
A Prototype Domain ~fodeling En,-ironment

H. Gomaa, 1... Kerschberg, C. Bosch, V. Sugumaran, I Tavakoli

Center ror Software Systems Engineering

Department or Inrormation and Software S)'stems Engineering

George Mason University

Fairfax, Virginia, 22030-4444

Abstract

This paper describes a prototype domain modeling environment, which has been
developed at George Mason University to demonstrate the concepts of reuse of
software requirements and software architectures. The prototype environment,
which is application domain independent, is used to support the development of
domain models and to generate target system specifications from them. The
prototype environment consists of an integrated set of commercial-of-the-shelf
software tools and custom developed software tools.

1. INTRODUCTION

At George Mason University, a project is underway to support software engineering
lifecycles, methods, and enY110nments to support software reuse at the requirements
and desigIl phases of the software life cycle, in addition to the roamg phase
rBiggerstaff 87]. A reuse-oriented software lifecycle, the Evolutionary Domain
tifecycle [Gomaa89, Gomaa91), has been proposed, which is a highly iterative
lifeC).'cle that takes an application domain perspective allowing the development of
families of systems. A domain analysis and modeling method has also been
developed [Gomaa92a). This paper describes the prototype domain modeling
environment that has been developed to demonstrate tliese concepts.

2. DOMAIN MODELING

The Evolutionary Domain llie Cycle (EDLC) Model [Gomaa91) is a bighly
iterative software life cycle model that eliminates the traditional distinction between
software development and maintenance. Furthermore, because new software
systems are often outgrowths of existing ones, the EDLC model takes an
application domain perspective allowing the development of families of systems
[Parnas79], i.e. systems that share common characteristics.

A Domain Model is a problem-oriented architecture for the application domain that
reflects the similarities and variations of the members of the domain. Given a
domain model of an application domain, an individual target system (one of the
members of the family) is created by tailoring the domain model given the
requirements of the individual system. The concept of generating target systems
from an application domain model has been adopted by various researchers
[Batory89, Kang90, Pyster90, Lubars89].

A Domain Modeling method lGomaa 92] describes the procedures and steps
required to analyze the applicatIon domain and to develop a domain model for It.

1

In a domain model, an application domain is represented by means of multiple
views. such that each view presents a different perspective on the domain. The
different views are:

a) Aggregation Hierarchy. The Aggregation Hierarchy (AH) is used to decompose
complex aggregate object types into less complex object types eventually leadin~ to
simple object types at the leaves of the hierarchy. Object types are kernel, requIred
in all target systems or optional, only required in some target systems. At the upper
levels of the hierarchy, complex objects represent subsystems.

b) Object communication diagrams. Objects in the real world are modelled as
concurrent tasks [Jackson 83], which communicate with each other using messages.
Messages between objects may be loosely coupled or tightly coupled [Gomaa 84J.
The object communication diagrams (OCOs), which are hierarchically structured,
show how objects communicate with each other.

c) State transition diagrams. Since each object is modeled as a sequential task, an
object may be defined -by means of a finite state machine, and represented by a state
transition diagram, whose execution is by definition strictly sequential.

d) Generalization / Specialization Hierarchies. As the requirements of a given
kernel or optional object type are changed to meet the speCific needs of a target
system, the object type may be specialized [Meyer 87]. The variants of a domain
object type are stored in a Generalization / Speaalization Hierarchy (GSH).

e) Feature / object dependencies. This view shows for each feature (domain
requirement) the object types required to support the feature. In domain analysis,
domain requirements are analyzed and categorized as kernel requirements, i.e.
must be supported in all target systems, optional requirements (omy required in
some target systems), and mutually exclUSive requirements. Some reqwrements
need others as prerequisites.

3 OVERVIEW OF PROTO'IYPE DOMAIN MODELING
ENVIRONMENT

3.1 Objectives of Prototype

The EOLC and the domain modeling concept represent a radically different
approach for software development compared to the traditional waterfall model. It
was considered desirable to develop a proof-of-concept prototype to determine how
feasible these concepts are.

The objectives of the prototype domain modeling environment were to demonstrate
the feasibility of this approach, in particular:

a) Provide tool support for representing the multiple graphical views supported by
the the domain modeling method.

b) Provide consistency checking between the multiple views.

c) Mapping the multiple views to a common underlying representation, namely an
object repository.

2

d) Pr<;>vide automated support for generating target system specifications from the
domam model.

e) Be domain independent.

Since this was considered a daunting task, and limited resources were available for
this purpose, it was decided to constrain the proof-of-concept experiment as follows:

a) From domain modeling, provide tool support for the domain analysis and
specification of the EDLC.

b) From target system generation, provide tool support for the generation of the
target system specification phase. In panicular, it was viewed that this phase was a
good candidate for a knowledge-based too~ as the procedures for target system
generation could be expressed as rules, and these rules were well understood.

