


# ACCA Manual S Basics for ENERGY STAR Certified Homes

RESNET Building Performance Conference, Atlanta GA February 24<sup>th</sup>, 2014

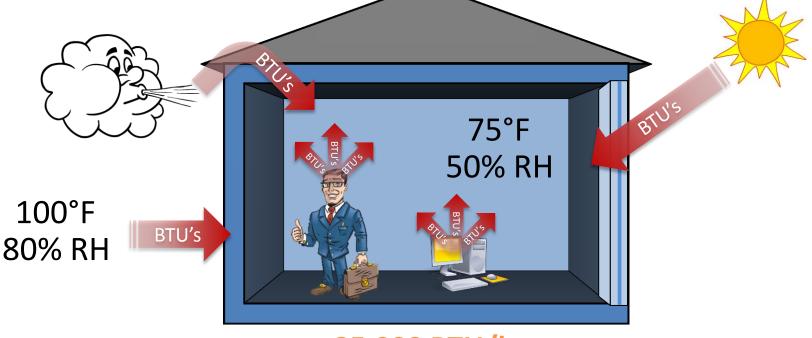
Learn more at energystar.gov

### Agenda



- Basics of Manual S
  - The basic concepts behind equipment selection.
  - The value of accurate equipment selection.
  - The equipment selection process and common mistakes.
- Equipment selection exercise.
- Managing equipment selection process.
- Question and answer session.

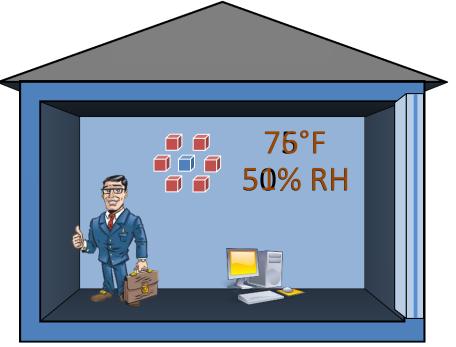



## The Basic Concepts Behind Accurate Equipment Selection



- Step 1: Calculate heating and cooling load.
- Step 2: Select heating and cooling equipment.
- Step 3: Design the duct system.



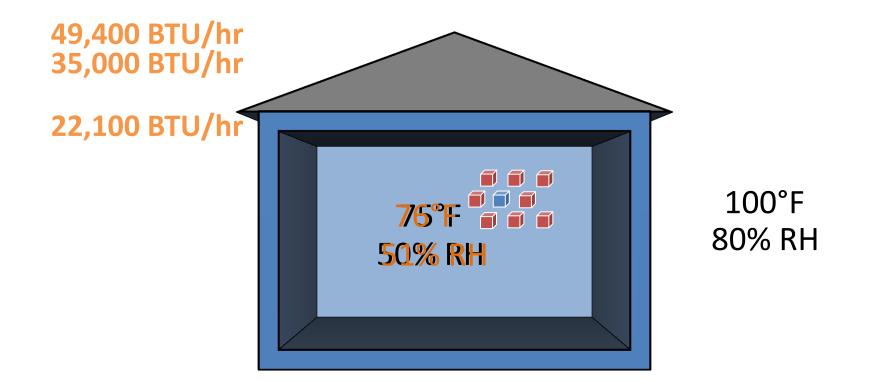

- Heat gain can be quantified in British Thermal Units (BTU's).
- 1 BTU has about the same energy as 1 match.
- <u>Cooling Peak Load</u>: The maximum energy that's added to the home in a single hour.



35,000 BTU/hr

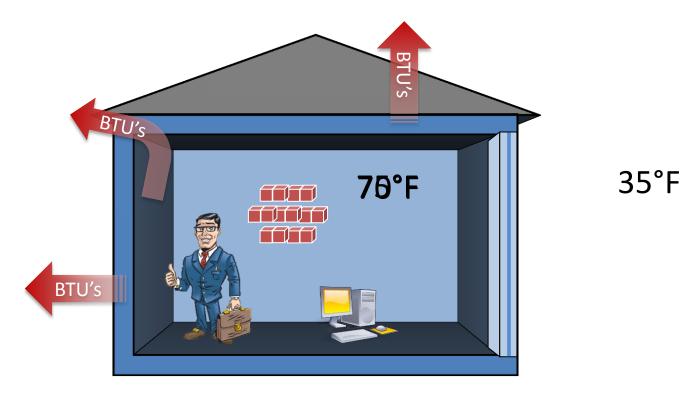


- <u>Sensible Cooling Load</u>: BTU's added to home that increase temp.
- <u>Latent Cooling Load</u>: BTU's added to home that increase humidity.




35,000 BTU/hr

100°F 80% RH




• <u>Cooling Capacity</u>: BTU's per hour that equipment can remove.



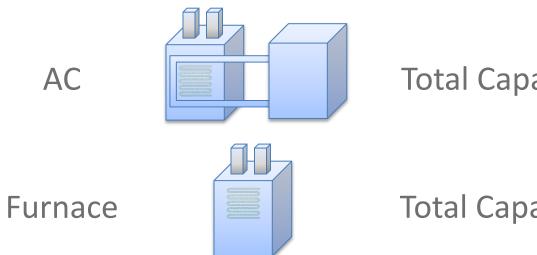


• <u>Heating capacity</u>: BTU's per hour that equipment can add.



