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Accelerators 



Accelerators

Accelerated systems.
System design:
 performance analysis;
 scheduling and allocation.



Accelerated systems

Use additional computational unit 
dedicated to some functions?
 Hardwired logic.
 Extra CPU.
Hardware/software co-design: joint 
design of hardware and software 
architectures.



Accelerator vs. co-processor

A co-processor executes instructions.
 Instructions are dispatched by the CPU.
An accelerator appears as a device on 
the bus.
 The accelerator is controlled by registers.



Why accelerators?

Better cost/performance.
 Custom logic may be able to perform 

operation faster than a CPU of equivalent 
cost.

 CPU cost is a non-linear function of 
performance.

cost

performance



Why accelerators? cont’d.

Better real-time performance.
 Put time-critical functions on less-loaded 

processing elements.

Better Energy-Delay tradeoffs



Why accelerators? cont’d.

Good for :
 I/O processing in real-time.
 Data streaming (audio, video, network 

traffic, real-time monitoring, etc.)
 Specific “complex” operations:
 FFT, DCT, EXP, LOG, …

 Specific “complex” algorithms:
Neuronal networks, …



Accelerated system architecture
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Accelerator implementations

Application-specific Integrated Circuit 
(ASIC).
Field-programmable gate array (FPGA).
Standard component.
 Example: graphics processor.



System design tasks

Design a heterogeneous multiprocessor 
architecture.
 Processing element (PE): CPU, accelerator, 

etc.
Program the system.



Accelerated system design

First, determine that the system 
really needs to be accelerated.
 How much faster is the accelerator on the 

core function?
 How much data transfer overhead?
Design the accelerator itself.
Design CPU interface to accelerator.



Performance analysis

Critical parameter is speedup: how 
much faster is the system with the 
accelerator?
Must take into account:
 Accelerator execution time.
 Data transfer time.
 Synchronization with the master CPU.



Accelerator execution time

Total accelerator execution time:
 taccel = tin + tx + tout

Data input
Accelerated
computation

Data output



Data input/output times

Bus transactions include:
 flushing register/cache values to main 

memory;
 time required for CPU to set up 

transaction;
 overhead of data transfers by bus 

packets, handshaking, etc.



Accelerator speedup

Assume loop is executed n times.
Compare accelerated system to non-
accelerated system:
 S = n(tCPU - taccel)
 = n[tCPU - (tin + tx + tout)]

Execution time on CPU



Single- vs. multi-threaded

One critical factor is available 
parallelism:
 single-threaded/blocking: CPU waits for 

accelerator;
 multithreaded/non-blocking: CPU continues 

to execute along with accelerator.
To multithread, CPU must have useful 
work to do.
 Software must also support multithreading.



Sources of parallelism

Overlap I/O and accelerator 
computation.
 Perform operations in batches, read in 

second batch of data while computing on 
first batch.

Find other work to do on the CPU.
 May reschedule operations to move work 

after accelerator initiation.



Accelerator/CPU interface

Accelerator registers provide control 
registers for CPU.
Data registers can be used for small 
data objects.
Accelerator may include special-
purpose read/write logic.
 Especially valuable for large data 

transfers.



Accelerator “usual” problems

Memory consistency and coherency 
(specially if the CPU has caches)
Partitioning the source code into 
accelerated chunks.
Scheduling of the code chunks.
Allocation to accelerators (if many)



Accelerated systems

Several off-the-shelf boards are 
available for acceleration in PCs:
 FPGA-based core;
 PCIe bus interface.



Natural Markets
Embedded Systems
 FPGAs appearing in set-top boxes, routers, audio 

equipment, etc.
 Advantages

 Performance close to ASIC, sometimes at much lower cost
 Many other embedded systems still use ASIC due to high volume

 Cell phones, iPod, game consoles, etc.
 Reconfigurable!

 If standards change, architecture is not fixed
 Can add new features after production



Natural Markets
High-performance embedded computing (HPEC)
 High-performance/super computing with special needs (low 

power, low size/weight, etc.)
 Satellite image processing
 Target recognition in a UAV

 Advantages
 Much smaller/lower power than a supercomputer
 Fault tolerance



Natural Markets

High-performance computing (HPC)
 Cray, SGI, DRC, GiDEL, Nallatech, 

XtremeData
 Combine high-performance microprocessors 

with FPGA accelerators
 Novo-G

 192 Altera Stratix III FPGAs integrated 
with 24 quad-core microprocessors

Advantages
 HPC used for many scientific apps

 Low volume, ASIC rarely feasible, 
microprocessor too slow

 Lower power consumption
 Increasingly important
 Cooling and energy costs are dominant factor 

in total cost of ownership



Natural Markets
General-purpose computing???
 Ideal situation: desktop machine/OS uses a programmable 

accelerator to speedup up all applications (similar to GPU 
trend)

 Problems 
 The accelerator can be very fast, but not for all applications

 Generally requires parallel algorithms
 Coding constructs used in many applications not appropriate 

for hardware
 Subject of tremendous amount of past and likely future 

research
How to use extra transistors on general purpose CPUs?
 More cache
 More microprocessor cores
 GPU
 FPGA?
 Something else?



