
Nonlinear Computational
Aeroelasticity Lab

ACCELERATION OF A

COMPUTATIONAL FLUID DYNAMICS

CODE WITH GPU USING OPENACC

N I C H O L S O N K . KO U K PA I Z A N
P H D . C A N D I D AT E

GPU Technology Conference 2018, Silicon Valley
March 26-29 2018

• GT NCAEL Team members

• N. Adam Bern

• Kevin E. Jacobson

• Nicholson K. Koukpaizan

• Isaac C. Wilbur

CONTRIBUTORS TO THIS WORK

• Mentors

• Matt Otten (Cornell University)

• Dave Norton (PGI)

• Advisor

• Prof. Marilyn J. Smith

2

• Initial work done at the Oak Ridge GPU Hackathon (October 9th-13th 2017)

• “5-day hands-on workshop, with the goal that the teams leave with applications running
on GPUs, or at least with a clear roadmap of how to get there.” (olcf.ornl.gov)

HARDWARE

• Access to summit-dev during
the Hackathon

• IBM Power8 CPU

• NVIDIA Tesla P100 GPU - 16 GB

• Access to NVIDIA’s psg cluster

• Intel Haswell CPU

• NVIDIA Tesla P100 GPU- 16 GB

3

Source: NVIDIA
(http://www.nvidia.com/object/tesla-p100.html)

• Validated Computational Fluid Dynamics (CFD) solver

– Finite volume discretization

– Structured grids

– Implicit solver

• Written in Free format Fortran 90

• MPI parallelism

• Approximately 50,000 lines of code

• No external libraries

• Shallow data structures to store the grid and solution

APPLICATION: GTSIM

4
Reference for GTSIM: Hodara, J. PhD thesis “Hybrid RANS-LES Closure for Separated
Flows in the Transitional Regime.” smartech.gatech.edu/handle/1853/54995

• Explicit CFD solvers:

• Conditionally stable

• Implicit CFD solvers:

• Unconditionally stable

• Courant-Friedrichs-Levy
(CFL) number dictates
convergence and stability

WHY AN IMPLICIT SOLVER?

Source: Posey, S. (2015), Overview of GPU Suitability and Progress of CFD
Applications, NASA Ames Applied Modeling & Simulation (AMS) Seminar – 21
Apr 2015 5

Read in the simulation parameters, the grid and initialize the solution arrays

Loop physical time iterations

Loop pseudo-time sub-iterations

Compute the pseudo-time step based on the CFL condition

Build the left hand side (𝑳𝑯𝑺)  40 %

Compute the right hand side (𝑹𝑯𝑺) 31%

Use an iterative linear solver to solve for Δ𝑼 in 𝑳𝑯𝑺 × Δ𝑼 = 𝑹𝑯𝑺24%

Check the convergence

end loop

end loop

Export the solution (𝑼)

PSEUDOCODE

6

• Write 𝑳𝑯𝑺 = ഥ𝓛 +𝓓 + ഥ𝓤

• Jacobi based (Slower convergence, but more suitable for GPU)

Δ𝑼𝑘 = ഥ𝓓−1 𝑹𝑯𝑺𝑘−1 − ഥ𝓛Δ𝑼𝑘−1 − ഥ𝓤 Δ𝑼𝑘−1

OVERFLOW solver (NAS Technical Report NAS-09-003, November 2009) used Jacobi for GPUs

• Gauss-Seidel based (one of the two following formulations)

Δ𝑼𝑘 = ഥ𝓓−1 𝑹𝑯𝑺𝑘 − ഥ𝓛 Δ𝑼𝒌 − ഥ𝓤 Δ𝑼𝒌−𝟏

Δ𝑼𝑘 = ഥ𝓓−1 𝑹𝑯𝑺𝑘 − ഥ𝓛 Δ𝑼𝒌−𝟏 − ഥ𝓤 Δ𝑼𝒌

• Coloring scheme (red - black)

• Red: Use the first Gauss-Seidel formulation, with previous iteration black cells data

• Black: Use the second Gauss-Seidel formulation with the last Red update

LINEAR SOLVERS (1 OF 3)

7

LINEAR SOLVERS (2 OF 3)

• LU-SSOR (Lower-Upper Symmetric
Successive Overrelaxation) scheme • Coloring scheme (red-black)

8Coloring scheme is more suitable for GPU acceleration

Source: Blazek, J., Computational Fluid Dynamics: Principles and
Applications. Elsevier, 2001.