3.2 Tool Support for Prototype

Because of limited resources and the need to focus those resources on the
innovative parts of the domain modeling environmen~ it was considered desirable
to use existing software tools where possible. The following tools were selected.

a) An off·the-shelf CASE tool to support the creation of the multiple graphical
Vlews. An earlier survey of CASE tools indicated that there are several CASE tools
that support the popular Structured Analysis and Real-Tune Structured Analysis
methods [yourdon 891. It was decided to have the domain modeling method use a
graphical notation which is similar to that used by Real·TlDle Structured Analysis.
However the semantic interpretation of the diagrams supported by the domain
modeling method is radically different from that of Real-Tune Structured Analysis.
Another key requirement was that the CASE tool sUpJ:!Ort an open system
architecture, so that the information contained in the mUltiple views could be
extracted and processed by custom tools developed for this project.

Interactive Development Enviroment's (IDE) Software Through Pictures (StP) was
selected, as it satisfies the two requirements of I!roviding multiple view graphical
editors and has an open system architecture allowmg the fuformation in these views
to be extracted and manipulated.

b) Use an existing user interface management system to support a user interface
based on windows, menus and icons. NASA's TAE User futerface Management
System was selected for this purpose.

c) Select an expert system shell as a basis for the Knowledge Based Requirements
Elicitation tool.; which is used by a target system requirements engineer to select the
features to be included in a target system and hence rrovide the basis for tailoring
the domain model to create a target system. The too selected was NASA's CLIPS
expert system shell.

d) Select an object-oriented programming environment This includes an object
oriented programminJ language and support for an object repository. Although
initially, using an obJect-oriented database management system (OODBMS) was
considered, after some experimentation with the GemStone OODBMS, it was
decided, for the proof·of-concept prototype, to implement the object repository

using the Eiffel object-oriented programming language rather than with GemStone.

One reason for that decision is that a proof-of-concept prototype does not require
many of the capabilities offered by a full-featured OODB~IS. Another reason is
that Eiffel's support of multiple inheritance. pro\ision for generic classes, and use of
assertions to express preconditions, postconditions, and invariants makes it a more
powerful language for data definition and manipulation.

3.3 Features of Prototype

In the prototype environment, Soft'Nare Through Pictures is used to represent the
multiple views of the domain model, although the multiple views are semantically
interpreted according to the domain modeling method. The information in the
mulul,>le views is extracted, checked for consistency, and stored in an object
repository.

A knowledge based tool is used to assist with target system requirements elicitation
I~Jeneration of the target system specification. The tool, implemented in NASA's
C S shell, conducts a dialog with the human target system requirements engineer,
prompting the engineer for target system specific information. The outEut of this
tool is used to adapt the domain model to generate the target system specification.

The prototype environment is a domain independent environment Thus it may be
used to support the development of a domain model for any application domain that
has been analyzed, and to generate target system speci.ficauons from it

4 STRUcruRE OF PROT01YPE DOMAIN MODELING
ENVIRONMENT

4.1 Introduction

The scope of the prototype environment includes creating the domain model
(Figure 1) and generating target system specifications from it (Figure 2). Tools
supporting the creation of a domain model are as follows:

a) The Domain Modelins Grafhical Editing tool. This tool allows the "hieal
editing of the multiple Vlews 0 the domain model, consisting of the object type
aggregation hierarchy, object communication dia~ state transition diagrams,
and object generalization/specialization hierarchies. This tool was developed by
tailoring the Software through Pictures (StP) CASE tool to allow for the
construction of the multiple views of the domain model.

b) Domain Model Relations Extractor. This tool extracts the information contained
in the multiple views of the domain model from StP's mOLL relational data
base, interprets the information semantically according to the domain modeling
method, and stores it in a common underlying relational representation. The
relational schema is based on the concepts of the domain modeling method and is
tool independent.

c) Domain Model Consistency Checkins Tool. This tool checks for consistency
among the multiple views of the domam model. Consistency checking within one
view is done in a).

d) Domain Object Repository Generator. This tool maps the information
contained in the multiple views of the domain model to the Domain Object
RepositOry.

e) Feature / Object Editor. This tool allows the feature (requirement) / object
dependencies to be defined and stored in the domain object repository.

f) Domain Object Repository Report Generator. This tool generates reports on
the contents of the Domain Object Repository.

Tools supporting the generation of target system specifications from the domain
model (Figure 2) are as follows:

a) Domain Dependent Knowledge Base Extractor. This tool extracts, from the
domain object repository, the domain specific knowledge contained in the
multiple views of the domain model, as well as the feature / object dependencies,
and maps this knowledge to the domain dependent knowledge base, which is used
by the KBRET tool.

b) Knowledge-Based Requirements Elicitation Tool (KBRET). This Knowledge
Based tool carries out a dialogue with the user (target system requirements
engineer) to elicit larJet system requirements, subject to the heuristics and
constraints of the domam model, and hence selects and tailors the object types to be
included in the target system..

c) Target System Specification Generator. Given the list of objects to be included in
the target system, this tool automatically tailors the multiple views of the domain
model to generate the multiple views of ihe target system specification.

