths VRyd and Γ2Ryd.

α and β are defined in text.

The spectra are not too sensitive to the amount of dephasing at low density, but we

can conclude that some amount is needed to improve agreement between theory and

experiment. The blue detuned peak is well fit with β = 1, but the red detuned peak

calls for a larger value.

For high density data, the spectra are very sensitive to both level shifts and

dephasing. Again we see that α = 1 does a good job reproducing the shift seen in

the data. However, it does not account for the widths or the loss that we see near

∆01 = 0. Only by increasing β to 2 can we match the amount of loss seen here at

zero detuning.

Taking the results at the two densities together, our results imply strongly that
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Figure 4.9 : Blue squares: Experimental data of ground state population after a single

pulse of excitation with initial peak density, ρ0 = 1× 1013 cm−3. Details in text. Red

lines: Theoretical calculation using LDA for varying strengths VRyd and Γ2Ryd. α and

β are defined in text.

our treatment of level shifts is correct because we get good agreement at two different

densities with the same value of α = 1. We note that quadratic variation of the level

shift term is ruled out by our data.

Γ is a different story. It is clear the term can be used to describe the spectra, but

due to the lack of sensitivity at low density and the clear best fit value of β = 2 at

high density, it is difficult to determine if our density scaling is correct. However it is

clear that dephasing is playing an important role here.
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4.3.4 Long Time Dynamics

As a more stringent test of our theory, we will see how the spectra evolves in time.

For this data, we have used only high density samples and chose a low and high Rabi

frequency to see how the spectrum changes as we increase the pulse length from 2 µs.

The results are plotted in figures 4.10 and 4.11.
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Figure 4.10 : Blue circles: Experimental data of ground state population after a single

variable length pulse with initial peak density, ρ0 = 1×1013 cm−3 and Ω01 = 20.14kHz.

Details in text. Red lines: Theoretical calculation using LDA for varying strengths

VRyd and Γ2Ryd. α and β are defined in text.

Both data sets show the same trend: while we obtain good agreement at early

times, there is a dramatic difference between theory and experiment at later times.

While the amount of asymmetry in the Autler-Townes peaks seems well described

even at late times, our theory vastly underestimates the loss near ∆01 = 0.



90

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0.9

0.95
1

α = 0 β = 0

t =2 µs

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0.850.90.95

t =3.5 µs

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0.70.80.9

  
  

  
  

  
  

  
 R

e
la

ti
v

e
 A

to
m

 N
u

m
b

e
r

t =5 µs

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0.5

1

∆01/2π [MHz]
t =7 µs

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0.9

0.95
1

α = 1 β = 0

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0.850.90.95

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0.70.80.9

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0.5

1

∆01/2π [MHz]

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0.9

0.95
1

α = 1 β = 2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0.850.90.95

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0.70.80.9

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0.5

1

∆01/2π [MHz]

Figure 4.11 : Blue squares: Experimental data of ground state population after

a single variable length pulse with initial peak density, ρ0 = 1 × 1013 cm−3 and

Ω01 = 132.89kHz. Details in text. Red lines: Theoretical calculation using LDA for

varying strengths VRyd and Γ2Ryd. α and β are defined in text.

Our time evolution data, figures 4.12 and 4.13, tells the same story and shows

more explicitly where our calculations fall short of describing the data. We take data

of the time evolution at varying Ω01 at a few ∆01, corresponding to 0 and at the

position of peak loss for the red and blue detuned Aulter-Townes peaks observed in

the short time data.

4.4 Conclusions

As we mentioned in the beginning, the different effects of interactions and dephasing

on the Autler-Townes spectra allow us to isolate one from the other when looking

where our calculation deviates from theory. At early times, our theory is able to
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Figure 4.12 : Blue squares: Experimental data of time dependent ground state pop-

ulation after a single variable length pulse with initial peak density, ρ0 = 1.9 × 1012

cm−3. Red lines: Theoretical calculation using LDA for α = 1 and β = 2.

reproduce the dynamics over a wide variety of conditions. However, for long time

dynamics, it fails by strongly underestimating the effects of dephasing, which gives

rise to a strong loss feature at ∆01 = 0.

This is not terribly surprising. As previously discussed, we were on firm theoret-

ical ground for the derivation of the treatment of level shifts, and this part of the

calculation does a good job describing the data. On the other hand, we have no mi-

croscopic description of what is causing the dephasing here, so it does not necessarily

need to have the same form as V .

To belabor the point further, previous work uses a dephasing term in the optical

Bloch equations to treat density inhomogeneity. Inhomogeneity leads to a distribution

of V within the system which effectively broadens the transition and gives rise to an
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Figure 4.13 : Blue squares: Experimental data of time dependent ground state pop-

ulation after a single variable length pulse with initial peak density, ρ0 = 1 × 1013

cm−3. Red lines: Theoretical calculation using LDA for α = 1 and β = 2.

apparent dephasing. However, within the LDA the density inhomogeneity is handled

separately. Therefore, the dephasing that we see is not some artifact of having a

trapped gas, but a real effect. We do note that we have not accounted for the

statistical spread of shift strengths that exists even in the case of a homogenous gas.

As can be seen in figure 4.5, this is on the order of the value of the shift.

There are a few clues lurking in our data which shed some light on the possible

source of real dephasing, but at this time we have no clear picture. The first clue

lies in the time evolution of the system. As we fit the early time dynamics so well,

and later time dynamics so poorly, it appears that the rate of dephasing is actually

increasing in time. Even more curiously, using just our calculations with a dephasing

as a constant, qualitatively matching the loss seen on resonance requires a dephasing
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rate of ∼ 75 MHz. Even considering the distribution of shifts plotted in 4.5, this is

too large of a dephasing rate to make any sense and would require extremely high

Rydberg fractions on the order of a few percent.

10 20 30 40 500

0.2

0.4

0.6

0.8

1

Time [µ s]

No
rm

al
iz

ed
 A

to
m

 N
um

be
r

 

 

0 V/cm
0.5 V/cm
0.8 V/cm

Figure 4.14 : Time evolution at ∆01 = 0 with Ω01/2π = 39.68 kHz at various applied

electric fields. There is no measurable difference in the time evolution yielding the

conclusion that the presence of electric charges is not a likely source of dephasing.

More likely is that interactions stronger than van der Waals are at play. One

possible culprit is the presence of electric charges. If a Rydberg atom is ionized,

the resulting ion and electron might cause either ionizing or l-changing collisions with

other Rydberg atoms leading to dephasing. Ionization can occur from photoionization

from either the 689 nm, 319 nm or ODT laser, so we cannot get rid of all possible

sources of seed ionization. However, we can change the timescale that an ion (or

electron) would leave the system if it were created by varying the electric field on the

sample.
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To test this hypothesis, we repeated our measurement of the time evolution at a

fixed detuning of ∆01 = 0 in the presence of a varying electric field. For this test, we

chose Ω01/2π = 39.68 kHz such that the at the largest field applied, an ion escapes the

trap on timescales much faster than the dynamics. At 0.8 V/cm, this corresponds

to 0.1 µs, which is much faster than the loss timescale of tens of µs. However, as

can be seen from the data plotted in figure 4.14, the applied electric field yields no

measurable effect whatsoever on the data. This suggests that charged particles are

not the cause of the dephasing we observe.

