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Chapter 1

Introduction

We present a computational package for the simulation o&nhycal systems and the inference of
parameters in these models based on experimental timeecdata. Models are imported using
the Systems Biology Markup Language (SBML] pnd simulated using a range of determin-
istic and stochastic algorithms. The main contributionto$ project however is to provide an
accessible package to infer feasible model parameterg Agiproximate Bayesian Computation
methods ?], including ABC rejection, Markov Chain Monte Carlo, andgbential Monte Carlo.

1.1 Background

Several packages exist to search the parameter space chmidahmodel to find the “optimum”
values. The complex pathway simulator Copagilfias a range of stochastic optimisation methods
which use steady state or time course experimental datasgachunistic or stochastic simulations.
COPASI supports import of Systems Biology Markup Langu&feNIL) [1] models and provides
the choice of a command line, graphical user interface or @lidgtion Programming Interface
(API). SBML-PET [] is an alternative package which performs stochastic rapkvolutionary
search (SRES)] based on the ODEPACKS] solver LSODAR. A key advantage of this package
is its ability to handle SBML events.

The key flaw with existing packages is the lack of any consitien of the range of feasible
parameters. In a Bayesian framework we would ideally likedahis by calculating the poste-
rior over the parameters given the observed data. Since metdirectly evaluate the likelihood
function in complex biological models, we employ the Apgdroate Bayesian Computation frame-
work [2] where we compare data simulated using various parameigzs/eo observed data. This
framework provides a theoretical foundation which is lagkfrom existing methods, where the
meaning of “best parameters” is ill-defined. The sampleadoran provide insight into the model
behaviour and give confidence intervals for each parameter.



Chapter 2

Features and dependencies

In this chapter, we introduce the project, in terms of the tegtures, the four interfaces, and
dependencies on specific packages and platforms.

2.1 Project outline

In order to provide a complete package for model infereneeimplemented a three-faceted soft-
ware package, consisting of modules for SBML parsing, siettb and deterministic data simu-
lation, and ABC inference. A schematic of the componentficsvd in Figure2.1. Four distinct
interfaces are available: a command line executable, a C &l R and Python interfaces, pro-
viding options for users of any level of computing knowledge

2.2 Key features

2.21 SBML

SBML is an xml-based markup language specifically desigaoexdd the “exchange and re-use of
guantitative models”1]. It is designed to be both computer and human readable andnder
of packages exist which are able to take a model defined in &MLSiBe and perform simula-
tion or other algorithms on the modellibSBML[7] is a library designed specifically for read-
ing, writing and modifying SBML models. This library is wign in C and C++, although it
has bindings available for a number of languages includiyghon, Java, Perl and Ruby. It is
designed to be portable and it has been ported to many diffetatforms including, Windows,
Linux and Mac OS X. Many researchers have made the modelfitveyproduced freely available
atwww. bi onodel s. or g, leading to a growing corpus of models for examination astrig of
biological simulators. The models encoded within SBML canelitremely complex and SBML
supports encoding of both stochastic and deterministicaisodt is possible to encode not only
cellular models within SBML but also population geneticsdals, although not many of this
type are currently in use. There are many competitors to BidLSformat including BioPAX
and CellML, although BioPAX is primarily for the encoding biological pathways rather than
biological models.
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Figure 2.1: Flowchart of SBML-ABC package

Our software package supports the importing of biologicatlets written in SBML and the
ability to simulate these models either stochastically etethministically and perform parameter
inference on these models. The SBML-ABC package supportgses of the current SBML
specification. The main components of the specification apparted including reactions, com-
partments, species, parameters, kinetic laws and rate(tifferential equations). Currently the
package only supports inference on global parameters apdraimeters declared locally to a re-
action will be used with the value as set within the list ofgraeters local to that kinetic law.
Currently the simulation algorithms for CLE, DDE and ODEaih make use of generated shared
libraries to enable faster running times of these algorithihe generated libraries contain either a
function containing the differential equations corresgiag to each species or a representation of
the kinetic law. The differential equations can either beagated using the kinetic laws which are
set for each reaction or have a rate rule set for the specidbelcase where kinetic laws are not
defined for a model, the SBML adaptor will automatically gexte a file containing the standard



mass action kinetic laws for the model. This process is nen &y the user. This auto-generation
of the gradient function is only supported for ODE simulatadgorithms. In the case of a user
wanting to run a Gillespie simulation on a SBML model, the SBfile must be written with each
of the global parameters corresponding to the reactionafadéereaction, for example the rate of
the first reaction in the SBML file should be encoded as thedidial parameter.

A significant subset of MathML in the SBML specification is popted: all of the main arith-
metic operations and trigonometric functions are implet®eéihave been tested. However, logical
and relational operations and custom function definitiorsh@t supported.

2.2.2 Stochastic simulation

There are two analytical approaches to modeling biochdmsysdems: deterministic and stochas-
tic. Deterministic methods are used when a system can beedefihile neglecting random effects
and species can viewed as continuous without drasticadtypding the behavior of the system.
Systems of ordinary and time-delay differential equaticenrs then model the system to an accept-
able accuracy. Stochastic methods describe systems whecees are defined in discrete terms
and failing to consider random effects can cause simulatiowliffer from observed results.

Stochastic simulation plays an important part in the urtdading of biochemical systems of
reactions including gene regulation networks, metabatevworks, and reaction systems where the
deterministic approach is not suitable because very lowgb@anumbers make stochastic effects
significant.