4.2 Tool Support for Creating Multiple Views

As discussed in Section 3, IDE's Software through Pictures was selected to support
the creation of the multiple graphical views of the domain model. The data flow
editor (DFE) is used to represent the object communication view with the
convention of interpreting the processes (bubbles) !IS the object tyP!!' ~dthe data
flows (arcs) as messages. The data structure editor (DSE), which IS based on
Jackson's Structured Programming notation for data structure di~ is used to
represent both the aggregation hierarchy and generalization/specialization
hierarchies. The sequence and the select notation are used to represent the
Is Part of and Is a relationships in the aggregation hierarchy and
generalization/specialization hierarchies, respectively. ~ Finally, the state transition
editor (STE) is used to represent the intefnal benavior of the state dependent
objects..

4.2.1 Domain Model Relation Extractor Tool

Once the creation of the multiple views has been completed, the graphical
information in the views must be mapped to an underlying common representation
from which target systems can be generated. The StP environment uses a relational
database for its underlying representation. The relational database consists of a set
of predefined relations that are populated by the StP data dictionaty routines.

As mentioned previously, the semantic interpretation of the multiple views differs

from the StP interpretation. The StP underlying relational schema was expanded by

addin~ a new set of relations that captured the semantic interpretation of the

domam model. The Domain ~fodel Relation Extractor (DMRE) tool uses a set of

scripts 'Written in the Troll/USE query language that extract the domain information

from the predefined set of relations. interpret them semantical1v based on the

domain modeling method, and store the extracted information in th'e newly defined

relations. The new set of relations serve as the interface between the front end

graphical environment that captures a domain model and any other environment

that uses the domain model information. The interface is independent of the

graphical tools used for creating the multiple views. A new DMRE tool, however,

must be developed if the front end graphical environment is changed.

The new relations and their attributes are as follows :

1) Nodes [node name, diagram name, index, characteristics, cardinality], which

defines the domain object tyP.es.
2l Arcs [arc label, source. sUlk, diagram name]. which defines the messages.

3 Externals [external node name], which defines the external object types.

4 Node.-part of [parent node name, child node name, child diagram name], which

defines ffie aggregation hierarchy.

5) Is a (parent node name, child node name]. which defines

generaliZation/specialization hierarchies.

6) Arc..,part 01 [parent arc labe~ child arc label], which defines aggregate message

decompositiOn.

7) Decomposed (parent node name, parent diagram name, child diagram name],

which defiDes the aggregate object types.

8) Diagrams [diagram name], which-defines the object communication diagrams.

4.2.2 Domain Model ConSistency Checker Tool

The graphical views as presented by the OCDs, the AH, the GSHs, and the STDs,
each focus on one aspect of the domain being modeled. Each view looks at the
domain from a different perspective. Without any automated tool, it is easy to
develop views of a domain that are semantically inconsistent.

Although StP provides consistency checking routines within one particular view,
there is, in feneral, no consistency checking among multiple views. The Domain
Model ConsIStency Checker (DMCC) uses a set of scriJ!t5 written in the Troll/USE
query language that check the underlying relations for mconsistencies based on the
set of rules mentioned below:

1· There should be a one-to-one correspondence between the object
~ in the ith level OCD and the object ~s in the corresponding
level in the AH. The domain object type m the context diagram, in
particular, should correspond to the root object type (top level) in the
AH.

2· The root node in each GSH should correspond to a leaf node in the
AH. This is due to the fact tbat each GSH serves as the specialization
of a leaf object type in the AH.

3- For each active leaf object type in the OCDs. where active denotes
a concurrent process, there must exist a state transition diagram that
captures the mternal behavior of the object type. Conversely, each
state transition diagram must correspond to an active leaf object type
in the OCDs.

4- The events in each state transition diagram (SID) should
correspond to the incoming messages of the object type in the OCD
that the SID is describing. The actions in each SID. on the other
hand, should correspond to the outgoing messages of the same object
type in the OCD.

The domain modeler runs DMCC when the graphical views are completed. DMCC
performs the consistency checking between the multiple views and then displays
messages describing any inconsistencies. It is then up to the domain modeler to
remove the sources of inconsistencies. A domain model is considered consistent if
no inconsistency is detected by this tool.

