

Accelerator Physics Synchrotron Radiation

S. A. Bogacz, G. A. Krafft, S. DeSilva, R. Gamage Jefferson Lab Old Dominion University Lecture 8

Synchrotron Radiation

Accelerated particles emit electromagnetic radiation. Emission from very high energy particles has unique properties for a radiation source. As such radiation was first observed at one of the earliest electron synchrotrons, radiation from high energy particles (mainly electrons) is known generically as synchrotron radiation by the accelerator and HENP communities.

The radiation is highly collimated in the beam direction

From relativity

$$ct' = \gamma ct - \gamma \beta z$$
$$x' = x$$
$$y' = y$$
$$z' = -\gamma \beta ct + \gamma z$$

Thomas Jefferson National Accelerator Facility

Lorentz invariance of wave phase implies $k^{\mu} = (\omega/c, k_x, k_y, k_z)$ is a Lorentz 4-vector

$$\theta \approx \sin \theta = \frac{\sin \theta'}{\gamma (1 + \beta \cos \theta')}$$

Therefore all radiation with $\theta' < \pi / 2$, which is roughly $\frac{1}{2}$ of the photon emission for dipole emission from a transverse acceleration in the beam frame, is Lorentz transformed into an angle less than $1/\gamma$. Because of the strong Doppler shift of the photon energy, higher for $\theta \rightarrow 0$, most of the energy in the photons is within a cone of angular extent $1/\gamma$ around the beam direction.

Larmor's Formula

For a particle executing non-relativistic motion, the total power emitted in electromagnetic radiation is (Larmor, verified later)

$$P(t) = \frac{1}{6\pi\varepsilon_0} \frac{q^2}{c^3} |\vec{a}|^2 = \frac{1}{6\pi\varepsilon_0} \frac{e^2}{m^2 c^3} |\dot{\vec{p}}|^2$$

Lienard's relativistic generalization: Note both dE and dt are the fourth component of relativistic 4-vectors when one is dealing with photon emission. Therefore, their ratio must be an Lorentz invariant. The invariant that reduces to Larmor's formula in the non-relativistic limit is

$$P = -\frac{e^2}{6\pi\varepsilon_0 c} \frac{du^{\mu}}{d\tau} \frac{du_{\mu}}{d\tau}$$

$$P(t) = \frac{e^2}{6\pi\varepsilon_0 c} \gamma^6 \left(\dot{\vec{\beta}}^2 - \left[\vec{\beta} \times \dot{\vec{\beta}} \right]^2 \right)$$

For acceleration along a line, second term is zero and first term for the radiation reaction is small compared to the acceleration as long as gradient less than 10¹⁴ MV/m. Technically impossible.

For transverse bend acceleration $\dot{\vec{\beta}} = -\frac{\beta^2 c}{\rho} \hat{r}$

$$P(t) = \frac{e^2 c}{6\pi\varepsilon_0 \rho^2} \beta^4 \gamma^4$$

Thomas Jefferson National Accelerator Facility

Fractional Energy Loss

$$\delta E = \frac{e^2}{6\pi\varepsilon_0\rho} \Theta\beta^3\gamma^4$$

For one turn with isomagnetic bending fields

$$\frac{\delta E}{E_{beam}} = \frac{4\pi r_e}{3\rho} \beta^3 \gamma^3$$

 r_e is the classical electron radius: 2.82×10⁻¹³ cm

Radiation Power Distribution

Consulting your favorite Classical E&M text (Jackson, Schwinger, Landau and Lifshitz Classical Theory of Fields)

$$\frac{dP}{d\omega} = \frac{\sqrt{3}}{8\pi^2 \varepsilon_0} \frac{e^2}{\rho} \gamma \frac{\omega}{\omega_c} \int_{\omega/\omega_c}^{\infty} K_{5/3}(x) dx$$

Critical Frequency

Critical (angular) frequency is

$$\omega_c = \frac{3}{2}\gamma^3 \frac{c}{\rho}$$

Energy scaling of critical frequency is understood from $1/\gamma$ emission cone and fact that $1-\beta \sim 1/(2\gamma^2)$