One final hypothesis is the effect of population in other Rydberg states. As men-

tioned, we have neglected the small but finite decay (both natural and blackbody

driven) of the Rydberg state to other lower lying Rydberg states. Interaction between

s and p Rydberg atoms feature long range dipole-dipole interactions connecting |s, p⟩

to |p, s⟩ and can be quite strong. This mechanism seems to be a promising candidate,

however, we are currently unable to test whether it is the case. Another effect along

these lines is the possibility of superradience, which will rapidly depopulate the Ryd-

berg state [97]. With the additional tool of state selective field ionization on the new

apparatus in the Killian lab, we will be able to test this hypothesis in the near future

by measuring where the Rydberg population goes.

Even without the improved diagnostics of the new apparatus, there are features

of the data which support this hypothesis. From our time evolution data, we see that

on resonance, dephasing turns on to create a huge loss, but then turns off when the

density drops too low. Stronger driving (Ω01) leads to lower density before the loss

turns off. This is strongly suggestive of a nonlinear process such as population of p

states or superradience. It is possible that a system such as this could have a high
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loss and low loss configuration. As a function of density and driving, such a system

might have a region of instability which can display hysteresis. This type of behavior

has been seen previously in Rydberg gases [97]. Currently, dephasing is the main

hinderance to our ability to observe Rydberg dressing. If superradience or p state

population is to blame for this, it may be possible to mitigate this effect by using

microwave transitions to rapidly deplete the population of the p states, thus turning

off the fast loss and allowing the observation of Rydberg dressing of a BEC.

To conclude, the role of level shifts and dephasing comes up in many contexts in

Rydberg atom physics. In this section we have developed techniques to understand

them in the context of Autler-Townes spectra. By using the LDA, we are able to

disentangle the apparent dephasing which comes from inhomogeneous densities from

a real dephasing in the system. Further investigations into this rich system are needed,

but this work hopefully provides a useful starting point.
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Chapter 5

Probing Rydberg Dressing

5.1 Introduction

Back in chapter 1, we described the concept of Rydberg dressing as a method to

add controllable long-range interactions to a quantum many-body system such as a

BEC. By the studying the formation of Rydberg molecules and dephasing, we then

focused on learning about possible loss processes in this system that have hindered

the realization of this goal. So far in our efforts, we have found loss time scales that

are much faster than originally anticipated, however this does not completely rule out

the possibility of ever realizing Rydberg dressing of a BEC. Therefore, in this section

my aim is to lay out a plausible method of detecting and characterizing Rydberg

dressing in a BEC, even in the presence of a fast time scale loss.

5.2 Measuring Interaction Strengths

In ultracold quantum gas systems, short-range atom-atom interactions are character-

ized by a single parameter, the s-wave scattering length, a. For a given atomic species,

a is a fundamental parameter that can be positive or negative (yielding repulsive and

attractive interactions respectively) and is typically on the order of 100 a0, where a0

is the Bohr radius. Knowledge of the s-wave scattering length is essential for first

determining a route to create a quantum degenerate gas and then for understanding
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the way it will behave. As such, a number of techniques have been developed to

measure this quantity accurately. By adapting these methods, one can also use them

to detect Rydberg dressing.

The first technique is to measure the rate of thermalization in gas of atoms after

inducing a quench. Typically, one induces heating or cooling in one dimension and

measures the rate of cross dimensional thermalization [98]. With knowledge of the

density profile in the ODT, this rate can be related to the scattering cross section from

which we can extract the scattering length. For studying Rydberg dressing, this would

be very difficult to use. Thermalization timescales are long, typically on the order of

100 ms or longer, and the lifetime our sample in the presence of Rydberg dressing

is orders of magnitude to short (∼ 10µs). Even if this challenge of timescales were

overcome, a change in the rate of thermalization would only provide indirect evidence

of Rydberg dressing, and would lack direct proof that the induced interactions are

long-ranged.

A second technique is to modify the expansion of a BEC as it is released from

the ODT. This is the technique we employed when measuring the optical Feshbach

resonance in Sr [99], and is quite sensitive in the case of 88Sr, where the background

scattering length is near 0. Still, this requires 1 to 10 ms of interaction time which is

still too long for the loss timescales in the system. Careful analysis of the shape of the

expanding BEC might yield evidence that the induced interactions are long-ranged;

however, concerns over optical potentials formed by the dressing lasers might pose a

challenge for this type of analysis. A similar technique was proposed in [77] and was

attempted in [25] using Rb. Due to the strong optical potential formed by one of the

lasers used in this experiment, this modified scheme required the BEC to come to
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equilibrium before being released. This greatly increased the time the laser needed

to be on for, which only allowed weak coupling to the Rydberg state. As such, no

effect was observed.

A final technique is to use Bragg spectroscopy to probe the dispersion relation of a

BEC [100]. Simply put, a moving optical lattice is used to impart a well defined mo-

mentum to the BEC. Measuring the probability of an atom receiving the momentum

kick as a function of energy (controlled by the frequency difference between the beams

making the optical lattice) allows a precise measurement of the dispersion relation,

E(k). As this is a spectroscopic technique, one can measure changes in the dispersion

with RF accuracy making this technique extremelly sensitive. Also, as I will show

in the remainder of this chapter, this technique also provides a clear smoking gun of

long range interactions in the BEC.

5.3 Bragg Spectroscopy

For a more quantitative picture of Bragg spectroscopy, it is useful to think of this pro-

cess as a two-photon Raman process. As a starting point, consider a free but isolated

two-level atom at rest that is subject to two counter-propogating laser beams. These

two beams are far detuned from the excited state but only have a small frequency

difference between them, δω. This situation is depicted in figure 5.1.

Considering the atom’s motional degree of freedom, we know that a free isolated

atom will obey the following dispersion relation

E0 =
p⃗2

2m
(5.1)

where p⃗ is the atoms momentum and m is the mass of the atom. For two counter-
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Figure 5.1 : a.) Cartoon representation of Bragg spectroscopy of a BEC. Counterpro-

pogating laser beams with a small frequency difference create a moving optical lattice

which can impart 2!k momentum to the atoms which become spatially separated

from the main cloud after a time of flight (TOF). b.) Energy level diagram of the

three state system formed by the atoms and Bragg spectroscopy beams.

propogating laser fields, the absorption of a photon from one beam with subsequent

emission into the other would result in a net change in momentum of the atom of

2!k⃗0 . Using the dispersion relation we see that this two-photon Raman process is

resonant when

!δω0 =
2!2k⃗2

0

m
. (5.2)

To analyze the probability of this process occurring, we can consider the system

as a 3-level lambda system as shown in figure 5.1. Since our lasers are far-detuned

from the excited state, we can adiabatically eliminate it and reduce the problem to

a two-level Rabi problem with states |0, p⃗ = 0⟩ and
∣

∣

∣
0, p⃗ = 2!k⃗

〉

and effective Rabi
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frequency Ω = Ω1Ω2

2∆ . Solving this two-level Rabi problem we arrive at the following

result,

P =
Ω2

Ω2 + (δω0 − δω)2
sin2[

√

δω0 − δω)2t/2] (5.3)

which peaks at δω = δω0.

Therefore by scanning the frequency difference between the two lasers, δω, we can

measure the resonant peak response in the probability of the atom receiving a momen-

tum kick of 2!k0 to measure the dispersion at that momentum. It is also important

to note that by changing the angle between the beams the imparted momentum can

be continuously tuned from 0 to 2!k0, limited only by available optical access.

