
1

Accelerators

Accelerators

Accelerated systems.
System design:
 performance analysis;
 scheduling and allocation.

Accelerated systems

Use additional computational unit
dedicated to some functions?
 Hardwired logic.
 Extra CPU.
Hardware/software co-design: joint
design of hardware and software
architectures.

Accelerator vs. co-processor

A co-processor executes instructions.
 Instructions are dispatched by the CPU.
An accelerator appears as a device on
the bus.
 The accelerator is controlled by registers.

Why accelerators?

Better cost/performance.
 Custom logic may be able to perform

operation faster than a CPU of equivalent
cost.

 CPU cost is a non-linear function of
performance.

cost

performance

Why accelerators? cont’d.

Better real-time performance.
 Put time-critical functions on less-loaded

processing elements.

Better Energy-Delay tradeoffs

Why accelerators? cont’d.

Good for :
 I/O processing in real-time.
 Data streaming (audio, video, network

traffic, real-time monitoring, etc.)
 Specific “complex” operations:
 FFT, DCT, EXP, LOG, …

 Specific “complex” algorithms:
Neuronal networks, …

Accelerated system architecture

CPU

accelerator

memory

I/O

request

data
result
data

Accelerator implementations

Application-specific Integrated Circuit
(ASIC).
Field-programmable gate array (FPGA).
Standard component.
 Example: graphics processor.

System design tasks

Design a heterogeneous multiprocessor
architecture.
 Processing element (PE): CPU, accelerator,

etc.
Program the system.

Accelerated system design

First, determine that the system
really needs to be accelerated.
 How much faster is the accelerator on the

core function?
 How much data transfer overhead?
Design the accelerator itself.
Design CPU interface to accelerator.

Performance analysis

Critical parameter is speedup: how
much faster is the system with the
accelerator?
Must take into account:
 Accelerator execution time.
 Data transfer time.
 Synchronization with the master CPU.

Accelerator execution time

Total accelerator execution time:
 taccel = tin + tx + tout

Data input
Accelerated
computation

Data output

Data input/output times

Bus transactions include:
 flushing register/cache values to main

memory;
 time required for CPU to set up

transaction;
 overhead of data transfers by bus

packets, handshaking, etc.

Accelerator speedup

Assume loop is executed n times.
Compare accelerated system to non-
accelerated system:
 S = n(tCPU - taccel)
 = n[tCPU - (tin + tx + tout)]

Execution time on CPU

Single- vs. multi-threaded

One critical factor is available
parallelism:
 single-threaded/blocking: CPU waits for

accelerator;
 multithreaded/non-blocking: CPU continues

to execute along with accelerator.
To multithread, CPU must have useful
work to do.
 Software must also support multithreading.

Sources of parallelism

Overlap I/O and accelerator
computation.
 Perform operations in batches, read in

second batch of data while computing on
first batch.

Find other work to do on the CPU.
 May reschedule operations to move work

after accelerator initiation.

Accelerator/CPU interface

Accelerator registers provide control
registers for CPU.
Data registers can be used for small
data objects.
Accelerator may include special-
purpose read/write logic.
 Especially valuable for large data

transfers.

Accelerator “usual” problems

Memory consistency and coherency
(specially if the CPU has caches)
Partitioning the source code into
accelerated chunks.
Scheduling of the code chunks.
Allocation to accelerators (if many)

Accelerated systems

Several off-the-shelf boards are
available for acceleration in PCs:
 FPGA-based core;
 PCIe bus interface.

Natural Markets
Embedded Systems
 FPGAs appearing in set-top boxes, routers, audio

equipment, etc.
 Advantages

 Performance close to ASIC, sometimes at much lower cost
 Many other embedded systems still use ASIC due to high volume

 Cell phones, iPod, game consoles, etc.
 Reconfigurable!