Thomas Jefferson National Accelerator Facility

Photon Number $P = \int_{0}^{\infty} \frac{dP}{d\omega} d\omega = \frac{\sqrt{3}}{8\pi^{2}\varepsilon_{0}} \frac{e^{2}}{\rho} \omega_{c} \gamma \int_{0}^{\infty} \xi \int_{\varepsilon}^{\infty} K_{5/3}(x) dx d\xi = \frac{e^{2}c}{6\pi\varepsilon_{0}\rho^{2}} \gamma^{4}$ $\frac{d\dot{n}}{d\omega} = \frac{1}{\hbar\omega} \frac{dP}{d\omega}$ $\left<\hbar\omega\right> = \frac{\int_{0}^{0} \hbar\omega \frac{d\dot{n}}{d\omega} d\omega}{\int_{0}^{\infty} \frac{d\dot{n}}{d\omega} d\omega} = \frac{8}{15\sqrt{3}} \hbar\omega_{c}$ $\dot{n} = \frac{5\alpha}{2\sqrt{3}} \frac{c}{\rho} \gamma \qquad \delta n = \frac{5\alpha}{2\sqrt{3}} \Theta \gamma \qquad \alpha = \frac{e^2}{4\pi\varepsilon_0 \hbar c} \approx \frac{1}{137}$

Thomas Jefferson National Accelerator Facility

Insertion Devices (ID)

Often periodic magnetic field magnets are placed in beam path of high energy storage rings. The radiation generated by electrons passing through such insertion devices has unique properties.

Field of the insertion device magnet

$$\vec{B}(x, y, z) = B(z)\hat{y}$$
 $B(z) \approx B_0 \cos(2\pi z / \lambda_{ID})$

Vector potential for magnet (1 dimensional approximation)

$$\vec{A}(x, y, z) = A(z)\hat{x}$$
 $A(z) \approx \frac{B_0 \lambda_{ID}}{2\pi} \sin(2\pi z / \lambda_{ID})$

Electron Orbit

Uniformity in *x*-direction means that canonical momentum in the *x*-direction is conserved

$$\mathbf{v}_{x}(z) = \frac{eA(z)}{\gamma m} = \frac{K}{\gamma} c \sin\left(2\pi z / \lambda_{ID}\right)$$

$$x(z) = \int \frac{\mathbf{v}_x}{\mathbf{v}_z} dz \approx -\frac{1}{\langle \beta_z \rangle} \frac{K}{\gamma} \frac{\lambda_{ID}}{2\pi} \cos\left(2\pi z / \lambda_{ID}\right)$$

Field Strength Parameter

$$K \equiv \frac{eB_0\lambda_{ID}}{2\pi mc}$$

Thomas Jefferson National Accelerator Facility

Average Velocity

Energy conservation gives that γ is a constant of the motion

$$\beta_{z}(z) = \sqrt{1 - \frac{1}{\gamma^{2}} - \beta_{x}^{2}(z)} = \sqrt{\beta_{z0}^{2} - \beta_{x}^{2}(z)}$$

Average longitudinal velocity in the insertion device is

$$\beta^{*2} = \left\langle \beta_z \right\rangle^2 = 1 - \frac{1}{\gamma^2} - \frac{K^2}{2\gamma^2}$$

Average rest frame has

$$\gamma^{*2} = \frac{1}{1 - \beta^{*2}} = \frac{\gamma^2}{1 + K^2 / 2}$$

Thomas Jefferson National Accelerator Facility

Relativistic Kinematics

In average rest frame the insertion device is Lorentz contracted, and so its wavelength is

$$\lambda^* = \lambda_{ID} / \beta^* \gamma^*$$

The sinusoidal wiggling motion emits with angular frequency

$$\omega^* = 2\pi c \, / \, \lambda^*$$

Lorentz transformation formulas for the wave vector of the emitted radiation

$$k^{*} = \gamma^{*} k \left(1 - \beta^{*} \cos \theta \right)$$
$$k^{*}_{x} = k_{x} = k \sin \theta \cos \varphi$$
$$k^{*}_{y} = k_{y} = k \sin \theta \sin \varphi$$
$$k^{*}_{z} = \gamma^{*} k \left(\cos \theta - \beta^{*} \right)$$

Thomas Jefferson National Accelerator Facility

ID (or FEL) Resonance Condition

Angle transforms as

$$\cos\theta^* = \frac{k_z^*}{k^*} = \frac{\left(\cos\theta - \beta^*\right)}{\left(1 - \beta^* \cos\theta\right)}$$

Wave vector in lab frame has

$$k = \frac{k^*}{\gamma^* (1 - \beta^* \cos \theta)} = \frac{2\pi \beta^* c}{\lambda_{ID} (1 - \beta^* \cos \theta)}$$