This process works equally well for a BEC, where we can describe the condensate

as a zero momentum plane wave. In practice, one applies the Bragg lasers and

immediately releases the BEC from the trap. After a long enough time of flight,

atoms that were excited by the process are spatially separated from the main part

of the cloud and absorption imaging allows us to count atoms in both clouds and

determine the fraction which were excited.

With long excitation times with the Bragg lasers and a stable RF source creating

the frequency difference between the laser fields, we can very accurately measure the

dispersion relation of the BEC [100, 101]. In the next section, we will explore how

contact interactions and Rydberg dressing modify the simple non-interacting atom

dispersion.
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5.4 Dispersion Relation for a Rydberg Dressed BEC

A typical BEC can be well described with the theory of a weakly interacting Bose

gas. To get the dispersion relation, the standard treatment involves starting from the

Gross-Pitaevskii equation and applying the Bogliubov transformation to study the

low energy excitations of the BEC. For our purposes, the derivation is not necessary

to understanding the results, so we will omit it. The inquiring reader can find a good

treatment of the problem in ref [102], but I’ll just state the results of that calculation

here

(!ω0)
2 =

!2k2

2m

[

!2k2

2m
+ 2gρ

]

(5.4)

where g = 4π!2a
m and ρ is the homogeneous density of the condensate.

Less rigorously we can realize an alternate route to get to the same result, and

this will be more useful in the case of Rydberg dressing. Inspection of equation 5.4

reveals that the full dispersion of the BEC is just the free particle dispersion perturbed

by a term owing to atom-atom interactions. I’ve mentioned previously that these

interactions are described by an s-wave scattering length, but more formally we note

that atom-atom scattering is well described with the use of the Fermi pseudo-potential

VContact(r) = gδ3(r) (5.5)

where δ3(r) is the Dirac delta function. From this, we can realize that prefactor

to ρ in the additional term in the dispersion is nothing more than the twice the

Fourier transform of the interaction potential. By analogy, we can add in the effects

of Rydberg dressing in the same manner,

(!ω)2 =
!2k2

2m

[

!2k2

2m
+ 2ṼContactρavg + 2ṼRydρavg

]

, (5.6)
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where the tilde indicates the Fourier transform. Despite being rather cavalier in

motivating this equation, our results agree with a more rigorous treatment of Rydberg

dressing found in ref [13].

To be more quantitative, Rydberg dressed atoms interact via the real space po-

tential,

VRyd(r) =
f 2C6

r6 +R6
B

(5.7)

where f is the Rydberg fraction. For the sake of readers like me who truly hate doing

integrals, I’ll take the Fourier transform for you here.

ṼRyd =

∫

d3r
f 2C6

r6 +R6
B

e−ik⃗·r⃗ (5.8)

=
f 2C6

R3
B

∫

d3s
1

1 + s6
e−iRB k⃗·s⃗ (5.9)

(5.10)

where we have defined s⃗ = r⃗/RB. After integrating over φ, we obtain

ṼRyd =
2πf 2C6

R3
B

∫ ∫

s2dssinθdθ
1

1 + s6
e−iRBkscosθ. (5.11)

By symmetry the result will be real, so we take the real part of the above equation

and proceed

ṼRyd =
2πf 2C6

R3
B

∫ ∞

0

s2

1 + s6
ds

∫ π

0

cos
[

kRBscosθ
]

(5.12)

f 2C6

R3
B

2π

∫ ∞

0

2ssin
[

kRBs
]

kRB(1 + s6)
ds (5.13)

(5.14)

The remaining one dimensional integral can be evaluated numerically using Mathe-

matica. To check these results, we use the scaled units of ref [13] and are able to

accurately reproduce the dispersion relation.
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Figure 5.2 : Depiction of how Rydberg dressing interactions modify the dispersion of

a BEC with principal quantum number n = 25 and a peak density of 5× 1013 cm−3

for various Rydberg fraction, f. Note how the introduction of contact interactions

yields a deviation from the free particle dispersion at all k and Rydberg dressing only

modifies the dispersion at low k.

From the functional form above, we see that the effects of Rydberg dressing are

completely specified by knowledge of the Rydberg level used (i.e. C6), the Rydberg

fraction and the blockade radius. Using these results, we plot the dispersion relation-

ship for a BEC of 84Sr, for a peak density of 5× 1013 cm−3 and scattering length a =

123 a0 in figures 5.2 and 5.3 as a function of Rydberg fraction and principal quantum

number.

Examining these plots, we see that Rydberg dressing leads to the so called Roton-

Maxon dispersion relation which has a few interesting features. At large momenta, the

Rydberg dressed interactions yield no difference in the dispersion relationship. This
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Figure 5.3 : Dependence of dispersion of Rydberg dressed BEC on principal quantum

number n. The calculations use a constant Rydberg fraction, f = 3 × 10−3 and a

peak density of 5× 1013 cm−3.

makes sense because of the short range cutoff. When taking a Fourier transform,

short length scales correspond to large momenta and as such the cutoff should kill

any effect at large momentum. Also of note, the peak of the effect is controlled largely

by the blockade radius. This also makes sense as the blockade radius is the only new

length scale we have introduced into the problem. These features are the smoking

gun that we have been looking for in showing that the induced interactions from

Rydberg dressing are long-ranged. Simply measuring the dispersion at a two points,

one low momentum and one high, would be convincing evidence that the interactions

feature a short range cutoff as expected. Further, by mapping the entire dispersion

and reversing the Fourier transform, one can even map out the real space potential.

Since our goal is to see the effects of Rydberg dressing in a BEC via Bragg spec-
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troscopy, we need to use a shallow angle crossing of the Bragg beams to access the

low momentum regime. For reference, 0.2 krecoil is equivalent to a separation between

the Bragg beam of 11.5◦.

5.4.1 Realizing Rydberg Dressing - Some Limitations

From the above plots, we see that Rydberg dressing can significantly modify the dis-

persion of a BEC. The challenge is to now measure the predicted changes. Whether

or not we will be able to observe these effects in experiment boils down to under-

standing first where our theory is valid, and also what technical limitations exist on

the precision of Bragg spectroscopy.

Figure 5.4 : Cartoon of interactions between Rydberg dressed atoms. At large spac-

ings, both atoms are dressed and experience the 1/r6 potential. However, at spacings

less than one blockade radius, only one atom at a time can be dressed, leading to just

a constant energy shift.
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First, in considering where the above theory is valid, we need to consider the

effects of blockade on our system. The soft core cutoff of the interatomic potential

tells us that atoms spaced less than a blockade radius only see an energy shift which

will not affect the dispersion or dynamics of the system. This can be understood in

terms of Rydberg blockade. The strong 1/r6 part of the potential comes from the

interaction of the Rydberg character admixed into each of the ground state atoms.

At spacings less than a blockade radius, only one atom sees the dressing and the

Rydberg-Rydberg interaction doesn’t exist. This picture is schematically illustrated

in figure 5.4. To see the change in dispersion, and eventually the proposed associated

dynamic effects, the atoms need to explore the full range of the potential, not just

the soft core. This implies that we want ρ < ρB/f . As ρB is most strongly dependent

on the principal quantum number, this fact implies we need to work at low principal

quantum number to satisfy this condition.

At low principal quantum numbers, we can see appreciable effects for Rydberg

fractions on the order of 10−3. A natural question to ask is how large does the effect

need to be for us to be able to resolve it via Bragg spectroscopy? Since our signal

from the experiment is a shift in a spectroscopic peak, we need to consider how small

of a shift we will be able to see. Small shifts are more apparent when one is looking at

a narrow spectroscopic feature. To maximize our signal to noise, we need to consider

how narrow we can make the Bragg peak.