 If standards change, architecture is not fixed
 Can add new features after production

Natural Markets
High-performance embedded computing (HPEC)
 High-performance/super computing with special needs (low

power, low size/weight, etc.)
 Satellite image processing
 Target recognition in a UAV

 Advantages
 Much smaller/lower power than a supercomputer
 Fault tolerance

Natural Markets

High-performance computing (HPC)
 Cray, SGI, DRC, GiDEL, Nallatech,

XtremeData
 Combine high-performance microprocessors

with FPGA accelerators
 Novo-G

 192 Altera Stratix III FPGAs integrated
with 24 quad-core microprocessors

Advantages
 HPC used for many scientific apps

 Low volume, ASIC rarely feasible,
microprocessor too slow

 Lower power consumption
 Increasingly important
 Cooling and energy costs are dominant factor

in total cost of ownership

Natural Markets
General-purpose computing???
 Ideal situation: desktop machine/OS uses a programmable

accelerator to speedup up all applications (similar to GPU
trend)

 Problems
 The accelerator can be very fast, but not for all applications

 Generally requires parallel algorithms
 Coding constructs used in many applications not appropriate

for hardware
 Subject of tremendous amount of past and likely future

research
How to use extra transistors on general purpose CPUs?
 More cache
 More microprocessor cores
 GPU
 FPGA?
 Something else?

Limitations of FPGA acceleration
1) Not all applications can be improved

2) Tools need serious improvement!
3) Design strategies are often ad hoc
4) Floating point?
 Requires a lot of area, but performance is becoming

competitive with other devices
 Already superior in terms of energy

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Sp
ee

du
p

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Sp
ee

du
p

Embedded Applications – Large Speedups Desktop Applications – No Speedup

Natural Markets
General-purpose computing???
 Ideal situation: desktop machine/OS uses a programmable

accelerator to speedup up all applications (similar to GPU
trend)

 Problems
 The accelerator can be very fast, but not for all applications

 Generally requires parallel algorithms
 Coding constructs used in many applications not appropriate

for hardware
 Subject of tremendous amount of past and likely future

research
How to use extra transistors on general purpose CPUs?
 More cache
 More microprocessor cores
 GPU
 FPGA?
 Something else?

Something else…

Brain-inspired accelerators

Neurmorphic Architectures

Historical Highlights

Neuromorphic: mimic neuro-biological
architectures present in the nervous system

Coined by Carver Mead (CalTech) in the 80’s
Took-off in the 90’s.
Consolidated in the late 00’s
 2009 Stanford (Neurogrid)
 2011 MIT (Brain chip)
 2012 IBM (Neurosynaptic chip)
 2013 HP

Artificial Neural Network Chips

Early neuromorphic architectures were
artificial neural network chips
Examples:
 ETANN : (1989) Entirely analog chip that

was designed for feed forward artificial
neural network operation.

 Ni1000 : (1996) Significantly more
powerful than ETANN, however has
narrower functionality

SYNAPSE-1 System Architecture

Siemens, 1995

SYNAPSE-1 is a
modular system
arranged as a 2D
array of MA16s,
weight memories,
data units, and a
control unit

Modern Architectures:
Custom Circuits

Neurogrid

(2005) Neurogrid is a multi-chip
system developed by Kwabena Boahen
and his group at Stanford University
[9]
 Objective is to emulate neurons
 Composed of a 4x4 array of Neurocores
 Each Neurocore contains a 256x256 array

of neuron circuits with up to 6,000
synapse connections

The FACETS Project

(2005) Fast Analog Computing with Emergent
Transient States (FACETS)

 A project designed by an international collective of
scientists and engineers funded by the European Union

 Developed a chip containing 200,000 neuron circuits
connected by 50 million synapses.

Now continues under the Brain Scale S project

Modern Architectures:
Custom Circuits

FPGA Model
Torres-Huitzil et. al (INRIA, 2005)
designed an hardware architecture for a
bio-inspired neural model for motion
estimation.
 Architecture has 3 basic components which

perform spatial, temporal, and excitatory-
inhibitory connectionist processing.

