
1

7/8/98 CSE 143 Summer 1998 64

Abstraction and Modules
[Chapters 1 & 2]

7/8/98 CSE 143 Summer 1998 65

What is Abstraction?

◆ It's what you get when you…
◆ Ignore the messy details
◆ Focus on the essential qualities

◆ The canonical Black Box
◆ The Platonic ideal
◆ The foundation of Computer Science

◆ Every item in your bag of tricks is an abstraction

7/8/98 CSE 143 Summer 1998 66

Abstraction in Everyday Life

◆ We intuitively make and use abstractions
◆ They provide us with mental models for the

world around us
◆ They make us smarter

◆ Better organization of information

◆ Better ability to cope with complexity

◆ Better capacity for problem-solving

7/8/98 CSE 143 Summer 1998 67

Abstraction in Computer Science

◆ Programming languages contain abstraction
mechanisms
◆ A tool for building a new abstraction

◆ Examples: functions, classes, modules

◆ Two components: specification and
implementation
◆ Specification: what an abstraction promises to do

◆ Implementation: how it keeps that promise

◆ Once implementation works, forget about it!

7/8/98 CSE 143 Summer 1998 68

Example

Dog

food

waste material

7/8/98 CSE 143 Summer 1998 69

Dog

shoes

garbage

Dog

food

loyalty affection

Choosing the Right Abstraction

◆ Often, many abstractions are possible
◆ Trick is to choose the right one
◆ Correct abstraction depends on what’s

“essential”

2

7/8/98 CSE 143 Summer 1998 70

Levels of Abstraction

◆ A higher level of abstraction disregards more
details

◆ A dog is…
◆ A physical system (a collection of atoms)

◆ A bag of organs

◆ A furry thing that slobbers

◆ Must choose the correct level of abstraction
◆ Too low: too many messy details still remain

◆ Too high: difficult to understand/control behaviour

7/8/98 CSE 143 Summer 1998 71

Layers of Abstraction

◆ An abstraction can be composed out of other
abstractions
◆ Black boxes within black boxes

◆ Layers don’t know internals
of lower layers
◆ No crossing of the

“Abstraction Barrier”

Dog

Heart

SkeletonKidney

Ventricle

Chamber

7/8/98 CSE 143 Summer 1998 72

Example

◆ OSI networking model: seven layers

physical

link

network

transport

session

presentation

application

7/8/98 CSE 143 Summer 1998 73

Program Decomposition

◆ When designing a program, the first step is to
break it down into manageable chunks
◆ And repeat the process for each chunk!

◆ Some chunks are given to you, e.g. a library

◆ Implement the chunks, “glue together” for final
program

◆ Important to find correct layers and levels
◆ Not all program design is top-down in this way

7/8/98 CSE 143 Summer 1998 74

The Chunk Hierarchy

◆ There’s no fixed set of names for layers of
decomposition

◆ But many, many buzzwords
◆ Many ideas about how this should be done

◆ function, class, module, component, library,
toolkit, framework, subsystem, system, …

◆ In this course, we’ll focus on the first three

7/8/98 CSE 143 Summer 1998 75

Modules

◆ C and C++ do not require multiple files

◆ Guh.

3

7/8/98 CSE 143 Summer 1998 76

What is a Module?

◆ A unit of decomposition
◆ A unit of reusability
◆ A collection of related items packaged together
◆ Example: a stereo system

7/8/98 CSE 143 Summer 1998 77

Modularization

◆ Basic idea: break apart large system into
smaller units (modules)

◆ Group related functionality in one module
◆ Design modules to be general and reusable

◆ Multiple times in same program

◆ Different programs/programmers

◆ Package modules into black boxes,
communicate via interfaces

7/8/98 CSE 143 Summer 1998 78

Specification as Contract

◆ Module specification acts as a contract between
client and implementor

◆ Client depends on specification not changing
◆ Doesn’t need to know any details of how module

works, just what it does
◆ Implementor can change anything not in the

specification, (eg. to improve performance)

7/8/98 CSE 143 Summer 1998 79

Locality

◆ Locality of design decisions from encapsulation
◆ Benefits of private data and algorithm locality:

◆ Division of labour
◆ Easier to understand

◆ Implementation independence

◆ Platform independence

7/8/98 CSE 143 Summer 1998 80

Modules in C++

◆ Modules represented by a pair of files
◆ specification (.h) file
◆ implementation (.cpp, .cc, .c++, .C, etc) file