From equation 5.3, we can always narrow the peak by exposing the lasers for

longer. This makes sense as the width is being limited by the energy-time uncertainty

principle. However, this is not the only limitation on the width of the Bragg peak.

Density inhomogeneity also plays an important role. Our derivation of 5.6 shows that
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the position of the peak depends on the density, therefore different parts of the trap

will behave differently yielding a broadening of the peak. As derived in ref [100], this

limits the rms width of the peak to ∆ω =
√

8/147gρ0/! which is ∼ 250 Hz for a BEC

of 84Sr at a density of 1014 cm−3. This places a fundamental limit on the narrowest

peak we can resolve, however, we will see other limitations can play a more important

role.

Another important consideration that is easily overlooked is the stability of the

condensate. We have found that in our experiment, there is a sloshing motion of

the BEC that is not stable from shot to shot. This gives rise to a small variable

initial velocity which also can broaden the Bragg spectrum. Our suspicion is that the

sloshing comes from an instability of the beam pointing of the ODT as there is a long

path and possible thermal lensing coming from the AOMs that form each to the two

arms, but we have so far been unable to confirm that this is the cause. Instead, we

have noticed that the sloshing is primarily in the horizontal direction, so by probing

the Bragg spectra in the vertical direction the broadening due to sloshing is greatly

reduced.

Finally, and arguably most importantly, it is important to consider the limitations

imposed on the experiment from atom loss. Ideally, there would be no loss during the

time of the Bragg pulse so that the density does not change during the excitation time.

We use Bragg beams detuned from the narrow 1S0 →3P1 resonance which allows us to

completely suppress loss from the Bragg lasers themselves, but as previously discussed

the Rydberg dressing lasers cause a fast loss. Techniques have been developed to

interpret Bragg spectra even in the presence of fast loss [103], however, the loss

must remain moderate during the time of the pulse. This is the primary limitation
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which has stopped us from being able to observe Rydberg dressing. For Rydberg

fractions expected to give rise to 100 Hz shifts, we are limited to short excitation

times yielding 10 kHz wide peaks, which is currently too small of a fractional change

for us to reliably measure. However, if an alternative scheme of Rydberg dressing is

developed or another regime is found yielding a slower loss, then it might be possible

to resolve these shifts.

5.4.2 Bragg Spectroscopy - Results

In this section, I will show the preliminary results of our work exploring Bragg spec-

troscopy of a 84Sr BEC. Owing to limited optical access, we are not able to contin-

uously change the angle between Bragg beams. However, the results provided here

show low momentum and high momentum Bragg spectroscopy and would be well

suited to detect Rydberg dressing for principal quantum numbers near n = 25.

It is also worthwhile to note that this technique is very easy to implement in the

case of Sr. Owing to the narrow linewidth of the 1S0 →3 P1 transition in Sr, Bragg

beams are easily generated from a common laser with two synthesizer driven AOMs

from an injection locked slave. Powers on the order of a 1 mW for detunings of 100

MHz are sufficient to yield a sufficiently large excitation fraction as well.

As a first experiment with Bragg spectroscopy, we use counter-propagating beams

which transfers the greatest momentum, the results of which are plotted in figure

5.5. As we see in the figure, the diffracted atoms are clearly separated from the main

cloud and we are able to obtain a narrow spectrum. The x axis of the plot labels the

detuning between the two Bragg beams, however, zero on the plot corresponds to the

resonance position for free particle dispersion. As can be seen, we can clearly resolve
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the shift due to the contact interactions of the BEC.

Figure 5.5 : Example Bragg spectra for counter-propogating Bragg beams. Zero

detuning corresponds to resonance for free particle dispersion. Inset: Absorption

image of BEC and diffracted fraction.

To test our ultimate sensitivity, we perform a set of measurements to see how

narrow the Bragg spectrum can be in our system. Narrowing the spectrum is achieved

by increasing the exposure time of the Bragg beams and the intensities are reduced

accordingly to keep the diffracted population less than 10%. The results are plotted in

figure 5.6, and show a few interesting features. For all data, we find that the spectra

are better described by a gaussian (blue dashes) than the prediction of equation 5.3

(black lines). This is evidence that we are seeing some type of broadening. This is

confirmed in the left panel of figure 5.6 where it is apparent that the measured width

is always slightly larger than the width we expect just from time energy uncertainty.

Ultimately, exposing for longer fails to narrow the spectra and we are find a minimum

width of 2 kHz. The exact reason for this limit is unknown, and will be the source
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of future investigation. However, the observed widths are sufficient to measure shifts

on the order of 100 Hz.

Figure 5.6 : Left Panel: Dependence of the width of Bragg spectra on exposure time.

Right Panel: Example Bragg spectra for various exposure times. Data agree well with

a gaussian (blue dashes) and appear slightly broader than expected from equation

5.3. This is evidence of broadening present in the system which ultimately limits the

width to ∼ 2 kHz.

Another test of this method is whether it accurately represents the shift we expect

due to contact interactions. The scattering length of 84Sr is well known and from
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knowledge of our trap we can calculate the density of our BEC. By varying the

number of atoms in the condensate and the depth of the trap we are able to change

the density of the condensate and measure the shift. As shown in figure 5.7 we can

easily resolve the shift from resonance, however our results are surprising. Rather

than agreeing with the shift expected from the average density (ρavg = 4
7ρ0) as has

been found in previous experiments [100, 101], we find the data matches well with

the shift expected from the peak density, ρ0. At this time, we do not know the source

of this discrepancy. The most likely source is the difficulty of accurately knowing our

trap frequencies at the low trap depths required to form a BEC.
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Figure 5.7 : Measurement of shift of Bragg peak as a function of peak density of the

condensate. Data appears to agree well with shift expected from peak density rather

than average density.
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As a final result, we explore the use of shallow angle (21◦) Bragg spectroscopy.

The results of one such experiment is plotted in figure 5.8. With a low momen-

tum transferred, a major concern is the difficulty of spatially resolving the diffracted

atoms from the main cloud. However, as our results show, with a long enough time of

flight (40 ms for data shown here) we can resolve the peaks and obtain clear spectra.

Note here that the x axis is directly the detuning between the Bragg beams. As the

resonance position is so close to zero detuning, the peaks corresponding to opposite

direction momentum kicks actually overlap. However, since they are spatially sep-

arated, it is possible to tell them apart. While choosing the x axis in this manner

does not allow one to easily see the shift due to contact interactions as was shown in

figure 5.5, we find the resonance position is also consistent with a shift due to contact

interactions.

5.5 Outlook

With the obtained Bragg spectra shown here, we believe we are capable of resolving

shifts on the order of 100 Hz with excitation times of 200 µs or longer. However, as

mentioned our loss scales have proven too fast so far. Going forward, there are a few

possibilities which might help overcome the challenges we’ve faced so far.