In the forward direction $\cos \theta = 1$

$$\lambda_{e} \approx \frac{\lambda_{ID}}{2\gamma^{*2}} = \frac{\lambda_{ID}}{2\gamma^{2}} \left(1 + K^{2} / 2\right)$$

Thomas Jefferson National Accelerator Facility

Power Emitted Lab Frame

Larmor/Lienard calculation in the lab frame yields

$$\left\langle P \right\rangle = \frac{e^2}{6\pi\varepsilon_0} \gamma^4 \beta_{z0}^2 c \left(\frac{K}{\gamma}\right)^2 \left(\frac{2\pi}{\lambda_{ID}}\right)^2 \frac{1}{2}$$

Total energy radiated after one passage of the insertion device

$$\delta E = 2\pi^2 \frac{e^2}{6\pi\varepsilon_0 \lambda_{ID}} \gamma^2 \frac{\beta_{z0}^2}{\beta^*} NK^2$$

Thomas Jefferson National Accelerator Facility

Power Emitted Beam Frame

Larmor/Lienard calculation in the beam frame yields

$$\left\langle P^* \right\rangle = \frac{e^2}{6\pi\varepsilon_0} cK^2 \left(\frac{2\pi}{\lambda^*}\right)^2 \frac{1}{2}$$

Total energy of each photon is $\hbar 2\pi c/\lambda^*$, therefore the total number of photons radiated after one passage of the insertion device

$$N_{\gamma} = \frac{2\pi}{3} \alpha N K^2$$

Thomas Jefferson National Accelerator Facility

Spectral Distribution in Beam Frame

Begin with average power distribution in beam frame: dipole radiation pattern (single harmonic only when *K*<<1; replace γ^* by γ , β^* by β)

$$\frac{dP^*}{d\Omega^*} = \frac{e^2c}{32\pi^2\varepsilon_0} K^2 k^{*2} \sin^2 \Theta^*$$

Number distribution in terms of wave number

$$\frac{dN_{\gamma}}{d\Omega^*} = \frac{\alpha}{4} NK^2 \frac{k_{y}^{*2} + k_{z}^{*2}}{k^{*2}}$$

Solid angle transformation

$$d\Omega^* = \frac{d\Omega}{\gamma^2 \left(1 - \beta \cos\theta\right)^2}$$

Thomas Jefferson National Accelerator Facility

Number distribution in beam frame

$$\frac{dN_{\gamma}}{d\Omega} = \frac{\alpha}{4} NK^2 \frac{\sin^2 \theta \sin^2 \varphi + \gamma^2 (\cos \theta - \beta)^2}{\gamma^4 (1 - \beta \cos \theta)^4}$$

Energy is simply

$$E(\theta) = \hbar \frac{2\pi\beta c}{\lambda_{ID} \left(1 - \beta\cos\theta\right)} \qquad \hat{E}(\theta) = \frac{1}{\left(1 - \beta\cos\theta\right)}$$

Number distribution as a function of normalized lab-frame energy

$$\frac{dN_{\gamma}}{d\hat{E}} = \frac{\alpha\pi}{4\gamma^2\beta^3} NK^2 \left[\left(\frac{\hat{E}}{\gamma^2} - 1\right)^2 + \beta^2 \right]$$

Thomas Jefferson National Accelerator Facility

Limits of integration

$$\cos\theta = 1$$
 $\hat{E} = \frac{1}{1-\beta}$ $\cos\theta = -1$ $\hat{E} = \frac{1}{1+\beta}$

Average energy is also analytically calculable

$$\left\langle E \right\rangle = \frac{\int_{0}^{\infty} E \frac{dN_{\gamma}}{d\hat{E}} d\hat{E}}{\int_{0}^{\infty} \frac{dN_{\gamma}}{d\hat{E}} d\hat{E}} = \gamma^{2} \hbar 2\pi \beta c / \lambda_{ID} \approx \frac{E_{\text{max}}}{2}$$

Thomas Jefferson National Accelerator Facility

Number Spectrum

Thomas Jefferson National Accelerator Facility

Conventions on Fourier Transforms

For the time dimensions

$$\tilde{f}(\omega) = \int_{-\infty}^{\infty} f(t) e^{i\omega t} dt$$
$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{f}(\omega) e^{-i\omega t} d\omega$$

~~

Results on Dirac delta functions

$$\tilde{\delta}(\omega) = \int_{-\infty}^{\infty} \delta(t) e^{i\omega t} dt = 1$$

$$\delta(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\omega t} d\omega$$