The foundation of the stochastic simulation of biochemgyatem is the Gillespie Stochas-
tic Simulation Algorithm (SSA) §, 9] which is “exact” given some basic physical assumptions,
such as having a "well-mixed” system. Stochastic algorghrave seen significant improvements
in speed during the past three decades allowing the sironlafi more complex systems. No-
table algorithms are the Gibson & Bruck’s next reaction radtfi 0], chemical Langevin equation
(CLE) [11], and tau leaping method&7, 13, 14]. As the biological systems are complex, and itis
vital to understand it closer to its natural form, a new cotmgusystem has been developed, the
P-system 5] in 2000 by Paun Gh., abstracting the way the alive cells maate chemical sub-
stances in multi compartmental situations. The origindleGpie’s algorithm has been extended to
simulate the behaviour of transmembrane P-systems, unteatlas the multicompartmental Gille-
spie algorithm [ 6] where the movement of crossing the membrane from one cameat to the
other is taken into account.

Three simulation algorithms are implemented in our projeat leaping, the CLE method and
the multicompartmental Gillespie algorithm (which is tHe/Swhen the number of compartments
is 1). The SSA, tau leaping and CLE method are widely avalabmany packages but the mul-
ticompartmental algorithm is not yet commonly used. The &SAot implemented separately as
the multicompartmental Gillespie algorithm reduces toS8& when it is a single compartmental
system.

2.2.3 Deterministic simulation

The Chemical Langevin Equation is equivalent to the Eulardama scheme for the numeri-
cal integration of stochastic differential equations (§DE&hen applied to the chemical master
equation. The system is therefore implicitly being repnésé as an SDE, which motivates the
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approximation of such a system by a system of determinigi@gons, i.e. ordinary differential
equations (ODEs). Deterministic simulations have the athge of being much faster than their
stochastic counterparts, and the literature on the nualeniegration of ODES is very well devel-
oped. Runge-Kutta schemes are deefactosolution, and coupled with adaptive step size control,
which ensures the local error remains below a user spectledance, they provide a powerful
tool for rapid data simulation in situations where particlenbers are sufficiently large to allow
us to ignore stochastic effects. Runge-Kutta-Fehlbergs4bea default solver in our package, but
more advanced solvers are availablse through the GSL andDEW@hich can handle stiff sets of
equations where differential components of the systemadp@mn very diverse time scales.

2.2.4 ABC inference

This project is complementary to work by Toni et al. devetgpihe ABC Sequential Monte Carlo
for parameter inference and model selectior].] The basic concept in Approximate Bayesian
Computation is to repeatedly draw parameter samples fremphor and simulate data under the
model of interest using these parameter samples. If thesttataated with a particular parameter
vector is sufficiently similar to observed data on some ahoicdistance measure, then we accept
the sample as being from the approximate poste?i@ip(z, z*) < €), wherex is observed data,
x* is the simulated data,is the distance function ands the threshold for acceptance. The choice
of € is crucial. Too small, and the acceptance ratio will be uaptable small, too large and the
approximate will be very poor.

For computationally intensive algorithms, such as ABC SM(ameter inference and model
selection, it is of great value to be able to recover and resarsimulation if it is stopped. We
have designed the ABC SMC methods to retrive the previouslptipn of samples particles and
continue the algorithm from that population. This is alscsaful feature if one wants to alter the
parameter settings for future populations.

2.3 Interfaces

2.3.1 CAPI

The C API provides the most flexible interface to the pack#gethe only interface through which
arbitrary parameter assignment functions can be usedyiatjospecific subsets of parameters or
parameters such as the initial conditions to be inferredlsk allows straightforward integration
of new simulation algorithms.

2.3.2 Command line interface

The command line interface is very user friendly, using flagg defined input files to control the
operation. The full range of simulation and inference dttaons are available.

2.3.3 Python

Python is a multi-paradigm scripting language which is Widesed in both academia and indus-
try. It is a dynamic, strongly typed object-oriented pragmaing language. Python has features
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which support both aspect-oriented and functional prognarg as well as imperative and object-
oriented programming styles. Most programmers regarddPyéls an very productive language to
program in due to its concise syntax and uses indentatioeftoedcode blocks. This syntax forces
programmers to write code that is easier to read and makbésipyibde extremely maintainable
and easily extendable. Python has automatic garbage totidzased on reference counting and
cycle detection and as such it reduces the programming ssecated with dealing with memory
related issues. Python also comes with an extensive sthfideary which as of Python 2.5 in-
cludes ctypes and a BioPython packagyd |s also freely available which contains code useful to
the bioinformatics community. Python is freely availabhelaeleased under an OSI approved open
source license. Python is very popular with researchera &idPhysics, maths or computer sci-
ence background and is gaining popularity in the bioinfdroseand systems biology community.
There are several implementations of the Python speciitatrailable including Jython (based on
Java), IronPython (based on .NET) and CPython (based on €hwsthe most commonly used
implementation. Although there should be no major problentls portability between different
Python implementations, this package has only been testad CPython.

A number of different methods exist for integrating Pythathv€ code such as Weave, SWIG
and ctypes. Ctypes is a foreign function interface whichpsuis accessing methods and variables
located in a shared library and allows a Python programmactess these almost transparently
without the need to write any bespoke C code. This reducedabelopment time in interfacing C
and Python code.

234 R

The freely available statistics programming environmerjtLH is used greatly within the bio-
logical community, and so creating an interface between dRthe above Approximate Baysian
Computation (ABC) methods, differential equation solvemsl SBML parser was an obvious. A
limited SBML parser and simulation package exisis]|[and is available in the BioConductor
downloadmwv. bi oconduct or . or g. However, this package is limited in the variety of SBML
files it is able to parse and is only able to call the existingsmdive() function in R to simulate the
model.

R has a vast amount of external packages pertaining to thagial sciences as well as pro-
tocol for writing new packages. It has the ability to searmsliesntegreate several packages and
data files into one workspace and provides a publicatiorthydrase graphics package. Data ma-
nipulation in R depends on vector, matrix and list structuvehich makes it ideal for representing
the data structures needed and produced by our package. iglétnentation is currently im-
plemented and supported on Linux and MacOS, and will becoragahle on Windows in the
future.