4.3 Object Repository

A key component allowing the integration and interoperation of various tools in the
prototype domain modeling environment is the object repository. This repository is a
single complex object representing a domain model; it IS composed of other objects
representing domain object types, features, and the relationships among them which
serve to define a domain model

Figure 3 shows the position of the object repository within the prototype
environment's overall architecture. It underlies the custom-developed tools of iD.is
environment, providin, them with a common set of services for accessing and
manipulatin~ informatIon durin~ the domain modeling process. The sections to
follow descnbe the object repoSItory as it has been implemented using the Eiffel
object-oriented language and reuse libraries by first describing its overall schema
and then detailing the seIVice.r it provides to the custom-developed tools of the
prototype environmenl

4.3.1 Schema

Fi~e 4 presents a structural diagram of the object repository showing the classes of
objects from which it is composed and the relationships among them. In this
diagram, thin arcs represent the inheritance relationship (pointing from a
descendant class to its parent class) and thick arcs represent the client relationship
(pointing frol!l a client class to its supplier class). These classes can be grouped into
three categones:

1. Qasses describing generic graph structures such as directed graphs,
directed multigraphs, directed acyclic graphs, and trees.

2. Specializations of the above Classes representing specific graph
form8.lisms such as aggre,ation hierarchies, generalizationl
specialization hierarchies, object communication diagrams, state
transition diagrams, and feature dependency graphs.

7

3. Other classes necessary to support definition of the specific graph
formalisms and the domain modehng method.

The paragraphs below describe each of the classes \ltithin these three categories.

Generic graph structures. Seven of the classes appearing in Figure 4 describe
objects used to represent generic graph structures such as directed graphs and trees.
Class NODE describes the nodes that exist in various forms of directed graphs. It is
a client of class ARC because each node has associated with it an arc set in and an
arc set out. Class ARC describes the arcs that exist in various forms of directed
graphs. It is a client of class NODE because each arc has associated with it a source
node and a sink node. Oass DAG describes directed acyclic graphs, a form of
directed graph in which no cycles may exist and in which only one arc may exist
between a source node and a sink node. It is a client of classes NODE and ARC
since directed graphs are defined as sets of nodes and arcs. Class DG is a
specialization of class DAG describing directed graphs which allow cycles but which
permit only one arc to exist between a source nooe and a sink node. Oass DMG is a
specializatIon of class DG describing directed multigraphs which permit more than
one arc going from a single source node to a single sink node. Fmally, class TREE
describes hierarchical structures.

Specific graph tonnalisms. Five of the classes in Figure 4 describe the specific
graph formalisms employed by the domain modeling method discussed in section 2.
Classes AH and GSH are specializations of class TREE describing aggregation
hierarchies and generalization/specialization hierarchies respectively. In both
aggregation and generalization/specialization hierarchies, the roots of trees and
their subtrees will reference domain object types. Oass OCD is a specialization of
class DMG describing object commurucation diagrams. Each node in an object
communication diagram Will reference a domain object type, and arcs will be
labeled with the messages by which domain object types communicate. Oass STD,
also a specialization of class DMG, describes state transition di~ams. Each node
in a state transition diagram will reference a state, and arcs will be labeled with
transitions. Oass FDG describes feature dependency graphs. It is a specialization
of class DAG because the domain modeliri~ method does not allow for circular
dependencies among system features (functIonal capabilities). Each node in a
feature dependency graph will reference a system feature, and ares will be
unlabeled.

Other classes. The remaining classes in Figure 4 are necessary to support definition
of the specific graph fonnalisms and the domain modeling method. Oass
OBJECT TYPE describes the definitions of domain object types, and class
SYSTEM'"FEATURE describes the features (functional capabilfties) of target
systems to be derived from a domain model. Oass SYSTEM FEA TURE is a client
of class OBJECT TYPE because each feature may have one or more supporting
domain object ~ required to implement that feature. Oasses STATE and
TRANSITION describe the states and transitions referenced by instances of class
STD, and class MESSAGE describes the messages by which domain object types
may communicate. Finally, class DOMAIN MODEL either directly or indirectly
aggregates all other classes forming the schema of the object repository, permitting
the persistent storage of a single complex object representing a domain modeL

4.3.2 Senices

Each of the classes depicted in Figure 4 and described in the preceding paragraphs
prO\,ides a set of Sel""t1CeS which allow client classes to access and marupulate the
state of objects in the object repository. It is this common set of se['V1ces which
allows the integration and interoperation of the custom-developed tools in the
environment.

Class DAG exports to its clients three attributes, five procedures. and eight
functions. These services defined for class DAG are inhented and in some cases
redefined by classes DG and D4~G. Classes FDG, STD, OeD, AGH, and GSH
describing specific graph formalisms define additional attributes, procedures, and
functions as appropriate to those inherited from their parent classes describing
generic graphs and trees. For example, the EDLC domain modeling method
provides a decomposition relationship between object comunication diagrams where
a specific node in one OCD can be decomposed into a set of nodes that will be
shown in another OCD. To capture this relationship in the object repository, class
OCD has attributes referencin~ the object communication diagram's parent diagram
as well as its parent node withm that diagram. In addition, class OCD has a function
which computes the level of a panicular diagram.