As I mentioned in the introduction, there are two routes to Rydberg dressing

of a BEC: off-resonant excitation and Autler-Townes. The work of the Pfau group

[25] and ours shows that both of these methods feature fast loss scales. As Rydberg

blockade is postulated to be a problem in both methods, it seems that working at

even lower principal quantum number might be favorable. This might necessitate



113

Figure 5.8 : Example spectra for Bragg spectroscopy performed with beams crossed

at (21◦). Inset: Absorption image of BEC and diffracted fraction. Due to the overlap

of Bragg peaks with opposite momentum, two diffracted clouds are visible in the

image.

looking at even smaller transferred momentum in Bragg spectroscopy, which would

likely yield issues of spatially separating the excited atoms. However, our greatest

current limitation in this regard arises because we probe in the tight axis of the trap,

which has the fastest expansion. If we were to solve the issue of the BEC sloshing in

the trap, we could probe in the slowly expanding weakly confined axis of the trap,

which would circumvent this problem.

Alternatively, one could work with a lower density BEC. For Sr, this is possible

by using 86Sr which has a scattering length of 823 a0 typically yielding densities 1

order of magnitude lower. This would potentially be helpful in mitigating the loss

processes from Rydberg dressing, however, would also reduce the signal present in
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Bragg spectroscopy. At this time it is not clear whether this is a worthwhile course of

action as more needs to be learned about the density dependence of the loss processes

from Rydberg dressing.
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Chapter 6

Conclusion

As described in the introduction to this thesis, divalent-electron atoms such as Sr

offer many new and exciting opportunities to study novel phenomena with strongly

interacting Rydberg gases. These systems feature narrow intercombination lines that

provide access high-lying Rydberg states with reduced loss and an optically active

core that greatly enriches the possibilities for detecting and manipulating these highly

excited atoms. The work presented here lays important groundwork towards future

experiments with this system.

In order to best take advantage of the benefits that Sr offers, we have focused on

excitation to the 3S1 Rydberg series of 84Sr. This work represents the first two-photon

excitation to a Rydberg state via an intermediate triplet excited state and shows the

promise of this scheme. We have also demonstrated techniques to detect Rydberg

atoms even in the absence of electric-field plates and charged particle detection. While

ground-state atom loss is not as powerful of a tool for detection as state-selective field

ionization, its simplicity makes it useful for certain types of experiments and lowers

the level of experimental complication necessary to study Rydberg atoms.

Our first exploration of this system was the creation of ultralong-range molecules.

This work provides the first precision measurement of the electron-Sr scattering length

and is the first observation of these exotic molecules in a non-alkali system. In the

study of these molecules, we have barely scratched the surface of what might be
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possible with Sr. The absence of a p-wave shape resonance might yield longer molecule

lifetimes compared to Rb, and this would have important consequences for studies of

Rydberg atoms in high-density gases, such as a BEC. Further, the presence of doubly

excited states can cause perturbations in the Rydberg series that has been predicted

to yield stronger oscillator strength for excitation to ultralong-range molecules with

a strong permanent dipole moment.

Second, we have explored in detail the effects of Rydberg-Rydberg interactions on

Autler-Townes spectra. Using a modified mean-field treatment to describe energy-

level shifts and dephasing, we are able to accurately capture the early-time dynamics

of this rich system. Our data shows suggestive evidence of the source of large dephas-

ing rates that we see. Understanding of this dephasing is essential, as it is currently

the largest roadblock in the path to observing Rydberg dressing of a BEC. Further

work towards this end will hopefully confirm our suspicions that a population in

lower-lying p states is the cause of the loss, in which case it might be possible to

remove the population via microwave transitions and lessen the effect.

Finally, we have laid out a course to the eventual detection of Rydberg dressing in

a BEC via Bragg spectroscopy. This method provides a clear signature of the effect of

Rydberg-dressed interactions and provides smoking-gun evidence of their long-ranged

nature. Towards this end, we have shown preliminary results that demonstrate the

sensitivity of this technique and give confidence that will be useful provided the loss

caused by Rydberg dressing can be reduced.

As a final note to the reader, I hope I have been able to convince you that divalent-

electron Rydberg atoms show great promise for future work exploring strongly inter-

acting dipolar gases. With the promise of a wide variety of exciting experiments in
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Appendix A

Matlab Code

For reference I am attaching Matlab code which was used in chapter 4. The first

program, shiftHistogramv3.m, is used to calculate the distribution of shifts for a

homogeneous gas. This program runs on its own with no extra input needed.



function  shiftHistogramv2
%shiftHistogram - Builds histogram to fit distribution of shifts at a 
given
%                 density
% v2            - Adds cutoff at blockade radius

%Open matlabpool if none open
if matlabpool('size') == 0
    matlabpool open
end
close all

numPart = 10^4;
numBins = 10^4;
maxShift = 10^3;
lengthScale = numPart^(1/3);
density = numPart/(lengthScale^3);
x = rand(numPart,1).*lengthScale;
y = rand(numPart,1).*lengthScale;
z = rand(numPart,1).*lengthScale;
shiftVect = zeros(length(x),1);
shiftVect1xRhoB = zeros(length(x),1);   scaledShiftVect1xRhoB = 
zeros(length(x),1);
shiftVect5xRhoB = zeros(length(x),1);   scaledShiftVect5xRhoB = 
zeros(length(x),1);
shiftVect10xRhoB = zeros(length(x),1);  scaledShiftVect10xRhoB = 
zeros(length(x),1);
shiftVect20xRhoB = zeros(length(x),1);  scaledShiftVect20xRhoB = 
zeros(length(x),1);
shiftVect30xRhoB = zeros(length(x),1);  scaledShiftVect30xRhoB = 
zeros(length(x),1);
shiftVect40xRhoB = zeros(length(x),1);  scaledShiftVect40xRhoB = 
zeros(length(x),1);
shiftVect50xRhoB = zeros(length(x),1);  scaledShiftVect50xRhoB = 
zeros(length(x),1);
nnVect = 10*ones(length(x),1);
rB1 = 1; rB5 = 5^(1/3); rB10 = 10^(1/3); rB20 = 20^(1/3);
rB30 = 30^(1/3); rB40 = 40^(1/3); rB50 = 50^(1/3);
parfor i = 1:numPart
    for j = 1:numPart                 
            if j~=i
            r = ((x(j)-x(i))^2 + (y(j)-y(i))^2 + (z(j)-z(i))^2)^(1/2); 
            shiftVect(i) = r^-6 + shiftVect(i);
            if r > rB1
                shiftVect1xRhoB(i) = 1/(r^6) + shiftVect1xRhoB(i);
            else 
                shiftVect1xRhoB(i) = shiftVect1xRhoB(i);
            end
            if r > rB5
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                shiftVect5xRhoB(i) = 1/(r^6) + shiftVect5xRhoB(i);
            else
                shiftVect5xRhoB(i) = shiftVect5xRhoB(i);
            end
            if r > rB10
                shiftVect10xRhoB(i) = 1/(r^6) + shiftVect10xRhoB(i);  
            else
                shiftVect10xRhoB(i) = shiftVect10xRhoB(i);
            end
            if r > rB20    
                shiftVect20xRhoB(i) = 1/(r^6) + shiftVect20xRhoB(i);
            else
                shiftVect20xRhoB(i) = shiftVect20xRhoB(i);
            end
            if r > rB30
                shiftVect30xRhoB(i) = 1/(r^6) + shiftVect30xRhoB(i);
            else
                shiftVect30xRhoB(i) = shiftVect30xRhoB(i);
            end
            if r > rB40 
                shiftVect40xRhoB(i) = 1/(r^6) + shiftVect40xRhoB(i);
            else
                shiftVect40xRhoB(i) = shiftVect40xRhoB(i);
            end
            if r > rB50
                shiftVect50xRhoB(i) = 1/(r^6) + shiftVect50xRhoB(i);   
            else
                shiftVect50xRhoB(i) = shiftVect50xRhoB(i);
            end
            scaledShiftVect1xRhoB(i) = shiftVect1xRhoB(i)*(density*1);
            scaledShiftVect5xRhoB(i) = shiftVect5xRhoB(i)*(density*5);
            scaledShiftVect10xRhoB(i) = 
shiftVect10xRhoB(i)*(density*10);
            scaledShiftVect20xRhoB(i) = 
shiftVect20xRhoB(i)*(density*20);
            scaledShiftVect30xRhoB(i) = 
shiftVect30xRhoB(i)*(density*30);
            scaledShiftVect40xRhoB(i) = 
shiftVect40xRhoB(i)*(density*40);
            scaledShiftVect50xRhoB(i) = 
shiftVect50xRhoB(i)*(density*50);            
            end
    end
end
bins = linspace(0,maxShift,numBins);
scaleBins = linspace(0,10,1000);
rHundredthsBins = linspace(0,10,1000);
histShift = histc(shiftVect,bins);
histShift1xRhoB = histc(shiftVect1xRhoB,bins);   scaledHistShift1XRhoB 
= histc(scaledShiftVect1xRhoB,scaleBins);
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histShift5xRhoB = histc(shiftVect5xRhoB,bins);   scaledHistShift5XRhoB 
= histc(scaledShiftVect5xRhoB,scaleBins);
histShift10xRhoB = histc(shiftVect10xRhoB,bins); 
scaledHistShift10XRhoB = histc(scaledShiftVect10xRhoB,scaleBins);
histShift20xRhoB = histc(shiftVect20xRhoB,bins); 
scaledHistShift20XRhoB = histc(scaledShiftVect20xRhoB,scaleBins);
histShift30xRhoB = histc(shiftVect30xRhoB,bins); 
scaledHistShift30XRhoB = histc(scaledShiftVect30xRhoB,scaleBins);
histShift40xRhoB = histc(shiftVect40xRhoB,bins); 
scaledHistShift40XRhoB = histc(scaledShiftVect40xRhoB,scaleBins);
histShift50xRhoB = histc(shiftVect50xRhoB,bins); 
scaledHistShift50XRhoB = histc(scaledShiftVect50xRhoB,scaleBins);