Source: https://people.eecs.berkeley.edu/~demmel/cs267-
1995/lecture24/lecture24.html

• What to consider with the red-black solver

• Coloring scheme converges slower than LU-SSOR scheme

• Need more linear solver iterations at each step

• Because of the 4th order dissipation, black also depends on black!

 potentially even slower convergence

• Reinitializing Δ𝑼 to zero proved to be best

LINEAR SOLVERS (3 OF 3)

9

Is using a GPU worth the loss of convergence in the solver?

TEST PROBLEMS

• Laminar Flat plate

• 𝑅𝑒𝐿 = 10000

• 𝑀∞ = 0.1

• (2D): 161 x 2 x 65  Initial profile

• (3D): 161 x 31 x 65  Hackathon

• Other coarser/finer meshes to understand the scaling

• Define two types of speedup

• Speedup: comparison to a CPU for the same algorithm

• “Effective” speedup: comparison to more efficient CPU
algorithm

10

• Port the entire application to GPU for laminar flows

• Obtain at least a 1.5 x acceleration on a single GPU compared to a

CPU node, (approximately 16 cores) using OpenACC

• Extend the capability of the application using both MPI and GPU

acceleration

HACKATHON OBJECTIVES AND STRATEGY (1 OF 2)

11

• Data

• !$acc data copy ()

• Initially, data structure around all ported kernels  slowdown

• Ultimately, only one memcopy (before entering the time loop)

• Parallel loops with collapse statement

• !$acc parallel loop collapse(4) gang vector

• !$acc parallel loop collapse(4) gang vector reduction

• !$acc routine seq

• Temporary and private variables to avoid race conditions

• Example 𝑟ℎ𝑠 𝑖, 𝑗, 𝑘 , 𝑟ℎ𝑠(𝑖 + 1, 𝑗, 𝑘) updated in the same step

HACKATHON OBJECTIVES AND STRATEGY (2 OF 2)

12

• Speedup

• 13.7x versus single core

• 3.7x versus 16 core, but this MPI test did not exhibit linear scaling

• Initial objectives not fully achieved, but encouraging results

• Postpone MPI implementation until better speedup is obtained with the serial
implementation

RESULTS AT THE END OF THE HACKATHON

GPU CPU (16 cores) - MPI CPU 1 core

6.5 sec 23.9 s 89.7 s

• Total run times (10 steps on a 161 x 31 x 65 grid)

13

• Now that the code runs on GPU, what’s next?

• Can we do better?

• What’s the cost of using the coloring scheme versus the LU-SSOR scheme?

• Improve loop arrangements and data management

• Make sure all !$acc data copy () statements have been replaced by !$acc data
present () statements

• Make sure there are no implicit data movements

FURTHER IMPROVEMENTS (1 OF 2)

14

• Further study and possibly improve the speedup

• Evaluate the “effective” speedup

• Run a proper profile of the application running on GPU with pgprof

pgprof --export-profile timeline.prof ./GTsim > GTsim.log

pgprof --metrics achieved_occupancy,expected_ipc -o metrics.prof ./GTsim > GTsim.log

FURTHER IMPROVEMENTS (2 OF 2)

15

DATA MOVEMENT

• !$acc data copy()  !$acc enter data copyin()/copyout()