Services provided by the classes forming the object repositocys schema such as
those detailed above allow the inte$lation and interoperation of the custom
developed tools in the prototype enVlfonment. The next section of this paper,
describes some of those custom-developed tools and shows how they themselves
have been integrated with other tools.

4.4 Custom-developed· Tools

Within the l'rototype domain modeling environment, a number of custom
developed tools interact with the object repository as shown previously in Figure 3.
Like ilie object repository itself, these toolS were developed using the Eiffel object
oriented language and reuse libraries. Each of these tools is a client of class
DOMAIN MODEL; they make use of the services provided by this class and by
other clasSes forming the object repositorYs schema. So that these tools would have
a common user interface, Eiffef was used to encapsulate the T AE Plus user
interface development and management system (Szc:zur 90]. So that some of these
tools could make use of the inferencing capabilities of an expert system shell, Eiffel
was used to encapsulate the C-Lan~age Integrated ProdUction System (CLIPS).
Encapsulation of these existing tools IS discussed in section 4.4.1. section 4.4.2 then
descnl>es some of the custom-developed tools in the prototype domain modeling
environment.

4.4.1 Encapsulation of Existing Tools

The TAE Plus user interface development and management system provides three
packages of 'C' routines that may be Called from any application which is to have an
mterface developed using the TAE WorkBench. These packages are as follows:

o The Collection (Co) package

o The Variable Manipulation (Vm) Package

o The \\'indow Programming Tools (Wpt) package

Using Eiffel's mechanism for referencing external 'C' routines fromithin Eiffel
routines, each of these packages has been encapsulated in its O\ltTI Eiffel class and
their features have been exported to the class TAE CLIE\T. Any custom
developed tool in the prototype environment that is to interact \ltith the user through
an interface developed using T AE's WorkBench can access the services pro\'ided by
T AE's three packages of 'C' routines by inheriting from class TAE_CLIENT.

In addition to encapsulating the T AE Plus user interface management system, Eiffel
was also used to encapsulate CLIPS expert system shell. The Eiffel language
provides no rule-based processing of information, but does provide a mechanism for
referencing external routines written in the 'C language as already mentioned.
Thus, it was a simple matter to encapsulate tbe 'C' functions provided by CUPS
witbin an Eiffel class; any custom-developed tool requiring rule-based processing of
information can access tbe services provided by CUPS by inheriting from class
CLIPS.

·4.4.2 Description or Custom.developed Tools

With T AE Plus and CUPS encapsulated within Eiffel classes, it was possible to
pursue the development of custom tools for the prototype domain modeling
environment The paragraphs below described four of the custom-developed toolS
in this environment

Domain Object Repository Generator. The tool which creates the object repository
is called the Domam Object Repository Generator. First it creates a single mstance
of class DOMAIN MODEL as described in section 4.3.1. It then takes the
information e~rtea from StP in a relational representation, creates corresponding
objects according to the object repositorYs schema, and adds those objects to the
domain model. For example, if the domain analyst had created eight object
communication diagrams usmg StP, the DIAGRAMS relation shown in Figure 5
would contain eilht tuples each containing a unique string correspond!ng to the
name of an OCD. Iri J.>rocessing this relation, the Domain Object Repository
Generator would create eight instances of class OCD as described in section 4.3.1 of
this paper and would then add them to the instance of class DOMAIN MODEL
using services provided by that class.

Next, the Domain Object Re~itory Generator would process the NODES relation
shown in Figure 5, then the ARCS relation and so on. In processing these relations,
the Domain Object Repository Generator will create mstances of most of the
classes introduced in section 4.3.1 and will then add tbem to the single instance of
class DOMAIN MODEL using services provided by that class. The end result of
processing these relations will be a single complex object representing a domain
model.

Feature/Object Editor. Another tool is tbe Feature/Object Editor. Once the
object repository representing a domain model bas been created, the domain analyst
can use this tool to define new features by: 1) giving each new feature a unique
name, 2) entering an informal annotation for each new feature, 3) specifying domain
object types supponiog the feature being defined, and 4) specifyitig other features
required by the feature being defined. In addition to defining new features, the
domain analyst may use this tool to browse features previously defined for a given

domain model, delete features, or modify the definition of features in a domain
model.

The Feature/Object Editor can also be used to establish relationships amon~ sets of
features. For a given set of features one of the follolA1ng three types of relationships
may be specified: .

a no more than one feature from the set may be selected for inclusion
in the target system,

o exactly one feature from the set must be selected for inclusion in the
target system, or

o at least one feature from the set must be selected for inclusion in
the target system.

