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Chapter 1

Introduction

We present a computational package for the simulation of dynamical systems and the inference of
parameters in these models based on experimental time course data. Models are imported using
the Systems Biology Markup Language (SBML) [1] and simulated using a range of determin-
istic and stochastic algorithms. The main contribution of this project however is to provide an
accessible package to infer feasible model parameters using Approximate Bayesian Computation
methods [2], including ABC rejection, Markov Chain Monte Carlo, and Sequential Monte Carlo.

1.1 Background

Several packages exist to search the parameter space of a dynamical model to find the “optimum”
values. The complex pathway simulator Copasi [3], has a range of stochastic optimisation methods
which use steady state or time course experimental data and deterministic or stochastic simulations.
COPASI supports import of Systems Biology Markup Language (SBML) [1] models and provides
the choice of a command line, graphical user interface or C Application Programming Interface
(API). SBML-PET [4] is an alternative package which performs stochastic ranking evolutionary
search (SRES) [5] based on the ODEPACK [6] solver LSODAR. A key advantage of this package
is its ability to handle SBML events.

The key flaw with existing packages is the lack of any consideration of the range of feasible
parameters. In a Bayesian framework we would ideally like todo this by calculating the poste-
rior over the parameters given the observed data. Since we cannot directly evaluate the likelihood
function in complex biological models, we employ the Approximate Bayesian Computation frame-
work [2] where we compare data simulated using various parameter values to observed data. This
framework provides a theoretical foundation which is lacking from existing methods, where the
meaning of “best parameters” is ill-defined. The samples found can provide insight into the model
behaviour and give confidence intervals for each parameter.
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Chapter 2

Features and dependencies

In this chapter, we introduce the project, in terms of the keyfeatures, the four interfaces, and
dependencies on specific packages and platforms.

2.1 Project outline

In order to provide a complete package for model inference, we implemented a three-faceted soft-
ware package, consisting of modules for SBML parsing, stochastic and deterministic data simu-
lation, and ABC inference. A schematic of the components is shown in Figure2.1. Four distinct
interfaces are available: a command line executable, a C API, and R and Python interfaces, pro-
viding options for users of any level of computing knowledge.

2.2 Key features

2.2.1 SBML

SBML is an xml-based markup language specifically designed to aid the “exchange and re-use of
quantitative models” [1]. It is designed to be both computer and human readable and a number
of packages exist which are able to take a model defined in an SBML file and perform simula-
tion or other algorithms on the model.LibSBML [7] is a library designed specifically for read-
ing, writing and modifying SBML models. This library is written in C and C++, although it
has bindings available for a number of languages including,Python, Java, Perl and Ruby. It is
designed to be portable and it has been ported to many different platforms including, Windows,
Linux and Mac OS X. Many researchers have made the models theyhave produced freely available
atwww.biomodels.org, leading to a growing corpus of models for examination and testing of
biological simulators. The models encoded within SBML can be extremely complex and SBML
supports encoding of both stochastic and deterministic models. It is possible to encode not only
cellular models within SBML but also population genetics models, although not many of this
type are currently in use. There are many competitors to the SBML format including BioPAX
and CellML, although BioPAX is primarily for the encoding ofbiological pathways rather than
biological models.
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Figure 2.1: Flowchart of SBML-ABC package

Our software package supports the importing of biological models written in SBML and the
ability to simulate these models either stochastically or deterministically and perform parameter
inference on these models. The SBML-ABC package supports a subset of the current SBML
specification. The main components of the specification are supported including reactions, com-
partments, species, parameters, kinetic laws and rate laws(differential equations). Currently the
package only supports inference on global parameters and all parameters declared locally to a re-
action will be used with the value as set within the list of parameters local to that kinetic law.
Currently the simulation algorithms for CLE, DDE and ODE allcan make use of generated shared
libraries to enable faster running times of these algorithms. The generated libraries contain either a
function containing the differential equations corresponding to each species or a representation of
the kinetic law. The differential equations can either be generated using the kinetic laws which are
set for each reaction or have a rate rule set for the species. In the case where kinetic laws are not
defined for a model, the SBML adaptor will automatically generate a file containing the standard
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mass action kinetic laws for the model. This process is not seen by the user. This auto-generation
of the gradient function is only supported for ODE simulation algorithms. In the case of a user
wanting to run a Gillespie simulation on a SBML model, the SBML file must be written with each
of the global parameters corresponding to the reaction rateof a reaction, for example the rate of
the first reaction in the SBML file should be encoded as the firstglobal parameter.

A significant subset of MathML in the SBML specification is supported: all of the main arith-
metic operations and trigonometric functions are implemented have been tested. However, logical
and relational operations and custom function definitions are not supported.

2.2.2 Stochastic simulation

There are two analytical approaches to modeling biochemical systems: deterministic and stochas-
tic. Deterministic methods are used when a system can be defined while neglecting random effects
and species can viewed as continuous without drastically distorting the behavior of the system.
Systems of ordinary and time-delay differential equationscan then model the system to an accept-
able accuracy. Stochastic methods describe systems where species are defined in discrete terms
and failing to consider random effects can cause simulations to differ from observed results.

Stochastic simulation plays an important part in the understanding of biochemical systems of
reactions including gene regulation networks, metabolic networks, and reaction systems where the
deterministic approach is not suitable because very low particle numbers make stochastic effects
significant.

