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Chapter 1

Introduction

1.1 Motivation

Reversible logic synthesis is an emerging research topic with different application areas like

low-power CMOS design, quantum- and optical computing. The key motivation behind

reversible logic synthesis is the optimization of the heat dissipation problem current archi-

tectures show, by reducing it to theoretically zero [2].

Currently, compared to conventional logic synthesis, design and synthesis methods for re-

versible functions are still in the beginning and need to be improved. Additionally, the

synthesis of reversible function specifications is computationally very expensive and needs

improvement in order to be used for an efficient design workflow.

The MMD algorithm, named after its originators Miller, Maslov and Dueck, is one approach

to solve the synthesis problem for a certain group of reversible functions, the Toffoli based

synthesis [3, 1, 4]. On top of the synthesis, the MMD algorithm tries to further optimize the

synthesized reversible network. However, tests with the original implementation have shown

that the computationally intensive optimization is very limited due to the time it takes to

process especially large networks.

By utilizing modern parallel hardware architectures, like multicore systems, it is possible to

reduce the time it takes to process and optimize input networks. This could result in a faster
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design and testing workflow, as well as the ability to process larger networks for potential

real world applications in the future.

1.2 Structure

This work is structured into six chapters. The following description provides a quick overview

over these parts. Readers already familiar with certain topics can skip chapters or sections.

The first chapter provides a quick introduction into the research areas covered and combined

in this project. A short section outlines the motivations for this project and provides the

reader with a rough idea why this work is of importance. The related work section then

details previous work that has been done in this area.

Chapter two provides the reader with the basic knowledge that is necessary in order to

understand the work done in this project. It will cover the basics of reversible logic synthesis,

as well as the MMD algorithm, the target of acceleration. The section about the Cell

Broadband Engine introduces the used hardware for this project. It aims to provide the

reader with the fundamental knowledge about the hardware architecture that is necessary

to understand how the acceleration problem has been tackled.

Chapter three then describes the actual project implementation. It starts with the prelimi-

nary work that had to be done in order to start implementing and rewriting the algorithm.

The next section describes the most important data structures used by the implementa-

tion. In the section 3.3 the core item of the acceleration approach, the matching algorithm,

is described. Firstly, the sequential approach will be explained, serving as a basis for the

explanation of the transformation from a sequential to a parallel version. The last part

of this chapter elaborates the problems that arose during the project development and the

implementation process.

The next chapter will present and discuss the outcome of this project. It will answer the

question whether the project goal is achieved on the basis of the benchmarks and tests.

Chapter 5 discusses improvements to the current approach that could be investigated for

future work.
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The last chapter then concludes the project and reflects the author’s view upon the topic

and outcome of this work.
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Chapter 2

Background

2.1 Reversible Logic Synthesis

Reversible Logic Synthesis is a fairly new discipline and an emerging research topic. It

has its root and application in several fields like quantum computing, low-power CMOS,

nanotechnology and optical computing [4]. The fundamental principle behind Reversible

Logic Synthesis is based on the fact that every logic computation that is not reversible

generates a certain amount of heat for every bit of information that is lost [5, 6]. Very basic

examples for irreversible gates are most of the fundamental logical operations like AND, OR

and XOR. For example, consider the logical AND operation which has two inputs and one

output. This means that during the computational process one bit of information gets lost.

This lost information, however, generates the aforementioned heat. The only basic operation

that is reversible is the NOT operation since it has one in- and one output and therefore does

not lose any information. Other important properties of reversible operations are explained

in the following.

Reversible functions (gates), in contrast to irreversible functions, have two fundamental

properties or rather restrictions. Firstly, the number of outputs is equal to the number of

inputs. Secondly, any output pattern has a unique preimage. In other words, a reversible

(boolean) function f(x0, x1, ..., xn) is a bijection and performs permutations of the set of input

vectors [4]. The logical XOR function ⊕, for example, can be transformed into a reversible

function by adding an output that maps x to x̄. The result is a function (x⊕y) → (x̄, x⊕y)
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x y z x y z ⊕ xy

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 1

1 1 1 1 1 0

Table 2.1: Truth table defining the reversible AND operation.

with two in- and outputs and a unique output pattern with the output vector (10, 11, 01, 00).

One can clearly see that the basic properties of reversible logic hold.

The logical AND operation, however, cannot be transformed into a reversible function by

just adding a single output, since it is not possible to create a unique output pattern this

way. In order to create the logical AND function it is necessary to add one in- and two

outputs and map the set of input vectors to the vector (x, y, z ⊕ xy). This mapping results

in the output vector shown in Table 2.1. For all constant z = 0 this function realizes the

logical AND [2].

Additionally, the function shown in Table 2.1 describes the basic functionality of one of the

best known and well studied reversible gates, called the Toffoli gate. Toffoli gates are the

fundamental operation used in the MMD algorithm and therefore of special importance. In

this example, Table 2.1 defines a Toffoli gate of size three.

In general, a Toffoli gate of size n can be defined as an operation that passes the first n− 1

inputs through unchanged and inverts the nth input if all others are 1 [1]. Formally, a n× n

Toffoli gate can be written as TOFn(x1, x2, ..., xn) where x1 to xn−1 are called control and
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xn is called target. After passing through the gate, the value of each input vector component

becomes

x′
i = xi, i < n, (2.1)

x′
n = x1x2...xn−1 ⊕ xn (2.2)

The graphical representation of Toffoli gates is shown in Figure 2.1. All lines corresponding

to an input xi with i < n are depicted by the • and each target line by the ⊕ operation

symbol.Chapter 2. Basic Definitions and Literature Overview

Figure 2.2: NOT, CNOT and Toffoli gates

the gates are implemented. Gates with more than two controls are discussed in [56, 39].

The set of generalized Toffoli gates is proven to be complete (for example, see [45]); in

other words, any reversible function can be realized as a cascade of Toffoli gates.

Definition 5. For the set of domain variables {x1, x2, ..., xn} the generalized Fredkin

gate has the form FRE(C; T ), where C = {xi1 , xi2 , ..., xik}, T = {xj , xl} and C ∩ T =

∅. It maps a Boolean pattern (x0
1, x

0
2, ..., x

0
n) to (x0

1, x
0
2, ..., x

0
j−1, x

0
l , x

0
j+1, ..., x

0
l−1, x

0
j ,

x0
l+1, ..., x

0
n) if and only if x0

i1x
0
i2 ...x

0
ik

= 1. In other words, the generalized Fredkin gate

interchanges bits xj and xl if the corresponding product of C equals 1.

Several cases of the generalized Fredkin gates can be found in the literature. A gate

with no controls, FRE(x1, x2), is usually called SWAP since it swaps the signals on

x1 and x2. For some technologies the SWAP is done for free, for others there is a cost

associated with it. For example, in CMOS there is no cost for interchanging the two

wires. In contrast, in quantum technology the best one can do to interchange the values

on two wires is two apply 3 CNOT gates as it is shown in Figure 2.3. Depending on the

application we will refer to this gate as having a cost or not.

The classical Fredkin gate (the way it was originally presented [14]) has one control and

16

Figure 2.1: Graphical representation of Toffoli gates. NOT and CNOT are special cases of
the generalized x× n Toffoli gate.

A Toffoli gate of size one, simply is a negation of the input. It does not have a control input.

A size two Toffoli gate, also called Feynman or Controlled NOT (CNOT) gate, realizes an

ordinary XOR operation on the target line. The size three Toffoli gate is a generalization of

all Toffoli gates of bigger size, since it defines how to map the value of the target line [1].

A reversible circuit or network is described by a cascade of reversible gates, such as Toffoli

gates. Figure 2.2 shows such a cascade, with four lines (one line per input/output) and 16

Toffoli gates. Cascade simply means that all gates are strictly ordered and that only one

gate is active at a time. Its output is the input for exactly one subsequent gate.

A logical consequence of the aforementioned restrictions of reversible gates is that a lot of

unused inputs and outputs are introduced. Additional inputs are called constant inputs and

the corresponding outputs are called garbage. Let I be the set of all inputs (control and

target) and C be the set of all constant inputs. O denotes the set of all outputs and G the

set of garbage lines. Formula 2.3 shows the relation between these sets [2].

6



Figure 2.2: The function 4 49 has four in- and four outputs. It consists of 16 Toffoli gates
of size one to four.

|I|+ |C| = |O|+ |G| (2.3)

Research in reversible logic focuses on several areas. One of them is the synthesis of reversible

networks. In other words, translate a formal reversible function specification f(x1, x2, ..., xn)

(e.g. described by a truth table) into a reversible network, e.g. with Toffoli gates. Due

to additional constant inputs and garbage, reversible circuits get bigger than conventional

boolean logic networks. Therefore research does not only concentrate on the synthesis but

also on the minimization of such networks by applying a variety of techniques, like minimizing

garbage or the total number of gates.