2.4 Dependencies

GNU Scientific Library. SBML-ABC makes extensive use of the GNU Scientific Librans(G.
We use the implementation of the Mersenne twister randombeuagenerator from GSL to gen-
erate the random numbers used in the simulations and usgs theat r i x andgsl vect or
data structures for large portions of handling options aawé thandling. We provide support for



using the ode solving algorithms found in GSL. The packagedesn tested with version 1.11 of
the GSL.

lIbSBML. The package is dependent on the libSBML library, which idlalsée fromht t p:

[ 'www. sbm . or g/ Sof t war e/ | i bSBML and provides the functionality to read, write and
manipulate SBML files. LIbSBML is used to extracts the modaladed in an SBML file and then
builds an internal representation of the model, which is aenedficient representation and reduces
the time and space requirements for the simulation algosth

gcc. The GNU Compiler Collection (gcc) is used to compile the ggatland propensity func-
tions derived from the SBML files. The package has been tegthdycc4.3.1.

Python. The Python modules included in this package require Pythioordater due to the need
for ctypes and the use of language features only availaligtinon 2.5.

R. The R package derived from the C code was built and tested Eae.

Platform. The package has been tested on Linux and Mac OSX and has notdsted on a
Windows platform and there will be difficulties in compilirand loading the generated shared
libraries used for the gradient and propensity functions.



Chapter 3
Methods

In this chapter, we describe in detail the method providethénpackage. The core algorithms
are implemented in C, including the SBML adaptors, the aeit@istic and stochastic simulators,
ABC parameter inference and model selection algorithmsalki the interfaces and their usage
will be described.

3.1 SBML Adaptor

Although the SBML format is a good way of encoding models @isextremely inefficient rep-
resentation for use by simulation algorithms. A C module wrasted which made it possible to
import an SBML model and build a representation of the modetivwe designed for use in the
simulation algorithms. The module was designed to be as fapds possible in order to minimise
code redundancy and decrease development time. The comveosle makes extensive use of the
libSBML library which is designed to allow the manipulatiohSBML models. The SBML adap-
tor code supports the generation of shared libraries auntagradient and propensity functions
for use in the ODE, DDE and CLE simulation algorithms. Thiswlane to reduce the execution
time of the simulation algorithms and increase the flextypif the algorithms.

3.2 Stochastic simulation

A biochemical system in stochastic simulation scheme isddfas a well stirred system of
species{ S, Sy, ..., Sy} and M reactions{ Ry, Ra, ..., Ry } with relative rates:, ¢y, ...cyr. X;(t)

the number of species; in the system at timé The stochastic simulation problem is to estimate
the state vectoK (t) = (X, (t), Xa(t),...Xn(t)) given the initial state vectaX(¢y) = x, at initial
timet,.

The propensity functioih;(¢) of a reaction, e.g. the probability a reaction takes plactén
system, depends on the availability of the species reqtretthe reaction and the reaction rate. It
is a function proportional to the combinatory of number cdaps available and the reaction rate.
For example, a first degree reactifin(c;) : X — Y has a propensity, (t) = ¢; x [X](¢), and a
second degree reactidty(c) : X + Y — 2X has the propensity, () = co x [X](¢)[Y](1).



3.2.1 Random number generator

An important issue in stochastic simulation problem is twedom number generation(RNG) to
obtain the random factor in the simulation process, e.g. ptdimg the time until the next reac-
tion and choosing the next reaction. It is also useful in ogats of the project, i.e., the ABC
MCMC, ABC SMC algorithms where the Monte Carlo process rezgithe RNG. Random num-
bers generated by any computational algorithms are onlydusseandom number. A good random
number generator is the one that satisfies both theoretidadtatistical properties, which are hard
to obtain.

In our project, we use the random number generators proagigdSL (GNU Scientific Li-
brary,htt p: / / www. gnu. or g/ sof t war e/ gsl / manual /), thegsl -rng. gsl rngis a
class of generators that generate random number from eliftfelistributions, such as uniform,
normal, and exponential, and are convenient to use. Theafoilee generators we use is the
default generatont 19937, the portable Mersenne Twister random number generatothdn
stochastic simulation scheme, only sampling from a unifdrstribution is required. However, in
the ABC scheme, Gaussian distribution sampling and othrersecessary to extend the variety of
the algorithms.

3.2.2 Multicompartmental Gillespie algorithm

Gillespie’s algorithm (§], [9]), or stochastic simulation algorithm (SSA) is an exactmoetfor
the stochastic simulation of biochemical system of reastidescribed above. It stochastically
simulates the system depending mainly on the propensityauwtions in the system by taking into
account the random factor to the next reaction to occur aatirte until the next reaction occurs.
There are two Gillespie’s algorithms, the direct method #redfirst reaction method, which are
equivalentin terms of statistic. However, the direct mdtisdaster and simpler to implement than
the other, thus it is more commonly used.

Since the development of the SSA, several improvementstieeme made to improve or extend
it. Gibson & Bruck’s next reaction method. (], tau-leaping {2, 13, 14] and chemical Langevin
equation (CLE) method![l] speed up the stochastic simulation by adapting a certai@ itnterval
for the system to proceed. Another direction in further ioy@ment of the SSA has been made by
extending it to the P-system], a computing model abstracting from the compartmentatstire
of alive cells in processing chemicals. The P-system is ldapaf describing the behaviour of
a biologically meaningful system. A stochastic simulatioathod has been introduced for this
system to simulate the kinetics of species in the multicatnpent system based on the SSA,
which we will refer to as the multicompartmental Gillesplgaithm [16]. The key idea of the
multicompartmental Gillespie algorithm is to decide thenpartment where the next reaction
occurs, by computing theandy value for each compartment, and then choosing the one wéth th
smallestr.