Each set of features defined in this manner is uniquely named and may have an
informal annotation associated with it. As with individual features, it is possible to
use this tool to browse sets of features previously defined, delete sets of features, or
modify the definitions of sets of features in a domain model

Domain Object Repository Re~()rt Generator. Another tool which interacts with the
object repository is the Domam Ob~ect Repository Report Generator tool. At any
time after creating the object repository, the domain analyst can generate a report
on the contents of a given domain model by using this tool which extracts select
information from the object repository as specified by the domain analyst, formats
that information using the laTeX typesetting program, and displays the resulting
document in an X-Windows document previewer.

Domain Dependent Knowledge Base EUractor. A final tool which interacts with the
object re~sitory is the Domain Depeadent Knowledge Base Extractor. This tool
extracts information about the domain model from the object repository, formats
that information as CLIPS facts which can be processed b)' the Knowledge-Based
Requirements Elicitation Tool (KBREl), and stores those facts in a file for use by
that tool.

For example, if the object repository contains 100 instances of dass OBJECI' TYPE,
then the domain dependent Ic:nowledge base will rontain 100 facts of the fomshown
below.

(Object; id name propetties)

The id term in these facts is an integer uniquely identifying an object type. The name
term in these facts is a string of characters representing the name of the object type •
- this string will also be unique. The properties term is a sequence of Strings
separated blank characters. Possible properties for an object type are:

o kernel

o optional

o aggregate

o variant

o agh _root

o gshJoot

Sirrtilarly, if the object repository contains 15 instances of class
SYSTEAf FEATURE, then the domain dependent knowledge base will contain 15
facts of tne form shown below.

(Feature: id name)

The id term in these facts is a unique integer identifying the feature. The name term
in these facts is a string of characters representing the name of the target system
feature --- this string will also be unique.

Other facts in the domain dependent knowledge base represent the dependencies
among features, the dependencies between features and domain object tyPes. the
aggregation and generalization/specialization relationships among domaln object
types, and so on.

4.5 Generation of Target System Specification

In addition to the multiple views, the EDLC domain model captures the reusable
domain features (requirements) and the dependencies amon~ features and object
types. A target system specification is derived from the domam model by tailoring
the domain model according to the features desired in the target system. During
specification generation, the feature object dependencies have to be enforced in
order to generate a consistent specification. The process of generating target system
specifications from a domain model requires knowledge-based tool support. This
tool must not only have knowledge about the domain model. but also contain
procedural knowledge about constructin~ target systems. A knowledge-based
system called the Kriowledge-Based Reqwrements Elicitation Tool (KBRET) has
been developed to automate the process of generating the specifications for the
target systems. This tool has been implemented in NASA's CUPS expert system
shell. The architecture of KBRET and its components are disrussed in the
following sections.

4.5.1 Knowledge-Based Requirements ElicitatioD Tool (KBRET)

The major components of KBRET are 1) the domain dependent knowledge base, 2)
the domain independent knowledge base and 3) the inference eDfine. The domain
dependent knowledge base is derived from the object re~tory through the
KBRET-Object repository interface and contains domain speCific information. The
domain independent knowled$e base contains the procedural and control
knowledge required in generatmg target system specifications from the domain
model. This separation between tbe domam-independent and domain-dependent
knowledge is essential for providing scale-up and maintainability. Also, the domain
independent knowledge base can be applieo to different domain models regardless
of tbeir application domain.

KBRET accomplishes the task of generating the target system specification in
several phases. Some of the pbases that KBRET may go through are: Browsing,
Target System Requirements Elicitation, Dependency Checking, and Target System
Specification Generation. The various components of KBRET are schematically

shown in Figure 6. The domain-dependent and domain-independent knowledge
bases are discussed in the following sections.

4.5.1.1 Domain Dependent Knowledge Base

As the name suggests, the domain dependent knowledge base contains specific
information about a particular application domain. This knowledge base is
composed of several knowledge sources, namely, "Feature and Object Types", "Inter
Feature & Feature-Object Dependencies" and "Multiple Views". They are used by
the domain independent knowledge base of KBRET in eliciting the requirements
and generating the target system specification. The domain dependent knowledge
base is derived from the domain specification, which is stored persistently in tfie
object repository. The following paragraphs describe the knowledge sources of the
domain dependent knowledge base.

The Featwes and Object Types knowledge source contains a list of all the object
types and features that have been incorporated in the domain model. For each
object type, its name and properties are stored in this knowledge source. The
properties of objects are: kernel, optional, variant, aggregate, agh root and
gsh root. The various relationships and dependencies among features ana between
features and object types are captured in the Inter-Feature &: FeatW'e-Object
Dependencies knowledge- source.