2.2 The MMD Algorithm

2.2.1 Introduction

The MMD algorithm, originally introduced in [1], aims to provide a set of methods in order

to synthesize and minimize an arbitrary reversible function f using Toffoli gates. It is split

into two parts, from which the first one is the synthesis step which generates a reversible

network from a formal function specification, represented as a truth table. Several optional

modifications can be applied that in a lot of cases result in a smaller circuit, in terms of the

number of gates and control inputs [4].

The second step is a transformation based approach, using a method called template match-

ing in order to further reduce the number of gates or the total cost of a circuit. The very basic

idea behind this procedure is to find a set of gates in a given circuit from which is known

that they can be replaced by a smaller or equally sized number of gates that implement the

7



same function.

2.2.2 Synthesis

The Basic Algorithm

The basic synthesis algoritm is a greedy, näıve approach to identify Toffoli gates on the

output side of the specification [1]. In order to achieve this, the Toffoli gates are chosen to

progressively transform the output part of the function specification into the input part. A

basic, yet very important assumption is that already transformed outputs are not affected

by the following ones, leading to a strict order of the input side of the truth table.

Consider the reversible function as a mapping over {0, 1, ..., 2n − 1}. The notation f(i) = j,

describes the mapping of an input vector i to an output, where i and j are the binary

expansion in the range of 0 ≤ i, j ≤ 2n − 1. In a sequential step the basic algorithm now

tries to transform the output mapping by applying Toffoli gates in such a way that after the

successful termination

f ′(i) = i,∀ 0 ≤ i ≤ 2n − 1 (2.4)

holds. A correctness analysis of this approach is shown in [4] and [1].

To clarify how the algorithm synthesizes a given reversible function specification, consider the

reversible function given in Table 2.1(a). It is obvious that the aforementioned requirement

from Equation (2.4) does not hold. In order to fulfill it, the basic algorithm performs a set

of steps. The first one tries to map the input vector (0, 0, 0) to the desired output (0, 0, 0).

To achieve this, each bit, and therefore each corresponding line in the circuit, not equal to 0

gets negated with a NOT gate. In this example, one NOT gate is required, flipping all inputs

of line a. Table 2.1(b) shows this in column ii. As a result of this operation, the first five

inputs map correctly to their outputs, leaving three inputs to modify. By adding a Toffoli

gate of size three with a as the target line, the inputs change to column iii of Table 2.1(b).

The rest of the application is straight forward and results in the desired state, respectively

circuit, after adding two more Toffoli gates. Because the synthesis process always modifies

8



(a) Truth table of
a reversible func-
tion, before apply-
ing the MMD al-
gorithm.

i
cba f(cba)
000 001
001 000
010 011
011 010
100 101
101 111
110 100
111 110

(b) Truth table after applying the basic MMD algorithm.
After four iterations the synthesis step is finished, with
cba = c4b4a4

i ii iii iv v
cba c0b0a0 c1b1a1 c2b2a2 c3b3a3 c4b4a4

000 001 000 000 000 000
001 000 001 001 001 001
010 011 010 010 010 010
011 010 011 011 011 011
100 101 100 100 100 100
101 111 110 111 101 101
110 100 101 101 111 110
111 110 111 110 110 111

Table 2.2: Example of the basic MMD algorithm

the function output the circuit is read in reverse in order to apply the gates.

(i) (ii) (iii) (iv) (v)
cba c0b0a0 c1b1a1 c2b2a2 c3b3a3 c4b4a4

000 001 000 000 000 000
001 000 001 001 001 001
010 011 010 010 010 010
011 010 011 011 011 011
100 101 100 100 100 100
101 111 110 111 101 101
110 100 101 101 111 110
111 110 111 110 110 111

Table 2: Example of applying the basic algorithm.

!
"
#

!
"
#

$

$

$

Figure 2: Circuit for the function shown in Table 2.

Table 2 illustrates the application of the basic algorithm.
(i) is the given specification. Step 1 identifies the application
of TOF1(a0) giving (ii). At this point f+(i), 0 ≤ i ≤ 4 are as
required. Mapping f+(5) → 5 requires TOF3(c1, b1, a1) to
change the rightmost position to 1 (iii) and TOF3(c2, a2, b2)
to remove the centre 1 (iv). Lastly, TOF3(c3, b3, a3) is again
required, this time to map f+(6) → 6. Note that the gates
are identified in order from the output side to the input side.
The corresponding circuit is shown in Figure 2.

The basic algorithm is straightforward and easily imple-
mented. Its algorithmic complexity is n2n. It is also easily
seen that it will always terminate successfully with a circuit
for the given specification. However, it is possible to con-
struct a function for any m, that requires (m − 1)2m + 1
gates. For m = 3, this is the function shown in Table 1. We
next consider a number of approaches to reduce the size of
the circuit produced.

3.2 Output Permutation and Control Input
Reduction

The basic algorithm maps each output back to the cor-
responding input. Often this is not the best mapping. For
functions with up to 8 or 9 inputs it is practical to try all
m! output permutations. Permuting the outputs requires a
certain number of interchanges which in some technologies
may require explicit SWAP gates.

The basic algorithm naively assigns the maximum num-
ber of control lines to each Toffoli gate. Often a subset of
those control lines will suffice. The requirement is that the
gate does not affect a row earlier in the specification. This
is easily accounted for since the set of control lines must ei-
ther contain a line that has not appeared as a 1 in an earlier
row of the specification, or must contain all lines that have
appeared as 1’s in rows earlier in the specification. Given
that, the revised algorithm, instead of using the control lines
identified by the basic algorithm, considers all valid subsets
of those lines, and chooses the control that minimizes the
complexity C(f+) of the resulting specification. Recall, that
the complexity C is the total Hamming distance between the
input and output sides of the specification, so this heuris-
tic is choosing the gate that moves the specification furthest
towards the identity specification. In case of a tie, the small-

(i) (ii) (iii) (iv)
cba c0b0a0 c1b1a1 c2b2a2 c3b3a3

000 111 000 000 000
001 000 111 001 001
010 001 010 010 010
011 010 001 111 011
100 011 100 100 100
101 100 011 101 101
110 101 110 110 110
111 110 101 011 111

Table 3: Example of applying the bidirectional al-
gorithm.

!
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$
% &

'

'

'

!
"
#

!
"
#

'

'

'
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Figure 3: Circuit for the function shown in Table 3.

est set of control lines is used, and within that the choice is
arbitrary.

3.3 Bidirectional Algorithm
As described so far, the algorithm produces the circuit by

selecting Toffoli gates manipulating only the output side of
the specification. Since the specification is reversible, one
could consider the inverse specification deriving a reverse
circuit and then choose whichever is the smaller. A better
approach is to apply the method in both directions simulta-
neously choosing to add gates at the input side or the output
side.

To see how this works, consider the initial reversible spec-
ification in Table 3, column (i). The basic algorithm would
require that we invert each of a0, b0 and c0 to make f+(0) =
0. The alternative is to invert a, i.e. to apply the gate
TOF1(a) to the input side. Applying this gate, and then
reordering the specification so that the input side is again
in standard truth-table order yields the specification in (ii).
From the output side, we would next have to map f+(1) =
7 → 1. However, from the input side we can accomplish
what is required by interchanging rows 1 and 3, which is
done by applying the gate TOF2(a, b). Doing so, and re-
ordering the input side into standard order, yields the spec-
ification in (iii). At this point, selection from the output
side and the input side identify the same gate TOF3(a, b, c)
(when expressed in terms of the input lines) and the circuit
is done (iv). The result uses three gates (shown in Figure 3
A), whereas approaching the problem from the output side
alone requires three NOT gates just to handle f(0) and seven
gates in total (shown in Figure 3 B).

In general, when f+(i) $= i, the choice is (a) to apply Tof-
foli gates to the outputs to map f+(i) → i, or (b) to apply
Toffoli gates to the inputs to map j → i where j is such that
f+(j) = i. Since we consider the i in order, j > i and must
always exist. Also, the same rules for identifying the control
lines, including reduction, described above apply. Our bidi-
rectional algorithm chooses (a) if δ(i, f+(i)) ≤ δ(i, j), and
(b) otherwise. We thus base the choice on the number of
gates required and not their width or how closely they map

Figure 2.3: Resulting circuit for the function specified and synthesized in tables 2.2.2

Because this is a greedy approach, it results in a big network (circuit) with less than or

equal to (n − 1)2n + 1 (worst case). This number of gates can be reduced by applying fur-

ther approaches, like Control Input Reduction, Bidirectional application and Asymptotically

Optimally Modification, also shown in [4] and [1].

The Bidirectional Algorithm

The basic algorithm, described in Section 2.2.2, always tries to find a sequence of Toffoli

gates on the output side of a function in order to accomplish its goal. Since the functions are

reversible, it is also possible to do the opposite and see which direction results in a smaller

circuit. However, it turns out that it is even possible to apply the algorithm bidirectionally
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[4]. This means that the algorithm applies its rules simultaneously on both the input and

the output side, eventually yielding in a smaller circuit [2].

