\qquad
\qquad
\qquad

CHAPTER 3 STUDY GUJDE

ACCELERATED MOTION

Vocabulary Review

Write the term that correctly completes the statement. Use each term once.

acceleration

free-fall acceleration

1. \qquad A \qquad shows how velocity is related to time.
2. \qquad
3. \qquad The rate at which an object's velocity changes is its \qquad .
4. \qquad The motion of falling objects when air resistance is negligible is called \qquad .
5. \qquad The \qquad of an object is the change in velocity during some measurable time interval divided by that time interval.

The acceleration of an object in free fall that results from the influence of Earth's gravity is \qquad _.

SECTION 1 Acceleration

In your textbook, read about changing velocity and velocity-time graphs.

1. Refer to this velocity-time graph of a jogger to complete the two tables on the next page.

Chapter 3 - Accelerated Motion
\qquad
MHaptar 3 STIUDY GUUDE

Segment	\boldsymbol{v}	Δt	$\Delta \boldsymbol{x}$
A			
B			
C			

Δt	Distance Run	Displacement	Average Velocity

In your textbook, read about acceleration.
Circle the letter of the choice that best completes the statement or answers the question.
2. The slope of a tangent line on a velocity-time graph is the \qquad .
a. displacement
c. instantaneous acceleration
b. velocity
d. free-fall acceleration
3. When acceleration and velocity vectors are pointing in opposite directions, the object is \qquad .
a. speeding up
c. moving at constant speed
b. slowing down
d. not moving
4. If a runner accelerates from $2 \mathrm{~m} / \mathrm{s}$ to $3 \mathrm{~m} / \mathrm{s}$ in 4 s , her average acceleration is \qquad .
a. $\quad 4.0 \mathrm{~m} / \mathrm{s}^{2}$
b. $2.5 \mathrm{~m} / \mathrm{s}^{2}$
c. $\quad 0.40 \mathrm{~m} / \mathrm{s}^{2}$
d. $0.25 \mathrm{~m} / \mathrm{s}^{2}$
5. The area under a velocity-time graph is equal to the object's \qquad .
a. stop time
c. displacement
b. acceleration
d. average speed
6. The slope of a tangent line on a displacement-time graph is equal to the object's \qquad .
a. velocity
c. change in acceleration
b. weight
d. displacement
\qquad

MHAPTER3 STUDY GUUDE

The graph below shows the motion of five objects. Refer to the graph to answer questions 7-11.

7. Which has the greater acceleration, Object A or B? How do you know?
\qquad
\qquad
8. Which of these objects has a negative acceleration? How do you know?
\qquad
\qquad
9. Which of these objects started its motion from rest? Which object comes to a complete stop? Explain your answers.
\qquad
\qquad
10. Object D crosses the axis while maintaining a constant positive acceleration. What does this indicate?
\qquad
\qquad
\qquad
11. Object A and Object E both have a constant velocity and acceleration of zero. What is different between these two?
\qquad
\qquad
\qquad

Chapter 3 - Accelerated Motion
\qquad

CHAPTRR3 STUDY GU\|DE

SECTION 2 Motion with Constant Acceleration

In your textbook, read about velocity with average acceleration, position with constant acceleration, and an alternative expression for position, velocity, and time.

Complete the tables below. Fill in the values for the initial conditions and the variables. Write a question mark for the unknown variable in each table. If a variable or initial condition is not needed to answer the problem, write X. Write the equation you would use to answer each question. Then solve the problem and show your calculations.

1. A ball rolls past a mark on an incline at $0.40 \mathrm{~m} / \mathrm{s}$. If the ball has an average acceleration of $0.20 \mathrm{~m} / \mathrm{s}^{2}$, what is its velocity 3.0 s after it passes the mark?

Initial Conditions			Variables			Equation
Δt	$\boldsymbol{x}_{\mathrm{f}}$	$\boldsymbol{v}_{\mathrm{f}}$	$\overline{\boldsymbol{a}}$	$\boldsymbol{x}_{\mathrm{i}}$	$\boldsymbol{v}_{\mathrm{i}}$	

2. A car initially traveling at $15 \mathrm{~m} / \mathrm{s}$ accelerates at a constant rate of $4.5 \mathrm{~m} / \mathrm{s}^{2}$ over a distance of 45 m . How long does it take the car to cover this distance?