#### 51,300 BTU/hr




Super-Simple Equipment Selection Goal

**Capacity** (in BTU's per hour)





Sample ACCA Manual S Sizing Limits



Total Capacity = 95-115% of Load

Total Capacity = 100-140% of Load

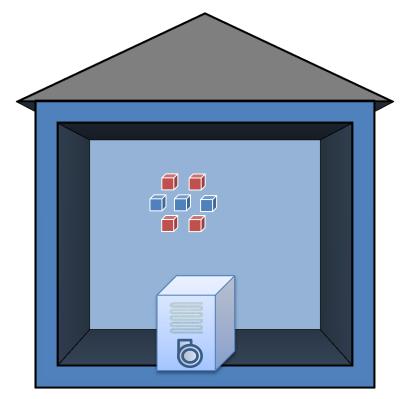
## The basic concepts: Summary



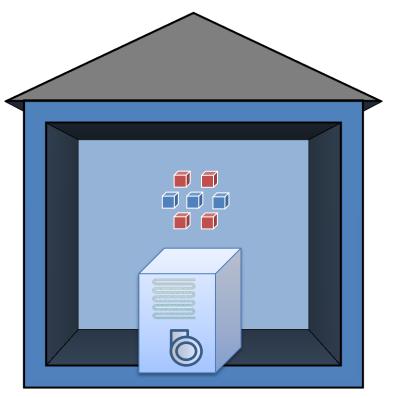
- Heat gain and loss can be quantified in BTU's.
- Design Step 1: Calculate heating & cooling peak load.
- Design Step 2: Select equipment using those loads.
- <u>Cooling Capacity</u>: BTU's per hour that equipment can remove.
- <u>Heating Capacity</u>: BTU's per hour that equipment can add.
- ACCA Manual S helps standardize this process.



## The Value of Accurate Equipment Selection



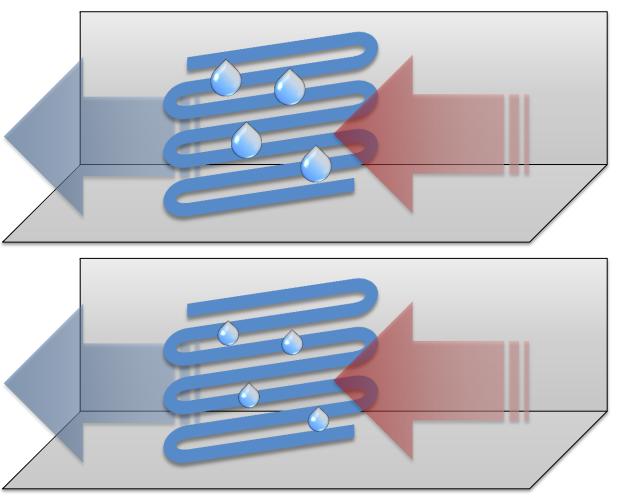

 Heating and cooling equipment generally has just two modes – on & off.






• Equipment that's too big or too small causes problems.




Equipment Capacity < Load



Equipment Capacity > Load



• How AC's control humidity.








- Load calculations and equipment selection go hand in hand.
- Both need to be right for the system to work:

Measured **Parachute** Weight Rating

1,000 lbs

8,000 lbs 1,000 lbs

1,000 lbs





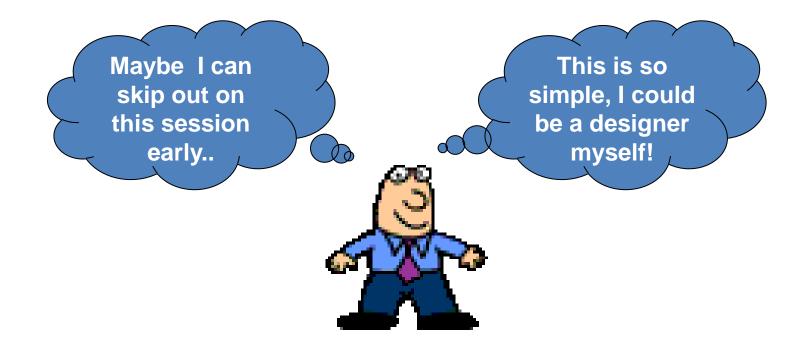
• Also, this is required by code!

#### 2012 IECC

(2009 IECC has same language, different section)

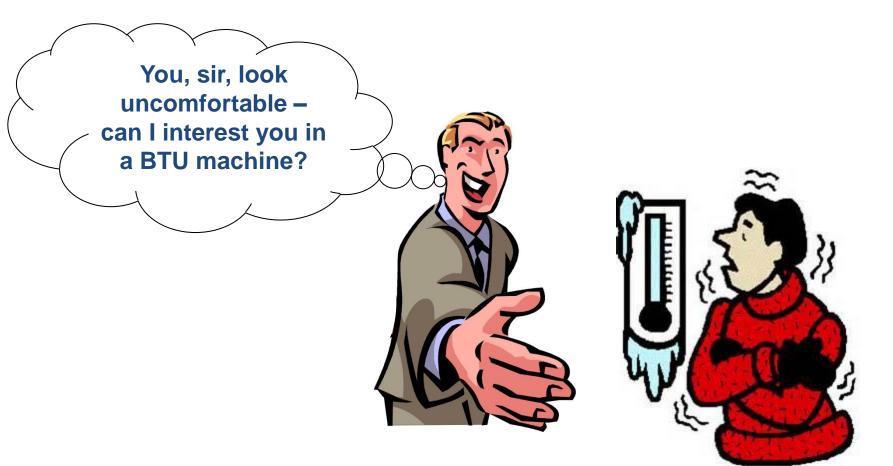
#### R403.6 Equipment Sizing (Mandatory).

Heating and cooling equipment shall be sized in accordance with ACCA Manual S based on building loads calculated in accordance with ACCA Manual J..


## The value proposition: Summary



- Almost all HVAC equipment has just two modes on and off.
- If you have the correct loads, you can select equipment that's the right size.
- Equipment that's based on an *undersized load* won't keep up.
- Equipment that's based on an *oversized load* will cycle on & off.
- Equipment that's based on an <u>accurate load</u> will best achieve comfort, efficiency, and durability.