Again, to clarify the procedure an example shows the basic steps for the bidirectional algo-

rithm.

i ii iii iv
cba c0b0a0 c1b1a1 c2b2a2 c3b3a3

000 111 000 000 000
001 000 111 001 001
010 001 010 010 010
011 010 001 111 011
100 011 100 100 100
101 100 011 101 101
110 101 110 110 110
111 110 101 011 111

Table 2.3: All necessary steps in order to create a circuit with the bidirectional algorithm.

Table 2.3 shows another reversible function specification. When applying step 1 of the basic

algorithm, three NOT gates on the output side are needed in order to map the input 000

from 111 to 000. A closer look shows that applying only one NOT gate to the input value

001, has the same effect. When changing the input side, it is necessary to reorder the input

side in such a way, that it is in standard truth table order again. This results in column ii.

A simple reordering of the values 001 and 010 on the input size achieves the next step shown

in column iii. The reordering is done using a Toffoli gate with target line on b. For the last

step a Toffoli gate of size three with its target on c can be used. After the last application

the synthesis is done.

(i) (ii) (iii) (iv) (v)
cba c0b0a0 c1b1a1 c2b2a2 c3b3a3 c4b4a4

000 001 000 000 000 000
001 000 001 001 001 001
010 011 010 010 010 010
011 010 011 011 011 011
100 101 100 100 100 100
101 111 110 111 101 101
110 100 101 101 111 110
111 110 111 110 110 111

Table 2: Example of applying the basic algorithm.

!
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"
#

$

$

$

Figure 2: Circuit for the function shown in Table 2.

Table 2 illustrates the application of the basic algorithm.
(i) is the given specification. Step 1 identifies the application
of TOF1(a0) giving (ii). At this point f+(i), 0 ≤ i ≤ 4 are as
required. Mapping f+(5) → 5 requires TOF3(c1, b1, a1) to
change the rightmost position to 1 (iii) and TOF3(c2, a2, b2)
to remove the centre 1 (iv). Lastly, TOF3(c3, b3, a3) is again
required, this time to map f+(6) → 6. Note that the gates
are identified in order from the output side to the input side.
The corresponding circuit is shown in Figure 2.

The basic algorithm is straightforward and easily imple-
mented. Its algorithmic complexity is n2n. It is also easily
seen that it will always terminate successfully with a circuit
for the given specification. However, it is possible to con-
struct a function for any m, that requires (m − 1)2m + 1
gates. For m = 3, this is the function shown in Table 1. We
next consider a number of approaches to reduce the size of
the circuit produced.

3.2 Output Permutation and Control Input
Reduction

The basic algorithm maps each output back to the cor-
responding input. Often this is not the best mapping. For
functions with up to 8 or 9 inputs it is practical to try all
m! output permutations. Permuting the outputs requires a
certain number of interchanges which in some technologies
may require explicit SWAP gates.

The basic algorithm naively assigns the maximum num-
ber of control lines to each Toffoli gate. Often a subset of
those control lines will suffice. The requirement is that the
gate does not affect a row earlier in the specification. This
is easily accounted for since the set of control lines must ei-
ther contain a line that has not appeared as a 1 in an earlier
row of the specification, or must contain all lines that have
appeared as 1’s in rows earlier in the specification. Given
that, the revised algorithm, instead of using the control lines
identified by the basic algorithm, considers all valid subsets
of those lines, and chooses the control that minimizes the
complexity C(f+) of the resulting specification. Recall, that
the complexity C is the total Hamming distance between the
input and output sides of the specification, so this heuris-
tic is choosing the gate that moves the specification furthest
towards the identity specification. In case of a tie, the small-

(i) (ii) (iii) (iv)
cba c0b0a0 c1b1a1 c2b2a2 c3b3a3

000 111 000 000 000
001 000 111 001 001
010 001 010 010 010
011 010 001 111 011
100 011 100 100 100
101 100 011 101 101
110 101 110 110 110
111 110 101 011 111

Table 3: Example of applying the bidirectional al-
gorithm.
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Figure 3: Circuit for the function shown in Table 3.

est set of control lines is used, and within that the choice is
arbitrary.

3.3 Bidirectional Algorithm
As described so far, the algorithm produces the circuit by

selecting Toffoli gates manipulating only the output side of
the specification. Since the specification is reversible, one
could consider the inverse specification deriving a reverse
circuit and then choose whichever is the smaller. A better
approach is to apply the method in both directions simulta-
neously choosing to add gates at the input side or the output
side.

To see how this works, consider the initial reversible spec-
ification in Table 3, column (i). The basic algorithm would
require that we invert each of a0, b0 and c0 to make f+(0) =
0. The alternative is to invert a, i.e. to apply the gate
TOF1(a) to the input side. Applying this gate, and then
reordering the specification so that the input side is again
in standard truth-table order yields the specification in (ii).
From the output side, we would next have to map f+(1) =
7 → 1. However, from the input side we can accomplish
what is required by interchanging rows 1 and 3, which is
done by applying the gate TOF2(a, b). Doing so, and re-
ordering the input side into standard order, yields the spec-
ification in (iii). At this point, selection from the output
side and the input side identify the same gate TOF3(a, b, c)
(when expressed in terms of the input lines) and the circuit
is done (iv). The result uses three gates (shown in Figure 3
A), whereas approaching the problem from the output side
alone requires three NOT gates just to handle f(0) and seven
gates in total (shown in Figure 3 B).

In general, when f+(i) $= i, the choice is (a) to apply Tof-
foli gates to the outputs to map f+(i) → i, or (b) to apply
Toffoli gates to the inputs to map j → i where j is such that
f+(j) = i. Since we consider the i in order, j > i and must
always exist. Also, the same rules for identifying the control
lines, including reduction, described above apply. Our bidi-
rectional algorithm chooses (a) if δ(i, f+(i)) ≤ δ(i, j), and
(b) otherwise. We thus base the choice on the number of
gates required and not their width or how closely they map

Figure 2.4: Circuit A shows the result of the bidirectional application. Circuit B is the näıve
result of the basic algorithm shown in Section 2.2.2.

It can be seen in Figure 2.4 that the bidirectional approach only needs three gates, whereas

the basic approach results in seven gates.
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2.2.3 Template Matching

To further simplify or reduce the number of gates in a network, in the second phase a concept

called template matching is proposed. It is based upon the facts that reversible networks are

structured in cascades and that adding a reversible gate to a reversible network will again

yield in a reversible network. The consequence of this is that adding, removing or replacing

gates does not affect the reversibility property of a circuit.

The template matching method considers a sequence of gates that realize a certain mapping

of values. If it is possible to find another sequence with less gates that realizes the same

function, the first can be replaced by the second. Let A be the set of gates with |A| = n

realizing a function f and B the second set of gates with |B| = m and m ≤ n realizing a

function g. Then A can be replaced by B, if f = g.

In [4], a template was initially defined as two sequences of gates that realize the same

function. The first sequence of gates, gets matched against a given network. If a sufficient

match is found it then gets substituted by the second sequence [1, 4]. Figure 2.5 illustrates

the basic principle and shows a library of templates, with its first and second sequence as

used in [1]. It is important to mention that the lines of each template are generic. This

means that the template’s lines must be associated with lines in the given circuit and then

need to apply the association consistently across the whole template. The procedure is done

by finding a match for one gate and then looking for further matches for the other gates.

It is important to mention that the further matches don’t have to be necessarily adjacent.

When sticking to a simple rule, it is possible to move gates in the circuit in such a way that

they don’t affect the computation. This rule has been described in [1]. It states that two

adjacent Toffoli gates can be interchanged, iff the target line of gate one does not intersect

with the control lines of gate two and vice versa.

Let TOFn(x1, x2, ..., xn) be a Toffoli gate of size n where xn is the target. Then two adjacent

Toffoli gates TOFk(x1, x2, ..., xk−1, xk) and TOFl(y1, y2, ..., yl−1, yl) can be interchanged, iff

the following holds

xk /∈ {y1, y2, ..., yl−1} (2.5)

yl /∈ {x1, x2, ..., xk−1} (2.6)
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This way it is possible to shift gates in the circuit in such a way that a template can be

applied. Due to the two fundamental properties of reversible functions (see section 2.1)

it is also possible to apply each template in reverse. It is obvious that in this case, each

substitution has to be applied in reverse too.

the specification to the identity.