Limitations of FPGA acceleration
1) Not all applications can be improved

2) Tools need serious improvement!
3) Design strategies are often ad hoc
4) Floating point?
 Requires a lot of area, but performance is becoming 

competitive with other devices
 Already superior in terms of energy
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Natural Markets
General-purpose computing???
 Ideal situation: desktop machine/OS uses a programmable 

accelerator to speedup up all applications (similar to GPU 
trend)

 Problems 
 The accelerator can be very fast, but not for all applications

 Generally requires parallel algorithms
 Coding constructs used in many applications not appropriate 

for hardware
 Subject of tremendous amount of past and likely future 

research
How to use extra transistors on general purpose CPUs?
 More cache
 More microprocessor cores
 GPU
 FPGA?
 Something else?



Something else…

Brain-inspired accelerators



Neurmorphic Architectures



Historical Highlights

Neuromorphic: mimic neuro-biological 
architectures present in the nervous system

Coined by Carver Mead (CalTech) in the 80’s
Took-off in the 90’s. 
Consolidated in the late 00’s
 2009 Stanford (Neurogrid)
 2011 MIT (Brain chip)
 2012 IBM (Neurosynaptic chip)
 2013 HP 



Artificial Neural Network Chips

Early neuromorphic architectures were 
artificial neural network chips
Examples:
 ETANN : (1989) Entirely analog chip that 

was designed for feed forward artificial 
neural network operation. 

 Ni1000 : (1996) Significantly more 
powerful than ETANN, however has 
narrower functionality



SYNAPSE-1 System Architecture

Siemens, 1995

SYNAPSE-1 is a 
modular system 
arranged as a 2D 
array of MA16s, 
weight memories, 
data units, and a 
control unit



Modern Architectures:
Custom Circuits



Neurogrid

(2005) Neurogrid is a multi-chip 
system developed by Kwabena Boahen 
and his group at Stanford University 
[9]
 Objective is to emulate neurons 
 Composed of a 4x4 array of Neurocores
 Each Neurocore contains a 256x256 array 

of neuron circuits with up to 6,000 
synapse connections



The FACETS Project

(2005) Fast Analog Computing with Emergent 
Transient States (FACETS)

 A project designed by an international collective of 
scientists and engineers funded by the European Union

 Developed a chip containing 200,000 neuron circuits 
connected by 50 million synapses. 

Now continues under the Brain Scale S project



Modern Architectures:
Custom Circuits



FPGA Model
Torres-Huitzil et. al (INRIA, 2005) 
designed an hardware architecture for a 
bio-inspired neural model for motion 
estimation. 
 Architecture has 3 basic components which 

perform spatial, temporal, and excitatory-
inhibitory connectionist processing. 

 Observed approximately 100 x speedup over 
Pentium 4 processor implementation for 128x128 
images



CMOL based design
CMOL = Cmos + MOLecular (2003)
Konstantin Likharev (State University of New York at Stony Brook)
Dan Hammerstrom (Porland State University / DARPA)

Similar approach as HP with Memristors



HTM on FPGAs

Implemented on a Cray XD1

Hierarchical temporal memory (HTM) is a machine learning model 
developed by Jeff Hawkins and Dileep George of Numenta, Inc. that 
models some of the structural and algorithmic properties of the 
neocortex. 
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PEs on FPGA
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In an artificial neural network, neurons can take many forms and are 
typically referred to as Processing Elements (PE) to differentiate 
them from the biological equivalents



Other examples
18 ARM9 cores simulating the brain

Accelerating specific applications
 Typically machine learning problems -> Hardware neuronal networks
 Pattern recognition
 Filtering, etc.

 Check the works of Olivier Temam (INRIA)



Another approach: 
Simulation (i.e. software)



Large Scale Simulations

Human Brain Project, EU 2013
BRAIN Initiative, USA 2012

Previously:
 IBM:

 Blue Brain Project: IBM & EPFL (Switzerland)
 IBM Almaden Research Center

 Los Alamos National Lab
 Air Force Research Laboratory
 Academia:

 Portland State University
 Royal Institute of Technology (KTM, Sweden)



Going anywhere?
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