◆ Client’s only interaction with module is through
the interface defined in the .h file

7/8/98 CSE 143 Summer 1998 81

Imports and Exports

◆ Specification (.h) file declares which items are
exported
◆ constants, function prototypes, and data types

◆ Client program must import features of a module
to use them
◆ Use the #include directive

◆ Implementation (.cpp) file also uses #include to
ensure it obeys the contract

4

7/8/98 CSE 143 Summer 1998 82

Specification

◆ Supplies constants, data types, function
prototypes

◆ Comments describing what each function does
◆ Including preconditions, postconditions and

invariants, as appropriate

◆ Client should be able to refer to specification as
module’s documentation

7/8/98 CSE 143 Summer 1998 83

prototype

Sample Specification File

// geometry.h -- Specification file for

// computational geometry functions

#ifndef __GEOMETRY_H__

#define __GEOMETRY_H__

// circleArea: Returns the area of a circle with given radius

double circleArea(double radius);

// circleRadius: Returns the radius of a circle of given area

// PRE: area must be non-negative

double circleRadius(double area);

#endif // __GEOMETRY_H__
geometry.h

prevent multiple inclusion!prevent multiple inclusion!

7/8/98 CSE 143 Summer 1998 84

// geometry.cpp

// Implementation of geometry functions

#include <math.h>

#include "geometry.h"

const double PI = 3.1415;

double circleArea(double radius) {

return PI * radius * radius;

}

double circleRadius (double area) {

return sqrt(area / PI);

} geometry.cpp

Sample Implementation File

7/8/98 CSE 143 Summer 1998 85

Sample Client File

#include <iostream.h>

#include "geometry.h"

int main(void)

{

double value;

cout << "Enter radius: ";

cin >> value;

cout << "Area of circle is " << circleArea(value)
 << endl;

return 0;

}
main.cpp

7/8/98 CSE 143 Summer 1998 86

Building the Program (I)

◆ Three stages to go from source code to
executable:
◆ Preprocess

● reads #included files, expands #defines

◆ Compile

● Converts C++ code to object code the computer
can understand

◆ Link
● Connects your object code with system libraries to

make an executable program

7/8/98 CSE 143 Summer 1998 87

Compile compiler

main.cpp

geometry.hCompile compiler

iostream.h

Link
linker main.exe

geometry.obj

main.obj

geometry.cpp

geometry.h

math.h

geometry.obj

main.obj

libraries

Building the Program (II)

5

7/8/98 CSE 143 Summer 1998 88

Separate Compilation

◆ Each module’s .cpp source code is converted
into object code separately

◆ Linker collects object code together to build
executable

◆ Many environments hide this process from you
◆ On MSVC, just press the “build all” button (or even

just “run” …)

◆ Must be done “manually” under UNIX

7/8/98 CSE 143 Summer 1998 89

Advantages of Separate
Compilation

◆ One module usable by many clients
◆ Individual modules may be changed and

recompiled without changing entire program
◆ Client’s code can be changed and recompiled

without recompiling modules
◆ Can distribute object code to protect secrets
◆ But: Interface (specification) changes mandate

recompiling both implementation and client

7/8/98 CSE 143 Summer 1998 90

Designing Modules

◆ Must think about implementor’s and client’s
roles

◆ Implementor’s goals:
◆ Find right level of abstraction, build clean interface

◆ Protect the implementation

◆ Client’s goals:
◆ Assemble a program from usable modules

◆ Rely solely on specification

7/8/98 CSE 143 Summer 1998 91

Standard Libraries

◆ C/C++ comes with some predefined modules
(libraries)
◆ iostream.h, fstream.h for stream I/O
◆ math.h for sin, cos, sqrt, etc.

◆ string.h for strcmp, strlen, etc.

◆ Compilers also include nonstandard libraries
◆ Graphics, windowing, etc.

◆ Please don’t use them for CSE 143

7/8/98 CSE 143 Summer 1998 92

Summary (I)

◆ Abstraction is ingrained in our minds
◆ Programming languages are tools for

constructing abstractions
◆ Choosing the correct levels and layering of

abstractions is crucial in programming
◆ Finding the right breakdown is difficult

7/8/98 CSE 143 Summer 1998 93

Summary (II)

◆ A C++ module has specification (.h) and
implementation (.cpp) files

◆ Specification as contract
◆ Modules support reusability and decomposition

through encapsulation
◆ Separate compilation is a big win when writing

software