4. TEMPLATE MATCHING
The circuits produced by the algorithm as described thus

far frequently have gate sequences that can be reduced. For
example, the sequence TOF2(b, a), TOF1(b), TOF1(a) can
be replaced by the sequence TOF1(b), TOF2(b, a). We have
implemented a template driven reduction method. A tem-
plate consists of a sequence of gates to be matched and the
sequence of gates to be substituted when a match is found.
The lines in the template are generic and must be associated
to real lines in the circuit with the association applied con-
sistently across the template. This is accomplished by first
associating the widest target template gate with a gate in
the circuit and then searching the circuit for the other target
gates using the line association derived from the widest gate.
Note that since the order of the control lines to a Toffoli gate
is immaterial, c! line associations must be considered where
c is the number of control lines for the widest gate.

Our template matching procedure looks for the target
gates, including the initial match to the widest gate, across
the entire circuit. If all target gates are found, it attempts
to move the gates so that they are adjacent either match-
ing the template in the forward or reverse direction. If this
can be done, the matched gates are replaced with the new
gates specified by the template. For a reverse match, the
new gates are substituted in reverse order.

When moving the target gates, the matching procedure
takes account of Property 1 which follows directly from the
definition of n × n Toffoli gates. If two gates can not be
interchanged because they don’t satisfy this property and
that prohibits proper adjacent ordering of the target gates
for a match, the template being considered is not applicable.

Property 1. Two gates TOFk(x1, x2, ..., xk−1, xk) and
TOFl(y1, y2, ..., yl−1, yl) adjacent in a circuit can be inter-
changed iff xk "∈ {y1, y2, ..., yl−1} and yl "∈ {x1, x2, ..., xk−1}.

Our matching procedure tries all appropriate sets of target
gates for each template. When a template match is found,
the substitution dictated by the template and the process
restarts since a substitution may mean that a template re-
jected earlier becomes applicable.

Figure 4 shows the current template set employed by our
procedure. Templates 2.1, 3.1 - 3.3, and 4.1 - 4.3 were in-
troduced in [5]. We have classified the templates as follows
(classes are separated by horizontal lines):

(1) two inputs involving SWAPs;

(2) two input gate reductions without SWAPs;

(3) transformation rule 3 from [5];

(4) symmetric templates;

(5) controlled SWAP (equivalent to the Fredkin gate).

It can be shown that a generalization of classes (3) and (4)
generates all templates with n inputs and 3 gates that result
in a reduction in the number of gates.

5. EXPERIMENTAL RESULTS
Table 5 shows the results of applying various versions of

our algorithm to all 8! = 40320 3 × 3 reversible functions.
The four scenarios are:
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Figure 4: Templates with 2 or 3 inputs.

(a) the basic output transformations algorithms;

(b) (a) plus Hamming distance based look-ahead;

(c) (b) plus bidirectional transformation;

(d) (c) plus template application.

For each scenario, we show the number of functions for each
gate count, the average number of gates required, and the
total time to apply our method for the 8! functions on a PC
with a 750MHz Pentium III with 256 Mb RAM.

Column (e) in Table 5 shows the optimal results reported
in [18]. That work used depth-first search with iterative
deepening to construct optimal gate count circuits for n = 3.
However, this approach does not scale-up to larger functions.
For example, while the optimal results for n = 3 were found
in 15 sec. using a PC with a 2 GHz Pentium-4 Xeon, the
authors report that a 4×4 reversible function requiring 8 or
less gates can be synthesized in less than a second whereas
the synthesis requires more than 1.5 hours when 9 or more
gates are required. As we will show below by example, our
approach is applicable to larger functions in reasonable time.

Table 5 compares the advantages of the various refine-
ments to our method. The full bidirectional algorithm with
output permutation, control input reduction and template
matching produces results quite comparable to the optimal
results. The table does not indicate the true advantage of
control input reduction. Overall, the average gate count is
essentially the same as without this refinement, but the gates
require fewer inputs for many circuits. Alternative heuristics
for reducing the gate input count need to be considered.

An irreversible function can be realized using reversible
gates [14]. Garbage outputs must be added as necessary so
that the output patterns are distinct and constant inputs
must be added as necessary so that the function has the
same number of inputs and outputs. This can be viewed as
extending the irreversible function specification to a larger
reversible one.

Figure 2.5: Template library defined in [1].

In [4] and [3], an alternative view on templates has been introduced which has been used

in this project. This alternative view is based upon a couple of observations regarding

properties of reversible circuits.

Observation 1: Toffoli gates are self inverse, this means G = G−1 holds. Considering a

network G0G1...Gm−1 realizing a function f then the network G−1
m−1G

−1
m−2...G

−1
0 realizes f−1.

If f realizes the identity function, denoted as Id then this is true for f−1 as well.

Observation 2: Any rewriting rule of the form G1G2...Gk → Gk+1Gk+2...Gk+s ensures the

following gets satisfied

G1G2...GkG
−1
k+sG

−1
k+s−1...G

−1
k+1 = Id (2.7)

Observation 3: For G0G1...Gm−1 = Id and any parameter p, 0 ≤ p ≤ m G0G1...Gp−1 →
G−1

m−1G
−1
m−2G

−1
m−p is a valid rewriting rule.

Observation 4: If G0G1...Gm−1 = Id, then the network can be rewritten m times in the

form G1...Gm−1G0 = Id, G2...Gm−1G0G1 = Id and so on, resulting in m so called cycles.
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Using these four observations and the resulting properties, it is possible to redefine a size

m template as a cascade of of m gates which realizes the identity function. One important

restriction is that at least one cycle cannot be reduced in size by applications of smaller or

equal size templates [3].

2.3 The Cell Broadband Engine (Cell/B.E.)

2.3.1 Introduction

The Cell Broadband Engine (Cell/B.E.) is an implementation of the Cell Broadband Engine

Architecture (CBEA), jointly developed by Sony, Toshiba and IBM. It is based upon the

64-bit PowerPC Architecture and extends it in order to provide a processor specification for

parallel computing [7, 8]. In order to serve as a parallel processor, the Cell/B.E. is composed

of a single PowerPC processor, called the PowerPC Processor Element (PPE), and eight

smaller processors, the Synergistic Processor Elements (SPE) [9].

Element Interconnect Bus (EIB)
PPE

(PowerPC 
Processor 
Element)

SPE
(Synergistic 
Processor 
Element)

SPE SPE SPE

SPE SPE SPE SPE

Figure 2.6: The Cell/B.E. consists of one PPE and eight SPUs that are interconnected with
the Element Interconnect Bus (EIB).

These processors are interconnected with a coherent bus system, the Element Interconnection

Bus (EIB) which is used to provide data communication between the processors. Figure 2.6

illustrates the basic scheme of a CBEA compliant system.

The design idea behind the Cell Broadband Engine is to provide an extensible and scalable

architecture that comes up with a solution for the following goals as described in [9]:
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• optimize memory latency

• minimize energy consumption

• scale frequency limitation

The way the two processor types were chosen make it possible to provide the aforementioned

design criteria. The PPE is a general purpose CPU that can be used for any kinds of tasks,

like running an operating system, managing system resources or other control intensive tasks

(control-plane). The SPEs on the other hand are designed to fulfill compute intensive tasks

(data-plane).

The way a Cell/B.E. program usually works is by implementing all control logic on the PPE.

All computationally intensive work gets delegated to the SPEs which are highly optimized

for these tasks. In other words, the PPE serves as the brain of each application, whereas the

SPEs are highly effective workers that are able to perform a lot of computational work in

parallel. Asynchronous Direct Memory Access (DMA) makes it possible to optimize memory

usage and transfer between the PPE and SPEs.

Due to the architectural design, PPE and SPEs have a strong dependency relationship.

The PPE does not have enough computational power on its own in order to achieve high

performance computation. This is why it depends on the computational power of the SPEs.

On the other hand, the SPEs are not designed to fulfill control intensive tasks, so they rely

on the PPEs control logic.

2.3.2 The PowerPC Processing Element

The PowerPC Processing Element is based on the 64-Bit PowerPC architecture and therefore

can be programmed as such. It consists of two main units, the Power Processor Unit (PPU)

and the Power Processor Storage Subsystem (PPSS) as depicted in Figure 2.7(a).

The PPU is responsible for instruction control and execution. It includes the full set of

64-bit PowerPC registers, two 32 KB Level 1 caches for instructions and data, and several

units like load and store, fixed and floating point units and so on. Besides these standard

PowerPC features, it supports a Vector instruction set in order to perform Single Instruction

Multiple Data (SIMD) calculations.
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These  language  extensions  give  C/C++  programmers  much  greater  control  over  

code  performance,  without  the  need  for  assembly-language  programming.  Software  

development  is  further  supported  by:  

v   a complete  Linux-based  SDK,  

v   a full-system  simulator,  and  

v   a rich  set  of  application  libraries,  performance  tools  and  debug  tools.

The PowerPC Processor Element 

The  PowerPC  Processor  Element  (PPE)  is  a general-purpose,  dual-threaded,  64-bit  

RISC  processor  that  conforms  to  the  PowerPC  Architecture,  version  2.02,  with  the  

Vector/SIMD  Multimedia  Extension.  