The foundation of the stochastic simulation of biochemicalsystem is the Gillespie Stochas-
tic Simulation Algorithm (SSA) [8, 9] which is “exact” given some basic physical assumptions,
such as having a ”well-mixed” system. Stochastic algorithms have seen significant improvements
in speed during the past three decades allowing the simulation of more complex systems. No-
table algorithms are the Gibson & Bruck’s next reaction method [10], chemical Langevin equation
(CLE) [11], and tau leaping methods [12, 13, 14]. As the biological systems are complex, and it is
vital to understand it closer to its natural form, a new computing system has been developed, the
P-system [15] in 2000 by Paun Gh., abstracting the way the alive cells manipulate chemical sub-
stances in multi compartmental situations. The original Gillespie’s algorithm has been extended to
simulate the behaviour of transmembrane P-systems, introduced as the multicompartmental Gille-
spie algorithm [16] where the movement of crossing the membrane from one compartment to the
other is taken into account.

Three simulation algorithms are implemented in our project: tau leaping, the CLE method and
the multicompartmental Gillespie algorithm (which is the SSA when the number of compartments
is 1). The SSA, tau leaping and CLE method are widely available in many packages but the mul-
ticompartmental algorithm is not yet commonly used. The SSAis not implemented separately as
the multicompartmental Gillespie algorithm reduces to theSSA when it is a single compartmental
system.

2.2.3 Deterministic simulation

The Chemical Langevin Equation is equivalent to the Euler-Maruyama scheme for the numeri-
cal integration of stochastic differential equations (SDE), when applied to the chemical master
equation. The system is therefore implicitly being represented as an SDE, which motivates the
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approximation of such a system by a system of deterministic equations, i.e. ordinary differential
equations (ODEs). Deterministic simulations have the advantage of being much faster than their
stochastic counterparts, and the literature on the numerical integration of ODEs is very well devel-
oped. Runge-Kutta schemes are thede factosolution, and coupled with adaptive step size control,
which ensures the local error remains below a user specified tolerance, they provide a powerful
tool for rapid data simulation in situations where particlenumbers are sufficiently large to allow
us to ignore stochastic effects. Runge-Kutta-Fehlberg 45 is the default solver in our package, but
more advanced solvers are availablse through the GSL and CVODE which can handle stiff sets of
equations where differential components of the system operate on very diverse time scales.

2.2.4 ABC inference

This project is complementary to work by Toni et al. developing the ABC Sequential Monte Carlo
for parameter inference and model selection [17]. The basic concept in Approximate Bayesian
Computation is to repeatedly draw parameter samples from their prior and simulate data under the
model of interest using these parameter samples. If the datasimulated with a particular parameter
vector is sufficiently similar to observed data on some choice of distance measure, then we accept
the sample as being from the approximate posteriorP (θ|ρ(x, x∗) ≤ ǫ), wherex is observed data,
x∗ is the simulated data,ρ is the distance function andǫ is the threshold for acceptance. The choice
of ǫ is crucial. Too small, and the acceptance ratio will be unacceptable small, too large and the
approximate will be very poor.

For computationally intensive algorithms, such as ABC SMC parameter inference and model
selection, it is of great value to be able to recover and resume a simulation if it is stopped. We
have designed the ABC SMC methods to retrive the previous population of samples particles and
continue the algorithm from that population. This is also a useful feature if one wants to alter the
parameter settings for future populations.

2.3 Interfaces

2.3.1 C API

The C API provides the most flexible interface to the package.It is the only interface through which
arbitrary parameter assignment functions can be used, allowing specific subsets of parameters or
parameters such as the initial conditions to be inferred. Italso allows straightforward integration
of new simulation algorithms.

2.3.2 Command line interface

The command line interface is very user friendly, using flagsand defined input files to control the
operation. The full range of simulation and inference algorithms are available.

2.3.3 Python

Python is a multi-paradigm scripting language which is widely used in both academia and indus-
try. It is a dynamic, strongly typed object-oriented programming language. Python has features
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which support both aspect-oriented and functional programming as well as imperative and object-
oriented programming styles. Most programmers regard Python as an very productive language to
program in due to its concise syntax and uses indentation to define code blocks. This syntax forces
programmers to write code that is easier to read and makes python code extremely maintainable
and easily extendable. Python has automatic garbage collection based on reference counting and
cycle detection and as such it reduces the programming time associated with dealing with memory
related issues. Python also comes with an extensive standard library which as of Python 2.5 in-
cludes ctypes and a BioPython package [18] is also freely available which contains code useful to
the bioinformatics community. Python is freely available and released under an OSI approved open
source license. Python is very popular with researchers from a Physics, maths or computer sci-
ence background and is gaining popularity in the bioinformatics and systems biology community.
There are several implementations of the Python specification available including Jython (based on
Java), IronPython (based on .NET) and CPython (based on C) which is the most commonly used
implementation. Although there should be no major problemswith portability between different
Python implementations, this package has only been tested using CPython.

A number of different methods exist for integrating Python with C code such as Weave, SWIG
and ctypes. Ctypes is a foreign function interface which supports accessing methods and variables
located in a shared library and allows a Python programmer toaccess these almost transparently
without the need to write any bespoke C code. This reduces thedevelopment time in interfacing C
and Python code.

2.3.4 R

The freely available statistics programming environment R[19] is used greatly within the bio-
logical community, and so creating an interface between R and the above Approximate Baysian
Computation (ABC) methods, differential equation solversand SBML parser was an obvious. A
limited SBML parser and simulation package exists [20] and is available in the BioConductor
downloadwww.bioconductor.org. However, this package is limited in the variety of SBML
files it is able to parse and is only able to call the existing odesolve() function in R to simulate the
model.

R has a vast amount of external packages pertaining to the biological sciences as well as pro-
tocol for writing new packages. It has the ability to seamlessly integreate several packages and
data files into one workspace and provides a publication-worthy base graphics package. Data ma-
nipulation in R depends on vector, matrix and list structures, which makes it ideal for representing
the data structures needed and produced by our package. The Rimplementation is currently im-
plemented and supported on Linux and MacOS, and will become available on Windows in the
future.