Thomas Jefferson National Accelerator Facility

For the three spatial dimensions

$$\tilde{f}\left(\vec{k}\right) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f\left(\vec{x}\right) e^{-i\vec{k}\cdot\vec{x}} d^{3}\vec{x}$$
$$f\left(\vec{x}\right) = \frac{1}{\left(2\pi\right)^{3}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \tilde{f}\left(\vec{k}\right) e^{+i\vec{k}\cdot\vec{x}} d^{3}\vec{k}$$
$$\delta^{3}\left(\vec{x}\right) = \delta\left(\vec{x}\right) = \frac{1}{\left(2\pi\right)^{3}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{+i\vec{k}\cdot\vec{x}} d^{3}\vec{k}$$

Thomas Jefferson National Accelerator Facility

Green Function for Wave Equation

Solution to inhomogeneous wave equation

$$\begin{bmatrix} \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \end{bmatrix} G(\vec{x}, t; \vec{x}', t')$$
$$= -4\pi\delta(\vec{x} - \vec{x}')\delta(t - t')$$

Will pick out the solution with causal boundary conditions, i. e.

$$G(\vec{x},t;\vec{x}',t') = 0 \qquad t < t'$$

This choice leads automatically to the so-called *Retarded* Green Function

In general

$$G\left(\vec{x},t;\vec{x}',t'\right) = 0 \qquad t < t'$$

$$G\left(\vec{x},t;\vec{x}',t'\right) =$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[A\left(\vec{k}\right)e^{i\left(\vec{k}\cdot\vec{x}-\omega t\right)} + B\left(\vec{k}\right)e^{i\left(\vec{k}\cdot\vec{x}+\omega t\right)}\right] d^{3}\vec{k} \qquad t > t'$$

because there are two possible signs of the frequency for each value of the wave vector. To solve the homogeneous wave equation it is necessary that

$$\omega\!\left(\vec{k}\right)\!=\!\left|\vec{k}\right|c$$

i.e., there is no dispersion in free space.

Continuity of *G* implies

$$A\left(\vec{k}\right)e^{-i\omega t'} = -B\left(\vec{k}\right)e^{i\omega t'}$$

Integrate the inhomogeneous equation between $t = t' + \mathcal{E}$ and $t = t' - \varepsilon$ $-\frac{1}{c^2} \frac{\partial G(\vec{x},t;\vec{x}',t')}{\partial t} \bigg|_{t'+c} = -4\pi \delta(\vec{x}-\vec{x}')$ $\int \int \int \left[-i\omega A(\vec{k})e^{i(\vec{k}\cdot\vec{x}-\omega t')} + i\omega B(\vec{k})e^{i(\vec{k}\cdot\vec{x}+\omega t')} \right] d^{3}\vec{k}$ $=4\pi c^2 \delta(\vec{x}-\vec{x}')$ $A(\vec{k}) = -\frac{c^2}{(2\pi)^2 i\omega} e^{-i\vec{k}\cdot\vec{x}'} e^{i\omega t'}$

Thomas Jefferson National Accelerator Facility

$$G\left(\vec{x},t;\vec{x}',t'\right) = -\frac{c^2}{\left(2\pi\right)^2 i} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{\omega} \left[e^{i\left(\vec{k}\cdot(\vec{x}-\vec{x}')-\omega(t-t')\right)} - e^{i\left(\vec{k}\cdot(\vec{x}-\vec{x}')+\omega(t-t')\right)} \right] d^3\vec{k}$$
$$t > t'$$

$$= \frac{c}{2\pi} \int_{-\infty}^{\infty} \frac{e^{ik|\vec{x}-\vec{x}'|}}{|\vec{x}-\vec{x}'|} e^{-i\omega(t-t')} dk - \frac{c}{2\pi} \int_{-\infty}^{\infty} \frac{e^{ik|\vec{x}-\vec{x}'|}}{|\vec{x}-\vec{x}'|} e^{+i\omega(t-t')} dk \quad t > t'$$
$$= \frac{\delta\left(\left|\vec{x}-\vec{x}'\right|/c-t+t'\right)}{|\vec{x}-\vec{x}'|} + 0$$