In our project, we implement the multicompartmental Gifiesalgorithm. However, as the
simulation framework is designed to fit the main overall ésgof the project which are the ABC
scheme for parameter approximation, it is required thastfséem is simple enough to compare
models. Thus, the system in our implemented version (seeritign 1) is reduced to a simpler
system compared with the P-system. The same type of speaiéarent compartments are de-
fined in the SBML file with different species name and thus g=elD, thus when it moves from



one compartment to another, it is not considered a diffusfamemical substances as described in
the paper]€]. Furthermore, this simplified version ignores the “enaimeent” element and it does
not use a heap sort for the triple (u;, i) wherei is the compartment index, but performs a min-
imum finding every loop. This version of the multicompartrtaillespie simulation becomes
the original Gillespie’s algorithm when the number of comipeents is 1.

Algorithm 1 Multicompartmental Gillespie’s algorithm
1: INPUT: Time seriest, t1, ..., t y)of simulated data, model of simulation

2: OUTPUT: System states at desired time points
3: Initialize the timet = ¢, system’s stat& = x
4: Calculate reaction propensity functiomgx) andaj (x = Z;jeci a;(x))
5. Calculater; = = In(rand(0,1))
O .
6: Calculatey;: ;.‘;51’”6& a; < rand(0,1)a) < ;@6”"02' a; (j is the index of reactions in the
compartment only)
7: Seti =0
8: repeat

9: Get(C; wherer; is smallest
10:  Execute reactiop, of compartment’;, update the system’s state— ¢ + 7, x — x + v,.
11:  Recalculate reaction propensity functiangx) anda;(x = > a;(x)) of reactions affected
by 7.,
12:  Recalculate; = i In(rand(0, 1)) of compartments affected by,
13:  Recalculatg;: ;‘;Bl’”ec’i a; < rand(0,1)ah < 5:8”"0 a; of comparments affected by
., (J 1s the index of reactions in the compartment only)

14: if t =¢; then

15: recordx(t)
16: increment;
17:  endif

18: until End condition

The multicompartmental Gillespie algorithm use a datecstme close to the model description
in SBML, theSt ochast i cMbdel comprising of Compartment information, Compartment (with
a pointer to the Compartment information), Species infdioma Species (with a pointer to the
Species information), Reaction (containing Species typacknts, Modifers and Products and
reaction rate). This data structure enables the algorithwork in an efficient interlinked manner
that helps avoiding random errors. The structure includeiater to a random number generator
to be activated everytime the model is parse from the SBML filalso has a block of structures
to increase the speed of updating the system status bygthereactions being affected by the
execution of a reaction (similar to the idea of dependeneplgmotion introduced in the Next
reaction methodl[()]).

3.2.3 Tau leaping

Tau leaping is an approximation to the exact Gillespie allgor. Consider all the reactions in a
time interval[t,t + 7|. Denote the number of times reactipmccurrs asP;. If the time interval

10



is short enough the propensity functiong-) will not change much over this interval. Indeed, if
we assume;(-) has the value at the beginning of the interval over the whulerval, then each
P; will have Poisson distribution with expected vatugX(¢))r. Once we have th&;’s, we apply
the equation:

X(t+7) = X(t) + Z v;P;(a;(X(1)),7) (3.1)

wherev; is the stoichiometry of thgth reaction. Tau leaping is analogous to the simple forward
Euler method for simulating ODESs, and suffers from the saommaerical instability. More ad-
vanced alternatives such as implicit tau leap are outsielstbpe of this project, but would be an
interesting avenue for further investigation. Tau leasubeCLEMbdel settings structure.

3.2.4 Chemical Langevin Equation

The tau leap algorithm can also be seen as a stepping stohe @€hemical Langevin Equation
(CLE), a Stochastic Differential Equation (SDE) that apqimmates the solution further. Recall that
the amount each reaction occurs in the intef¢al + 7], denotedP;, is Poisson distributed with
mean\ = a;(X(t))7. Itis a basic result from probability theory that for largeuats, a Poisson
random variable is well approximated by a normal variablgwean and variance both equal to
A. In applying this approximation our state variables becaominuous rather than discrete, and
we arrive at the CLE:

X(t+7)= X(t)+7 Z vja;(X(t)) + \EZ v/ a;(X(t))Z; (3.2)

whereZ; are unit normal random variables.

3.3 Deterministic algorithms

3.3.1 ODE solvers

For simulating ODEs both the full range of solvers in the G&U a subset of the CVODE solvers
are available. GSL solvers are used widesol ve whereas CVODE solvers are accessed via
cvodesol ve. The default GSL solver is Runge Kutta Fehlberg 4-5, wheeegitadient eval-
uations for a 5th order Runge Kutta (RK) step are used to takit @rder step "for free”. The
comparison between these two steps allows an estimate @frtbe and hence facilitates error
control. For stiff problems the implicit GEAR 1 and 2 methadle available. If a Jacobian is avail-
able the Burlish-Stoer implicit method should be used. Téfault CVODE solver is the Backward
Differentiation Formula, with Newton iterations to sol\eetresulting fixed point problem.

3.3.2 Time Delay Differential Equation solver

The time delay differential equation (DDE) solver code isdzhon the R packagédesol ve
which is turned based ool v95. The core is an embedded RK 23 step and cubic Hermitian
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interpolation to calculate lagged variables between satedl time points. Various modifications
and simplifications have been made, including moving to geablorientated framework to make
dynamically loading a compiled gradient function possibMdthough switch functions are not
used their associated code has not been removed since théy lveouseful if SBML events were
incorporated in the future.

3.4 Parameter inference

3.4.1 ABC rejection

Approximate Bayesian Computation(ABC) allows us to infex parameters of a system in prob-
lems where we cannot evaluate the likelihood functfgm|f) but can draw samples from it by
simulating the system. The simplest algorithm is ABC regatf2 1], as described in Algorithra.
ABC rejection is implemented by constructingABCRej ect i onSet t i ngs structure and call-
ingabcRej ect i on. For more details please refer to the C APl User Guide in theefplix.