Programs  written  for  the  PowerPC  970  processor,  for  example,  should  run on  the  

Cell  Broadband  Engine  without  modification.  

As  shown  in  Figure  2, the  PPE  consists  of  two  main  units:  

v   The  Power  Processor  Unit  (PPU).  

v   The  Power  Processor  Storage  Subsystem  (PPSS).

The  PPE  is responsible  for  overall  control  of  the  system.  It  runs the  operating  

systems  for  all  applications  running  on  the  Cell  Broadband  Engine.  

 

The  PPU  deals  with  instruction  control  and  execution.  It includes:  

v   the  full  set  of  64-bit  PowerPC  registers,  

v   32  128-bit  vector  registers,  

v   a 32-KB  level  1 (L1)  instruction  cache,  

v   a 32-KB  level  1 (L1)  data  cache,  

v   an  instruction-control  unit,  

v   a load  and  store  unit,  

v   a fixed-point  integer  unit,  

PowerPC Processor Element (PPE)

PowerPC Processor Unit (PPU)

PowerPC Processor Storage Subsystem (PPSS)

L1 Data
Cache

L1 Instruction
Cache

L2 Cache

  

Figure  2. PowerPC  Processor  Element  (PPE)  block  diagram
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(a) The PowerPC Processing Element is a general pur-
pose CPU used for control intensive tasks. (Source: [9])

The  SPU  deals  with  instruction  control  and  execution.  It includes  a single  register  

file  with  128  registers  (each  one  128  bits  wide),  a unified  (instructions  and  data)  

256-KB  local  store  (LS),  an  instruction-control  unit,  a load  and  store  unit,  two  

fixed-point  units,  a floating-point  unit,  and  a channel-and-DMA  interface.  The  SPU  

implements  a new  SIMD  instruction  set,  the  SPU  Instruction  Set  Architecture, that  is 

specific  to  the  Broadband  Processor  Architecture. 

Each  SPU  is an  independent  processor  with  its own  program  counter  and  is  

optimized  to  run SPE  threads  spawned  by  the  PPE.  The  SPU  fetches  instructions  

from  its  own  LS,  and  it  loads  and  stores  data  from  and  to its own  LS.  With  respect  

to accesses  by  its  SPU,  the  LS  is  unprotected  and  un-translated  storage.  The  MFC  

contains  a DMA  controller  that  supports  DMA  transfers.  Programs  running  on  the  

SPU,  the  PPE,  or  another  SPU,  use  the  MFC’s  DMA  transfers  to  move  instructions  

and  data  between  the  SPU’s  LS  and  main  storage.  (Main  storage  is the  

effective-address  space  that  includes  main  memory,  other  SPEs’  LS,  and  

memory-mapped  registers  such  as  memory-mapped  I/O  [MMIO]  registers.)  The  

MFC  interfaces  the  SPU  to  the  EIB,  implements  bus  bandwidth-reservation  

features,  and  synchronizes  operations  between  the  SPU  and  all other  processors  in  

the  system.  

To support  DMA  transfers,  the  MFC  maintains  and  processes  queues  of  DMA  

commands.  After  a DMA  command  has  been  queued  to the  MFC,  the  SPU  can  

continue  to  execute  instructions  while  the  MFC  processes  the  DMA  command  

autonomously  and  asynchronously.  The  MFC  also  can  autonomously  execute  a 

sequence  of DMA  transfers,  such  as scatter-gather  lists,  in  response  to a DMA-list  

command.  This  autonomous  execution  of MFC  DMA  commands  and  SPU  

instructions  allows  DMA  transfers  to be  conveniently  scheduled  to hide  memory  

latency.  

Each  DMA  transfer  can  be  up  to  16  KB  in size.  However,  only  the  MFC’s  

associated  SPU  can  issue  DMA-list  commands.  These  can  represent  up  to 2,048  

DMA  transfers,  each  one  up  to 16 KB  in  size.  DMA  transfers  are  coherent  with  

respect  to  main  storage.  Virtual-memory  address-translation  information  is 

provided  to  each  MFC  by  the  operating  system  running  on  the  PPE.  Attributes  of 

system  storage  (address  translation  and  protection)  are  governed  by  the  page  and  

Synergistic Processor Element (SPE)

Synergistic Processor Unit (SPU)

Memory Flow Controller (MFC)

Local Store (LS)

DMA Controller

  

Figure  3. Synergistic  Processor  Element  (SPE)  block  diagram
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(b) The Synergistic Processing Element is optimized for
compute intensive tasks and gets all necessary data from
the PPE. (Source: [9])

Additionally, it supports multithreading and handles two threads that can be seen as a 2-way

multiprocessor with shared dataflow [9].

The PPSS on the other side, handles all memory requests, from and to the PPE. It contains

one big 512 KB large level 2 cache, various queues and a bus interface to the EIB [9].

2.3.3 The Synergistic Processing Element

The SPE is a 128-bit RISC processor and consists of two main units, the Synergistic Process-

ing Unit (SPU) which has access to a 256-KB Local Store and the Memory Flow Controller

(MFC) which is responsible for memory transactions between the local store and main mem-

ory. Figure 2.7(b) illustrates the structure of a SPE.

Each SPU is an independent processor that can work on tasks assigned by the PPE. Due to

the processor architecture these can be individual tasks, e.g. for a task parallelism approach,

or collaborative tasks where each SPE works on the same set of data (data parallelism).

In order to work with data, each SPE has a Memory Flow Controller (MFC) which interfaces

with the main memory and SPU. It uses a DMA controller to load and store data in its

Local Store or in the main storage. All DMA calls get stored in a process queue and can be

processed asynchronously, while the SPU can keep on working.
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Chapter 3

Implementation

3.1 Prerequisites

3.1.1 Hardware: Playstation 3

The Playstation 3 (PS3) is a gaming console, developed by Sony Computer Entertainment

and firstly announced in 2005 [10]. It contains a Cell/B.E. processor running at 3.2 GHz on

each processor, the PPE and the SPEs. Unlike the Cell Processors described in the official

IBM documentation, the PS3 is equipped with seven instead of eight SPEs, one reserved

for redundancy, which still is compliant to the official Cell Broadband Engine Architecture

specification. Its total floating point performance was announced as 218 GFLOPS [7, 9, 10].

However, in order to make manufacturing the Cell/B.E. more cost effective one of the seven

SPEs is disabled, leaving only six freely programmable SPEs [11, 12].

There are several reasons why a Playstation 3 has been chosen for the implementation.

Several other products on the market, like the IBM BladeCenter QS21, contain a Cell/B.E.

processor [13] but when comparing prices the Playstation turns out to be the most cost-

effective solution. While an IBM BladeCenter QS21 starts in an upper four digit range, the

Playstation 3 is situated in a lower three digit range. Therefore, the Playstation is very well

suited as a proof of concept development platform.

Additionally, the Playstation has proven to be a good choice for scientific applications [12].
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It provides everything needed for different scientific applications. Besides the Cell/B.E.

processor, which is the actual reason to prefer a PS3 over a regular PC, it also contains

a network interface which makes it possible to use the Playstation in a cluster to further

extend computational power .

In order to use the Playstation 3 for scientific computing, Sony provided the ability to install

a Linux distribution on the PS3. Coupled with the official IBM Software Development

Toolkit, this feature makes it possible to utilize the PS3 as a normal Unix-based computer,

for example for the aforementioned purpose.

Unfortunately, Sony removed this feature at first with the release of the Playstation Slim in

August 2009 [14] and finally with the latest firmware upgrade in April 2010 for all remaining

systems that get upgraded to the latest firmware [15]. It is, however, possible to still use the

Linux installation under the condition not to upgrade the PS3 system. But there is no doubt

that Sony has made the usage of the PS3 as a cost-efficient solution for scientific applications

not only harder but also unattractive.

3.1.2 Software

Before the actual development process on a Playstation 3 can start, a couple of preparations

have to be made. First of all it is necessary to install a Cell compatible Linux distribution.

Secondly, the IBM Software Development Kit needs to be installed and configured.

In the following two sections the procedure of preparing a Playstation 3 for scientific appli-

cation is described.

Installing the OtherOS: GNU/Linux

The old versions of the Playstation 3 (before PS3 Slim) were shipped with the regular

Playstation operating system, called Game OS. Fortunately, Sony provided the possibility, to

install other operating systems, called Other OS. Since the Cell Broadband Engine contains

a regular 64-Bit PowerPC processor, several GNU/Linux (named Linux in the following)

distributions are able to run on the Cell/B.E. and therefore on a Playstation 3.
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First of all, there is the Yellow Dog distribution, officially supported from Sony, but also

other distributions, like Ubuntu or Fedora can be installed. Since Fedora is the officially

supported distribution by IBM, who also provide the official Software Development Kit, this

distribution has been chosen for this project.