Called retarded because the influence at time *t* is due to the source evaluated at the retarded time

$$t' = t - \left| \vec{x} - \vec{x}' \right| / c$$

Thomas Jefferson National Accelerator Facility

Retarded Solutions for Fields

$$\phi(\vec{x},t) = \frac{1}{4\pi\varepsilon_0} \int d^3x' dt' \frac{\rho(\vec{x}',t')}{|\vec{x}-\vec{x}'|} \delta(|\vec{x}-\vec{x}'|/c-t+t')$$
$$\vec{A}(\vec{x},t) = \frac{\mu_0}{4\pi} \int d^3x' dt' \frac{\vec{J}(\vec{x}',t')}{|\vec{x}-\vec{x}'|} \delta(|\vec{x}-\vec{x}'|/c-t+t')$$

Tip: Leave the delta function in it's integral form to do derivations. Don't have to remember complicated delta-function rules

Thomas Jefferson National Accelerator Facility

Delta Function Representation

$$\phi(\vec{x},t) = \frac{1}{8\pi^2 \varepsilon_0} \int d^3 x' dt' d\omega \frac{\rho(\vec{x}',t')}{|\vec{x}-\vec{x}'|} e^{i\omega[|\vec{x}-\vec{x}'|/c-(t-t')]}$$
$$\vec{A}(\vec{x},t) = \frac{\mu_0}{8\pi^2} \int d^3 x' dt' d\omega \frac{\vec{J}(\vec{x}',t')}{|\vec{x}-\vec{x}'|} e^{i\omega[|\vec{x}-\vec{x}'|/c-(t-t')]}$$

Evaluation can be expedited by noting and using the symmetry of the Green function and using relations such as

$$\frac{\partial}{\partial t} f(t - t') = -\frac{\partial}{\partial t'} f(t - t')$$
$$\frac{\partial}{\partial \vec{x}} f(|\vec{x} - \vec{x}'|) = -\frac{\partial}{\partial \vec{x}'} f(|\vec{x} - \vec{x}'|)$$

Thomas Jefferson National Accelerator Facility

Radiation From Relativistic Electrons

$$\begin{split} \phi(\vec{x},t) &= \frac{1}{8\pi^{2}\varepsilon_{0}} \int d^{3}x' dt' d\omega \frac{\rho(\vec{x}',t')}{|\vec{x}-\vec{x}'|} e^{i\omega[|\vec{x}-\vec{x}'|/c-(t-t')]} \\ \vec{A}(\vec{x},t) &= \frac{\mu_{0}}{8\pi^{2}} \int d^{3}x' dt' d\omega \frac{\vec{J}(\vec{x}',t')}{|\vec{x}-\vec{x}'|} e^{i\omega[|\vec{x}-\vec{x}'|/c-(t-t')]} \\ \rho(\vec{x},t) &= q\delta^{3}(\vec{x}-\vec{r}(t)) \qquad \vec{J}(\vec{x},t) = q\vec{v}(t)\delta^{3}(\vec{x}-\vec{r}(t)) \\ \phi(\vec{x},t) &= \frac{q}{8\pi^{2}\varepsilon_{0}} \int dt' d\omega \frac{1}{|\vec{x}-\vec{r}(t')|} e^{i\omega[|\vec{x}-\vec{r}(t')|/c-(t-t')]} \\ \vec{A}(\vec{x},t) &= \frac{q\mu_{0}}{8\pi^{2}} \int dt' d\omega \frac{\vec{v}(t')}{|\vec{x}-\vec{r}(t')|} e^{i\omega[|\vec{x}-\vec{r}(t')|/c-(t-t')]} \end{split}$$

Thomas Jefferson National Accelerator Facility

Lienard-Weichert Potentials

$$\begin{split} \phi(\vec{x},t) &= \frac{q}{4\pi\varepsilon_0} \int dt' \frac{\delta(|\vec{x}-\vec{r}(t')|/c-(t-t'))}{|\vec{x}-\vec{r}(t')|} \\ \vec{A}(\vec{x},t) &= \frac{q\mu_0}{4\pi} \int dt' \frac{\vec{v}(t')\delta(|\vec{x}-\vec{r}(t')|/c-(t-t'))}{|\vec{x}-\vec{r}(t')|} \\ \phi(\vec{x},t) &= \frac{q}{4\pi\varepsilon_0} \left(\frac{1}{|\vec{x}-\vec{r}(t')|(1-\hat{n}\cdot\vec{\beta}(t'))} \right)_{ret} \\ \vec{A}(\vec{x},t) &= \frac{q\mu_0}{4\pi} \left(\frac{\vec{v}(t')}{|\vec{x}-\vec{r}(t')|(1-\hat{n}\cdot\vec{\beta}(t'))} \right)_{ret} \end{split}$$