Algorithm 2 ABC rejection. z, denotes observed data(-) denotes a distance measuteis a
threshold set by the user.
repeat
Sampled* from the priorr(0)
Simulatez* as a sample fronf (x|6*)
Acceptd* if p(z*, xy) <€
until enough samples found

3.4.2 ABC MCMC

ABC rejection is inefficient because it will continue to draamples in regions of parameter space
that are clearly not useful. One approach to this problem detive a ABC Markov Chain Monte
Carlo (MCMC) algorithm P], as specified in Algorithn8. The hope is that the Markov chain
(MC) will spend more time in interesting regions of high pabidity compared to ABC rejection.
However, strongly correlated samples and low acceptarnies nameans that ABC MCMC can in
fact be highly inefficient, especially if the MC gets stuckaimegion of low probability for a long
time, requiring a significant burn in period.

3.4.3 ABC SMC parameter inference

ABC MCMC has a potential disadvantage being inefficienthgeituck in a regions of low accep-
tance probability for a long time due to the correlated ratfrsamples and thus more computa-
tionally intensive. This problem can be tackled by usingthepapproach, the ABC Sequential
Monte Carlo (SMC) method<}], which introduces a sequence of intermediate distrimstid his
approach has been adapted with the sequential importang#isg algorithm 3, 24] and intro-
duced in a paper to be published by Tina Tahi][ In our project, we implement the algorithms
described in this paper, the weighted ABC SMC algorithmihere the samples are derived from

12



Algorithm 3 ABC MCMC.
initialise 6,
fori=1---Ndo
Sampled* from kernelg(6*|0;)
Simulatez* as a sample fronf(x|6*)
if p(z*, z9) < e then
if U(0,1) < min (1, 242450 then
9i+1 = 0"
else
Oiy1 = 0;
end if
else
Oiy1 = 0;
end if
end for

the previous distribution with perturbation and the tohe®s are chosen so that the samples evolve
closer to the posterior. The ABC SMC algorithm becomes th€ A8ection algorithm when the
number of populations is reduced to 1.

There are cases where the tolerances are set too low forgbgthin that it is overly time
consuming to continue go to the next population. Thus it efulgo have a way to change the
settings and resume the work where it stops. To meet this mee=tave designed the main algo-
rithm function so that it can retrieve information from treest completed population to continue
the parameter inference in the next population withoutr@o rerun the program from the start.
This feature allow the users to adjust the parameters sutle gerturbation kernels (i.e. make the
perturbation size smaller or larger to allow for a more rigidlexible evolution) or the tolerance.
The same feature was added to the ABC SMC model selectioroohetscribed in the next part.

3.5 ABC SMC model selection

The model selection framework introduced in the paper tolidighed by Tina Toni]7] performs
Bayesian model selection allowing the estimation of Bagesors P5]. The algorithm (see Algo-
rithm 5) is similar to the ABC SMC simulation, with the differencelssampling a model from a
prior distribution before sampling the parameters for iheugation of that model. With a number
of input models, it is possible that a model can die out in trawgion of the populations through
the iteration of population. The same feature of runningalgerithm from an available population
rather than from the start as with the ABC SMC algorithm islienpented for the model selection
process.

A more detail review and description of the ABC scheme patanmiaference and model se-
lection can be viewed in the paper that this project is basdulyolina Toni [L7]

13



Algorithm 4 ABC SMC algorithm
1: INPUT: model M ,observed dat&bsData, number of population®vum Pop, size of each
populationSize Pop, tolerance vectat, prior distributionlI(6), perturbation kernel&’;(0|6x)

2: OUTPUT: The last population of sampled particles that §atishe condition being smaller
than the tolerance, log file for each population

3: Set population IDdPop =0

4: Set weights of particles”) = {w; = 515}

5: for idPop = 0 to NumPop do

6: Seti=0

7. repeat

8: if idPop = 0 then

9: Sample parametérx « from prior distributionl1(6)
10: else
11: Sample parametet+ from previous population with weight“?7°P) and perturb to

obtainf* ~ K;qpe, (010 * )

12: end if
13: if TI(6 % *) = 0 then

14: Back to the beginning of repeat loop

15: end if

16: Simulate B data sets« ~ f(x]0 * x)

17: Setb = ), 1(d(z%,ObsData) < €4p,,) and calculate weight; = b(idPop = 0) or

w; =bx I *x/>
18: until i = SizePop
19:  Normalizew(@"op)
20: end for

TidPop—1 KidPOp(xt—lv X * *)

3.6 Interfaces

3.6.1 Command line interface

We have designed the command line front end as a single prnogg@able of multiple tasks. It
is a user friendly interface in a command line with flags tHEtvausers to indicate the desired
task as shown in Figur 1. All the parameter settings such as prior distribution efplarameters,
the perturbation kernels, observed data for parametereinée, or the time series for simulation
are stored in simple matrix format in text files which are e@synderstand and manipulate. We
also provides the log files for populations after each pdpardteration and the log files for the
distance between the simulated data and observed data wingtth be helpful for the users to
determine the tolerance for each population.

3.6.2 CAPI

The C API is distributed as source code that can be easily bedto a shared library using the
provided makefile. The required header files are providedseparate folder. A user guide is
provided (see Appendix) which describes how to run simaifetiand inference algorithms, and

14



Algorithm 5 ABC SMC Model selection algorithm
1: INPUT: models),,, observed dat@bsData, number of populationd/um Pop, size of each
population SizePop, tolerance vector™, prior distributionII™ (9), perturbation kernels
K™ (9]6%) for each model
2: OUTPUT: The last population of sampled particles that §atishe condition being smaller
than the tolerance, log file for each population, partickes loe from different models

3: Set population IDdPop =0

4: Set weights of particlesr™ = {w; = 1}

5: for idPop = 0 to NumPop do

6: SetnumParticle =0

7 repeat

8: Sample a model to simulate datg,,

9: if idPop = 0 then
10: Sample parametérs « from prior distributionl,,,(6)
11: else
12: Sample parameték from previous population af/,,, with Welghtw(l dPop) and perturb

to obtaindx ~ K\ (0]0 %)

13: end if
14: if I1,,,(0 % %) = 0 then

15: Back to the beginning of repeat loop

16: end if

17: Simulate B data setsx ~ f™)(z]0 * *)

18: Setb = ), 1(d(z*, ObsData) < eggop) and calculate weight; = b(idPop = 0) or

w; =bx MMz sx/3 S Ki(g}g)op(xt_l,x * %)
19: until numParicle = SizePop
20: Normallzewl(dp)op

21: end for

complements thdoxygerdocumentation of the individual functions.

