

Accelerating Prototype to Commercial Device with Snpadragon and Ubuntu Core

Oksana Wilcox, Staff Manager Qualcomm Technologies, Inc.

February 21, 2017

Smartphone innovations are transforming IoT

Mobile technology is the design point for other smart, connected devices

Snapdragon for embedded computing

foundation to address broad use cases

Bringing Snapdragon to embedded devices

Identifying the challenges

Mobile OEMs

Embedded Customers

Relationship	High touch, 1-1	 Low-touch, web-based
Primary fulfillment	Direct	 Distribution
Minimum order	o 10,000s	o 100
Customers	 High dependency, few 	 Low dependency, many
Roadmap influence	Strong	Weak
Engineering capability	 Strong, large teams 	 Varied, small teams
Primary support	Direct	 Web-based/Contract work
End-product volume	High	Low
Design type	Iterative	Clean-slate

Focused, tiered approach designed for longevity

Snapdragon premium tier

Commercial modules available for Snapdragon 820

Snapdragon 600E

1.5 GHz quad-core Qualcomm[®] Krait[™] 300 CPU

Snapdragon 410E

1.2 GHz quad-core ARM v8 Cortex-A53, 32/64-bit capable

Supported for longevity

 Snapdragon 600E and 410E are available through distribution for a minimum of 10 years from commercial sample of mobile processor in 2015

Available for chip on board design

 1st time Snapdragon processors are sold through 3rd party distribution via Arrow Electronics

Designed for performance in embedded devices

Snapdragon processors designed specifically for embedded applications

Snapdragon 410E

- CPU: 1.2 GHz quad-core ARM v8 Cortex-A53, 32/64-bit capable
- Connectivity: Integrated Wi-Fi. Bluetooth 4.xLE, and GPS
- DSP: Qualcomm[®] Hexagon[™] DSP up to 500MHz

Graphics: Qualcomm[®] Adreno[™] 306 400MHz GPU with support for OpenGL ES 3.0/2.0/1.1, OpenCL 1.1e*, DirectX 9.3*

- Interfaces: 2x USB2.0, MIPI-CSI, MIPI-DSI, SD3.0 & eMMC v4.5with DDR support
- OS: Android, Linux, Windows 10

410E (8016E) 802.11b/g/n

Up to 13MP

600E (8064E)802.11a/b/g/n/ac **MU-MIMO**

Up to 21MP

Snapdragon 600E

- CPU: Quad-core Qualcomm[®] Krait[™] 300 CPU up to 1.5 GHz
- Connectivity: Wi-Fi, Bluetooth 4.0LE/3.x, and GPS
- DSP: Qualcomm[®] Hexagon[™] DSP up to 500MHz
- Graphics: Qualcomm[®] Adreno[™] 320 400+ MHz GPU with support for OpenGL ES 3.0/2.0/1.1, OpenCL 1.1e*
- Interfaces: SATA, PCIe 2.0, HDMI, LVDS, HSIC, 3x USB2.0, 3x MIPI-CSI, 2x MIPI-DSI, SD3.0 & eMMC v4.5 with DDR support
- OS: Android, Linux

*OS dependent

Building the Snapdragon embedded business

Key customer requirements

Community Board

Snapdragon Technology Providers

Software Ecosystem

Distribution

Extensive Documentation

Component Ecosystem

Longevity

Commercialization Support

Clear path from prototype to commercialization

Ready to support consumer, commercial and industrial device needs

Develop & Prototype

Use DragonBoard™ 410c for evaluation and prototype development

Arrow Electronics

Design & Manufacture

Flexibility to use off-theshelf, commercial ready or custom SOMs and SBCs or discrete parts for chip on board design

Arrow Electronics
elnfochips
Inforce Computing
Intrinsyc Technologies
Variscite
and others

DragonBoard 410c is a product of Arrow Electronics

8

Software ecosystem

Supporting great flexibility for architecting IoT solutions

OS

- Android
- Linux
 - Debian
 - OpenEmbedded
 - Ubuntu Core
- Windows 10 IoT Core

Middleware

- AllJoyn®
- IBM Watson IoT
- ROS (Robotics Operating System)

Cloud

- AT&T M2X
- AWS IoT
- IBM Bluemix
- Microsoft Azure IoT

Community Board

Builds SW strengths and cultivates the customers of tomorrow

Benefits of community board

- Builds SW ecosystem
 - Enables community SW development
 - Middleware/Cloud service enablement platform
- Influences design in at prototype stage
 - Makers/ maker pros of today are startups of tomorrow
 - Embedded customers need evaluation platform

DragonBoard™ 410c - built with path to commercialization

- 96Boards open HW specification
 - Compatibility with 96Boards mezzanine products to enable easy prototyping
- Enabling mainline Linux support
- Commercial solution providers in place for industrial products/solutions

ubuntu®core

From Prototype to Commercial Device with **Snapdragon** and **Ubuntu Core**

Kyle Fazzari

Software Engineer kyle@canonical.com Irc: kyrofa

Lowry Snow

Global Business Developmen lowry.snow@canonical.com

Qualcomm + Canonical

- With Dragonboard 410c and Ubuntu Core, Qualcomm and Canonical are accelerating TTM for embedded computing:
 - Prebuilt kernel that enables all hardware components on the device
 - OS security and maintenance updates for the life of the Ubuntu LTS (five years through 2021)

Consultancy

Hardware & Device Enablement

Security & Maintenance Updates

Custom image and support

Products

Device Certification

Update Control

Brand Stores

Building your IoT Device

- Platform overview:
 - Ubuntu Core architecture
 - Roadmap
- From prototype to production:
 - An example: Nextcloud box
 - Components of an Ubuntu Core image
 - How to make your own customized flashable image
- Getting help

Platform Overview

What is Ubuntu Core?