 Observed approximately 100 x speedup over
Pentium 4 processor implementation for 128x128
images

CMOL based design
CMOL = Cmos + MOLecular (2003)
Konstantin Likharev (State University of New York at Stony Brook)
Dan Hammerstrom (Porland State University / DARPA)

Similar approach as HP with Memristors

HTM on FPGAs

Implemented on a Cray XD1

Hierarchical temporal memory (HTM) is a machine learning model
developed by Jeff Hawkins and Dileep George of Numenta, Inc. that
models some of the structural and algorithmic properties of the
neocortex.

Level 2

AMD
Processor

Level 1

AMD
Processor

FPGA PEPE FPGA PEPE

AMD
Processor

Off-Chip
Memory

Off-Chip
Memory

Level 2

AMD
Processor

Level 1

Level 3

AMD
Processor

FPGA PEPE FPGA PEPE

AMD
Processor

Off-Chip
Memory

Off-Chip
Memory

PEs on FPGA

To Host Processor

Interface and
Reconfiguration

Logic

Level 2
Node

Pxu

λ/π

Addr Addr (A)
Memory

Access Unit
A D

Data (D)Data

To External
Memory
Interface Processing Element (PE)

λ/π
Pxu

λ

A D

A
D

λ

Pxu
λ/π

Level 1
Node

A D

A
D

A D
Pxu

λ
λ/π

Level 1
NodeA

D

Pxu

λ
λ/π

Level 1
Node

A D

A
D

Level 1
Node

To Host Processor

Interface and
Reconfiguration

Logic

Level 2
Node

Pxu

λ/π

Addr Addr (A)
Memory

Access Unit
A D

Data (D)Data

To External
Memory
Interface Processing Element (PE)

λ/π
Pxu

λ

A DA D

A
D
A
D

λ

Pxu
λ/π

Level 1
Node

A D

A
D

A D
Pxu

λ
λ/π

Level 1
NodeA

D

Pxu

λ
λ/π

Level 1
Node

A DA D

A
D
A
D

Level 1
Node

To Host Processor

Interface and
Reconfiguration

Logic

Level 2
Node

Pxu

λ/π

Addr Addr (A)
Memory

Access Unit
A D

Data (D)Data

To External
Memory
Interface Processing Element (PE)

λ/π
Pxu

λ

A D

A
D

λ

Pxu
λ/π

Level 1
Node

A D

A
D

A D
Pxu

λ
λ/π

Level 1
NodeA

D

Pxu

λ
λ/π

Level 1
Node

A D

A
D

Level 1
Node

To Host Processor

Interface and
Reconfiguration

Logic

Level 2
Node

Pxu

λ/π

Addr Addr (A)
Memory

Access Unit
A D

Data (D)Data

To External
Memory
Interface Processing Element (PE)

λ/π
Pxu

λ

A DA D

A
D
A
D

λ

Pxu
λ/π

Level 1
Node

A D

A
D

A D
Pxu

λ
λ/π

Level 1
NodeA

D

Pxu

λ
λ/π

Level 1
Node

A DA D

A
D
A
D

Level 1
Node

In an artificial neural network, neurons can take many forms and are
typically referred to as Processing Elements (PE) to differentiate
them from the biological equivalents

Other examples
18 ARM9 cores simulating the brain

Accelerating specific applications
 Typically machine learning problems -> Hardware neuronal networks
 Pattern recognition
 Filtering, etc.

 Check the works of Olivier Temam (INRIA)

Another approach:
Simulation (i.e. software)

Large Scale Simulations

Human Brain Project, EU 2013
BRAIN Initiative, USA 2012

Previously:
 IBM:

 Blue Brain Project: IBM & EPFL (Switzerland)
 IBM Almaden Research Center

 Los Alamos National Lab
 Air Force Research Laboratory
 Academia:

 Portland State University
 Royal Institute of Technology (KTM, Sweden)

Going anywhere?

43