%counts = nnVect./numPart;
probR = numPart/100.*4*pi.*rHundredthsBins.^2.*exp(-
(4/3).*pi*rHundredthsBins.^3);

figure(1)
plot(scaleBins,smooth(scaledHistShift1XRhoB),'sk','MarkerSize',
6,'MarkerFaceColor','k');hold on; 
plot(scaleBins,smooth(scaledHistShift5XRhoB),'sb','MarkerSize',
6,'MarkerFaceColor','b');hold on; 
plot(scaleBins,smooth(scaledHistShift10XRhoB),'sr','MarkerSize',
6,'MarkerFaceColor','r');hold on; 
plot(scaleBins,smooth(scaledHistShift20XRhoB),'sg','MarkerSize',
6,'MarkerFaceColor','g');hold on; 
plot(scaleBins,smooth(scaledHistShift30XRhoB),'dk','MarkerSize',
6,'MarkerFaceColor','k');hold on; 
plot(scaleBins,smooth(scaledHistShift40XRhoB),'db','MarkerSize',
6,'MarkerFaceColor','b');hold on; 
plot(scaleBins,smooth(scaledHistShift50XRhoB),'dr','MarkerSize',
6,'MarkerFaceColor','r');hold on; 
set(gca,'FontSize',24,'FontWeight','Demi')
legend('\rho/\rho_B = 1','\rho/\rho_B = 5','\rho/\rho_B = 10','\rho/
\rho_B = 20',...
    '\rho/\rho_B = 30','\rho/\rho_B = 40','\rho/\rho_B = 
50','FontSize',24,'FontWeight','Bold')
xlabel('V/ \rho_B \rho [2\pi C_6 / h]','FontSize',
28,'FontWeight','Bold')
ylabel('Occurrences','FontSize',28,'FontWeight','Bold')
end
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obeSolverDataCompareSummaryv3.m is used for the calculation of Autler-Townes

spectra. This program must be called with an argument [data] in order to read in the

data which will be plotted for comparison to theory. The program looks for a specific

structure to the data, but this is easily modified by the user.



function [ output_args ] = 
obeSolverDataCompareSummaryv3( data1,data2 )
% obeSolverDataCompareSummary - Solves the optical bloch equations 
using the 
%               local density approximation and compares to spectra 
data
%               with simple plots for presentation
% v2 - Uses smaller number of spectra for clarity
% v3 - Combines plots 
% Initialize parallel worker
%Open matlabpool if none open
if matlabpool('size') == 0
    matlabpool open
end
close all
atomicMass = 1.66*10^-27;
mSr = 84*atomicMass;
kB = 1.38*10^-23;

%% Options
density = 'Low'; %Choose density of data, valid options 'High', 'Low'
plotFits = 1;     %1 to plot all fits, 0 to surpress

%%Unchanged parameters
Omega12            = 2*pi*2.4*10^6;
Delta12            = 0;
Gamma10            = 2*pi*7.5*10^3;
Gamma1Dephase      = 2*pi*30*10^3;
Gamma21            = (1/3)*2*pi*50*10^3;
Gamma2Loss         = (2/3)*2*pi*50*10^3;
Gamma2DephaseLaser = 2*pi*300*10^3;
C6Hz               = C6(24);
w1                 = 2*pi*11.6;
w2                 = 2*pi*18.3;
w3                 = 2*pi*131.3;
omegabar           = (w1*w2*w3)^(1/3);
scaleDensities = [0.0225 0.0725 0.1305 0.1955 0.2685 0.35 0.442 0.548 
0.676 0.8735]; %Densities chosen to accurately weight spectra

% Make vector of changed variables
dephaseVect = [0 0 1 2];
VrydrydVect = [0 1 1 1];

%% Loop through high and low density data
    if strcmpi(density,'Low') || strcmpi(density,'All')
        figHan1 = figure;  figHan2 = figure;
        figHan3 = figure;  figHan4 = figure;
        for i =4:length(data1.avgVar)
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            %Read in data and store in temp variables
            indVarLD  = -data2.avgIndVar{i}  + 93.34;
            specLD = data2.avgNumAtom{i};    
            numPulsesLD  =  data2.avgVar3{i};   
            pulseWidthLD =  data2.avgVar2{i};
            
            sortSpec = sort(specLD);
            n0LD = mean(sortSpec(end-10:end-5));
            normSpecLD = n0LD-((n0LD - specLD)./numPulsesLD);
            Omega01 = 2*pi*data2.avgVar{i}*10^3;
            tempLD = (data2.avgTempX{i} + data2.avgTempY{i})/2;
            tLD = mean(tempLD(1:3))*10^-9;
            peakDensity = (n0LD/((2*pi*kB*tLD)/
(mSr*omegabar^2))^(3/2));
            
            %Collect relevent parameters into vector
            paramVect(1)  = Omega01;                paramVect(9)  = 
C6(24);
            paramVect(2)  = Omega12;                paramVect(10) = 
pulseWidthLD.*10^-6;
            paramVect(3)  = Delta12;                paramVect(11) = 
(pulseWidthLD + 50).*10^-6;
            paramVect(4)  = Gamma10;                paramVect(12) = 
(pulseWidthLD + 50).*10^-6;
            paramVect(5)  = Gamma1Dephase;          paramVect(13) = 
tLD;
            paramVect(6)  = Gamma21;                paramVect(14) = 
w1;
            paramVect(7)  = Gamma2Loss;             paramVect(15) = 
w2;
            paramVect(8)  = Gamma2DephaseLaser;     paramVect(16) = 
w3;
            