There are several tutorials that describe how to install the OtherOS. For this project an

official tutorial from the IBM developerWorks online platform has been used as a basis [16].

All Yellow Dog Linux related information also apply for the Fedora Linux distribution. The

installation process is very straight forward and consists of the following steps

1. partition the PS3 hard disk drive

2. install a new boot loader

3. install the linux distribution

The first step is to partition the hard disk inside the Playstation 3. The GameOS provides

a menu point for this and performs this step automatically. In order to be able to boot

an operating system other than the original GamesOS, the boot loader has to be replaced

with a new one. It also can be installed via a GameOS menu point. All that is needed is

a USB stick that contains the actual boot loader. After installing the boot loader the PS3

is ready to install the Linux distribution of choice. After a reboot the Fedora installation

starts automatically and can be installed like on every other computer.

After the installation Fedora works with a regular X11 based Graphical User Interface (GUI).

It turned out that the PPE is not powerful enough to allow work with the GUI. Therefore

the X11 server should be disabled. Instead, working with a SSH based remote connection

proved to be a sufficient setup.

Installing the Cell/B.E. SDK

In order to write programs for the Cell Broadband Engine, a Software Development Kit

is needed. IBM provides the official SDK over their developerWorks website and can be

downloaded free of charge [17].
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The SDK contains a GNU based compiler tool-chain and a set of libraries in order to program

applications for the Cell/B.E. processor [9, 18]. After downloading the SDK from the IBM

website, it can be installed with the rpm package management software provided by Fedora.

3.2 Data Structures

The original implementation of the MMD algorithm has been realized in the C++ pro-

gramming language. It is divided into three phases, reading in and processing an already

synthesized circuit specification, reading in and processing a library of templates and finally

executing the template matching algorithm. Figure 3.1 illustrates the program flow and the

three phases.

In the first phase, an already synthesized circuit gets read in and processed. The specification

of that circuit is defined in an external file and has to be loaded and processed at runtime.

The specifications are encoded in a plain text file format provided at [19].

Start load circuit 
specification

parse circuit 
specification

create data 
structures

load template 
specifications

parse template 
specifications

create data 
structures

apply template 
matching Stop

phase 1 phase 2 phase 3

Figure 3.1: The implementation of the MMD algorithm is divided into three phases. The
first two phases prepare all necessary data structures by loading and parsing external speci-
fications. In the last phase, the data structures are needed for the template matching.

Each circuit is composed of a number of lines and gates. The number of lines corresponds

to the number of inputs and outputs. As described in Section 2.1 the number of in- and

outputs of a reversible logic gate are equal. The same applies to the whole circuit, so it is

not necessary to store two different values for in- and output. The number of gates is self-

explanatory. The total cost of a circuit are measured in quantum costs. Since, the MMD
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1
2 struct c i r c u i t t {
3 int numLines ;
4 int numGates ;
5 int t o ta lCos t ;
6 struct ga t e t ∗∗ gate s ;
7 } ;
8
9 struct ga t e t {

10 bool swapf ; // i s i t a swap−ga te
11 int t a r g e t ; // v a r i a b l e to be i n v e r t e d
12 int c on t r o l ; // cond i t i on s f o r i n v e r s i on
13 } ;

Listing 3.1: A reversible circuit is stored as a list of gates. Each gate is composed of control
and target lines.

algoritm is based on the synthesis and optimization of Toffoli gate based networks, each gate

in the circuit specification can be regarded as a Toffoli gate consisting of a target and one

or more controls.

The target and controls are encoded as single integers which has several benefits. First of

all, with this representation it is possible to store up to 2n lines in one integer, where n is the

number of bits. On a Playstation 3 running in 32 bit mode this is four bytes, respectively

it is possible to store up to 32 lines in one integer. This encoding does not only have small

space requirements but also makes it possible to work with fast bit operations.

a

b

c

d

0 0 0 0 0 0 1 10 0 0 ...
31 0

0 0 0 0 1 0 0 00 0 0 ...
31 0

controls

target

Figure 3.2: In order to map a Toffoli gate to memory, an encoding with minimum space
requirements has been chosen. It maps each gate to a power of two.

Like circuits, templates are also stored in external files and need to be loaded and processed
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1
2 struct t empla te t {
3 int ng ; // number o f ga t e s in the pa t t e rn
4 int c s i z e ; // s i z e o f cpat
5 int t s i z e ; // s i z e o f t p a t
6 struct cpa t t ∗ va l i d cpa t ; // the v a l i d c on t r o l pa t t e rn
7 struct t pa t t ∗ va l i d t p a t ; // the v a l i d pa t t e rn on t a r g e t

l i n e s
8 } ;
9

10 struct cpa t t {
11 int ng ; // number o f ga t e s in the pa t t e rn
12 int cpat te rn ; // pa t t e rn
13 int r ev cpa t t e rn ; // r ev e r s e pa t t e rn
14 } ;
15
16 struct t pa t t {
17 int ng ; // number o f ga t e s in the pa t t e rn
18 int tpa t t e rn ; // t a r g e t s in the pa t t e r
19 int cpat te rn ; // con t r o l s in the l i n e s
20 int r e v tpa t t e rn ; // pa t t e rn
21 int r ev cpa t t e rn ; // r ev e r s e pa t t e rn
22 } ;

Listing 3.2: A template is defined as a list of valid control and target patterns.

before executing the template matching algorithm. As described in Section 2.2.3 templates

can be described as a sequence of gates that implement the identity function, in other words

each template is a circuit itself computing the function id. After reading in a template

specification, it is at first stored as a circuit of type circuit t. From this circuit specification

it is possible to derive a set of patterns that can be used for the template matching.
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3.3 The Matching Algorithm

3.3.1 Sequential Approach

The original implementation of the MMD algorithm has been programmed with the C++

programming language. The first step for this project was to examine the source code in order

to understand the data structures and the practical implementation of the template matching

theory. During this process, it became clear that the original source code is very ineffective,

especially when it comes to costly memory operations. In order to fix this problem, the

algorithm has been implemented from scratch with the C programming language, using the

C99 standard [20]. All data structures and algorithmic implementations have been adopted,

but memory management and operations have been optimized. The port already showed

good runtime improvements over the C++ version. These results will be discussed in Chapter

4.

Algorithm 1 shows the sequential version of the template matching approach. It takes two

inputs: a synthesized circuit C and the template library T , both encoded as described in

Section 3.2. After successful termination the algorithm returns a modified circuit C ′ with

|C ′| ≤ |C| (3.1)

The algorithm starts at gate 1 and template 1 (array index 0) and tries to match the selected

template. There are two possible outcomes; either the selected template finds a pattern that

can be replaced or the attempt fails.

If no match could be found starting from gate start, the algorithm tries to match all tem-

plates, where |T | denotes the number of templates in the library. In other words, the starting

position start does not get changed until all attempts to match the templates have failed.

If this is the case, the algorithm proceeds to the next gate and starts the whole procedure

again.

If a template could be matched and replaced successfully, the procedure starts again with the

first template. During the matching procedure, the algorithm keeps in mind which positions

have failed to match. It is obvious to see that these gates don’t have to be matched again.

To avoid these unnecessary matches and instead of setting start = 1, it gets set to a value
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offsetting these gates.

Algorithm 1 Sequential Template Matching
1: input: C, T
2: output: C ′

3: C ′ = C
4: start = 1
5: while start < |C ′| do
6: i = 0
7: flag = true
8: while flag == true do
9: if ti ∈ Tmatched then

10: flag = false
11: start = offset()
12: else
13: i = i + 1
14: if i ≥ |T | then
15: start = start + 1
16: end if
17: end if
18: end while
19: end while

3.3.2 Parallel Approach

While the sequential algorithm already shows good results in minimizing the input circuit,

it can become very slow with increasing circuit size and the number of positive matches.

Another problem is the locality of the matching approach. This means only a small part of

the circuit can be tested for sufficient matches, leaving the rest idle. Being able to match

a template on several parts of the circuit at the same time could improve the speed of the

algorithm significantly. Using the computational power of the six available SPEs of the

Cell/B.E. to achieve this goal is the basic idea followed in this project.

The parallelization concept

The template matching algorithm can be accelerated by partitioning the input circuit C

into t parts, minimizing these parts independently in parallel and in the end merge them
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Figure 3.3: In order to process an input network in parallel it gets partitioned into t parts
which get processed independently. After successful termination the parts get merged to a
single circuit again.

together while still computing the same function. In order to work, this concept requires

two assumptions to hold

1. It must be possible to merge reversible networks while holding their reversible proper-

ties.

2. If the first assumption holds, when merging the independently minimized parts they

still must compute the same function.

