
1© 2019 The MathWorks, Inc.

Accelerating embedded software verification
with Polyspace static code analysis

Stefan David

3

Agenda

1. Making Software Safe and Secure

2. Polyspace Static Analysis

3. Team Collaboration with Polyspace

4

1. Making Software Safe and Secure

5

Security is on consumers’ minds

…of automakers admit their

organization had been

hacked in the past 2 years

…of customers would

never buy from an OEM if

they had been hacked

according to 2016 KPMG Consumer Loss Barometer study

https://info.kpmg.us/content/dam/info/consumer-loss-barometer/pdfs/CLB10-11.pdf

6

In the News.... Embedded Software Security - New Challenge

Source: https://www.wired.com/2016/08/jeep-hackers-return-high-speed-steering-acceleration-hacks/

7Source: https://www.wired.com/2016/08/jeep-hackers-return-high-speed-steering-acceleration-hacks/

In the News.... Embedded Software Security - New Challenge

9

EnvironmentSystem

Environment System

Safety

Security

issue

attack

Note: Security issues may cause safety issues

Safety & Security Goals

10

source: https://www.cvedetails.com (CVE ... Common Vulnerabilities and Exposures)

https://www.cvedetails.com/

11

When Software Safety and Security Matter

▪ Industries where safety and security matter

– Automotive, Aerospace, Medical Device, Industrial Machinery

▪ Governed by functional safety and other standards

– ISO 26262, DO-178, IEC 62304, IEC 61508

– ISO/SAE 21434, RTCA DO-326

– MISRA, CERT, AUTOSAR

▪ Static analysis provides certification credits

– For standards such as ISO 26262 and DO-178

12

source: https://www.securecoding.cert.org

Validate inputs

Heed compiler warnings and use static and dynamic analysis tools

Architect/Design Software for security policies

14

“Given that we cannot really show there are no more errors

in the program, when do we stop testing?”

Brent Hailpern, Head of Computer Science, IBM

Dijstra, “Notes on Structured Programming” (1972)
Hailern, Santhanam, “Software Debugging, Testing, and Verification”, IBM Systems Journal, (2002)

Program Testing
“Program testing can be used to show the presence of bugs,

but never to show their absence”

Edsger Dijkstra, Computer Science Pioneer

15

2. Polyspace Static Analysis

For software written in C, C++, and Ada

16

Proving Absence of Critical Run-Time Errors

float x, y;

…

x = x / (x – y);

▪ How many run-time errors are possible?

1. Divide by zero

2. Overflow

3. Uninitialized variables

▪ How to test all floating point variable combinations?

▪ How do you prove that this code will not fail?

17

Proving Absence of Critical Run-Time Errors

Proven mathematically by

Polyspace that run-time error

will not occur

18

Experiences from the field...

Using Polyspace code verifiers...

▪ Identified and fixed potential run-time

errors and unsafe code

▪ Reliably analyzed C codebase early,

without test cases and compilation!

“Independent, systematic code reviews, compliance to MISRA-C”

“Bug Finder and Code Prover provided 1-2 Man-Year savings and automated

capability in parallel to development which were not available otherwise“

(Source: Ralph Paul, Head of Flight Test & Dynamics, Solar Impulse)

19

Proving
Absence
of Critical
Defects &
Vulnerabilities
(33)

Defect &
Vulnerability
Checkers
(251)

Coding
Standards,
Cybersecurity

Guidelines

Code
Metrics

Code Prover
• Proves code Safe and Secure

• 33 most critical run-time checks

• Supports DO-178 and ISO 26262

Bug Finder
• Produce code metrics

• Check coding standards

• Find defects and vulnerabilities

Polyspace Tools

20

Example: Optimize design and architecture

Non Robust Module

External

code

Potential

Runtime Error

inside!!!