# The Equipment Selection Process and Common Mistakes



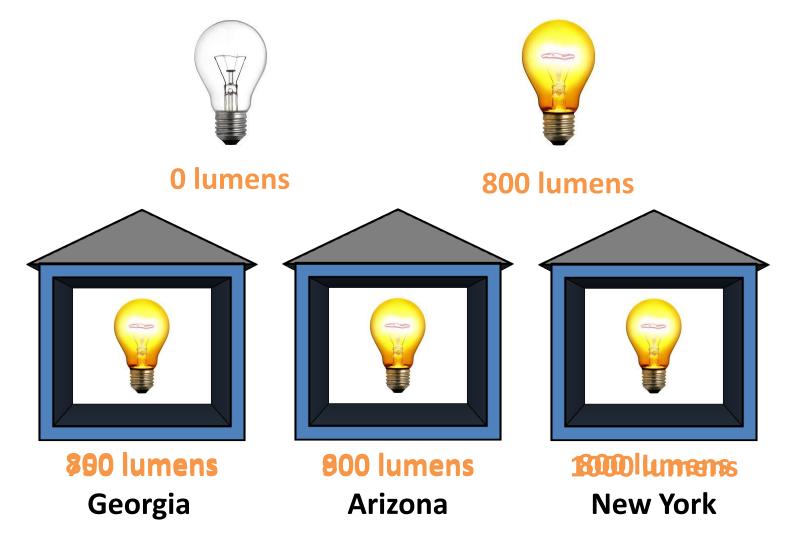


• Think of heating & cooling equipment as just "BTU machines".





• 1 ton = 12,000 BTU's per hour = 12k BTU's per hour




1.5 tons 18 kBTU/hr











- "Nominal capacity" means "in name only".
- Nominal capacity is not relevant to the ENERGY STAR program or to code compliance.



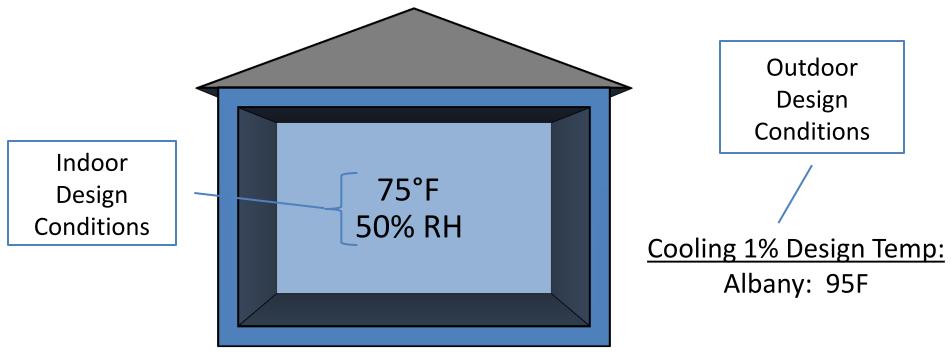


• Actual capacity depends on design conditions.



### Georgia 95 F




3364kBBTU//h Arizona 105 F



3368kBBTU//h New York 85 F



• <u>Design capacity</u>: Equipment capacity at same design conditions as those used to calculate peak load.



### 35,000 BTU/hr



- <u>Step 1</u>: Gather design information.
- Peak cooling load from Manual J:
  - 27.0 kBTU/h sensible load
  - 2.0 kBTU/h latent load
- Indoor temperature: 75° F
- Indoor humidity: 50%
- Outdoor temperature: 95° F for Albany, GA

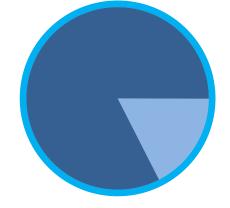


• <u>Step 2</u>: Shop for equipment using HVAC catalogs.





• <u>Expanded Performance Data</u>: Detailed technical information from manufacturer that gives designer the design capacity.


|          |        |       |       |      |          | eEntering Outdoor Coil |              |                              |       |          |       |       |       |                   |          |      |  |
|----------|--------|-------|-------|------|----------|------------------------|--------------|------------------------------|-------|----------|-------|-------|-------|-------------------|----------|------|--|
| Entering | Total  |       | :     | 85°F |          |                        |              |                              | 95°F  |          |       | 105°F |       |                   |          |      |  |
| Wet      | Air    | Total | Comp  | Sens | ible to  | Total                  | Total        | Comp<br>Motor<br>Input<br>KW | Sensi | ible to  | Total | Total | Сопр  | Sensible to Total |          |      |  |
| Bulb     | Volume | Cool  | Motor | R    | atio (S/ | T)                     | Cool<br>Cap. |                              | Ra    | atio (S/ | Т)    | Cool  | Motor | Ra                | atio (S. | m –  |  |
| Temper-  |        | Cap.  | Input | 0    | iry Bul  | b                      |              |                              | D     | iry Bul  | Ь     | Сар.  | Input | Dry Bulb          |          |      |  |
| ature    | cfm    | kBtuh | ĸ₩    | 75°₽ | 80°F     | 85°F                   | kBtuh        |                              | 75°₽  | 80°F     | 85°F  | kBtuh | kW    | 75°F              | 80°F     | 85°F |  |
|          | 1020   | 33.6  | 1.95  | 0.77 | 0.92     | 1                      | 32           | 2.21                         | 0.79  | 0.94     | 1     | 30.2  | 2.51  | 0.81              | 0.97     | 1    |  |
| 63°F     | 1210   | 34.8  | 1.95  | 0.81 | 0.97     | 1                      | 33.2         | 2.22                         | 0.83  | 0.99     | 1     | 31.4  | 2.52  | 0.86              | 1        | 1    |  |
|          | 1370   | 35.6  | 1.96  | 0.85 | 1        | 1                      | 34           | 2.23                         | 0.87  | 1        | 1     | 32.6  | 2.53  | 0.9               | 1        | 1    |  |
|          | 1020   | 35.2  | 1.96  | 0.61 | 0.75     | 0.88                   | 33.6         | 2.22                         | 0.62  | 0.77     | 0.91  | 31.8  | 2.52  | 0.64              | 0.79     | 0.93 |  |
| 67°F     | 1210   | 36.6  | 1.97  | 0.64 | 0.79     | 0.94                   | 34.8         | 2.23                         | 0.65  | 0.81     | 0.96  | 33    | 2.53  | 0.67              | 0.83     | 0.99 |  |
|          | 1370   | 37.4  | 1.97  | 0.66 | 0.83     | 0.98                   | 35.6         | 2.24                         | 0.68  | 0.85     | 1     | 33.6  | 2.54  | 0.69              | 0.88     | 1    |  |
|          | 1020   | 36.8  | 1.97  | 0.47 | 0.6      | 0.73                   | 35.2         | 2.24                         | 0.47  | 0.61     | 0.74  | 33.4  | 2.53  | 0.48              | 0.62     | 0.76 |  |
| 71°F     | 1210   | 38    | 1.98  | 0.48 | 0.63     | 0.77                   | 36.4         | 2.24                         | 0.49  | 0.64     | 0.79  | 34.6  | 2.55  | 0.49              | 0.65     | 0.81 |  |
|          | 1370   | 39    | 1.98  | 0.49 | 0.65     | 0.8                    | 37.4         | 2.25                         | 0.5   | 0.67     | 0.83  | 35.4  | 2.55  | 0.51              | 0.68     | 0.85 |  |