The first assumption can be proofed by considering a reversible circuit of size one and then

successively adding more gates. The outcome of a network consisting only of one gate of

course is a permutation of the input. Since reversible circuits are organized in cascades, the

output of gate G1 denotes the input of exactly one successor, a gate G2. If the output of

G1 is a permutation of the input, this permutation of course is the input for gate G2. But

because G2 is a reversible gate as well, its output again is another permutation of its inputs,

which holds the basic requirement of a reversible network.

It is obvious to see that this also applies to the concatenation of whole reversible circuits.

Concatenating two reversible networks does not break the rules of reversible logic and again

results in a valid reversible network.
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For the second assumption to hold consider a reversible logic network G1G2G3...Gs with s

gates implementing a function f . This network can be partitioned into t parts, as illustrated

in Figure 3.3. Each part now computes a function fi with 1 ≤ i ≤ t.

f1 = G1G2 · · ·Gp (3.2)

f2 = Gp+1Gp+2 · · ·Gq (3.3)
... (3.4)

ft = Gr+1Gr+2 · · ·Gs (3.5)

The original function f then can be described as

f = f1 ◦ f2 ◦ f3 ◦ · · · ft (3.6)

When applying the template matching algorithm to the independent parts of the circuit,

where each part corresponds to a function fi and the result is a function f ′
i both with

1 ≤ i ≤ t, the following observation can be made after the successful termination of the

procedure.

fi = f ′
i ∀ 1 ≤ i ≤ t (3.7)

After successful termination the reversible network computes the function f ′ with

f ′ = f ′
1 ◦ f ′

2 ◦ f ′
3 ◦ · · · f ′

t (3.8)

Combining (3.6) and (3.7) leads to the following conclusion, showing that assumption two

holds.

f = f1 ◦ f2 ◦ f3 ◦ · · · ft (3.9)

= f ′
1 ◦ f ′

2 ◦ f ′
3 ◦ · · · f ′

t (3.10)

= f ′ (3.11)

The two proofs show that it is possible to subdivide the input circuit and to apply the

template matching algorithm.
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The PPE implementation

The implementation on the PowerPC Processing Element is divided into five phases, illus-

trated in Figure 3.4. In the first stage the input circuit C gets partitioned. The number of

parts defines how many SPEs get used, whereas it is possible to divide the circuit in more

than six parts. If this is the case, one SPE is responsible for calculating more than one part.

There are several possible strategies for partitioning the circuit but for this project the most

intuitive has been implemented. It simply divides the number of gates by the number of

wanted parts. In most cases a circuit cannot be divided evenly into the same number of

gates, leaving the last SPE with more gates than the rest. However, this is no big problem

since the maximum number of gates which the last SPE has to compute more than the others

is limited by the number of parts.

Let g be the total number of gates, n be the number of parts and si the size of each part

with 1 ≤ i ≤ n. Then the size of each part is

si =

b g
n
c if i < n,

b g
n
c+ (g mod n) else

(3.12)

This leaves for the last SPE a maximum of g mod n more gates to compute which is

computable in a reasonable time if n is not too big. Reasons why choosing a big n is not

recommended is explained in Section 3.4.

In the next phase the SPEs get prepared for execution. This process involves opening the

compiled SPE binary, creating a context for each used SPE and loading the binary into

this context. One important part of this phase is to provide each SPE with all necessary

information needed for the computation. In case of the template matching algorithm this

information consists of the following information stored in a C struct whose address gets

submitted to each SPE main entry point.

1. number of lines

2. size of the circuit-part (number of gates)

3. start address of the circuit-part
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Figure 3.4: The PPE prepares the input circuit for the parallel execution and initializes the
SPEs. After all SPEs have finished computation the PPE gathers the computed results and
merges the circuit.

4. start address of the template library buffer

5. start address of the output buffers for minimized circuit-part

6. size of the output buffers (size of minimized circuit-part)

The addresses for list points 4 and 5 are trivial since each address points to the beginning

of each buffer. List point 3 needs to be computed and is dependent on the number of parts

and their size. Let all gates be stored in a buffer gates. The number of parts is n, each of

size si, then each starting address ai can be obtained by multiplying the current index of

each circuit-part with its size. Algorithm 2 illustrates this, where the & operator is used to

retrieve the address, like in the C programming language.

Algorithm 2 Obtain address of circuit-parts

1: for i = 0; i < n; i + + do
2: ai = &gates[i · si]
3: end for

When all context parameters are correctly set for each SPE, the context can be executed.

Because the PPE waits for each context to terminate, the implementation uses POSIX

threads on the PPE side to invoke all SPEs concurrently. When all SPE’s finished their
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1 spu mfcdma64(&buf , mfc ea2h ( addr ) , mfc ea2 l ( addr ) , s i z e , tag ,
MFC GET CMD) ;

2 spu wr i t ech (MFC WrTagMask, 1 << tag ) ;
3 spu mfcs tat (MFC TAG UPDATE ALL) ;

Listing 3.3: A SPE loads data into its local store by issuing a DMA call.

computation, the SPE contexts need to be destroyed. Because all SPE’s wrote their results

to an output buffer, the PPE can access these memory locations and merge the circuit again.

Implementation on the SPE

The work on each Synergistic Processing Elements is structured like the sequential approach,

it even uses the same algorithm as shown in algorithm Listing 1. Because the SPEs access

the main memory over DMA calls, it was necessary to adapt the sequential source code in

order to load and store data.

As mentioned in Section 3.3.2, the PPE passes the address of a struct to the SPE’s main

entry point, containing all necessary values and addresses the SPE needs in order to work

properly. Because the SPE only has access to the struct’s address, the very first thing to

do is to issue a DMA call in order to load the struct into the SPE’s local store. Listing 3.3

shows the code needed for loading data into the local store. This code is used for all DMA

calls throughout the SPE application.

The function spu mfcdma64 takes six arguments and interacts with the Memory Flow Con-

troller in order to start the DMA call. The first argument is a pointer to a buffer located in

the local store, in which the loaded data will be copied. The next two parameters are a 64-bit

address to the location in main memory from which the data gets loaded. The two macros

mfc ea2h and mfc ea2l split the provided address into two 32-bit parts, one containing the

upper and the other the lower 32 bits. The size parameter specifies the amount of bytes that

need to be copied. The next parameter specifies a DMA tag in the range of 0 to 31 which

specifies an identification number which is used to check the completion of a DMA transfer.

The last parameter specifies the transfer direction and can take two values MFC GET CMD

for reading data into the local store and MFC PUT CMD to write from the local store into

main memory. The next two calls to spu writech and spu mfcstat, where spu writech is a
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1 struct ga t e t {
2 bool swapf ;
3 bool pad1 [ 3 ] ; // pad wi th 3 by t e s
4 int t a r g e t ;
5 int c on t r o l ;
6 int pad2 ; // pad wi th 4 by t e s
7 } ;

Listing 3.4: The struct gate t must be padded in order to be transferred between PPE and
SPE.

macro, are used to wait for the DMA call to complete.

Once the struct containing all necessary parameters has been loaded, its values can be used

to create all necessary buffers in the local store and to load all needed data from main

memory. As described in Section 3.3.2, this data is composed of all circuit related data, the

template library and information needed to write back the results.

The next step that follows is the execution of the template matching algorithm with the

loaded circuit-part. The process here is identical to the process described in 3.3.2. After

successful termination, a DMA call is issued to write back the data to main memory.

3.4 Problems

Several problems and issues appeared while implementing the parallel approach, all of them

related to memory management.

First of all, the Cell Broadband Engine only works properly, if all memory operations between

PPE and SPE are memory aligned. This means that all structures and buffers need to be

aligned on a certain byte boundary in memory and in some cases need to be padded to a

multiple of 16. Using the example of a C struct, padding means that the struct needs to be

inflated artificially to fit into a 16 byte fetch instruction. Considering the struct gate t from

Listing 3.1 which is 9 byte it needs to be padded with 7 additional bytes. The resulting struct

looks like Listing 3.4. After padding the struct, it is composed of 4 × 4 bytes = 16 bytes

and perfectly fits into a DMA instruction. If all structs are not padded properly, misaligned

buffers will result in a bus error. Additionally, each buffer needs to start on an address that
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1 // c rea t e a b u f f e r o f gates , a l i gn ed on a 16 by t e boundary
2 struct ga t e t gate s [ 1 0 2 4 ] a t t r i b u t e ( ( a l i g end (16) ) ) ;

Listing 3.5: Ensuring that a buffer is aligned properly, is done with the attribute keyword.