Thomas Jefferson National Accelerator Facility

EM Field Radiated

$$\phi(\vec{x},t) = \frac{q}{8\pi^{2}\varepsilon_{0}} \int dt' d\omega \frac{1}{|\vec{x}-\vec{r}(t')|} e^{i\omega[|\vec{x}-\vec{r}(t')|/c-(t-t')]}$$

$$\vec{A}(\vec{x},t) = \frac{q\mu_{0}}{8\pi^{2}} \int dt' d\omega \frac{\vec{v}(t')}{|\vec{x}-\vec{r}(t')|} e^{i\omega[|\vec{x}-\vec{r}(t')|/c-(t-t')]}$$

$$\vec{E} = -\vec{\nabla}\phi - \frac{\partial\vec{A}}{\partial t} \qquad \vec{B} = \vec{\nabla} \times \vec{A}$$

$$\vec{E} = \frac{q}{4\pi\varepsilon_{0}} \left[\frac{\hat{n}-\vec{\beta}}{\gamma^{2}(1-\hat{n}\cdot\vec{\beta})^{3}R^{2}} \right]_{ret} + \frac{q}{4\pi\varepsilon_{0}c} \left[\frac{\hat{n} \times \left\{ \left(\hat{n}-\vec{\beta}\right) \times \dot{\vec{\beta}} \right\}}{\left(1-\hat{n}\cdot\vec{\beta}\right)^{3}R} \right]_{ret} \right]_{ret}$$

$$\vec{B} = \hat{n} \times \vec{E} / c \qquad \text{Velocity Field} \qquad \text{Acceleration Field}$$

Thomas Jefferson National Accelerator Facility

$$\begin{split} \vec{\nabla} \frac{1}{\left|\vec{x} - \vec{r}\left(t'\right)\right|} &= -\frac{\hat{n}}{\left|\vec{x} - \vec{r}\left(t'\right)\right|^{2}} \quad \vec{\nabla} \left|\vec{x} - \vec{r}\left(t'\right)\right| = \hat{n} \\ \frac{d}{dt'} \frac{1}{\left|\vec{x} - \vec{r}\left(t'\right)\right|} &= \frac{\hat{n} \cdot \vec{\beta}c}{\left|\vec{x} - \vec{r}\left(t'\right)\right|^{2}} \quad \frac{d\hat{n}}{dt'} = \frac{-d\vec{r} \,/\, dt' + \hat{n}\left(\hat{n} \cdot d\vec{r} \,/\, dt'\right)}{\left|\vec{x} - \vec{r}\left(t'\right)\right|} \quad \cdots \\ -\nabla\phi\left(\vec{x}, t\right) &= \frac{q}{8\pi^{2}\varepsilon_{0}} \int dt' d\omega \frac{\hat{n}\left(1 - i\omega\left|\vec{x} - \vec{r}\left(t'\right)\right| / c\right)}{\left|\vec{x} - \vec{r}\left(t'\right)\right|^{2}} e^{i\omega\left[\left|\vec{x} - \vec{r}\left(t'\right)\right| / c - (t-t')\right]} \\ -\frac{\partial}{\partial t} \vec{A}\left(\vec{x}, t\right) &= \frac{q\mu_{0}}{8\pi^{2}} \int dt' d\omega \frac{\vec{v}\left(t'\right)i\omega}{\left|\vec{x} - \vec{r}\left(t'\right)\right|} e^{i\omega\left[\left|\vec{x} - \vec{r}\left(t'\right)\right| / c - (t-t')\right]} \\ \frac{d}{dt'} e^{i\omega\left[\left|\vec{x} - \vec{r}\left(t'\right)\right| / c - (t-t')\right]} &= i\omega\left(1 - \vec{\beta}\left(t'\right) \cdot \hat{n}\left(t'\right)\right) e^{i\omega\left[\left|\vec{x} - \vec{r}\left(t'\right)\right| / c - (t-t')\right]} \end{split}$$