2.4 Dependencies

GNU Scientific Library. SBML-ABC makes extensive use of the GNU Scientific Library (GSL).
We use the implementation of the Mersenne twister random number generator from GSL to gen-
erate the random numbers used in the simulations and uses thegsl matrix andgsl vector
data structures for large portions of handling options and data handling. We provide support for
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using the ode solving algorithms found in GSL. The package has been tested with version 1.11 of
the GSL.

libSBML. The package is dependent on the libSBML library, which is available fromhttp:
//www.sbml.org/Software/libSBML and provides the functionality to read, write and
manipulate SBML files. LibSBML is used to extracts the model encoded in an SBML file and then
builds an internal representation of the model, which is a more efficient representation and reduces
the time and space requirements for the simulation algorithms.

gcc. The GNU Compiler Collection (gcc) is used to compile the gradient and propensity func-
tions derived from the SBML files. The package has been testedwith gcc4.3.1.

Python. The Python modules included in this package require Python 2.5 or later due to the need
for ctypes and the use of language features only available inPython 2.5.

R. The R package derived from the C code was built and tested under R 2.5.

Platform. The package has been tested on Linux and Mac OSX and has not been tested on a
Windows platform and there will be difficulties in compilingand loading the generated shared
libraries used for the gradient and propensity functions.
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Chapter 3

Methods

In this chapter, we describe in detail the method provided inthe package. The core algorithms
are implemented in C, including the SBML adaptors, the deterministic and stochastic simulators,
ABC parameter inference and model selection algorithms. Finally the interfaces and their usage
will be described.

3.1 SBML Adaptor

Although the SBML format is a good way of encoding models it isan extremely inefficient rep-
resentation for use by simulation algorithms. A C module wascreated which made it possible to
import an SBML model and build a representation of the model which we designed for use in the
simulation algorithms. The module was designed to be as modular as possible in order to minimise
code redundancy and decrease development time. The conversion code makes extensive use of the
libSBML library which is designed to allow the manipulationof SBML models. The SBML adap-
tor code supports the generation of shared libraries containing gradient and propensity functions
for use in the ODE, DDE and CLE simulation algorithms. This was done to reduce the execution
time of the simulation algorithms and increase the flexibility of the algorithms.

3.2 Stochastic simulation

A biochemical system in stochastic simulation scheme is defined as a well stirred system ofN
species{S1, S2, ..., SN} andM reactions{R1, R2, ..., RM} with relative ratesc1, c2, ...cM . Xi(t)
the number of speciesSi in the system at timet. The stochastic simulation problem is to estimate
the state vectorX(t) ≡ (X1(t), X2(t), ...XN(t)) given the initial state vectorX(t0) = x0 at initial
time t0.

The propensity functionhi(t) of a reaction, e.g. the probability a reaction takes place inthe
system, depends on the availability of the species requiredfor the reaction and the reaction rate. It
is a function proportional to the combinatory of number of species available and the reaction rate.
For example, a first degree reactionR1(c1) : X → Y has a propensityh1(t) = c1 × [X](t), and a
second degree reactionR2(c2) : X + Y → 2X has the propensityh2(t) = c2 × [X](t)[Y ](t).
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3.2.1 Random number generator

An important issue in stochastic simulation problem is the random number generation(RNG) to
obtain the random factor in the simulation process, e.g. computing the time until the next reac-
tion and choosing the next reaction. It is also useful in other parts of the project, i.e., the ABC
MCMC, ABC SMC algorithms where the Monte Carlo process requires the RNG. Random num-
bers generated by any computational algorithms are only pseudo-random number. A good random
number generator is the one that satisfies both theoretical and statistical properties, which are hard
to obtain.

In our project, we use the random number generators providedby GSL (GNU Scientific Li-
brary,http://www.gnu.org/software/gsl/manual/), thegsl rng. gsl rng is a
class of generators that generate random number from different distributions, such as uniform,
normal, and exponential, and are convenient to use. The coreof the generators we use is the
default generatormt19937, the portable Mersenne Twister random number generator. Inthe
stochastic simulation scheme, only sampling from a uniformdistribution is required. However, in
the ABC scheme, Gaussian distribution sampling and others are necessary to extend the variety of
the algorithms.

3.2.2 Multicompartmental Gillespie algorithm

Gillespie’s algorithm ( [8], [9]), or stochastic simulation algorithm (SSA) is an exact method for
the stochastic simulation of biochemical system of reactions described above. It stochastically
simulates the system depending mainly on the propensity of reactions in the system by taking into
account the random factor to the next reaction to occur and the time until the next reaction occurs.
There are two Gillespie’s algorithms, the direct method andthe first reaction method, which are
equivalent in terms of statistic. However, the direct method is faster and simpler to implement than
the other, thus it is more commonly used.

Since the development of the SSA, several improvements havebeen made to improve or extend
it. Gibson & Bruck’s next reaction method [10], tau-leaping [12, 13, 14] and chemical Langevin
equation (CLE) method [11] speed up the stochastic simulation by adapting a certain time interval
for the system to proceed. Another direction in further improvement of the SSA has been made by
extending it to the P-system [15], a computing model abstracting from the compartmental structure
of alive cells in processing chemicals. The P-system is capable of describing the behaviour of
a biologically meaningful system. A stochastic simulationmethod has been introduced for this
system to simulate the kinetics of species in the multicompartment system based on the SSA,
which we will refer to as the multicompartmental Gillespie algorithm [16]. The key idea of the
multicompartmental Gillespie algorithm is to decide the compartment where the next reaction
occurs, by computing theτ andµ value for each compartment, and then choosing the one with the
smallestτ .