21

Example: Optimize design and architecture

Non Robust Module

Additional

Range-Limiting

Code

Free from

Runtime Errors

24

Using Static Analysis to Make Software Safe and Secure

▪ Find bugs without code execution

– Code analyzed without running tests

– Identify bugs and coding rule violations

for MISRA, AUTOSAR, CERT

▪ Prove absence of critical run-time errors

– Identify code that will never experience

errors regardless of run-time conditions

▪ Complements dynamic testing

– Used together, you can find more bugs

for higher quality code

25

Polyspace Customer References

Electronic Steering Lock

KOSTAL Asia R&D Center Receives ISO 26262

ASIL D Certification for Automotive Software

Alenia Aermacchi Develops Autopilot Software for

DO-178B Level A Certification

Miracor Eliminates Run-Time Errors and Reduces

Testing Time for Class III Medical Device Software

26

3. Team Collaboration with Polyspace

27

Proving Absence of Critical Run-Time Errors with Polyspace

Source

Code View

Results

List

Results

Details Filter

Results

28

Workflow with New Polyspace Products in R2019a

1. Developers check-in code into repository, Build Engineer has configured Jenkins to run Polyspace analysis

2. Jenkins initiates Polyspace analysis run on the server (periodically or at program milestones)

3. Once Polyspace analysis run concludes, results are uploaded to Polyspace Access

4. Team Lead/Manager, QA, Developers use web browser to review results, open Jira defects, monitor quality metrics

Polyspace Bug

Finder Server

Polyspace Code

Prover Server

Server

2

Initiate

Upload

Results Polyspace Bug

Finder Access

Polyspace Code

Prover Access

Polyspace Results

3

Web Browsers

Team Lead

Manager

QA

Engineer

4 Online Review

Source Code

Repository

Developer

Developer

Developer

Developer

1 Code Check-ins

Build

Engineer

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwii8oS_-6PdAhXtQ98KHWfLC5YQjRx6BAgBEAU&url=https://marketplace.topdesk.com/jira-integration-by-topdesk/&psig=AOvVaw2h05vc4-AL-Ent-a3BfyIs&ust=1536240344328142

30

Bob is the Build Engineer

He has configured Polyspace in a Jenkins CI workflow

31

Quinn is a Quality Engineer

She is responsible for triaging software defects

▪ She received an email notification from last

night’s Jenkins initiated Polyspace analysis

▪ The email indicates several findings were

found in her project

▪ She click on the link in the email to view the

findings in Polyspace Access

Bob Builder

To: Quin Quality

32

Quinn is a Quality Engineer

She is responsible for triaging software defects

33

Project Zen

Dara is a software developer

She is responsible for writing code and fixing defects

▪ Dara has been assigned 2

defect tickets in Jira

▪ She opens the first JIRA ticket

and clicks the Polyspace

Access link

34

Dara is a software developer

She is responsible for writing code and fixing defects

37

Martin is a project manager

He is responsible for software quality of the project

38

Summary

▪ Use Polyspace to achieve high quality software with reduced testing effort

– Prove that your code will not cause safety hazards or security issues

▪ Polyspace fits software development workflows

– Jenkins for build automation and Jira for bug tracking

▪ Supports team based collaboration

– Results published for web-browser based review by developers and quality engineers

– Dashboards to show quality metrics for project and safety managers.

39

Finally.... Jeep Hack: Deterministic Random Number Generator

01-01-1970 01-19-2038today

impossible

production

impossible

time() = integer

2,147,483,647 possibilities (232-1)

40

End

41

Backup

44

New Polyspace Products in R2019a

1. Products for web browser results access

– Polyspace Bug Finder Access and Polyspace Code Prover Access

– Web-browser based review of static code analysis results

– Integration with Jira

2. Products for servers

– Polyspace Bug Finder Server and Polyspace Code Prover Server

– Support for Continuous Integration systems such as Jenkins

3. Products for desktop use

– Polyspace Bug Finder and Polyspace Code Prover

– Find bugs and run time errors before submitting code to repository

45

Security

Standards:

• CERT-C

• CWE

• ISO 17961

• MISRA-C:2012 Appendix 1

• Tainted data tracking

Safety

Standards:

• DO-178 (aero)

• ISO 26262 (auto)

• IEC 61508 (industrial)

• IEC 62304 (medical)

• EN 50128 (rail)

• MISRA

• AUTOSAR

Polyspace Helps Makes C, C++, and Ada Safe and Secure

Quality

• Coding Standards

• Find Probable Bugs, Defects

• Code Metrics

• Formal Method: Runtime Behavior, Debugger-like view

• Review Scopes / Software Quality Objectives

• Simulink Integration: trace issues in generated code back to model

Reliability and Robustness

Code Proving

• Prove absence of critical runtime errors (or find even the slightest vulnerability)

• Exhaustive: all possible inputs, control flows, data flows (no instrumentation, execution, test cases)

• Sound: no false negatives

46

Developer

Developer

Optional Workflow: Analyze and Verify Code Prior to Check-In

Polyspace

Bug Finder

Polyspace

Code Prover

Locally Installed

Source

Files

Desktop

Developer

• Run Polyspace Bug Finder and Polyspace Code Prover interactively

• Analyze code before it gets checked into the source code repository

Source Code

Repository

Code

Check-ins

47

When To Use Polyspace

▪ Checking generated code

– Integrated code may consist of handwritten code + generated code

– For certification, check coding standards (MISRA, CERT)