#### 14ACX-036-230-13 - C33-36B/C-6F + EL296UH045V36B



#### 14ACX-036-230-13 - C33-36B/C-6F + EL296UH045V36B

|               |         |       |       |                         |      |      |              | Outo           | loor Ai | r Terna  | peratur | eEnter | e Entering Outdoor Coil |                  |      |      |  |  |  |
|---------------|---------|-------|-------|-------------------------|------|------|--------------|----------------|---------|----------|---------|--------|-------------------------|------------------|------|------|--|--|--|
| Entering      | Total   |       | 1     | B5°F                    |      |      |              | :              | 95°F    |          |         | 105°F  |                         |                  |      |      |  |  |  |
| Wet           | Wet Air |       | Comp  | Sensible to Total       |      |      | Total        | Сопр           | Sensi   | ible to  | Total   | Total  | Сопр                    | Sensibleto Total |      |      |  |  |  |
| Bulb          | Volume  | Cool  | Motor | Ratio (S/T)<br>Dry Bulb |      |      | Cool<br>Cap. | Motor<br>Input | Ra      | atio (S/ | T) 👘    | Cool   | Motor                   | Ratio (S/T)      |      |      |  |  |  |
| Temper-       |         | Cap.  | Input |                         |      |      |              |                | D       | ry Bul   | b       | Сар.   | Input                   | Dry Bulb         |      |      |  |  |  |
| ature         | cfm     | kBtuh | k₩    | 75°₽                    | 80°F | 85°F | kBtuh        | kW             | 75°F    | 80°F     | 85°F    | kBtuh  | k₩                      | 75°F             | 80°F | 85°F |  |  |  |
|               | 1020    | 33.6  | 1.95  | 0.77                    | 0.92 | 1    | 32           | 2.21           | 0.79    | 0.94     | 1       | 30.2   | 2.51                    | 0.81             | 0.97 | 1    |  |  |  |
| 63°F          | 1210    | 34.8  | 1.95  | 0.81                    | 0.97 | 1    | 33.2         | 2.22           | 0.83    | 0.99     | 1       | 31.4   | 2.52                    | 0.86             | 1    | 1    |  |  |  |
|               | 1370    | 35.6  | 1.96  | 0.85                    | 1    | 1    | 34           | 2.23           | 0.87    | 1        | 1       | 32.6   | 2.53                    | 0.9              | 1    | 1    |  |  |  |
|               | 1020    | 35.2  | 1.96  | 0.61                    | 0.75 | 0.88 | 33.6         | 2.22           | 0.62    | 0.77     | 0.91    | 31.8   | 2.52                    | 0.64             | 0.79 | 0.93 |  |  |  |
| 67°F          | 1210    | 36.6  | 1.97  | 0.64                    | 0.79 | 0.94 | 34.8         | 2.23           | 0.65    | 0.81     | 0.96    | 33     | 2.53                    | 0.67             | 0.83 | 0.99 |  |  |  |
|               | 1370    | 37.4  | 1.97  | 0.66                    | 0.83 | 0.98 | 35.6         | 2.24           | 0.68    | 0.85     | 1       | 33.6   | 2.54                    | 0.69             | 0.88 | 1    |  |  |  |
|               | 1020    | 36.8  | 1.97  | 0.47                    | 0.6  | 0.73 | 35.2         | 2.24           | 0.47    | 0.61     | 0.74    | 33.4   | 2.53                    | 0.48             | 0.62 | 0.76 |  |  |  |
| 71 <b>°</b> F | 1210    | 38    | 1.98  | 0.48                    | 0.63 | 0.77 | 36.4         | 2.24           | 0.49    | 0.64     | 0.79    | 34.6   | 2.55                    | 0.49             | 0.65 | 0.81 |  |  |  |
|               | 1370    | 39    | 1.98  | 0.49                    | 0.65 | 0.8  | 37.4         | 2.25           | 0.5     | 0.67     | 0.83    | 35.4   | 2.55                    | 0.51             | 0.68 | 0.85 |  |  |  |



Total Design Capacity (100%) = 33.2 kBTU/h Sensible Design Capacity (83%) = 27.6 kBTU/h Latent Design Capacity (17%) = 5.6 kBTU/h

• <u>Step 3</u>: Verify that design capacity meets Manual S limits.

A. Latent Design Capacity ≥ Latent Design Load?
5.6 kBTU/h > 2.0 kBTU/h

B. Sensible Design Capacity  $\geq$  95% x Sensible Design Load..

**27.6 kBTU/h** ≥ 95% x 27.0 = **25.7 kBTU/h** 

.. AND Total Design Capacity ≤ 115% Total Design Load..