Thomas Jefferson National Accelerator Facility

$$\vec{E}(\vec{x},t) = \frac{q}{8\pi^{2}\varepsilon_{0}}\int dt'd\omega e^{i\omega\left[|\vec{x}-\vec{r}(t')|/c-(t-t')\right]} \left[\frac{\hat{n}}{\left|\vec{x}-\vec{r}(t')\right|^{2}} + \frac{i\omega(\vec{\beta}-\hat{n})}{c\left|\vec{x}-\vec{r}(t')\right|}\right]$$

integrate by parts to get final result

$$\vec{E}(\vec{x},t)_{vel} = \frac{q}{8\pi^{2}\varepsilon_{0}}\int dt'd\omega \frac{e^{i\omega\left[|\vec{x}-\vec{r}(t')|/c-(t-t')\right]}}{\left(1-\vec{\beta}\cdot\hat{n}\right)^{2}\left|\vec{x}-\vec{r}(t')\right|^{2}}$$

$$\times \begin{bmatrix} \hat{n} \left(1-2\vec{\beta}\cdot\hat{n}+\left(\vec{\beta}\cdot\hat{n}\right)^{2}+\vec{\beta}\cdot\hat{n}-\left(\vec{\beta}\cdot\hat{n}\right)^{2}+\vec{\beta}\cdot\hat{n}-\left(\vec{\beta}\cdot\hat{n}\right)^{2}+\vec{\beta}\cdot\hat{n}-\left(\vec{\beta}\cdot\hat{n}\right)^{2}\right)\\ -\beta^{2}+\left(\vec{\beta}\cdot\hat{n}\right)^{2}\\ -\vec{\beta}\left(1-\vec{\beta}\cdot\hat{n}+\vec{\beta}\cdot\hat{n}-\left(\vec{\beta}\cdot\hat{n}\right)^{2}-\beta^{2}+\left(\vec{\beta}\cdot\hat{n}\right)^{2}\right) \end{bmatrix}$$

Thomas Jefferson National Accelerator Facility

$$\vec{E}(\vec{x},t)_{acc} = \frac{q}{8\pi^{2}\varepsilon_{0}c}\int dt'd\omega \frac{e^{i\omega\left[|\vec{x}-\vec{r}(t')|/c-(t-t')\right]}}{\left(1-\vec{\beta}\cdot\hat{n}\right)^{2}\left|\vec{x}-\vec{r}(t')\right|}$$

$$\times \begin{bmatrix} \hat{n}\left(\dot{\vec{\beta}}\cdot\hat{n}\right) \\ -\dot{\vec{\beta}}\left(1-\vec{\beta}\cdot\hat{n}\right) - \vec{\beta}\left(\dot{\vec{\beta}}\cdot\hat{n}\right) \end{bmatrix}$$

$$= \frac{q}{8\pi^{2}\varepsilon_{0}c}\int dt'd\omega \frac{e^{i\omega\left[|\vec{x}-\vec{r}(t')|/c-(t-t')\right]}}{\left(1-\vec{\beta}\cdot\hat{n}\right)^{2}\left|\vec{x}-\vec{r}(t')\right|} \begin{bmatrix} \hat{n}\times\left\{\left(\hat{n}-\vec{\beta}\right)\times\dot{\vec{\beta}}\right\} \end{bmatrix}$$

Thomas Jefferson National Accelerator Facility

Larmor's Formula Verified

For small velocities can neglect retardation

$$\vec{E}(\vec{x},t)_{acc} = \frac{q}{4\pi\varepsilon_0 c} \left[\hat{n} \times \left\{ \hat{n} \times \vec{\beta} \right\} \right] / R$$
$$\frac{dP}{d\Omega} = \frac{q^2}{16\pi^2 \varepsilon_0^2 \mu_0 c^3} \left\| \left[\hat{n} \times \left\{ \hat{n} \times \vec{\beta} \right\} \right] \right\|^2$$
$$= \frac{q^2}{16\pi^2 \varepsilon_0 c^3} \left| \dot{\vec{v}} \right|^2 \sin^2 \Theta$$
$$P = \frac{q^2}{6\pi\varepsilon_0 c^3} \left| \dot{\vec{v}} \right|^2$$

Angle between acceleration and propagation directions Classical Dipole Radiation Pattern

Thomas Jefferson National Accelerator Facility

Relativistic Peaking

In far field after short acceleration

$$\frac{dP(t')}{d\Omega} = \frac{q^2}{16\pi^2 \varepsilon_0 c} \frac{\left|\hat{n} \times \left\{ \left(\hat{n} - \vec{\beta}\right) \times \dot{\vec{\beta}} \right\} \right|^2}{\left(1 - \hat{n} \cdot \vec{\beta}\right)^5}$$
$$\frac{dP(t')}{d\Omega} = \frac{q^2 \dot{\beta}^2}{16\pi^2 \varepsilon_0 c} \frac{\sin^2 \theta}{\left(1 - \beta \cos \theta\right)^5}$$
$$\theta_{\max} \rightarrow \frac{1}{2\gamma}$$