– For AUTOSAR, prove interface requirements are met

▪ Check new code as soon as it written

– Find issues early, when it is easier and cheaper to fix

▪ For heritage or legacy code

– Fix issues when modifications to code are made

– Create a baseline, only review new findings

– Justify findings you don’t wish to fix or review again

48

Abstract

Do you need evidence that your code will not cause safety hazards or security

issues? Polyspace products allow you to achieve the highest levels of software

quality with reduced testing effort. Using formal methods based static code analysis,

it can prove that your code is free from certain critical run-time errors. The analysis

can be done interactively by software developers during code development to quickly

find coding defects and violations of safety and security standards like MISRA,

CERT-C/C++. When used with Continuous Integration tools such as Jenkins,

Polyspace helps improve software quality, safety, and security across your projects.

Results are published for web-browser based code review with tracing information to

identify the root cause of defects. Polyspace supports modern team collaboration

dashboards to show quality metrics for project and safety managers. Integration with

defect tracking tools such as Jira help manage issues across your development

enterprise.

49

Outline

▪ Static Analysis Concepts
– Why is it important, what is it

– Relevance to Auto, Aero, Med, IAM industries

▪ Polyspace Static Analysis
– Proving absence of run-time errors

– Polyspace products

– Customer references (values and benefits)

▪ Team Collaboration with Polyspace
– Workflow overview with new products

– Build automation – runs Polyspace on server, sends email notifications

– Quality Engineer, Team Lead – reviews results, triages and assigns defects

– Developer – uses PS Access to debug defects, fixes code, does pre-submit checks

– Project, Quality Manager – monitors trends

– Pre-submit workflow

▪ Summary

50

Workflow for Quality Engineers

▪ Quin is a Quality Engineer

▪ She has received an email notification indicating XX new defects have been found in
various projects that were analyzed last night

▪ She clicks on the links in the email to view results of the analysis

▪ She looks at the Project Overview Dashboard to identify projects and issues to focus on

▪ She can triage issues and opens Jira tickets from the PS Access web-browser

▪ She notices that code belonging to Dara the developer has dead code in a case statement

▪ She opens a Jira ticket from within Polyspace Access and assigns defect in Jira to Dara

▪ Show video of these tasks in Polyspace Access

51

Software Developer Responding to Issues

▪ Dara looks at defects assigned to her in Jira

▪ She clicks on the link the Jira ticket to debug issue via web-browser with
Polyspace Access

▪ She notices that priorities can be set, annotations can be provided to report on
status, all from within the web-browser interface of Polyspace Access

▪ She uses the information provided by the tool (result details and contextual help)
to formulate a fix for the defect

▪ Dara fixes the code to address the unreachable case statement and checks it in

▪ Show video of developer performing these tasks with Polyspace Access and in the
code editor to fix the defect

52

Workflow for Project Manager

▪ Doug is a project manager with responsibility for software quality

▪ He monitors overall project status via web-browser dashboard

▪ He checks SQO levels and compliance to standards (MISRA, CERT)

▪ He also can see that the defect that Dara fixed has been confirmed to be

fixed in the last analysis run that was initiated by Jenkins

▪ Show screenshots or short video of these tasks

53

Workflow for Developers

▪ Dara is a software developer

▪ She is tasked with adding a new feature which requires changing the

behavior of a function that has a case statement

▪ She makes the code change, then runs her unit tests, which all pass, then

checks the code into the source code repository

▪ Show short video of code edits and command line execution of unit tests

54

55

Bob Builder

Bob Builder

Bob Builder

To: Quin Quality

56

▪ She has received an email notification from
indicating 2 new findings were found in her
project

▪ She click on the link in the email to view new
findings in Polyspace Web UI

▪ The results list shows 2 findings that are in
Dara’s code

▪ She opens two Jira tickets and assigns them
to Dara

Quinn is a Quality Engineer

She is responsible for triaging software defects

57

▪ She opens the first JIRA ticket and clicks the

Polyspace Access link

▪ She uses the information provided by the tool

(result details and contextual help) to

formulate a fix for the defect

▪ She fixes the defect in her IDE and check-in

the changes

Dara is a software developer

She is responsible for writing code and fixing defects

58

▪ She opens the second JIRA ticket and clicks

the Polyspace Access link

▪ She determines that no code changes are

required

▪ She changes the status to justified

▪ She writes a comment to explain her

reasoning

Dara is a software developer

She is responsible for writing code and fixing defects

59

Proving Absence of Critical Run-Time Errors with Polyspace

60

Proving Absence of Critical Run-Time Errors with Polyspace