**33.2** kBTU/h ≤ 115% x 29.0 = **33.4** kBTU/h









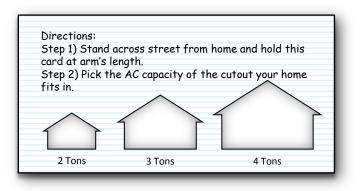
- In addition to sizing limits, ACCA Manual S addresses issues like:
  - How to adjust design capacity for high altitudes.
  - How to adjust design capacity for locations with low latent loads.
  - How to adjust the design capacity to account for high ventilation loads.



- #1: Use of nominal capacity instead of design capacity.
  - May not know to report design capacity.
  - May not be aware of availability of expanded performance data.

#### Mesigna Cappaitity

#### **Reported Capacity**


|          | 2X-036-230-13 - C33-36B/C-6F + EL296UH045V36B Outdoor Air Temperature Entering Outdoor Coil |          |         |            |         |       |       |       |           |          |       |          |          |       |       |                   |               |       | S        | Selected Cooling Equipment                                 |
|----------|---------------------------------------------------------------------------------------------|----------|---------|------------|---------|-------|-------|-------|-----------|----------|-------|----------|----------|-------|-------|-------------------|---------------|-------|----------|------------------------------------------------------------|
| Entering |                                                                                             |          | 95°F    |            |         |       |       |       | 105°F     |          | 115°F |          |          |       |       |                   |               |       |          |                                                            |
| Wet      | Air                                                                                         | Total Co | omp     | Sensible t | o Total | Total | Сопр  | Sensi | ble to To | tal Tota | Comp  | Sensible | to Total | Total | Сопр  | Sensible to Total |               |       | <u>}</u> |                                                            |
| Bulb     | Volume                                                                                      | Cool M   | lotor _ | Ratio (    | (T)     | Cool  | Motor | Ra    | tio (S/T) | C00      | Motor | Ratio    | (S/T)    | Cool  | Motor | Ratio (S/T)       |               |       |          |                                                            |
| Temper-  |                                                                                             | Cap. In  |         | Dry B      |         | Cap.  |       |       | ry Bulb   |          | Input |          |          | Cap.  |       | Dr                |               |       | 6        | Listed Sys. Latent Capacity at Design Cond.: BTUh          |
| ature    | cfm                                                                                         | kBtuh I  |         |            |         |       |       |       |           | 5°F kBtu | n KW  | 75°F 80  | ₩ 85°F   | kBtuh | KW    | 5°F               |               |       |          | , , , , , , , , , , , , , , , , , , , ,                    |
|          | 1020                                                                                        | 33.6 1   | 1.95    | 0.92       | 1       | 32    | 2.21  | 0.79  | 0.94      | 1 30.2   | 2.51  | 0.81 0.9 | 7 1      | 28.4  | 2.84  | 1.84              |               | -     |          |                                                            |
| 63°F     | 1210                                                                                        | 34.8 1   | 1.95    | 0.97       | 1       |       | 2.22  | 0.83  | 0.99      | 1 31.4   | 2.52  | 0.86 1   | 1        | 29.8  | 2.85  | .89               | $\sim$ $\sim$ | 1     |          |                                                            |
|          | 1370                                                                                        | 35.6 1   | 1.96    | 0.85 1     | 1       | 34    | 2.23  | 0.87  | 1         | 1 32.6   | 2.53  | 0.9 1    | 1        | 30.8  | 2.85  | 1.93 1            |               | /     | 3.9      | Listed Sys. Sensible Capacity at Design Cond.: BTUh        |
|          | 1020                                                                                        |          |         |            |         |       |       |       |           |          |       | 0.64 0.7 |          |       | 2.85  | 1.65 0.81 0.5     |               | ·   · |          |                                                            |
| 67*F     | 1210                                                                                        |          |         |            |         |       |       |       |           |          |       | 0.67 0.8 |          | 31    | 2.85  | 1.68 0.86 1       |               |       |          |                                                            |
|          | 1370                                                                                        |          |         | 0.66 0.83  |         |       |       |       |           |          |       | 0.69 0.6 |          | 31.6  | 2.87  | 1.71 0.91 1       |               |       |          | 28 000                                                     |
|          | 1020                                                                                        | 36.8 1   | 1.97    | 0.47 0.6   | 0.73    | 35.2  | 2.24  | 0.47  | 0.61 0    | .74 33.4 | 2.53  | 0.48 0.6 | 2 0.76   | 31.6  | 2.86  | 1.48 0.64 0.79    |               |       | 3 10     | D Listed Sys. Total Capacity at Design Cond.: 50, 200 BTUh |
| 71°F     | 1210                                                                                        | 38 1     | 1.98    | 0.48 0.63  | 0.77    | 36.4  | 2.24  | 0.49  | 0.64 0    | .79 34.6 | 2.55  | 0.49 0.6 | 6 0.81   | 32.6  | 2.87  | 0.5 0.67 0.84     |               |       | 5.10     |                                                            |
|          | 1370                                                                                        | 39 1     | 1.98    | 0.65       | 0.8     | 37.4  | 2.25  | 0.5   | 0.67 0    | .83 35.4 | 2.55  | 0.51 0.6 | 8 0.85   | 33.2  | 2.88  | .52 0.7 0.88      |               |       |          |                                                            |

#### "3"toton's" 338 kBTU/hr



- #1: Use of nominal capacity instead of design capacity.
  - May believe that nominal capacity + intuition is 'good enough'.