In our project, we implement the multicompartmental Gillespie algorithm. However, as the
simulation framework is designed to fit the main overall targets of the project which are the ABC
scheme for parameter approximation, it is required that thesystem is simple enough to compare
models. Thus, the system in our implemented version (see Algorithm 1) is reduced to a simpler
system compared with the P-system. The same type of species in different compartments are de-
fined in the SBML file with different species name and thus species ID, thus when it moves from
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one compartment to another, it is not considered a diffusionof chemical substances as described in
the paper [16]. Furthermore, this simplified version ignores the “environment” element and it does
not use a heap sort for the triple (τi, µi, i) wherei is the compartment index, but performs a min-
imum finding every loop. This version of the multicompartmental Gillespie simulation becomes
the original Gillespie’s algorithm when the number of compartments is 1.

Algorithm 1 Multicompartmental Gillespie’s algorithm
1: INPUT: Time series (t0, t1, ..., tN )of simulated data, model of simulation
2: OUTPUT: System states at desired time points
3: Initialize the timet = t0, system’s statex = x0

4: Calculate reaction propensity functionsaj(x) andai
0(x =

∑rj∈Ci

j aj(x))

5: Calculateτi = 1
ai
0

ln(rand(0, 1))

6: Calculateµi:
∑µi−1,rj∈Ci

j=0 aj < rand(0, 1)ai
0 <

∑µi,rjinCi

j=0 aj (j is the index of reactions in the
compartment only)

7: Seti = 0
8: repeat
9: GetCi whereτi is smallest

10: Execute reactionµi of compartmentCi, update the system’s state:t → t + τ , x → x + νµ.
11: Recalculate reaction propensity functionsaj(x) andai

0(x =
∑

j aj(x)) of reactions affected
by rµj

12: Recalculateτi = 1
a0

ln(rand(0, 1)) of compartments affected byrµj

13: Recalculateµi:
∑µi−1,rj∈Ci

j=0 aj < rand(0, 1)ai
0 <

∑µi,rjinCi

j=0 aj of comparments affected by
rµi

(j is the index of reactions in the compartment only)
14: if t = ti then
15: recordx(t)
16: incrementi
17: end if
18: until End condition

The multicompartmental Gillespie algorithm use a data structure close to the model description
in SBML, theStochasticModel comprising of Compartment information, Compartment (with
a pointer to the Compartment information), Species information, Species (with a pointer to the
Species information), Reaction (containing Species type Reactants, Modifers and Products and
reaction rate). This data structure enables the algorithm to work in an efficient interlinked manner
that helps avoiding random errors. The structure include a pointer to a random number generator
to be activated everytime the model is parse from the SBML file. It also has a block of structures
to increase the speed of updating the system status by storing the reactions being affected by the
execution of a reaction (similar to the idea of dependency graph notion introduced in the Next
reaction method [10]).

3.2.3 Tau leaping

Tau leaping is an approximation to the exact Gillespie algorithm. Consider all the reactions in a
time interval[t, t + τ ]. Denote the number of times reactionj occurrs asPj . If the time interval
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is short enough the propensity functionsaj(·) will not change much over this interval. Indeed, if
we assumeaj(·) has the value at the beginning of the interval over the whole interval, then each
Pj will have Poisson distribution with expected valueaj(X(t))τ . Once we have thePj ’s, we apply
the equation:

X(t + τ) = X(t) +

M
∑

j=1

νjPj(aj(X(t)), τ) (3.1)

whereνj is the stoichiometry of thejth reaction. Tau leaping is analogous to the simple forward
Euler method for simulating ODEs, and suffers from the same numerical instability. More ad-
vanced alternatives such as implicit tau leap are outside the scope of this project, but would be an
interesting avenue for further investigation. Tau leap uses theCLEModel settings structure.

3.2.4 Chemical Langevin Equation

The tau leap algorithm can also be seen as a stepping stone to the Chemical Langevin Equation
(CLE), a Stochastic Differential Equation (SDE) that approximates the solution further. Recall that
the amount each reaction occurs in the interval[t, t + τ ], denotedPj, is Poisson distributed with
meanλ = aj(X(t))τ . It is a basic result from probability theory that for large counts, a Poisson
random variable is well approximated by a normal variable with mean and variance both equal to
λ. In applying this approximation our state variables becomecontinuous rather than discrete, and
we arrive at the CLE:

X(t + τ) = X(t) + τ

M
∑

j=1

νjaj(X(t)) +
√

τ

M
∑

j=1

νj

√

aj(X(t))Zj (3.2)

whereZj are unit normal random variables.

3.3 Deterministic algorithms

3.3.1 ODE solvers

For simulating ODEs both the full range of solvers in the GSL and a subset of the CVODE solvers
are available. GSL solvers are used viaodesolve whereas CVODE solvers are accessed via
cvodesolve. The default GSL solver is Runge Kutta Fehlberg 4-5, where the gradient eval-
uations for a 5th order Runge Kutta (RK) step are used to take a4th order step ”for free”. The
comparison between these two steps allows an estimate of theerror, and hence facilitates error
control. For stiff problems the implicit GEAR 1 and 2 methodsare available. If a Jacobian is avail-
able the Burlish-Stoer implicit method should be used. The default CVODE solver is the Backward
Differentiation Formula, with Newton iterations to solve the resulting fixed point problem.

3.3.2 Time Delay Differential Equation solver

The time delay differential equation (DDE) solver code is based on the R packageddesolve
which is turned based onsolv95. The core is an embedded RK 23 step and cubic Hermitian
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interpolation to calculate lagged variables between simulated time points. Various modifications
and simplifications have been made, including moving to an object orientated framework to make
dynamically loading a compiled gradient function possible. Although switch functions are not
used their associated code has not been removed since they would be useful if SBML events were
incorporated in the future.