3.6.3 Python - C Binding

A number of different methods exist for integrating Pythond & code, such as Weave, SWIG and
ctypes. Ctypes was added to the python standard libraryrgiore2.5 and allows a programmer
to access functions and member variables in shared likrari®LLs without having to write an
C code at all. The Python library has all of the functionaditsilable that is available in C, except
for model selection. This functionality is easily accesstio the user through the supplied Python
modules. The API has been designed and implemented to tigléoals much of the underlying
complexity of the C interface from the end-user and makesy ¢aset up the system for simulation
and running the ABC algorithms. The Python API currentlysants the results matrix from the
functions to files, making it easy to generate output. Altitois has not been implemented it would
be possible to produce graphs of these results using a pgtiaphing library such as matplotlib.
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3.6.4 R interface

The R interface includes seven R functions, each of whicludecthe SBML parser. There are
four solvers (Ordinary Differential Equations, Delay-@iential Equations, Chemical Langevin
Equations and Multi-Compartment Gillespie) and three AB€thods (Rejection, MCMC and
SMC). Due to the nature of R’s internal structures and itst€facing functions, the R version of
our package is simple to use but it does not have the same asgoulability as the C and Python
versions. Brief descriptions of the functions and the défees between the versions are listed
below.

The package consists of R wrapper functions which then lealbppropriate C wrapper func-
tions which then call the appropriate C functions. Becadgbeinternal structures of R and the
desire to have our package also be a stand alone C packageededboth R and C wrapper
functions. Unfortunately for the users, this means thes®aode will not be as readily avaible to
search through and modify.

The complex nature of our package required us to make used? fiunction .Call, which is
newer and less documented than the standard .C functiorpadkage makes use of the R macros
found in the R header files (R.h, Rinternals.h and Rdefine$hg header files are included in the
standard installation of R.

The package is currently only suppored on UNIX type systents MAC OS X; with the
package submission to CRAN, it should be made available ardts as well.

SBMLodeSolve()

SBMLodeSolve() takes an SBML file and a vector of times to damjpreturns a matrix consisting
of the sample times and the populations for each of the spatike reactions. There is a choice
between 10 differential equation solvers, two of which di differenetial equation solvers. In
the C version, the user can define their own gradiant funstfibis feature is not available in the R
version.

SBMLddeSolve

SBMLodeSolve() takes an SBML file and a vector of times to dampreturns a matrix consisting
of the sample times and the populations for each of the spaci¢éhe reactions. It is a dely-
differential equation solver. In the C version, the userdafine their own gradiant functions; this
feature is not avalible in the R version.

SBMLcleSolve

SBMLcleSolve() takes an SBML file and a vector of times to sknpreturns a matrix consisting

of the sample times and the populations for each of the spétithe reactions. It is a stochastic
solver, with the option to run Tau Leaping or Chemical Langdyquation. In the C version, the

user can define their own propensity functions; this featuret avaiable is not availible in the R
version.
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SBMLgillSolve

SBMLgillSolve() takes an SBML file and a vector of times to gd@) it returns a matrix consisting

of the sample times and the populations for eacg of the spétithe reactions. It is a stochastic
solver using a multi-compartment Gillespie algorithm amere is no loss of functionality between
the C and R versions.

SBMLabcRej

SBMLabcRej() takes an SBML file, an observed data file, a veatqrior distribution types,
two vectors describing the prior disribution settings, tluenber of samples, the solver type, the
threshold on the distance measure, the maximum numberrafides and the output file name.
It returns a matrix of the accepted values of the last pojmulatin the C version, the user can
pass their own function to set the parameters, they can ehtbeg own distance metric and they
can choose whether or not missing data is included in therithgo. In the R version, the set
parameters function is default, the distance metric is stisgoares, and the algorithm does not
include missing data.

SBMLabcMCMC

SBMLabcMCMC() takes an SBML file, an observed data file, ameat prior distribution types, a
vector of kernel distribution types, two vectors descrifime prior disribution settings, two vectors
describing the kernel distribution settings, the numbesamhples, the solver type,a vector of inital
parameter settings, the threshold on the distance measwutehe output file name. It returns a
matrix of the accepted values of the last population. In theeGion, the user can specify which
distance metric to use and how to deal with missing data. érRilversion, the distance is set to
sum of squares and the missing data is included.

SBMLabcSMC

SBMLabcSMC takes an SBML file, an observed data file, a vedtprior distribution types, two
vectors of prior distribution settings, a vector of Gaussstandard deviation for the perterbation
kernel, a vector of distance measure thresholds for eachlgtgn, the number of populations,
the size of inital population, the number of stochastic $ations for each parameter and a output
file name. In the C version, the user can define the distancectée handling of missing data,
set the perterbation kernel for each population and th@tnlrecover the previous population of
samples particles if the simulation is halted. In the R wersihe distance metric is sum of squares,
missing data is included, the perterbation kernel is sealiqggopulations and there is no recovery
mechanism.
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[hangfkolmogorovl ABCSMC1.0]1% ./sbmlabc -h
O=zage: sbmlabc -Mmiorsvh

-M

—In

Examples:

specify mode of running

(3)immlation, ABC (R)ejection, ABC MCHM(C), (R)BC SMC, ABC (M)odel Selection
specify method of Simumlation