#### **Nominal Capacity**





#### **Design Capacity**

|          |        |       | Outdoor Air Temperature Entering Outdoor Coil |             |               |      |              |                |                         |         |       |       |                |      |          |       |              |                |                         |      |     |
|----------|--------|-------|-----------------------------------------------|-------------|---------------|------|--------------|----------------|-------------------------|---------|-------|-------|----------------|------|----------|-------|--------------|----------------|-------------------------|------|-----|
| Entering | Total  |       | ;                                             | 85°F        |               |      |              |                |                         | 1       | 115°F |       |                |      |          |       |              |                |                         |      |     |
| Wet      | Air    | Total | Comp                                          | Sens        | ible to Total |      | Total        | Сопр           | Sens                    | ible to | Total | Total | Сопр           | Sens | ibleto   | Total | Total        | Сопр           | Sensible to Total       |      |     |
| Bulb     | Volume | Cool  | Motor                                         | Ratio (S/T) |               |      | Cool<br>Cap. | Motor<br>Input | Ratio (S/T)<br>Dry Bulb |         |       | Cool  | Motor<br>Input | R    | ntio (S. | m)    | Cool<br>Cap. | Motor<br>Input | Ratio (S/T)<br>Dry Bulb |      |     |
| Temper-  |        | Cap.  | Input                                         | Dry Bulb    |               |      |              |                |                         |         |       | Cap.  |                | 0    | ny Bul   | b     |              |                |                         |      |     |
| ature    | cfm    | kBtuh | ĸw                                            | 75°F        | 80°F          | 85°F | kBtuh        | ĸw             | 75°F                    | 80°F    | 85°F  | kBtuh | ĸ₩             | 75°F | 80°F     | 85°F  | kBtuh        | ĸw             | 75°F                    | 80°F | 85° |
|          | 1020   | 33.6  | 1.95                                          | 0.77        | 0.92          | 1    | 32           | 2.21           | 0.79                    | 0.94    | 1     | 30.2  | 2.51           | 0.81 | 0.97     | 1     | 28.4         | 2.84           | 0.84                    | 0.99 | 1   |
| 63°F     | 1210   | 34.8  | 1.95                                          | 0.81        | 0.97          | 1    |              | 2.22           | 0.83                    | 0.99    | 1     | 31.4  | 2.52           | 0.86 | 1        | 1     | 29.8         | 2.85           | 0.89                    | 1    | 1   |
|          | 1370   | 35.6  | 1.96                                          | 0.85        | 1             | 1    | 34           | 2.23           | 0.87                    | 1       | 1     | 32.6  | 2.53           | 0.9  | 1        | 1     | 30.8         | 2.85           | 0.93                    | 1    | 1   |
|          | 1020   | 35.2  | 1.96                                          | 0.61        | 0.75          | 0.88 | 33.6         | 2.22           | 0.62                    | 0.77    | 0.91  | 31.8  | 2.52           | 0.64 | 0.79     | 0.93  | 30           | 2.85           | 0.65                    | 0.81 | 0.9 |
| 67*F     | 1210   | 36.6  | 1.97                                          | 0.64        | 0.79          | 0.94 | 34.8         | 2.23           | 0.65                    | 0.81    | 0.96  | 33    | 2.53           | 0.67 | 0.83     | 0.99  | 5            | 2.85           | 0.68                    | 0.86 | 1   |
|          | 1370   | 37.4  | 1.97                                          | 0.66        | 0.83          | 0.98 | 35.6         | 2.24           | 0.68                    | 0.85    | 1     | 33.6  | 2.54           | 0.69 | 0.88     | 1     | 31.6         | 2.87           | 0.71                    | 0.91 | 1   |
|          | 1020   | 36.8  | 1.97                                          | 0.47        | 0.6           | 0.73 | 35.2         | 2.24           | 0.47                    | 0.61    | 0.74  | 33.4  | 2.53           | 0.48 | 0.62     | 0.76  | 31.6         | 2.86           | 0.48                    | 0.64 | 0.7 |
| 71°F     | 1210   | 38    | 1.98                                          | 0.48        | 0.63          | 0.77 | 36.4         | 2.24           | 0.49                    | 0.64    | 0.79  | 34.6  | 2.55           | 0.49 | 0.65     | 0.81  | 32.6         | 2.87           | 0.5                     | 0.67 | 0.8 |
|          | 1370   | 39    | 1.98                                          | 0.49        | 0.65          | 0.8  | 37.4         | 2.25           | 0.5                     | 0.67    | 0.83  | 35.4  | 2.55           | 0.51 | 0.68     | 0.85  | 33.2         | 2.88           | 0.52                    | 0.7  | 0.8 |

"3 tons" ≈ 36 kBTU/hr

"3 tons" = 33.2 kBTU/hr



- #2: Inadvertent errors in the equipment selection process.
  - Equipment selection is often done by hand, which is just more error-prone.
  - Expanded performance data is formatted a bit differently by every manufacturer.





- #3: Don't yet believe in the ACCA design process.
  - May not believe that Manual J loads represents typical 'worst-case'.
  - Therefore, may be uncomfortable with Manual S sizing limits.

#### **Design Conditions**

#### **Field Conditions**







- #3: Don't yet believe in the ACCA design process.
  - Other problems may be blamed on size of the equipment when, in fact they are unrelated.

### **Design Conditions**





#### **Field Conditions**



### Equipment selection: Summary



- Designers need to select equipment using "design capacity".
- <u>Design capacity</u>: Equipment capacity at same design conditions as those used to calculate peak load.
- Design capacity determined using expanded performance data.
- Top three reasons that things go wrong:
  - #1: Use of nominal capacity instead of design capacity.
  - #2: Inadvertent errors in the equipment selection process.
  - #3: Don't yet believe in the ACCA design process.



## **Summary**

#### Summary



- Goal of equipment selection is to match capacity to load.
- Properly sized equipment keeps home comfortable, while maintaining efficiency, and maximizing equipment durability.
- Designers use expanded performance data to select equipment according to its design capacity.
- Manual S helps standardize this process.