            %Loop over changed variables
            %h = waitbar(0,'Calculating spectra');
            
            
                for k = 1:length(VrydrydVect)
                    paramVect(17) = dephaseVect(k); 
                    paramVect(18) = VrydrydVect(k);
                    spectra = 
obeSpectraSolve(peakDensity,scaleDensities,indVarLD,paramVect);
                    n0Spec = mean(spectra([1:3 end-3:end]));
                    
                    if plotFits                                                
                        if k==1
                            set(0,'CurrentFigure',figHan1);
                            titleText = '\alpha = 0 \beta = 0';
                        elseif k == 2
                            set(0,'CurrentFigure',figHan2);
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                            titleText = '\alpha = 1 \beta = 0';
                        elseif k ==3
                            set(0,'CurrentFigure',figHan3);
                            titleText = '\alpha = 1 \beta = 1';
                        elseif k ==4
                            set(0,'CurrentFigure',figHan4);
                            titleText = '\alpha = 1 \beta = 2';
                        end
                        figText = strcat('\Omega_{01} = 
',num2str(Omega01/(2*pi*10^3)),' kHz');
                        
                        subplot(length(data1.avgVar)-3,1,i-3)
                        plot(indVarLD,normSpecLD./
n0LD,'sb','MarkerSize',8,'MarkerFaceColor','b'); hold on;
                        plot(indVarLD,spectra./n0Spec,'-
r','LineWidth',5); hold on;
                        set(gca,'FontSize',24,'FontWeight','Demi')
                        xlim([indVarLD(length(indVarLD)) indVarLD(1)]) 
                        ylim([min(normSpecLD./n0LD) 1])
                        if i == 4
                            title(titleText,'FontSize',
32,'FontWeight','Bold')
                        end
                        if i == length(data1.avgVar)
                            xlabel('\Delta_{01}/2\pi 
[MHz]','FontSize',30,'FontWeight','Bold')
              
                        end
                        if i == 5 && k == 1
                            ylabel('Relative Atom Number','FontSize',
30,'FontWeight','Bold')
                        end
                        if k == 1
                            text(-0.25 * indVarLD(1), min(normSpecLD./
n0LD) + 0.25*(1-min(normSpecLD./n0LD)),figText,'FontSize',
24,'FontWeight','Bold')
                        end
                    end                    
                end
        end       
    end
    if strcmpi(density,'High') || strcmpi(density,'All')
        figHan1 = figure;  figHan2 = figure;
        figHan3 = figure;  figHan4 = figure;
       for i =1:length(data1.avgVar)-3
            %Read in data and store in temp variables
            indVarHD  = -data1.avgIndVar{i}  + 93.34;
            specHD = data1.avgNumAtom{i};    
            numPulsesHD  =  data1.avgVar3{i};   
            pulseWidthHD =  data1.avgVar2{i};
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            sortSpec = sort(specHD);
            n0HD = mean(sortSpec(end-10:end-5));
            normSpecHD = n0HD-((n0HD - specHD)./numPulsesHD);
            Omega01 = 2*pi*data1.avgVar{i}*10^3;
            tempHD = (data1.avgTempX{i} + data1.avgTempY{i})/2;
            tHD = mean(tempHD(1:3))*10^-9;
            peakDensity = (n0HD/((2*pi*kB*tHD)/
(mSr*omegabar^2))^(3/2));
            
            %Collect relevent parameters into vector
            paramVect(1)  = Omega01;                paramVect(9)  = 
C6(24);
            paramVect(2)  = Omega12;                paramVect(10) = 
pulseWidthHD.*10^-6;
            paramVect(3)  = Delta12;                paramVect(11) = 
(pulseWidthHD + 50).*10^-6;
            paramVect(4)  = Gamma10;                paramVect(12) = 
(pulseWidthHD + 50).*10^-6;
            paramVect(5)  = Gamma1Dephase;          paramVect(13) = 
tHD;
            paramVect(6)  = Gamma21;                paramVect(14) = 
w1;
            paramVect(7)  = Gamma2Loss;             paramVect(15) = 
w2;
            paramVect(8)  = Gamma2DephaseLaser;     paramVect(16) = 
w3;
            
            %Loop over changed variables
            %h = waitbar(0,'Calculating spectra');
            
            
                for k = 1:length(VrydrydVect)
                    paramVect(17) = dephaseVect(k); 
                    paramVect(18) = VrydrydVect(k);
                    spectra = 
obeSpectraSolve(peakDensity,scaleDensities,indVarHD,paramVect);
                    n0Spec = mean(spectra([1:3 end-3:end]));
                    
                    if plotFits                                                
                        if k==1
                            set(0,'CurrentFigure',figHan1);
                            titleText = '\alpha = 0 \beta = 0';
                        elseif k == 2
                            set(0,'CurrentFigure',figHan2);
                            titleText = '\alpha = 1 \beta = 0';
                        elseif k ==3
                            set(0,'CurrentFigure',figHan3);
                            titleText = '\alpha = 1 \beta = 1';
                        elseif k ==4
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                            set(0,'CurrentFigure',figHan4);
                            titleText = '\alpha = 1 \beta = 2';
                        end
                        figText = strcat('\Omega_{01} = 
',num2str(Omega01/(2*pi*10^3)),' kHz');
                        
                        
subplot(length(data1.avgVar)-3,1,length(data1.avgVar)-2-i)
                        plot(indVarHD,normSpecHD./
n0HD,'sb','MarkerSize',8,'MarkerFaceColor','b'); hold on;
                        plot(indVarHD,spectra./n0Spec,'-
r','LineWidth',5); hold on;
                        set(gca,'FontSize',24,'FontWeight','Demi')
                        xlim([indVarHD(length(indVarHD)) indVarHD(1)]) 
                        ylim([min(normSpecHD./n0HD) 1])
                        if i == 3
                            title(titleText,'FontSize',
32,'FontWeight','Bold')
                        end
                        if i == 2 && k == 1
                            ylabel('Relative Atom Number','FontSize',
30,'FontWeight','Bold')
                        end
                        if i == 1
                             xlabel('\Delta_{01}/2\pi 
[MHz]','FontSize',30,'FontWeight','Bold')
                        end
                        if k == 1
                            text(-0.25 * indVarHD(1),  
min(normSpecHD./n0HD) + 0.25*(1-min(normSpecHD./
n0HD)),figText,'FontSize',24,'FontWeight','Bold')
                        end
                        end               
                end
                
            
            
        end       
    end
end

function spectra = 
obeSpectraSolve(peakDensity,scaleDensities,detuningVect,paramVect)
    %Unpack passed variables
    densityVect = peakDensity.*scaleDensities;
    Omega01            = paramVect(1);
    Omega12            = paramVect(2);
    Delta12            = paramVect(3);
    Gamma10            = paramVect(4);
    Gamma1Dephase      = paramVect(5);
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    Gamma21            = paramVect(6);
    Gamma2Loss         = paramVect(7);
    Gamma2DephaseLaser = paramVect(8);
    C6                 = paramVect(9);
    tRed               = paramVect(10);
    tUV                = paramVect(11);
    tTotal             = paramVect(12);
    T                  = paramVect(13);
    w1                 = paramVect(14);
    w2                 = paramVect(15);
    w3                 = paramVect(16);
    cDephase           = paramVect(17);
    cInt               = paramVect(18);
    initialConditions  = [1 0 0 0 0 0]; % [p00 p11 p22 p01 p12 p02]
        