(G)illespie, (T)au leaping, (C)LE, (C)DE, (D)DE

input filename for each mode

-M 5: sbml file for model
-M (R, MCMC, S5MC, M): run file for model
Example of run file for S5MC, "brusselator.run™:
GILLESPIE MODEL SUM OF SQUARE 5 100 5
brusselator.sbml brusselator.data brusselator.prior brusselator.sigma
brusselator.eps brusselator.mark brusselator.out
The first line describe the model type, distance type, number of population
The remainings are the file names of information such as model description|
Example of run file for SMC mpdel selection, "brusselator.rundHs©™:
2 100 5
GILLESPTIE MODEL SUM OF SQUARE 5 100 5
brusselator.=sbml brusselator.data brusselator.prior brusselator.sigma
brusselator.eps brusselator.mark brusselator.out
ODE MODEL SUM OF SQUARE 5 100 5
brusselator.=sbml brusselator.data brusselator.prior brusselator.sigma
brusselator.eps brusselator.mark brusselator.out
The first line describe the number of model, the number of population. The
Please make sure that the observed data, epsilon value and mark files are t
Model type: GILLESPTIE MODEL, ODE MODEL, CLE MODEL, DDE MODEL
Distance type: SUM OF SQUARE, CITY VECTOR, COSINE

output filename for Simumlation
time serries filename for Simulation
solwver for ode Simulation

(0} rk2, (embedded Runge-EKutta (2, 3) method)

(1) rk4, (4th order classical Runge-EKutta)

(2} rkf45, (embedded Runge-EKutta-Fehlberg (4, 53) method)

(3} rkck, (embedded Runge-Eutta Cash-Earp (4, 5) method)

(4) rk8pd, (gsl _odeiv_step rk8pd)

15) rkZ2imp, (gsl_odeiv_step rkZimp)

(6) rk4imp, (gsl odeiv step rk4imp)

(7} bsimp, (implicit bulirsch-stoer method, uses rkf45 instead)
(8) gearl, (implicit gear method)

[(9) geard (implicit gear method)

retrieve model selection from previous population

Put number for next population index (index start from 0)

verbose: 0 (no wverbose) 1 (verbose) 2(debug) (This function is currently disa
help

Eun simulation data from brusselator.sbml file, with Gillespie model:

>./sbmlabc -M 5 -m G -i brusselator.sbml -t time.txt -o sSim.txt

Eun simulation data from brusselator.sbml file, with ODE model using rk4 solver:

>./sbmlabc -M 5 -m 0 -2 1 -i brusselator.sbml -t time.txt -o sSim.txt

Eun ABCSMC from brusselator.run and the next line to retrieve from previous population

>./sbmlabc -M A -i brusselator.run
»>./sbmlabec -M A -i brusselator.run -r -2

Fun ABC SMC Model selection from brusselator.runMs

>./sbmlabc -M M -i brusselator.runMs

Figure 3.1: Screen shot of instruction on how to use the thgramsbmliabe
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Chapter 4

Examples and results

4.1 Data simulation

4.1.1 Lotka-Volterra model

The Lotka-Volterra (LV) model is a classic model describiing relation between preys and preda-
tors in an ecological system. The model is described by thetians:

X —2X withratec (4.1)
X+Y —2Y withratec, (4.2)
Y — O withratecs (4.3)

whereX denotes the prey and denote the predator.

The stochastic simulation of this model with Gillespieg@ithm with initial condition( X, Y") =
(1000, 1000) with the set of paramete(s,, c,, c3) = (10,0.01, 10) is shown in Figurel.1, showing
the oscillatory characteristic of the model.
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——
———
P—
Pe—

500
|

I T T T I
10 15 20

o
(53]

time

Figure 4.1: Lotka-Volterra simulated using Gillespie’ga@iithm.
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4.1.2 Repressilator

This model involves three genes and their transcripts whlgdpress each other’s expression. Fig-
ure4.2shows the model simulated using ODE solver. It is model whidfibits a stable oscillation
with fixed time periods. The repressilator consists of tlyees connected together in a feedback
loop, as shown in Figuré.3.
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time
Figure 4.2: Repressilator simulated using ODE solver.
L_L = [ = | L
rcl Lacl TetR GFP

Figure 4.3: Feedback loops present in repressilator

4.1.3 Brusselator model

This is a classic autocatalytic, oscillating system of cloahreactions, which exhibits a stable
limit cycle for a certain range of parameter values. We wgk this model for testing the inference
algorithms. The component reactions are:

0 — X (4.4)
2X +Y — 3X (4.5)
X - Y (4.6)
X — 0 (4.7)
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The ODEs are just in terms of the rate constants:

d| X
B ot XY~ palX) — pilX] (48)
dly
Pl pxPY) 4l @9)
The Jacobian of system of ODEs:
dx;
— = Fi(a1,...,2,) (4.10)
is given by
OF;
Ty =5y (4.11)

So for this model,

J = 2p2[ X][Y] —ps —pa pof X]?

S XIY] 405 —palX]? (4.12)

Figure4.4 shows simulations of this model using four different sintiola algorithms.

4.2 Parameter inference

We initially tested the inference algorithms on the Bruat®l model and artificial observed data
with 100 time points.

4.2.1 ABC rejection

ABC rejection was run requiring 1000 accepted samples, disguares distance function, and a
tolerance ot = 5 x 10°. This level ofe across 100 time points and 2 species corresponds to a root
mean square error (RMSE) of 158, where the species contientpgeaks are around 1000. The
run required a total of 319967 samples, giving an accepteatteof 0.31%. Figurel.5(a)shows
a histogram for parameter 1 (the rate of reaction 1) over @@ kamples. Figuré.5(b)shows
the accepted samples plotted as parameter 1 (the rate tbrehragainst parameter 2 (the rate of
reaction 2). Itis more informative to investigate plots oe@arameter against another than simple
histograms of one parameter as this highlights correlatimiween parameters.