- Design Parameters:
  - Outdoor dry-bulb: 95°F
  - Indoor dry-bulb: 75°F
  - Indoor rel. humidity: 50%
  - Indoor wet-bulb: 63°F

- Design loads:
  - Latent: 6.7 kBTU/hr
  - Sensible: 27.2 kBTU/hr
  - Total: 33.9 kBTU/hr

| Model A             |                         | Outdoor Air Temperature   |                      |                               |             |      |
|---------------------|-------------------------|---------------------------|----------------------|-------------------------------|-------------|------|
|                     |                         | 95 °F                     |                      |                               |             |      |
| Enter Wet-Bulb (°F) |                         | Tabal Gard Gar            |                      | Sensible-to-Total Ratio (S/T) |             |      |
|                     | Total Air Flow<br>(CFM) | Total Cool Cap.<br>(BTUH) | Comp. Motor<br>Watts |                               | Dry Bulb °F |      |
|                     |                         |                           | vvatts               | 75                            | 80 85       |      |
| 63 F                | 1,200                   | 39,700                    | 3,870                | 0.75                          | 0.88        | 0.98 |
|                     | 1,325                   | 40,700                    | 3,910                | 0.78                          | 0.91        | 1.00 |
|                     | 1,575                   | 41,500                    | 3,940                | 0.80                          | 0.94        | 1.00 |



- Design Parameters:
  - Outdoor dry-bulb: 95°F
  - Indoor dry-bulb: 75°F
  - Indoor rel. humidity: 50%
  - Indoor wet-bulb: 63°F
- Selection Criteria:
  - **1.** Latent cap.  $\geq$  latent design load:  $\geq$  6.7 kBTU/hr
  - 2. Sensible cap. ≥ 95% sensible design load: ≥ 25.8 kBTU/hr
  - 3. Total cap.  $\leq$  115% total design load:  $\leq$  39.0 kBTU/hr

- Design loads:
  - Latent: 6.7 kBTU/hr
  - Sensible: 27.2 kBTU/hr
  - Total: 33.9 kBTU/hr



| Summary of Equipment Selection Criteria |                        |                       |                         |                      |
|-----------------------------------------|------------------------|-----------------------|-------------------------|----------------------|
| Model                                   | Meets All<br>Criteria? | 1. Latent<br>Capacity | 2. Sensible<br>Capacity | 3. Total<br>Capacity |
| Model A                                 |                        |                       |                         |                      |
| Model B                                 |                        |                       |                         |                      |
| Model C                                 |                        |                       |                         |                      |



# Managing The Equipment Selection Process

### **Introducing Greg Cobb**



- President & CEO, iEngineer, LLC and Sonoran Air, Inc.
- Has been providing services for more than 10,000 ENERGY STAR certified homes since 2003.
- Provides services nationwide, but focused on Sunbelt states, including hot/dry and hot/humid climates.





### **Session Objectives**



- Multi-Configuration Complexity
- Three HVAC Design Methods
- Builder Recommendations
- Stakeholder Impact
- Triple Win
- Results/Experience





#### **Multi-configuration complexity: Equipment selection & duct design**

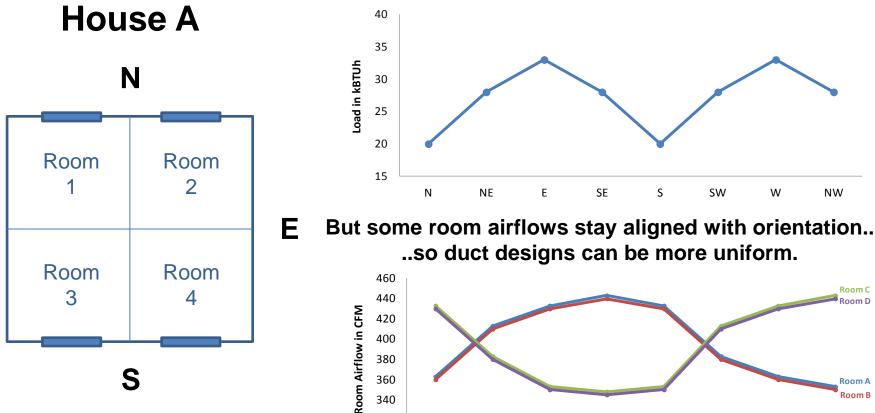


NW

Room A Room B

NW

Whole-house load varies greatly with orientation.. ...so multiple equipment selections are needed.


SE

Е

S

SW

W



320 300

Ν

NE

W

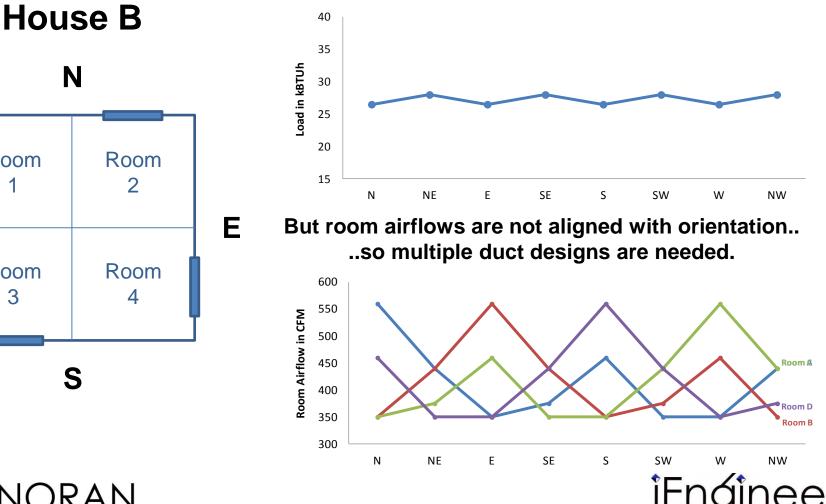
#### **Multi-configuration complexity: Equipment selection & duct design**

Ν

S

4

Room


Room

3

W



Whole-house load varies little with orientation... ...so only a single equipment selection is needed.

