ACOEPT

SEVENTH FRAMEWORK PROGRAMME
THEME ICT-2011.4.2(a)
Language Technologies

ACCEPT

Automated Community Content Editing PorTal
www.accept.unige.ch

Starting date of the project: 1 January 2012

Overall duration of the project: 36 months

Browser-based client demonstrator and adapted
post-editing environment and evaluation portal prototypes

Workpackage n° 5 Name: Portal Integration

Deliverable n° 5.6 Name: Browser-based client demonstrator and adapted
post-editing environment and evaluation portal prototypes

Due date: 31 December 2013 Submission date: 19 December 2013

Dissemination level: PU

Organisation name of lead contractor for this deliverable: SYMANTEC

The research leading to these results has received funding from the European
Community's Seventh Framework Programme (FP7/2007-2013) under grant
agreement n°® 288769.

SEVENTH FRAMEWORK
PROGRAMME

Table of Contents

FOP@WOI ...ttt st ettt e b e s b e s st e e st e et e et e et e e sbeesheesanesane s b e e beenbeenneennees 4
1 Objectives and Structure of the Deliverable ... 4
2 Overview of the ACCEPT INfrastrUCTUIEcooiuiiiiiieieiiie ettt 4
3 The ACCEPT Pre-Edit COMPONENTSuviiiiiiieeeciiee e ccitee ettt e e rtre e e e eire e e e bae e e e sabae e e e sasaeeaesaneeeessanees 6
3.1 The ACCEPT Pre-Edit APl ..cccoieeei ettt e e st e e st e s st e e s ssbee e e senbeeeesnnsaeeesans 6
3.11 Overview of the New API Methodscooiiiiiienieeee e 6

3.2 The ACCEPT Pre-Edit PIUG-iN......ccoiiiii ettt ettt e e e tte e e s evte e e e saraaeeeans 7
3.2.1 Installation and Configuration..........ocoueeciiiiiii i 7
3.2.2 Configuration OPLIONSuuiiiiiie i e e e e e e e e re e e e e e e e e e ennbraaeeeeeeeanas 8
3.2.3 New and Updated FUNCLIONAlItY.....cccuviiiiiiiiie et 8
3.2.4 DoWNI0adable PAckageccooceeeiiiieiie ettt e 13

33 The ACCEPT Pre-Edit DEMOeiiiiieiiee ettt sttt et smee e saree e 14

4 The ACCEPT Post-Edit COMPONENTSvviiiiiiiiiecciiiee ettt et estee e e s sar e e e esaae e e esasaaeeesneaneeens 15
4.1 New Post-Edit Plug-in FUNCLIONAlitycuvviiieeeiceeeee e 15
4.1.1 Target TEXE DiSPIaY ..uueeeeee i e et e e e e e e ta e e e e e e e e e nnraaeeeeas 15
4.1.2 Source SEEMENt DiSPlaY ..eccccuuiieiiiiiiee e rae e 15
4.1.3 2 0<Tolo o [T Y= T o o1 TSP 16

4.2 New Portal-Based Project FUNCLIONAlity......coeeeiiiicciiiiiiieee e 18
4.2.1 T Y Ao F- | I o o =Tt £ EPUSP 18
4.2.2 Projects With Single ReVISIONcccciiiiiiiiiie e e e 21

4.3 The ACCEPT POSt-Edit DEMOS ...ccccuiieiiiiiiiieeieeeiteesiee ettt st et s e ssnee e sreesreeesmneesneeenes 23

5 The ACCEPT Evaluation COMPONENTSc.uiiiiiciiieeccieee ettt e etee e etee e e aee e e eate e e s e aaae e e sntae e e eaneeas 24
5.1 Updated ACCEPT Evaluate Project Management Section..........cceecuveeeeciieeeccciee e, 24
5.2 Updated ACCEPT EVAlUGtioN APl ...ttt e e e e e et ree e e e e e e et e e e e e e e 24
5.3 The ACCEPT Appraise COMPONENTccccuviiieeiiiieeeiiieeeecitreeesireeeeeitreessnareesesasaeeesssseeessssseeaas 26
531 MOTIVATION Leeiiiiiiiiiii e s 26
5.3.2 MOITICALIONS ..ttt e st e e sar e smee e sareeeanes 27
5.3.3 [N =Y < = | o] o D 29
RETEIEINCES ...ttt ettt et et e bt e s bt e s bt e sae e st e s bt e bt e bt e sme e et e ean e e reenreen 29
Appendix 1: External Call Integration for the Pre-Edit plug-in.......ccccoevviiiicciiiiieee e, 30
R I =1 TSP PRV PP UO PP 30