The Multiple VIeWS knowledge source contains the different views created using the
EDLC methodolo~, in particular, the aggresation hierarchy and the
generalization/speaalization hierarchies. These hierarchies are accessed and
utilized by the T'!'8et System Generator knowledJe source when the tarset system is
being assembled. The following section dIScusses the domain mdependent
knowledge base of KBRET.

4 • .5.1.2 Domain Independent Knowledge Base

The domain independent knowledge base !rOvides pr~dural and control
knowledge for the various functions supporte by .KBRET. The USei' Interface
Manager is responsible for carrying out a meaningfUl dialog with the target system
engineer to elicit the requirements for the target system.. It addresses such issues as
how, and in what sequence the tar~e~ ~tem engineer should be prompted for
various features, invoking and contro . g the different phases of KBRET.

Before specifying the requirements for the target system, the target system engineer
may wish to browse through portions of the domain model in order to gain
understanding of the application domain under consideration. The Domain Browser
knowledse source provides this facility. It provides rules for initiating and
terminating the browsing facility and also the appropriate domain dependent
knowledge sources to be accessed in order to facilitate the browsing of those parts
of the domain model which the target system engineer wishes to explore.

The Feature & Object Selection/Deletion knowledge source keeps track of the
selection or deletion of features lor the target system and the corresponding object
types. This knowledge source incoC(>orates rules for selecting and deleting features
and also invoking the appropnate rules for checking inter-feature and
feature/object dependencies.

13

The Dependency Checker knowledge source cooperatively works with the Feature &
Object Selection/Deletion knowledge source. \Vhenever a feature is selected or
deleted. the Dependency Checker enforces the inter·feature and feature/object
dependencies. which are obtained from the Inter· Feature & Feature· Object
Dependencies knowledge source. When a feature 'With some prerequisite features is
selected. the Dependency Checker ensures that those prerequisite features are
included in the target system. Similarly, before deleting a feature from the target
system, dependency checking is performed to ensure that it is not required by any
other target system feature.

Once feature selection for the target system has been completed, the Target System
Generalor knowledge source begins the process of assembling the target system.
The domain kernel object types are automatically included in the target system.
Depending upon the features selected for the target system, the corresponding
vanant and optional object types are included accordmg to the feature/object
dependencies. When the target system assembly is complete, KBRET produces two
relations, one of which contains the object tyl?es that have been included in the
target system and the other contains the speCIalizations that have been included in
the target system. These two relations are used in tailoring the picture files of the
domain model to create the target system picture files to be displayed using StP.

On completion of the generation of a tar~et system specification, it is stored in the
object repository. The target system speCIfication can be reused in that not only the
specification is stored, but also the features and the reasoning "state" so that
KBRET can be used to make "incremental changes" to an existing tar&et system and
generate a new target system specification rather than starting initially from the
domain model.

4.5.2 Target System Specification Generator Tool

The gr.apbical views of a tar$et system can be automatically generated from those of
the domain model by tailonng the domain model views based on the target system
~cification elicited by the Knowledge Based Requirements Elicitation Tool
(KBRET). The specification of a target system is defined in terms of the object
types that are to be included in the target system. Using this information, the Target
System Specification Generator (TSSG) tool performs the following tasks:

1- Derives the set of object types that are not included in the target
system and hence must be removed from the domain model views.

2- Generates the graphical views for the target system using the
domain model views and the list of the object types to be deleted.

3- Modifies the object type names by appending the word Variant to
the name of those object types for which a variant, i.e. a
specialization, has been selected and the word Variants to those
object types for which more than one variant object type has been
selected.

5 CONCLUSION

This paper has described a prototype domain modeling environment, which has
been developed at George Mason University to demonstrate the concepts of reuse

of software requirements and software architectures. The prototype emironment.
which. is application domain independent. is used to support the development of
domain models and to generate target system specifications from them. The
prototype environment consists of an integrated set of commercial-of-the-shelf
software tools and custom developed software tools.

6 ACKNOWLEDGEl\1ENTS

We gratefully acknowled~e the assistance of S. Bailin, R. Dutilly, 1.M. Moore, and
W. Truszkowski in proVIding us with information on the POCe. We gratefully
acknowledge the major contributions of Liz O'Hara-Schettino in developing the
domain model of the POCC. This work was sponsored primarily by NASA Goddard
Space Flight Center, with support from the Virginia Center of Innovative
Technology. The Software Through Pictures CASE tool was donated to GMU by
Interactive Development Environments.

7 REFERENCES

[Batory89] "'The Genesis Database System Compiler: A Result of Domain
Modeling"" Proc. Workshop on Domain Modeling for Software Engineering,
OOPSLA'~9, New Orleans, October 1989.

[Biggerstaff 87] Biggerstaff T. and Richter C.,-"Reusability Framework, Assessment,
and Directions", IEEE Software, MarcD 1987.