To put thee = 5 x 10° threshold into context it is interesting to compare simedadata that
was accepted to the observed data, as shown in Figusés)and4.6(b)

4.2.2 ABC MCMC

ABC MCMC was run with the same epsilon thresholdsok 10°. For 1000 accepted samples
90204 time courses were generated, giving an acceptancefat1%. As expected this is slightly
higher than for rejection, butitis at the cost of correladathples. Figuré.7(b)shows parameter 1
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Figure 4.4: Simulations of the Brusselator model usingeddht algorithms.
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Figure 4.5: Results of ABC rejection on Brusselator mod@gi©DE solver.
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Figure 4.6: Observed data (blue) and accepted simulated giay lines).
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Figure 4.7: Results of ABC MCMC on Brusselator model usingexdlver.

against 4 for accepted samples, and the agreement withripe od feasible values from rejection
is very good.

Figure4.8(a)shows a histogram of all the distances calculated duringutmeThe threshold we
use corresponds tog,,(5x 10°) = 6.7, so we see that just the tail is accepted. Figugb)shows
the distribution of the distances calculated. Significatdks very large distances are produced,
which corresponds to the the fact that unlike rejection, MCNbes not waste many samples in
regions of low probability.
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Figure 4.8: Histograms of log(distance) for all simulatedadets.
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4.2.3 ABC SMC

ABC SMC was run for Brusselator using RKF45 ODE solver. 108@iples were used with 8
populations, withe decreasing linearly from0” to 3 x 10°. The number of samples required for
each population, and the corresponding acceptance ratishawn in Tablel.l. The acceptance
ratio decreases as the threshold decreases, as expectedaiitbe clearly seen in FigufelQ
which shows the roughly exponential relationship betwédenacceptance ratio ard It would
be interesting to try reducing the width of the perturbattemel through the populations, as this
might help the samples stay in regions of higher probabilityvould also be interesting to see
if further reduction ofe was possible, as it appears that the reduction fiom 10° to 3 x 10°
actually has little effect on the acceptance ratio. Figufeshows plots of parameter 1 vs. 4 for
the successive populations. The samples start out rdiatlifeuse, and concentrate on regions of
higher posterior probability as the threshold is decreakeslinteresting that for large values of

a second mode with parameter 1 close to zero is possible,liahvs eliminated as is reduced.

Population| ¢/10° | # simulations| Acceptance ratic
1 10 6772 0.147667
2 9 17977 0.055627
3 8 23389 0.042755
4 7 34253 0.029195
5 6 59936 0.016684
6 5 290406 0.003443
7 4 224550 0.004453
8 3 299915 0.003334

Table 4.1: Statistics for each population of ABC SMC.

4.3 Model selection

We did an experiment with observed data generated from thesBtator model with ODE solver
to observe the performance of the model selection algorittha assumed that the data is from
an unknown source and the objective is to try different metiesee which one best describes the
behaviour of the model.

We did model selection with two models: the Brusselator rhddelf and the Lotka-Volterra
model, both simulated using Gillespie’s algorithm. Theisgs for parameters for each model
(perturbation kernel and prior distributions) are set sajgdy, however the tolerances, the mark
vector and so on are shared between the two. The algorithmundsr 5 populations to generate
100 parameter vectors. The results show that from the figstilption of parameters, only Brus-
selator model is present. Consequently, in the followingybations, only the Brusselator model
remains.

This result shows that the model selection was able to dtyrelsoose the model which best
predicts the unknown observed data.
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Chapter 5

Future work

Additional simulation algorithms. Various other simulation algorithms could be valuable ad-
ditions to the package. Additional stochastic algorithndude the Next Reaction method (Gib-
son & Bruck), more advanced tau leaping algorithms (e.g.lichgau leap), and higher order
Stochastic Differential Equations than the CLE. Hybridasithms involving both stochastic and
deterministic components are available which choose th&t aqgpropriate for each reaction and
species.

Advanced implementations. Monte Carlo algorithms are good candidates for paralliétina
Technologies such as CUDA might offer a good way of improdimgulation throughput, although
this would mean that the package would be tied to a specifidarernvhich may not be ideal. It
may be possible to create an MPI or OpenMP enabled versidregfdckage which could mean
that the algorithms could be run on high performance comgugsources. Difficulties do exist
however with implementing efficient and robust random nungsneration across a distributed
environment.

Random number generator. It could be valuable to investigate the use of a differenticam
number generator. Other random number generators aralalegihat have longer periods, are just
as random and are less computationally intensive to conjfadieSince a lot of random numbers
are generated by our system this could lead to a reductioanpate time whilst not impacting
on the soundness of the algorithm.

Distance measures. The existing distance measures calculate only the errdnerdependent
variable, i.e. the species. This means that very similaeesl and simulated data which is
slightly misaligned in time will have an undesirably largstence. As a result samples may be
rejected which actually represent quite good parametermeXkind of time shift invariant distance
function, or inference of an initial lag in the model, coukel\ways of addressing this problem.

Automatic conversion between stochastic and deterministimodels Currently it is not possi-
ble to take a model encoded with stochastic parameters andage this deterministically and get
results which make sense.
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Lyapunov exponents. How close the samples ABC produced are to being samples fretnue
posterior will clearly depend on to what extent similar daderesponds to similar parameters. For
inferring initial conditions especially, this is closelglated to Lyapunov exponents as they con-
trol the rate of divergence from different starting coratits. Functionality to estimate Lyapunov
exponents could therefore be a useful addition.

Improved data structure for MCMC. The MCMC algorithm stores duplicates of the current
vector of parameters every time a sample is rejected. Asudt l@single vector is stored many

times in the output matrix. A more efficient structure wouilthgly store unique vectors and the

number of repeats of each.

Autocorrelation times for MCMC. For evaluating how long the burn in period of an MCMC
algorithm is it is useful to be able to estimate the integtaatocorrelation time of the samples:
the burn in period should be at least this long. Built in fumaality to achieve this would be very
useful.
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