1
2 #define MAXLOAD 0x4000
3
4 void spe dma get (void∗ buf , unsigned int addr , s i z e t s i z e , int

tag )
5 {
6 unsigned int i = 0 ;
7 unsigned int next = addr ;
8 s i z e t chunk s i z e ;
9 do {

10 chunk s i z e = ( ( addr + s i z e ) − next >= MAXLOAD) ? MAXLOAD
: ( addr + s i z e ) − next ;

11 spu mfcdma64(&buf [ i ] , mfc ea2h ( next ) , mfc ea2 l ( next ) ,
chunk s ize , tag , MFC GET CMD) ;

12 spu wr i t ech (MFC WrTagMask, 1 << tag ) ;
13 spu mfcs tat (MFC TAG UPDATE ALL) ;
14
15 next += chunk s i z e ;
16 i += chunk s i z e ;
17 } while ( next < addr + s i z e ) ;
18 }

Listing 3.6: A single DMA call has a maximum possible size of 16 KB and needs to be split
into chunks in order to load larger circuits.

is a multiple of 16. It is possible to ensure this by using the attribute keyword, as shown

in Listing 3.5 [9].

A single DMA call can issue a maximum of 16 KB which means in order to transfer larger

amounts of memory, it needs to get split into chunks. However, some circuit-parts can

become bigger than this maximum size. For these cases the DMA load and store needed to

be rewritten. Listing 3.6 shows the solution that has been implemented for this project and

solved previous issues, which previously lead to undefined behavior and bus errors.
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Chapter 4

Results

As mentioned in Chapter 3, the first optimization and also acceleration has been achieved by

rewriting the algorithm in the C programming language. Table 4.1 shows these results with

a selection of smaller circuits that already show the potential of the C port. All following

tests that run on the PPE only (sequential version) are based on the C version. All time

measurements show the elapsed time in seconds.

For all tests a set of reversible networks with varying size and complexity have been chosen.

All of these and more circuit specifications can be downloaded at [19, 21]. The size of

a network is defined only by its number of gates, whereas the complexity in this context

means the number of gates that can be reduced. Each replacement comes at a cost, so that

the more gates that can be reduced, the longer the algorithm needs for the whole process.

This means that a circuit with less gates than another but with a higher complexity needs

longer to terminate.

Table 4.2 shows the results of the aforementioned circuits. It consists of the unstructured

function C++ C99

hwb7 86.03 13.91
hwb8 364.54 31.14
hwb9 2029.21 78.91

Table 4.1: The C99 implementation already shows a huge speedup. The results show the
elapsed time in seconds.
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Figure 4.1: Both graphs show the growth behavior of the functions tested in Table 4.2 and
4.3. It can be seen that the parallel version decreases the runtime significantly.

Number of gates Elapsed time

function before PPE 6 SPEs PPE 6 SPEs speedup
urf1 11554 7225 7233 681.13 128.06 5.3
urf2 5030 3250 3251 286.54 53.15 5.3

urf3 1 2732 2674 2674 147.10 26.97 5.4
urf3 2 26468 15517 15527 1666.55 312.22 5.3
urf4 32004 9969 10085 2141.69 394.89 5.4
urf5 10276 5582 5585 642.15 133.39 4.8
urf6 10740 5455 5488 810.13 149.72 5.4

Table 4.2: The runtime and minimization results of the unstructured reversible function
(urf) benchmarks show that the acceleration of the algorithm was successful but at the cost
of the resulting circuit size.
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Number of gates Elapsed time

function before PPE 6 SPEs PPE 6 SPEs speedup
plus63mod4096 429 429 429 22.11 3.39 6.5
plus63mod8192 492 492 492 25.95 3.94 6.5
plus127mod8192 910 910 910 48.27 7.87 6.3

hwb7 289 284 284 13.91 2.13 7.2
hwb8 637 637 637 31.14 4.74 6.5
hwb9 1544 1541 1541 78.91 14.46 5.4

Table 4.3: Speedup comparison of functions with almost equal minimization behavior

reversible function (urf) benchmark. This benchmark is a set of reversible functions that

do not have a regular structure in their specifications and are the largest that are currently

available on [19] and provided a good basis for testing the parallel implementation. The

parallel version used six SPEs which means that all SPEs in the Playstation 3 have been

responsible for exactly one circuit-part.

The table shows for each function the number of gates before and after the template ap-

plication and the time needed to successfully terminate. It can be clearly seen that the

acceleration of the MMD algorithm was a success. However, this acceleration comes at cost.

When comparing columns two, three and four it can be seen that the parallel version in most

cases delivers worse results than the sequential one running on the PPE only. An example

for this is the urf3 function which has been tested in two versions. The first version (urf3

1) uses a circuit that has been synthesized and minimized with the MMD algorithm but

without template matching (see section 2.2.2). The algorithm started with 2732 gates and

could further minimize it to 2674 gates on both the PPE and the parallel version. The sec-

ond version, however, shows a slightly worse result as all other functions do. The difference

can be explained by the way the parallel algorithm works. Since every circuit is split into n

parts there are n − 1 cuts. This can become a problem if a possible template match could

be found across a cut. All parts get processed independently and therefore don’t affect any

other part. This means each template match across a cut won’t be recognized.

Table 4.3 shows a couple of other functions which other than the urf functions might show

regular structures and are not artificially created in order to test reversible logic synthesis

methods. It can be seen that all functions deliver the same results and therefore can be

compared directly. The speedup of the first three functions lies between 6.3 and 6.5. The

hwb functions lie between 5.4 and 7.2. It is interesting to see that the speedup is nearly
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constant for all functions that cannot be minimized any further and maps to the number of

used SPEs. The function hwb9 can be further minimized and produces the same output.

Here the speedup goes down to 5.4. The largest speedup can be seen at function hwb7 but

this speedup can be explained by the minimizing costs of the sequential version. Compared

to the speedup results of Table 4.2 these results are slightly better which can be explained

by the complexity of the circuits used. Since the urf functions show no regular structure, are

bigger and can be minimized significantly they do have a higher complexity which results in

a smaller speedup of an average of 5.3.

Another interesting result shows Figure 4.2. With an increasing number of threads, here

using the example of the hwb9 function, the runtime can be accelerated even more. In this

example the result has not been affected by the number of circuit-parts. Generally, the

number of circuit-parts plays an important role. When increasing the number of threads,

the number of parts becomes smaller. On the one hand, smaller parts mean that each part

can be processed faster since less matching attempts have to be calculated. However, on

the other hand, decreasing the size of each circuit-part leads to a smaller area in which

potential matches can be found. In other words, the smaller the circuit parts, the faster the

computation but the worse the result. Of course this is not always true, as the results of

Figure 4.2 show.
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Figure 4.2: An increasing number of threads leads to a better runtime behavior.
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Chapter 5

Future Work

The results show, that a speed improvement could be achieved. However, the Cell/B.E.

architecture has the potential to achieve even better results in future versions. There are

several questions and issues that could be improved. In the following, these questions shall

be presented and discussed.

The first thing that could further speed up the runtime significantly, is the usage of the

Cell/B.E. SIMD capabilities. With this improvement, it could be possible to work on several

template matches simultaneously on the Synergistic Processing Elements. A different ap-

proach might be to vectorize just one single match which, at the moment, tests for matching

control and target lines sequentially. With the SIMD approach, this could be done in one

vector operation. Another approach to speed up the runtime could be the optimization of

memory management and DMA transfers. At the moment all DMA transfers operate on the

same channel and need to wait until one transfer is done. Using overlapping or asynchronous

data transfers could be helpful in order to gain performance.

At the moment, the encoding of a Toffoli gate allows to store up to 32 inputs. In order to be

possible to compute circuits with more than 32 inputs, a more generic but still space-effective

solution can be found. The computational power of the current implementation should be

big enough to handle that many inputs.

The results have also shown, that the quality of the minimization process needs to be opti-

mized. Most circuits show worse results than the sequential approach and therefore need to
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be optimized. The computational power of the Cell/B.E. could be used to further improve

these results too, leading to a smaller circuit that can be calculated in less time.

One last approach that might be worth investigating is using a different matching approach.

At the moment each SPE calculates one part of the circuit sequentially. Investigating further

parallelization concepts that might exploit the hardware better than the current implemen-

tation and a comparison between these approaches is a topic for future work too.
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Chapter 6

Conclusion

The overall results, demonstrated in Chapter 4, show that the acceleration of the MMD

algorithm was a success. However, the results also show that in some cases speeding up the

algorithm comes at a cost and is not for free. This means the size of the circuit after the

template matching using the parallel approach is worse than the sequential results. This,

however, is contra-productive, since the algorithm’s purpose is to minimize a given circuit

as much as possible. But in any case, parallelizing computationally intensive reversible logic

synthesis algorithms has many benefits, since the productivity while developing, testing and

synthesizing reversible circuits grows. It also offers the possibility to work with circuits of

sizes that haven’t been computable in acceptable time beforehand.

The Cell Broadband Engine is highly suited for tasks like these and there should be a lot

more potential within the hardware in order to further optimize the runtime. As already

mentioned, runtime is not the most important factor when it comes to synthesizing the

smallest possible circuit but the newly achieved computational power can be used to improve

the algorithm in such a way that it produces better results in less time.
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