Modular and simple architecture and packages: snaps!

Updated transactionally, worry free updates and rollback

Automatically confines applications for additional security

Provides an amazing developer experience with snapcraft

With a **store** to easily update devices and add/remove apps

Trusted cadence and **Long Term Support** releases

Simple packages: snaps

Package any app for a number of different Linux distributions (desktop, server, cloud or device), and deliver updates directly.

- -

Modular and simple architecture

Transactional updates: Apps, OS and kernel

Automatically **confines** applications

Amazing developer experience: snapcraft

https://snapcraft.io

- Snapcraft creates snaps, orchestrating disparate components and build systems into one cohesive distributable package.
- It can re-use deb packages from Ubuntu.
- It's extensible and new plugins to leverage different technologies are being developed all the time. A few examples of its plugins are Java, Python, Catkin (ROS), Go, CMake, qmake, make, etc.

A **store** to manage your devices and updates

- Steps to deploy an update to all fielded devices:
 - 1. Push an updated snap to the store.

Opportunities for new software revenue

Trusted by Linux developers

Prototype to production

An example: Nextcloud box

From prototype to commercial device

The **gadget** snap: make it boot

Gadget snap

- Bootloader
- Filesystem layout specification
- Default configuration
- Using a DragonBoard? This is already provided and maintained for you
 - (you can still make your own if you want)

The **kernel** snap: make it Linux

- 4.4-based kernel
- Device drivers
- Using a DragonBoard? This is already provided and maintained for you
 - (you can still make your own if you want)

Gadget snap

The **core** snap: make it Ubuntu

- Execution environment for app snaps
- Init system
- Basic services (networking, etc.)
- Basic files and libraries (libc, etc.)
- Using a DragonBoard? This is already provided and maintained for you
 - (you can still make your own if you want)

The **application** snaps: make it awesome

Use **Snapcraft** to assemble your snap from existing projects, leveraging different technologies.

Put it together: build a flashable image

You'll need:

- Gadget snap
- Kernel snap
- Core snap
- Whatever you want to add on top (in our example, Nextcloud)
- Store account
- ubuntu-image

Create your store account

Ubuntu Core will verify the image it's booting actually came from you. In order for that to happen, you need to create a signing key and register it with the store.

- 1. Visit https://myapps.developer.ubuntu.com and create your account.
- 2. Record your **account ID**. You'll need it in a minute.

Install ubuntu-image (and related tools)

```
$ sudo apt install ubuntu-image snapcraft snapd
```

- snapcraft/snapd: needed to generate, register, and use a signing key
- ubuntu-image: actually generate a flashable image

Create your key

In order to build an image, you need to be able to "assert" that this is your image with a key, then snapd has something to verify when it boots.

1. Generate a key that will be linked to your Ubuntu Store account:

```
$ snapcraft create-key my-key-name
```

2. Check that everything went OK and you have your key ready:

3. Register your new key with the store:

```
$ snapcraft register-key
Registering key ...
Done. The key "my-key-name" (Qjdfp<snip>H4CROy) may be used to sign your assertions.
```

Create your model definition

dragon-model.json:

```
"type": "model",
"series": "16",
"model": "nextcloud-dragon",
"architecture": "arm64",
"gadget": "dragonboard",
"kernel": "dragonboard-kernel",
"authority-id": "<account id>",
"brand-id": "<account id>",
"timestamp": "<timestamp>,
"required-snaps": ["nextcloud"]
```

- What is your model's name? (nextcloud-dragon)
- Which Ubuntu Core series are you targeting? (16)
- What architecture is this image for? (arm64)
- Which gadget snap is being used? (dragonboard)
- Which kernel snap is being used? (dragonboard-linux)
- Who is defining this model? (your store account ID)
- When was this model defined?

```
o $ date -Iseconds --utc
```

 What extra snaps are contained within this image? (nextcloud)

Create your model assertion

Now it's time to use our key to sign this model definition (thereby turning it into an assertion).

```
$ cat dragon-model.json | snap sign -k my-key-name > dragon.model
You need a passphrase to unlock the secret key for
user: "my-key-name"
4096-bit RSA key, ID 0B79B865, created 2016-01-01
...
```

After giving your passphrase, a dragon.model file is created containing the assertion.

Build and flash your image!

Once we have a signed model assertion, build the image using ubuntu-image, requesting that the **stable** channel be used when fetching the image's various snaps:

```
$ sudo ubuntu-image -c stable -o dragon.img dragon.model
```

After a few minutes, you'll end up with **dragon.img**, which is a bootable Ubuntu Core image containing the components specified in your model definition (in our example, this includes Nextcloud). Flash it to an SD card, put it in a DragonBoard, and boot!

```
$ sudo dd if=dragon.img of=/dev/sdXX bs=32M; sync;
```

Let's recap: 1, 2, 3!

Getting help

Getting help and getting involved

snapcraft.io

Snapcraft documentation and walkthroughs

tutorials.ubuntu.com

Various Snapcraft and Ubuntu Core tutorials in a codelabs format

Ask a question on Ask Ubuntu (askubuntu.com)

 If you're stuck on a problem, someone else has probably encountered it too and they can help you. Take a look at the "snap" or "ubuntu-core" tags.

Join our real time chat

- IRC: #snappy on freenode.net
- Rocket: https://rocket.ubuntu.com/channel/snapcraft