• Solver blocks (𝑳𝑯𝑺, 𝑹𝑯𝑺) are not actually need back on the CPU

• Only the solution vector needs to be copied out

16

LOOP ARRANGEMENTS

• All loop in the order k, j, I

• Limit the size of the registers to 128  -ta=maxregcount:128

• Memory is still not accessed contiguously, especially on the red-black kernels

17

• Red-black solver with 3 sweeps, CFL 0.1

• Linear scaling with number of iterations once data movement cost is offset

FINAL SOLUTION TIMES

18

• Red-black solver with 3 sweeps, CFL 0.1

• Linear scaling with grid size once data movement cost is offset

FINAL SOLUTION TIMES

19

• Red-black solver with 3 sweeps, CFL 0.1

• Best speedup of 49 for a large enough grid and number of iterations

FINAL SPEEDUP

20

CONVERGENCE OF THE LINEAR SOLVERS (1 OF 2)

• 161 x 2 x 65 mesh, convergence to 10−11Same run times

21

CONVERGENCE OF THE LINEAR SOLVERS (2 OF 2)

• 161 x 31 x 65 mesh, convergence to 10−11

22

EFFECTIVE SPEEDUP

• 161 x 31 x 65 mesh, convergence to 10−11

GPU - Red-black solver CPU - Red-black solver CPU – SSOR solver

109.3 sec 4329.6 sec 3140.0 sec

• Speedup of 39 compared to the same solver on CPU
• Speedup of 29 compared to the SSOR scheme on CPU

23

The effective speedup is the same as speedup in 2D, and
lower but still good in 3D!

• Conclusions

• A CFD solver has been ported to GPU using OpenACC

• Speedup on the order of 50 X compared to a single CPU core

• Red-black solver replaced the LU-SSOR solver with little to no loss of performance

• Future work

• Further optimization of data transfers and loops

• Extension to MPI

CONCLUSIONS AND FUTURE WORK

24

• Oak Ridge National Lab

• Organizing and letting us participate in the 2017 GPU Hackathon

• Providing access to Power 8 and P100 GPUs on SummitDev

• NVIDIA

• Providing access to P100 GPUs on the psg cluster

• Everyone else who helped with this work

ACKNOWLEDGEMENTS

25

• Contact

• Nicholson K. Koukpaizan

• nicholsonkonrad.koukpaizan@gatech.edu

• Please, remember to give feedback on this session

• Question?

CLOSING REMARKS

26

mailto:nicholsonkonrad.koukpaizan@gatech.edu

Nonlinear Computational
Aeroelasticity Lab

BACKUP SLIDES

27

• Navier-Stokes equations

𝜕

𝜕𝑡
න
Ω

𝑼𝑑𝑉 + ර
𝜕Ω

(𝑭𝑐−𝑭𝑉)𝑑𝑆 = 0

𝑼 = 𝜌 𝜌𝑢 𝜌𝑣 𝜌𝑤 𝜌𝐸 𝑇

• 𝑭𝐶 , inviscid flux vector, including mesh motion if needed (Arbitrary Lagrangian-Euler
formulation)

• 𝑭𝑉 , viscous flux vector

• Loosely coupled turbulence model equations added as needed

• Laminar flows only in this work

• Addition of turbulence does not change the GPU performance of the application

GOVERNING EQUATIONS

28

• Explicit treatment of fluxes

• 2nd order central differences with 4th order Jameson dissipation

• Implicit treatment of fluxes

• Steger and Warming flux splitting

• Dual time stepping, with 2nd order backward difference formulation

• Form of the final equation to solve

Ω𝑖𝑗𝑘

Δ𝑡

Δ𝑡

Δ𝜏
+
3

2
𝑰 +

𝜕𝑹

𝜕𝑼

𝑚

Δ𝑼𝒎 = −𝑹𝑚 −
Ω𝑖𝑗𝑘

Δ𝑡

3𝑼𝑚 − 4𝑼𝑛 + 𝑼𝑛−1

2

• Need a linear solver!

DISCRETIZED EQUATIONS

29