3.4 Parameter inference

3.4.1 ABC rejection

Approximate Bayesian Computation(ABC) allows us to infer the parameters of a system in prob-
lems where we cannot evaluate the likelihood functionf(x|θ) but can draw samples from it by
simulating the system. The simplest algorithm is ABC rejection [21], as described in Algorithm2.
ABC rejection is implemented by constructing anABCRejectionSettings structure and call-
ing abcRejection. For more details please refer to the C API User Guide in the Appendix.

Algorithm 2 ABC rejection. x0 denotes observed data.ρ(·) denotes a distance measure.ǫ is a
threshold set by the user.

repeat
Sampleθ∗ from the priorπ(θ)
Simulatex∗ as a sample fromf(x|θ∗)
Acceptθ∗ if ρ(x∗, x0) ≤ ǫ

until enough samples found

3.4.2 ABC MCMC

ABC rejection is inefficient because it will continue to drawsamples in regions of parameter space
that are clearly not useful. One approach to this problem is to derive a ABC Markov Chain Monte
Carlo (MCMC) algorithm [2], as specified in Algorithm3. The hope is that the Markov chain
(MC) will spend more time in interesting regions of high probability compared to ABC rejection.
However, strongly correlated samples and low acceptance ratios means that ABC MCMC can in
fact be highly inefficient, especially if the MC gets stuck ina region of low probability for a long
time, requiring a significant burn in period.

3.4.3 ABC SMC parameter inference

ABC MCMC has a potential disadvantage being inefficient, being stuck in a regions of low accep-
tance probability for a long time due to the correlated nature of samples and thus more computa-
tionally intensive. This problem can be tackled by using another approach, the ABC Sequential
Monte Carlo (SMC) methods [22], which introduces a sequence of intermediate distributions. This
approach has been adapted with the sequential importance sampling algorithm [23, 24] and intro-
duced in a paper to be published by Tina Toni [17]. In our project, we implement the algorithms
described in this paper, the weighted ABC SMC algorithm4 where the samples are derived from
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Algorithm 3 ABC MCMC.
initialiseθ1

for i = 1 · · ·N do
Sampleθ∗ from kernelq(θ∗|θi)
Simulatex∗ as a sample fromf(x|θ∗)
if ρ(x∗, x0) ≤ ǫ then

if U(0, 1) < min (1, π(θ∗)q(θi|θ∗)
π(θi)q(θ∗|θi)

) then
θi+1 = θ∗

else
θi+1 = θi

end if
else

θi+1 = θi

end if
end for

the previous distribution with perturbation and the tolerances are chosen so that the samples evolve
closer to the posterior. The ABC SMC algorithm becomes the ABC rejection algorithm when the
number of populations is reduced to 1.

There are cases where the tolerances are set too low for the algorithm that it is overly time
consuming to continue go to the next population. Thus it is useful to have a way to change the
settings and resume the work where it stops. To meet this need, we have designed the main algo-
rithm function so that it can retrieve information from the last completed population to continue
the parameter inference in the next population without having to rerun the program from the start.
This feature allow the users to adjust the parameters such asthe perturbation kernels (i.e. make the
perturbation size smaller or larger to allow for a more rigidor flexible evolution) or the tolerance.
The same feature was added to the ABC SMC model selection method described in the next part.

3.5 ABC SMC model selection

The model selection framework introduced in the paper to be published by Tina Toni [17] performs
Bayesian model selection allowing the estimation of Bayes factors [25]. The algorithm (see Algo-
rithm 5) is similar to the ABC SMC simulation, with the differences of sampling a model from a
prior distribution before sampling the parameters for the simulation of that model. With a number
of input models, it is possible that a model can die out in the evolution of the populations through
the iteration of population. The same feature of running thealgorithm from an available population
rather than from the start as with the ABC SMC algorithm is implemented for the model selection
process.

A more detail review and description of the ABC scheme parameter inference and model se-
lection can be viewed in the paper that this project is based on by Tina Toni [17]
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Algorithm 4 ABC SMC algorithm
1: INPUT: modelM ,observed dataObsData, number of populationsNumPop, size of each

populationSizePop, tolerance vectorǫ, prior distributionΠ(θ), perturbation kernelsKi(θ|θ∗)

2: OUTPUT: The last population of sampled particles that satisfied the condition being smaller
than the tolerance, log file for each population

3: Set population IDidPop = 0
4: Set weights of particlesw(0) = {wi = 1

SizePop
}

5: for idPop = 0 to NumPop do
6: Seti = 0
7: repeat
8: if idPop = 0 then
9: Sample parameterθ ∗ ∗ from prior distributionΠ(θ)

10: else
11: Sample parameterθ∗ from previous population with weightw(idPop) and perturb to

obtainθ∗ ∼ KidPop(θ|θ ∗ ∗)
12: end if
13: if Π(θ ∗ ∗) = 0 then
14: Back to the beginning of repeat loop
15: end if
16: Simulate B data setsx∗ ∼ f(x|θ ∗ ∗)
17: Setb =

∑

x∗ 1(d(x∗, ObsData) < ǫidPop) and calculate weightwi = b(idPop = 0) or
wi = b ∗ Πx ∗ ∗/ ∑

xidPop−1
KidPop(xt−1, x ∗ ∗)

18: until i = SizePop
19: Normalizew(idPop)

20: end for

3.6 Interfaces

3.6.1 Command line interface

We have designed the command line front end as a single program capable of multiple tasks. It
is a user friendly interface in a command line with flags that allow users to indicate the desired
task as shown in Figure3.1. All the parameter settings such as prior distribution of the parameters,
the perturbation kernels, observed data for parameter inference, or the time series for simulation
are stored in simple matrix format in text files which are easyto understand and manipulate. We
also provides the log files for populations after each population iteration and the log files for the
distance between the simulated data and observed data whichmight be helpful for the users to
determine the tolerance for each population.