[CLIPS 891 Artificial Intelligttnce Section, Lyndon B. Iohnson Space Center, ·CLIPS
Reference Manual·, May 1989.

[Gomaa 84] Gomaa H, "A Software Design Method for Real Time Systems·,
Communications AC~ September 1984.

[Gomaa 89] Gomaa 6, R Fairley and L Kerschberg, --rowards an Evolution¥),
Domain life CYcle Model·. froc. Workshop on Domain Modeling· for
Software Engineering, OOPSLI'\, New Orleans, October 3, 1989.

[Gomaa 911 Gomaa H and L Kerschberg, "An Evolutionary Domain life Cvcle
Mooel for Domain Modeling and Target S~tem Generation", ¥roc.
Workshop on Domain Modelfug' for SoftWare En»neering, International
Conference on Software Engineenng, Austin, May 1991.

[Gomaa 923] Gomaa H, "An Object-Oriented Domain Analysis and Modeling
MethOd for SoftWare Reuselt Proc. Hawaii International Conference on

-- . System Sciences·, Hawaii, January 1992

[Gomaa 92b] Gomaa H, 1... Kerschberg, V. Su~a.mn, "A Knowled~-Based
Approach for Generating Target S~tem ~cifications from a -Domain
MOdel~ Accepted for puolication in "Proc. IFlP World Computer Congress,
Madriu, Spain, Septem5er 1992.

[Jackson 83J Jackson M, "System Developmentlt, Prentice HalJ., 1983.

[Kang 90], ~~_K.C. et. ~ht"Feature-Oriented Domain Analysislt.l.Technical ~~port
No. eMU/SEI-9().. ·21, Software Engineering Institute, fIIovember 1990.

[Lubars 891 Lubars M.D., ItDomain Analvsis for MultiQle Target S~tems\ ~roc.
WorKshop on Domain Modeling for Software Engineering, OOPSLA'89,
New Orleans, October 1989.

[Meyer 87] Meyer B, "Reusability: The Case for Object·Oriented Design", IEEE
Software, March 1987. .

[Parnas 791 Parnas D, "Deshming Software for Ease of Extension and Contraction",
IEEE Transactions on Software Engineering. March 1979.

[Pvster 901, Pvster A., 'The SYnthesis Process for Software DeveloQment", in "System
• and S'oftware Requirements Eng.ineering'~ Edited by R. Thayer & M.

. Dorfman, IEEE Computer Society-Press, n~~o. .
[Szczur 90] Martha R. Szczur, "A user interface development tool for space science

~stems", Paper presented at the AIAA/NASA Symposium on Space
fnformation Systems, September 1990.

[Yourdon 89] Yourdon E., "Modem Structured Analysis", Prentice Hall, 1989.

Multiple Views of Domain Model

Object CommuDication Diagrams

Geaeralizatioll/Specializatioil
Hierarchies

State Traasiuoo Diagrams

Event

Action

Domain Model
Relations

Extractor &
Consistency

Checker

Figure 1. Developing the Domain Model

Domain Model

Relations

Nodes

c=J

Area

CJ

b

Domain Object 1"".-----'------,

Repository

Domain Object
Repository
Generator

Feature/Objet:t

Dependencies

~

~

Objt'c:1 Hl'I)O~ilm"y
I)orm,in

I<C:POl"'

Knowledge-Based
Requirements
Elicitation

Tool·

Target System
Objects

Objects

CJ

Multiple Views
of

Domain Model

Target System
Spec

Generator

Target System8-@ Requirements

Multiple Views or

Tar~ct System Spt.'C

Target System
Object (,ommunicution Diagrams

'p
I

Target System

Aggregation llierarchy

,;E>
Target Systt'm

State Tnmsition Diagrams

"I"W I 1-:\1.:111

Ad ..",
'. .) ~

Target System
(;SlIs

Figure 2. Generation of Target System Specification .z

I

Software through Pictures

Gf/calef~

Object Repository

Figure 3: Position of the object repository within overall architecture

Figure 4: Structural rela.tionships among classes forming the object reposi~
tory's schema.

The DIAGRAMS relation.

diagram name

The NODES relation.

node name diagram name index characteristic cardinality

The ARCS relation.

arc label source node name sink node name. diagram name

Figure 5: Some relations exported from StP

....!
Target System

Requiremems

Engineer
 I•
IKBRET

KBRET Knowledge
Bases

User Interface
Manager

Domain Independent Knowledge Base

I~ IFe=&Ob~ I~pendency IBrowser Selec~on/ Checker
Deletton

Domain Dependent
Knowledge Base '

Target
System

Generator

CLIPS
~ Inference

Engine

KBRET-Object Repository
Interface

..

Object Repository

Target

System

Specification

Figure 6. Knowledge Based Requirements Elicitation Tool (KBREl)