    %Initialize vectors and loop over densities
    scaledSpectra = zeros(length(densityVect),length(detuningVect),3);
    groundPopulation = 
zeros(length(densityVect),length(detuningVect));
    for j=1:length(densityVect);                      
        temp1  = zeros(length(detuningVect),1);
        temp2  = zeros(length(detuningVect),1);
        temp3  = zeros(length(detuningVect),1);
        parfor i = 1:length(detuningVect)           
            fitCall = @(t,rho) 
funcOBE(t,rho,Omega01,Omega12,2*pi*detuningVect(i)*10^6,Delta12,Gamma1
0,Gamma1Dephase, 
Gamma21,Gamma2Loss,Gamma2DephaseLaser,C6,tRed,tUV,densityVect(j),cDeph
ase,cInt);
            [~,rho] = ode45(fitCall,[0 tTotal], initialConditions);        
            temp1(i) = rho(length(rho),1);
            temp2(i) = rho(length(rho),2);
            temp3(i) = rho(length(rho),3);
        end
        scaledSpectra(j,:,:) = [temp1 temp2 
temp3].*densityWeight(densityVect(j),peakDensity,T,w1,w2,w3);
        groundPopulation(j,:) = (temp1 + temp2 + (1/3)*temp3).* 
densityWeight(densityVect(j),peakDensity,T,w1,w2,w3);
    end
    spectra = trapz(densityVect,groundPopulation,1);

end

function rhoOut = 
funcOBE(t,rho,Omega01,Omega12,Delta01,Delta12,Gamma10,Gamma1Dephase, 
Gamma21,Gamma2Loss,Gamma2DephaseLaser,C6,tRed,tUV,Density,cDephase,cIn
t)
    %This function defines the optical bloch equations for a 3 level
    %ladder system involving interacting Rydberg states
    %Define constants    
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    rB = (C6/(2*Omega12))^(1/6);
    Vrydryd = cInt*4*pi*C6*Density/(3*rB^3);
    Gamma2DephaseRyd = cDephase*4*pi*C6*Density/(3*rB^3);
    
    %Determine if red and UV lasers are on... this method 8X faster 
than
    %using heaviside functions
    if t <= tRed
        redLogic = 1;
    else 
        redLogic = 0;
    end
    
    if t <= tUV
        uvLogic = 1;
    else
        uvLogic = 0;
    end
    
    % Initialize rhoOut
    rhoOut = zeros(6,1);
    % Get current values of density matrix
    p00 = rho(1);   p01 = rho(4);
    p11 = rho(2);   p12 = rho(5);
    p22 = rho(3);   p02 = rho(6);
    
    rhoOut(1) = Gamma10* p11 - Omega01*imag(p01)*redLogic;
    rhoOut(2) = -Gamma10*p11 + Gamma21*p22 + 
Omega01*imag(p01)*redLogic - Omega12*imag(p12)*uvLogic;
    rhoOut(3) = -(Gamma21+Gamma2Loss)*p22 + Omega12*imag(p12)*uvLogic;
    rhoOut(4) = -((Gamma10+Gamma1Dephase)/2+1i*Delta01)*p01...
            - 1i*Omega01/2*(p11-p00)*redLogic
+1i*Omega12/2*p02*uvLogic;
    rhoOut(5) = -((Gamma21+Gamma2Loss+Gamma2DephaseLaser+
(Gamma2DephaseRyd*p22)+Gamma10)/2 ...
            + 1i*(Delta12-Vrydryd*p22))*p12-1i*Omega12/2*(p22-
p11)*uvLogic - 1i*Omega01/2*p02*redLogic;
    rhoOut(6) = -((Gamma1Dephase+Gamma21+Gamma2Loss+Gamma2DephaseLaser
+(Gamma2DephaseRyd*p22))/2+1i*(Delta01+Delta12-Vrydryd*p22))*p02...
            + 1i*Omega12/2*p01*uvLogic-1i*Omega01/2*p12*redLogic;  
end

function C6 = C6(n)
    %Calculate C6 in Hz * m^6
    a = -2.387*10^-3; b = 1.211; c1 = -21.18;
    hbar = 1.06 * 10^-34;
    hartree = 4.36*10^-18;% J
    aBohr = 5.29*10^-11;
        C6atomic = n^11*(a*n^2 + b*n + c1);
        C6 = C6atomic*hartree*aBohr^6/hbar;
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end

function densityWeight = densityWeight(n,n0,T,w1,w2,w3)
    %Weighting function for local density approximation
    atomicmass = 1.66*10^-27;
    mSr = 84*atomicmass;
    kB = 1.38*10^-23;
    densityWeight = ((2.*pi)./(w1.*w2.*w3)).*((2.*kB.*T)./
mSr).^(3/2).*(log(n0./n)).^(1/2);
end
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all-optical detection of Rydberg atoms,” Phys. Rev. A, vol. 91, p. 043422, Apr

2015.

[86] H. Schempp, G. Günter, C. S. Hofmann, C. Giese, S. D. Saliba, B. D. Depaola,

T. Amthor, M. Weidemüller, S. Sevinçli, and T. Pohl, “Coherent population
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[96] C. Ates, S. Sevinçli, and T. Pohl, “Electromagnetically induced transparency in

strongly interacting Rydberg gases,” Physical Review A - Atomic, Molecular,

and Optical Physics, vol. 83, pp. 1–4, 2011.

[97] C. Carr, R. Ritter, C. G. Wade, C. S. Adams, and K. J. Weatherill, “Nonequilib-

rium phase transition in a dilute rydberg ensemble,” Phys. Rev. Lett., vol. 111,

p. 113901, Sep 2013.

[98] C. R. Monroe, E. A. Cornell, C. A. Sackett, C. J. Myatt, and C. E. Wieman,

“Measurement of cs-cs elastic scattering at T =30 µk,” Phys. Rev. Lett., vol. 70,

pp. 414–417, Jan 1993.

[99] M. Yan, B. J. DeSalvo, B. Ramachandhran, H. Pu, and T. C. Killian, “Control-

ling Condensate Collapse and Expansion with an Optical Feshbach Resonance,”

Phys. Rev. Lett., vol. 110, p. 123201, Mar 2013.

[100] J. Stenger, S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn, D. E. Pritchard,

and W. Ketterle, “Bragg Spectroscopy of a Bose-Einstein Condensate,” Phys.



145

Rev. Lett., vol. 82, pp. 4569–4573, Jun 1999.

[101] J. Steinhauer, R. Ozeri, N. Katz, and N. Davidson, “Excitation Spectrum of a

Bose-Einstein Condensate,” Phys. Rev. Lett., vol. 88, p. 120407, Mar 2002.

[102] C. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases. Cam-

bridge University Press, 2002.

[103] M. Theis, G. Thalhammer, K. Winkler, M. Hellwig, G. Ru↵, R. Grimm, and

J. H. Denschlag, “Tuning the Scattering Length with an Optically Induced

Feshbach Resonance,” Phys. Rev. Lett., vol. 93, p. 123001, Sep 2004.