For circular motions

$$\frac{dP(t')}{d\Omega} = \frac{q^2}{16\pi^2 \varepsilon_0 c} \frac{\dot{\beta}^2}{\left(1 - \beta \cos\theta\right)^3} \left[1 - \frac{\sin^2 \theta \cos^2 \varphi}{\gamma^2 \left(1 - \beta \cos\theta\right)^2} \right]$$

Thomas Jefferson National Accelerator Facility

Spectrum Radiated by Motion

$$\frac{dE}{d\Omega} = \int_{-\infty}^{\infty} \frac{dP}{d\Omega} dt = \int_{-\infty}^{\infty} \vec{E} \times \vec{H} \cdot \hat{n}R^{2} dt = \frac{1}{c\mu_{0}} \int_{-\infty}^{\infty} \left(\vec{E} \cdot \vec{E}\right) R^{2} dt =$$

$$\frac{1}{c\mu_{0}} \left(\frac{q}{8\pi^{2}\varepsilon_{0}c}\right)^{2} \int_{-\infty}^{\infty} \iiint \left[\frac{\hat{n} \times \left\{\left(\hat{n} - \vec{\beta}\right) \times \dot{\vec{\beta}}\right\}}{\left(1 - \hat{n} \cdot \vec{\beta}\right)^{2}} \left(t'\right)\right] \cdot \left[\frac{\hat{n} \times \left\{\left(\hat{n} - \vec{\beta}\right) \times \dot{\vec{\beta}}\right\}}{\left(1 - \hat{n} \cdot \vec{\beta}\right)^{2}} \left(t'\right)\right] \times$$

$$e^{i\omega \left[R\sqrt{1 - 2\hat{n} \cdot \vec{r}(t')/R + \left(\hat{n} \cdot \vec{r}(t')\right)^{2}/R^{2}/c - t + t'}\right]} e^{i\omega' \left[R\sqrt{1 - 2\hat{n} \cdot \vec{r}(t'')/R + \left(\hat{n} \cdot \vec{r}(t'')\right)^{2}/R^{2}/c - t + t'}\right]} dt' d\omega dt'' d\omega' dt =$$

clearing the unprimed time integral and omega prime integral with delta representation

$$\frac{2\pi}{c\mu_{0}} \left(\frac{q}{8\pi^{2}\varepsilon_{0}c}\right)^{2} \int_{-\infty}^{\infty} \iiint \left[\frac{\hat{n} \times \left\{\left(\hat{n}-\vec{\beta}\right) \times \dot{\vec{\beta}}\right\}}{\left(1-\hat{n} \cdot \vec{\beta}\right)^{2}}(t')\right] \cdot \left[\frac{\hat{n} \times \left\{\left(\hat{n}-\vec{\beta}\right) \times \dot{\vec{\beta}}\right\}}{\left(1-\hat{n} \cdot \vec{\beta}\right)^{2}}(t'')\right] \times e^{i\omega\left[-\hat{n} \cdot \vec{r}(t')/c+t'\right]} e^{-i\omega\left[-\hat{n} \cdot \vec{r}(t'')/c+t''\right]} dt' dt'' d\omega$$

Jefferson Lab Thomas Jefferson National Accelerator Facility

$$\frac{d^{2}E}{d\omega d\Omega} = \frac{q^{2}}{32\pi^{3}\varepsilon_{0}c} \left| \int_{-\infty}^{\infty} \frac{\hat{n} \times \left\{ \left(\hat{n} - \vec{\beta} \right) \times \dot{\vec{\beta}} \right\}}{\left(1 - \hat{n} \cdot \vec{\beta} \right)^{2}} e^{i\omega \left[-\hat{n} \cdot \vec{r}(t')/c - t + t' \right]} dt' \right|^{2}$$

$$\frac{d^{2}E}{d\omega d\Omega} = \frac{q^{2}\omega^{2}}{32\pi^{3}\varepsilon_{0}c} \left| \int_{-\infty}^{\infty} \hat{n} \times \left(\hat{n} \times \vec{\beta} \right) e^{i\omega \left[t' - \hat{n} \cdot \vec{r}(t')/c \right]} dt' \right|^{2}$$

Factor of two difference from Jackson because he combines positive frequency and negative frequency contributions in one positive frequency integral. I don't like because Parseval's formula, etc. don't work! We'll perform this calculation in new intensity regimes of pulsed lasers.