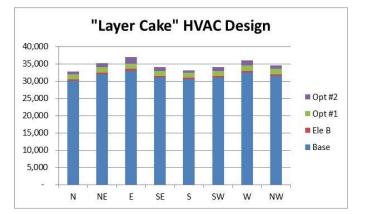


### Multi-Configuration: Design Complexity



- Sample plan w/ 6 options impacting heat load:
  - 1. Elevation B
  - 2. Great Multi-Panel SGD
  - 3. Dining French Door
  - 4. Master Bay Window
  - 5. Bed 4 ILO Tandem Garage
  - 6. Extended Covered Patio

| Plans | Options | Option<br>Combinations | Load<br>Configurations | Room-level Target<br>Airflows |
|-------|---------|------------------------|------------------------|-------------------------------|
| 1     | 1       | 2                      | x 4 = 8                | x 10 = 80                     |
| 1     | 6       | 64                     | x 16 = 1,024           | x 10 = 10,240                 |
| 4     | 24      | 256                    | x 16 = 4,096           | x 10 = 40,960                 |
| 1     | 15      | 32,768                 | x 16 = 524,288         | x 15 = 7,864,320              |
| 8     | 15      | 262,144                | x 16 = 4,194,304       | x 15 = 62,914,560             |
|       |         |                        |                        |                               |






## **Complexity Solution – "Layer Cake"**

- Create "Layer Cake" HVAC Design:
  - Layers:
    - Base Plan: First calculate base case with no options
    - Calculate heat load and duct layout changes:
      - Elevations
      - Floor Plan Options
      - Glazing Options
  - Slices:
    - Solar Orientation: Calculate each of the above for 8 solar orientations & Garage hand L/R
- Per Lot:
  - Select appropriate "layers" and "slice" for each lot, determine heat load, select equipment match-up and size duct system







### **HVAC Design Methods**



- Methods
  - 1. Group
  - 2. Advanced
  - 3. Custom
- Phase
  - Initial Design at plan submission
  - Per-Lot Design at permit





### **HVAC Design Solutions**



|                | Group Design                    | Advanced Design                 | Custom Design |
|----------------|---------------------------------|---------------------------------|---------------|
| Initial Design | By: Engineer                    | By: Engineer                    | By: Engineer  |
| Load           | "Layer Cake"<br>Group Loads     | "Layer Cake"                    | Worst Case    |
| Equipment      | Group                           | Range                           | Worst Case    |
| Duct           | One "Loose" Design<br>per Group | One Design w/<br>Range of Sizes | Worst Case    |





### **HVAC Design Solutions**



|                | Group Design                              | Advanced Design                         | Custom Design                                             |  |
|----------------|-------------------------------------------|-----------------------------------------|-----------------------------------------------------------|--|
| Per-Lot Design | By: Contractor                            | By: Engineer                            | By: Engineer                                              |  |
| Load           | Determine Load<br>& Select Group          | Determine Load                          | Calc. Load                                                |  |
| Equipment      | Determine Match-up<br>for Group           | Determine Match-up<br>for Load          | Calc. & Select<br>Match-up                                |  |
| Duct           | Calc. Airflow Targets<br>& Adjust Dampers | Calc. Airflow Targets<br>& Select Sizes | Calc. Airflow Targets,<br>Revise Design<br>& Select Sizes |  |





### Where/When to Place the Complexity?



|                   | Group Design | Advanced Design        | Custom Design          |
|-------------------|--------------|------------------------|------------------------|
| Initial<br>Design | Engineer     | Engineer               | Engineer               |
| Per-Lot<br>Design | Contractor   | Engineer<br>Contractor | Engineer<br>Contractor |





## Recommendations



#### Group Design

- Least changes from traditional process to ensure minimum compliance
- Comfortable relying heavily on HVAC contractor
- Advanced Design
  - Desire lowest per-lot costs, best homeowner comfort and best energy efficiency
  - Concerned about per-lot design turnaround time and/or HVAC contractor capabilities
  - Have communities with high # lots and fixed options
- <u>Custom Design</u>
  - Desire low upfront costs, best homeowner comfort and best energy efficiency
  - Less concerned about per-lot design cost or design turn around time
  - Have communities with low # lots or significant custom options





## **Stakeholder Impact**



- HVAC Engineer/Designer
- HVAC Contractor
- Other Trades (Framing, Electrical & Plumbing)
- Builder
  - Purchasing
  - Field Ops
  - Sales & Service
- Municipal
  - Plan Review
  - Inspection
- Energy Rater





## **Triple Win: Advanced/Custom Design**



- Improve Energy Efficiency:
  - Equipment sized for specific needs of each lot instead of worst case to eliminate over-sizing
- Enhance Homeowner Comfort:
  - Duct system balanced to provide room-level airflow for specific needs of each lot instead of worst case
  - Longer run times homogenize temperatures throughout home and remove moisture more effectively in summer
- <u>Reduced Costs:</u>
  - Lower equipment & materials costs
  - Lower customer service/warranty costs





### **Results/Experience: Costs**



- Increase in engineering costs
- Decrease in equipment costs
- Change in materials costs
- Decrease in comfort calls / warranty costs
- Increase in homeowner misunderstanding calls





## **Results/Experience: Tips**



- Right-sizing isn't as scary as many think
- Proper room-level airflow is critical
  - Designing balanced duct systems is possible
  - Designing & installing per-lot custom duct systems is also possible
- Controls are very important
  - T-stat placement
  - Remote temp sensors
  - Zoning

...Right-sizing w/ proper airflow & controls WORKS!!









- Multi-Orientation / Multi-Configuration Complexity
- Three HVAC Design Methods
- Builder Recommendations
- Stakeholder Impact
- Triple Win
- Results/Experience





#### Discussion



#### Web:

- Main: <u>www.energystar.gov/newhomespartners</u>
- Technical: <u>www.energystar.gov/newhomesguidelines</u>
- Training: <u>www.energystar.gov/newhomestraining</u>
- HVAC: <u>www.energystar.gov/newhomesHVAC</u>

#### Email:

energystarhomes@energystar.gov

#### Social Media:



@energystarhomes



facebook.com/energystar

#### **Contacts:**

#### Dean Gamble

U.S. EPA, Technical Manager ENERGY STAR Certified Homes Gamble.Dean@epa.gov

#### Michael Brown

ICF International, Technical Support ENERGY STAR Certified Homes <u>Michael.Brown@icfi.com</u>

#### **Greg Cobb**

iEngineer, LLC and Sonoran Air, Inc. President & CEO gcobb@sonoranair.com