Initial Conditions			Variables			Equation
t_{f}	$\boldsymbol{x}_{\mathrm{f}}$	$\boldsymbol{v}_{\mathrm{f}}$	$\overline{\boldsymbol{a}}$	$\boldsymbol{x}_{\mathrm{i}}$	$\boldsymbol{v}_{\mathrm{i}}$	

3. A car accelerates from $10.0 \mathrm{~m} / \mathrm{s}$ to $15.0 \mathrm{~m} / \mathrm{s}$ in 3.0 s . How far does the car travel?

Initial Conditions			Variables			Equation
t_{f}	$\boldsymbol{x}_{\mathrm{f}}$	$\boldsymbol{v}_{\mathrm{f}}$	$\overline{\boldsymbol{a}}$	$\boldsymbol{x}_{\mathrm{i}}$	$\boldsymbol{v}_{\mathrm{i}}$	

\qquad

MHAPTER 3 STUDY GUUDE

4. A race car accelerates at $4.5 \mathrm{~m} / \mathrm{s}^{2}$ from rest. What is the car's velocity after it has traveled 35.0 m ?

Initial Conditions			Variables			Equation
Δt	$\boldsymbol{x}_{\mathrm{f}}$	$\boldsymbol{v}_{\mathrm{f}}$	$\overline{\boldsymbol{a}}$	$\boldsymbol{x}_{\mathrm{i}}$	$\boldsymbol{v}_{\mathrm{i}}$	

SECTION 3 Free Fall

In your textbook, read about free-fall acceleration.
For each statement below, write true or rewrite the italicized part to make the statement true.

1. \qquad A feather does not fall in the same way as a pebble because of gravity.
2. \qquad Free fall is the motion of a falling object when the air resistance is negligible.
3. \qquad Galileo concluded that objects in free fall have different accelerations.
4. \qquad Free-fall acceleration is the same for objects of different sizes.
5. \qquad Free-fall acceleration is always downward.
6. \qquad If you drop a rock, its speed after 3 s will be $19.6 \mathrm{~m} / \mathrm{s}$.
7. \qquad The decision to treat free-fall acceleration as positive or negative depends on the coordinate system you use.
8. \qquad If you toss a ball up, it reaches its maximum height when its velocity is zero.
9. \qquad If you toss a ball up, its acceleration at its maximum height is zero.
10. \qquad If a tossed ball had no velocity or acceleration, it would have no motion at all.
\qquad

Mi:atraz STIUDY GUIDE

The diagram below shows the positions of a ball that was thrown upward at time t_{1}. Refer to the diagram to answer questions 11-14.

$$
\begin{gathered}
\bigcirc t_{3} \\
\bigcirc t_{4} \\
\bigcirc t_{2} \\
\bigcirc t_{5} \\
\bigcirc t_{1}
\end{gathered}
$$

11. Assume that the downward direction is positive. For each time shown on the diagram, determine whether the direction of the velocity is positive, negative, or zero, and whether the direction of the acceleration is positive, negative, or zero. Record your answers in the table using the symbols,+- , and 0 .

	Time					
Variable	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	
v						
a						

12. Still assuming that the downward direction is positive, rank the magnitudes of the velocities \boldsymbol{v}_{1}, $\boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \boldsymbol{v}_{4}, \boldsymbol{v}_{5}$ in decreasing order.
13. Now assume that the downward direction is negative. For each time shown on the diagram, determine whether the direction of the velocity is positive, negative, or zero, and whether the direction of the acceleration is positive, negative, or zero. Record your answers in the table using the symbols,+- , and 0 .

	Time					
Variable	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	
v						
a						

14. Still assuming that the downward direction is negative, rank the magnitudes of the velocities \boldsymbol{v}_{1}, $\boldsymbol{v}_{2}, \boldsymbol{V}_{3}, \boldsymbol{v}_{4}, \boldsymbol{v}_{5}$ in decreasing order.
\qquad