3.6.2 C API

The C API is distributed as source code that can be easily compiled to a shared library using the
provided makefile. The required header files are provided in aseparate folder. A user guide is
provided (see Appendix) which describes how to run simulations and inference algorithms, and
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Algorithm 5 ABC SMC Model selection algorithm
1: INPUT: modelsMm, observed dataObsData, number of populationsNumPop, size of each

populationSizePop, tolerance vectorǫ(m), prior distributionΠ(m)(θ), perturbation kernels
K

(m)
i (θ|θ∗) for each model

2: OUTPUT: The last population of sampled particles that satisfied the condition being smaller
than the tolerance, log file for each population, particles can be from different models

3: Set population IDidPop = 0
4: Set weights of particlesw(m)

0 = {wi = 1}
5: for idPop = 0 to NumPop do
6: SetnumParticle = 0
7: repeat
8: Sample a model to simulate dataMm

9: if idPop = 0 then
10: Sample parameterθ ∗ ∗ from prior distributionΠm(θ)
11: else
12: Sample parameterθ∗ from previous population ofMm with weightw(m)

(idPop) and perturb

to obtainθ∗ ∼ K
(m)
idPop(θ|θ ∗ ∗)

13: end if
14: if Πm(θ ∗ ∗) = 0 then
15: Back to the beginning of repeat loop
16: end if
17: Simulate B data setsx∗ ∼ f (m)(x|θ ∗ ∗)
18: Setb =

∑

x∗ 1(d(x∗, ObsData) < ǫ
(m)
idPop) and calculate weightwi = b(idPop = 0) or

wi = b ∗ Π(m)x ∗ ∗/
∑

xidPop−1
K

(m)
idPop(xt−1, x ∗ ∗)

19: until numParicle = SizePop
20: Normalizew(m)

idPop

21: end for

complements thedoxygendocumentation of the individual functions.

3.6.3 Python - C Binding

A number of different methods exist for integrating Python and C code, such as Weave, SWIG and
ctypes. Ctypes was added to the python standard library in version 2.5 and allows a programmer
to access functions and member variables in shared libraries or DLLs without having to write an
C code at all. The Python library has all of the functionalityavailable that is available in C, except
for model selection. This functionality is easily accessible to the user through the supplied Python
modules. The API has been designed and implemented to try to hide as much of the underlying
complexity of the C interface from the end-user and make it easy to set up the system for simulation
and running the ABC algorithms. The Python API currently supports the results matrix from the
functions to files, making it easy to generate output. Although it has not been implemented it would
be possible to produce graphs of these results using a pythongraphing library such as matplotlib.
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3.6.4 R interface

The R interface includes seven R functions, each of which include the SBML parser. There are
four solvers (Ordinary Differential Equations, Delay-Differential Equations, Chemical Langevin
Equations and Multi-Compartment Gillespie) and three ABC methods (Rejection, MCMC and
SMC). Due to the nature of R’s internal structures and its C interfacing functions, the R version of
our package is simple to use but it does not have the same user manipulability as the C and Python
versions. Brief descriptions of the functions and the differences between the versions are listed
below.

The package consists of R wrapper functions which then call the appropriate C wrapper func-
tions which then call the appropriate C functions. Because of the internal structures of R and the
desire to have our package also be a stand alone C package, we needed both R and C wrapper
functions. Unfortunately for the users, this means the source code will not be as readily avaible to
search through and modify.

The complex nature of our package required us to make use of the R function .Call, which is
newer and less documented than the standard .C function. Thepackage makes use of the R macros
found in the R header files (R.h, Rinternals.h and Rdefines.h). The header files are included in the
standard installation of R.

The package is currently only suppored on UNIX type systems and MAC OS X; with the
package submission to CRAN, it should be made available on Windows as well.

SBMLodeSolve()

SBMLodeSolve() takes an SBML file and a vector of times to sample; it returns a matrix consisting
of the sample times and the populations for each of the species in the reactions. There is a choice
between 10 differential equation solvers, two of which are stiff differenetial equation solvers. In
the C version, the user can define their own gradiant functions;this feature is not available in the R
version.

SBMLddeSolve

SBMLodeSolve() takes an SBML file and a vector of times to sample; it returns a matrix consisting
of the sample times and the populations for each of the species in the reactions. It is a dely-
differential equation solver. In the C version, the user candefine their own gradiant functions; this
feature is not avalible in the R version.

SBMLcleSolve

SBMLcleSolve() takes an SBML file and a vector of times to sample; it returns a matrix consisting
of the sample times and the populations for each of the species in the reactions. It is a stochastic
solver, with the option to run Tau Leaping or Chemical Langevin Equation. In the C version, the
user can define their own propensity functions; this featureis not avaiable is not availible in the R
version.
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SBMLgillSolve

SBMLgillSolve() takes an SBML file and a vector of times to sample; it returns a matrix consisting
of the sample times and the populations for eacg of the species in the reactions. It is a stochastic
solver using a multi-compartment Gillespie algorithm and there is no loss of functionality between
the C and R versions.

SBMLabcRej

SBMLabcRej() takes an SBML file, an observed data file, a vector of prior distribution types,
two vectors describing the prior disribution settings, thenumber of samples, the solver type, the
threshold on the distance measure, the maximum number of iterations and the output file name.
It returns a matrix of the accepted values of the last population. In the C version, the user can
pass their own function to set the parameters, they can choose their own distance metric and they
can choose whether or not missing data is included in the algorithm. In the R version, the set
parameters function is default, the distance metric is sum of squares, and the algorithm does not
include missing data.

SBMLabcMCMC

SBMLabcMCMC() takes an SBML file, an observed data file, a vector of prior distribution types, a
vector of kernel distribution types, two vectors describing the prior disribution settings, two vectors
describing the kernel distribution settings, the number ofsamples, the solver type,a vector of inital
parameter settings, the threshold on the distance measure,and the output file name. It returns a
matrix of the accepted values of the last population. In the Cversion, the user can specify which
distance metric to use and how to deal with missing data. In the R version, the distance is set to
sum of squares and the missing data is included.

SBMLabcSMC

SBMLabcSMC takes an SBML file, an observed data file, a vector of prior distribution types, two
vectors of prior distribution settings, a vector of Gaussian standard deviation for the perterbation
kernel, a vector of distance measure thresholds for each population, the number of populations,
the size of inital population, the number of stochastic simulations for each parameter and a output
file name. In the C version, the user can define the distance metric, the handling of missing data,
set the perterbation kernel for each population and the ability to recover the previous population of
samples particles if the simulation is halted. In the R version, the distance metric is sum of squares,
missing data is included, the perterbation kernel is set forall populations and there is no recovery
mechanism.
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Figure 3.1: Screen shot of instruction on how to use the the programsbmlabc
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Chapter 4

Examples and results

4.1 Data simulation

4.1.1 Lotka-Volterra model

The Lotka-Volterra (LV) model is a classic model describingthe relation between preys and preda-
tors in an ecological system. The model is described by the reactions:

X → 2X with ratec1 (4.1)

X + Y → 2Y with ratec2 (4.2)

Y → Ø with ratec3 (4.3)

whereX denotes the prey andY denote the predator.
The stochastic simulation of this model with Gillespie’s algorithm with initial condition(X, Y ) =

(1000, 1000) with the set of parameters(c1, c2, c3) = (10, 0.01, 10) is shown in Figure4.1, showing
the oscillatory characteristic of the model.
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20
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Figure 4.1: Lotka-Volterra simulated using Gillespie’s algorithm.
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4.1.2 Repressilator

This model involves three genes and their transcripts whichsuppress each other’s expression. Fig-
ure4.2shows the model simulated using ODE solver. It is model whichexhibits a stable oscillation
with fixed time periods. The repressilator consists of threegenes connected together in a feedback
loop, as shown in Figure4.3.

Figure 4.2: Repressilator simulated using ODE solver.

Figure 4.3: Feedback loops present in repressilator

4.1.3 Brusselator model

This is a classic autocatalytic, oscillating system of chemical reactions, which exhibits a stable
limit cycle for a certain range of parameter values. We will use this model for testing the inference
algorithms. The component reactions are:

0 → X (4.4)

2X + Y → 3X (4.5)

X → Y (4.6)

X → 0 (4.7)
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The ODEs are just in terms of the rate constants:

d[X]

dt
= p1 + p2[X]2[Y ] − p3[X] − p4[X] (4.8)

d[Y ]

dt
= −p2[X]2[Y ] + p3[X] (4.9)

The Jacobian of system of ODEs:

dxi

dt
= Fi(x1, . . . , xn) (4.10)

is given by

Jij =
∂Fi

∂xj

(4.11)

So for this model,

J =

[

2p2[X][Y ] − p3 − p4 p2[X]2

−2p2[X][Y ] + p3 −p2[X]2

]

(4.12)

Figure4.4shows simulations of this model using four different simulation algorithms.

4.2 Parameter inference

We initially tested the inference algorithms on the Brusselator model and artificial observed data
with 100 time points.

4.2.1 ABC rejection

ABC rejection was run requiring 1000 accepted samples, sum of squares distance function, and a
tolerance ofǫ = 5× 106. This level ofǫ across 100 time points and 2 species corresponds to a root
mean square error (RMSE) of 158, where the species concentration peaks are around 1000. The
run required a total of 319967 samples, giving an acceptanceratio of 0.31%. Figure4.5(a)shows
a histogram for parameter 1 (the rate of reaction 1) over the 1000 samples. Figure4.5(b)shows
the accepted samples plotted as parameter 1 (the rate of reaction 1) against parameter 2 (the rate of
reaction 2). It is more informative to investigate plots of one parameter against another than simple
histograms of one parameter as this highlights correlations between parameters.

To put theǫ = 5 × 106 threshold into context it is interesting to compare simulated data that
was accepted to the observed data, as shown in Figures4.6(a)and4.6(b).

4.2.2 ABC MCMC

ABC MCMC was run with the same epsilon threshold of5 × 106. For 1000 accepted samples
90204 time courses were generated, giving an acceptance ratio of 1.1%. As expected this is slightly
higher than for rejection, but it is at the cost of correlatedsamples. Figure4.7(b)shows parameter 1
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(a) Ordinary Differential Equation solver (b) Tau leap

(c) Chemical Langevin Equation solver (d) Gillespie’s algorithm

Figure 4.4: Simulations of the Brusselator model using different algorithms.
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(a) Histogram of parameter 1
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(b) Parameter 1 vs. 4 samples

Figure 4.5: Results of ABC rejection on Brusselator model using ODE solver.

(a) Species 1 (b) Species 2

Figure 4.6: Observed data (blue) and accepted simulated data (gray lines).
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(a) Histogram of parameter 1
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(b) Parameter 1 vs. 4 samples

Figure 4.7: Results of ABC MCMC on Brusselator model using ODE solver.

against 4 for accepted samples, and the agreement with the range of feasible values from rejection
is very good.

Figure4.8(a)shows a histogram of all the distances calculated during therun. The threshold we
use corresponds tolog10(5×106) = 6.7, so we see that just the tail is accepted. Figure4.8(b)shows
the distribution of the distances calculated. Significantly less very large distances are produced,
which corresponds to the the fact that unlike rejection, MCMC does not waste many samples in
regions of low probability.
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(b) MCMC

Figure 4.8: Histograms of log(distance) for all simulated datasets.
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4.2.3 ABC SMC

ABC SMC was run for Brusselator using RKF45 ODE solver. 1000 particles were used with 8
populations, withǫ decreasing linearly from107 to 3 × 106. The number of samples required for
each population, and the corresponding acceptance ratio are shown in Table4.1. The acceptance
ratio decreases as the threshold decreases, as expected. This can be clearly seen in Figure4.10,
which shows the roughly exponential relationship between the acceptance ratio andǫ. It would
be interesting to try reducing the width of the perturbationkernel through the populations, as this
might help the samples stay in regions of higher probability. It would also be interesting to see
if further reduction ofǫ was possible, as it appears that the reduction from5 × 106 to 3 × 106

actually has little effect on the acceptance ratio. Figure4.9 shows plots of parameter 1 vs. 4 for
the successive populations. The samples start out relatively diffuse, and concentrate on regions of
higher posterior probability as the threshold is decreased. It is interesting that for large values ofǫ
a second mode with parameter 1 close to zero is possible, but which is eliminated asǫ is reduced.

Population ǫ/106 # simulations Acceptance ratio
1 10 6772 0.147667
2 9 17977 0.055627
3 8 23389 0.042755
4 7 34253 0.029195
5 6 59936 0.016684
6 5 290406 0.003443
7 4 224550 0.004453
8 3 299915 0.003334

Table 4.1: Statistics for each population of ABC SMC.

4.3 Model selection

We did an experiment with observed data generated from the Brusselator model with ODE solver
to observe the performance of the model selection algorithm. We assumed that the data is from
an unknown source and the objective is to try different models to see which one best describes the
behaviour of the model.

We did model selection with two models: the Brusselator model itself and the Lotka-Volterra
model, both simulated using Gillespie’s algorithm. The settings for parameters for each model
(perturbation kernel and prior distributions) are set separately, however the tolerances, the mark
vector and so on are shared between the two. The algorithm wasrun for 5 populations to generate
100 parameter vectors. The results show that from the first population of parameters, only Brus-
selator model is present. Consequently, in the following populations, only the Brusselator model
remains.

This result shows that the model selection was able to correctly choose the model which best
predicts the unknown observed data.
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(a) Populations 1 (red) and 2 (orange) (b) ...plus populations 3 (light green) and 4 (green)

(c) ...plus populations 5 (light blue) and 6 (blue) (d) ...plus populations 7 (purple) and 8 (magenta)

Figure 4.9: Parameter 1 vs. 4 from ABC SMC with 8 populations,1000 particles on Brusselator using ODE
solver. Populations are shown added two per plot.
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Figure 4.10: Acceptance ratio againstǫ for each population of ABC SMC.
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Chapter 5

Future work

Additional simulation algorithms. Various other simulation algorithms could be valuable ad-
ditions to the package. Additional stochastic algorithms include the Next Reaction method (Gib-
son & Bruck), more advanced tau leaping algorithms (e.g. implicit tau leap), and higher order
Stochastic Differential Equations than the CLE. Hybrid algorithms involving both stochastic and
deterministic components are available which choose the most appropriate for each reaction and
species.

Advanced implementations. Monte Carlo algorithms are good candidates for parallelisation.
Technologies such as CUDA might offer a good way of improvingsimulation throughput, although
this would mean that the package would be tied to a specific vendor, which may not be ideal. It
may be possible to create an MPI or OpenMP enabled version of the package which could mean
that the algorithms could be run on high performance computing resources. Difficulties do exist
however with implementing efficient and robust random number generation across a distributed
environment.

Random number generator. It could be valuable to investigate the use of a different random
number generator. Other random number generators are available that have longer periods, are just
as random and are less computationally intensive to compute[26]. Since a lot of random numbers
are generated by our system this could lead to a reduction in compute time whilst not impacting
on the soundness of the algorithm.

Distance measures. The existing distance measures calculate only the error in the dependent
variable, i.e. the species. This means that very similar observed and simulated data which is
slightly misaligned in time will have an undesirably large distance. As a result samples may be
rejected which actually represent quite good parameters. Some kind of time shift invariant distance
function, or inference of an initial lag in the model, could be ways of addressing this problem.

Automatic conversion between stochastic and deterministic models Currently it is not possi-
ble to take a model encoded with stochastic parameters and simulate this deterministically and get
results which make sense.
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Lyapunov exponents. How close the samples ABC produced are to being samples from the true
posterior will clearly depend on to what extent similar datacorresponds to similar parameters. For
inferring initial conditions especially, this is closely related to Lyapunov exponents as they con-
trol the rate of divergence from different starting conditions. Functionality to estimate Lyapunov
exponents could therefore be a useful addition.

Improved data structure for MCMC. The MCMC algorithm stores duplicates of the current
vector of parameters every time a sample is rejected. As a result a single vector is stored many
times in the output matrix. A more efficient structure would simply store unique vectors and the
number of repeats of each.

Autocorrelation times for MCMC. For evaluating how long the burn in period of an MCMC
algorithm is it is useful to be able to estimate the integrated autocorrelation time of the samples:
the burn in period should be at least this long. Built in functionality to achieve this would be very
useful.
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