Y 111 PO T PRSPPI 31

Y I =1 L TP PP PT OO U PP PPPPUPIRt 31
STEP 4 ettt ettt h e s h ettt b e bbb et e a ettt e Rt e bt e nheesaeesabe e reereenes 32
ST P 5 ettt st e b e bt b e b e e e b et e a ettt e bt e e bt e sh e e san e e bt e b e e reeres 32
Appendix 2: Pre-Edit Plug-in Configuration OptioNnsS.........c.uuviiiiiii et e e e e 35
Appendix 3: First Steps with the ACCEPT Portal and PIUg-iNS.......ccccuuiiieeeiiicccieeeeee e e 40
Appendix 4: Overview of the JSON Response FOrMaAtccccuviviiiieiiiiiiieeccieee e e e seenee e 41

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

The ACCEPT @rChitECEUIE ..ciiiiiieiie ettt st re e sbe e e sbae e sbeesbeeesareeens 4
The ACCEPT Portal |anding PAgeccccuviiiieee e ceciiieeee ettt e e eeeeteee e e e e e e seaae e e e e e e e anenneees 5
The Learn Section of the ACCEPT POItal........ccccueeeiiieiiieccie et stee e e seee e 5
The ACCEPT Pre-Edit S€SSioN SChEMA......iiiiiiiiiiiiiieriee ettt 6

First Pre-Edit PrototyPe oo et e e e e e e e e e e e e e e e anbrae e e e e e e e eaanns 8
New tooltips with short recommendationscccoveeiiieciiiiiie e 9
The editable area of the new Pre-Edit plug-inccoeoiiiiiiiiiie e 10
Presenting annotated HTIMIL CONTENT.......ooiei it et e e e e e e eannees 10

Figure 9: Selection of a rule set and the display of the “Replace All” button........ccccccceevveeeeciieeeennneen. 11
Figure 10: The management of 1€arnt WOrdS........ccuiiiiiiiei i e 12
Figure 11: Contextual Nelp dialog........ccuuiiiiiiie e e e e e e e et re e e e e e e 13
Figure 12: The French Pre-Edit demo on the ACCEPT Portalccceeeeeciiiieiee e 14
Figure 13: Source text display using target templates.......ccecvverieciee e 15
Figure 14: Showing or hiding the soUrce SEEMENt.......ccceei i 16
Figure 15: Displaying Post-Editing phase information in XLIFF reportscccccccveeecieeecncieeecsciee e, 16
Figure 16: Displaying Post-Editing revision in XLIFF reportsccccveeiiciieeeeiiee e cciee e e 18
Figure 17: External Post-Edit Project Creation ... eccciiiieee ettt e e e e 19
Figure 18: Post-Edit plug-in initialisation OPtioNScccvveiiiiiiiiice e 20
Figure 19: Creation of a single revision project with a 20-minute 1ocK........ccccceveiiiiiiiieenicciee e, 22
Figure 20: LOCKING PEIriOd WaIMING ...cccccviieieiieie e ettt e ettt e e eetteeeestee e e eeatteeeesasaeeeesasaeeeeanseeeesanseesesanseneens 23
Figure 21: Post-Edit demos on the ACCEPT POrtal......cccueeiiciieiiiiiiiee ettt 23
Figure 22: POSt-Edit d@MO TaSK......uviiiiciiieeciieie et e et e e e saa e e e e asbeeeesnaraee s 23
Figure 23: Format of evaluation CONTENTeoiiiiiiiie ettt e e e ee s 24
Figure 24: SCores Method's FESPONSE.......uii ittt e e e s e s e sare e e e sbbeeeessbeeeesnraeees 26
Figure 25: ACCEPT evaluation task USING APPraiSecccueieiiceiieiiiieeeecieeeesreeessreeeesare e e e sareeessnsaee s 28
Figure 26: Adding video-based evaluation guidelines to Appraise tasks.........ccccecvieeeeciiieecciiee e, 28
Figure 27: Integrating Appraise within the ACCEPT Portalccoocuiiiiiciiiiiiiiie e 29
Figure 28: Step 1 of external call EXamMPIEueii i 30
Figure 29: Step 2 of external call eXamMPIeoooieiiie e e e 30
Figure 30: Step 3 of external call EXamMPIEueviieiiie e 31
Figure 31: Step 4 of external call EXamMPIeuiiiiiiiie e 32
Figure 32: Step 5 of external call @Xample ... e e 33
Figure 33: Structure of usage report in JSON format........ccoccuiiiiiiiiie e 41
Figure 34: ClientResults usage information ... iciiie e 42
Figure 35: Results usage iNnformation...........o e e e e e 42

Foreword

As agreed with the Project Officer on 7 May 2013, the original deliverables D5.4 (Browser-based
client demonstrator used to access acrolinx 1Q server), D5.5 (Adapted Post-Editing Environment
prototype) and D5.6 (Adapted evaluation portal prototype) are being merged into the present,
common deliverable (D5.6).

1 Objectives and Structure of the Deliverable

The main objective of this deliverable, which encompasses Tasks 5.1, 5.2 and 5.3, was to refine the
prototypes that had been developed in Year 1. Specifically, the main goal of Task 5.1 was to
transform the Year 1 checking client prototype into a full-fledged demonstrator in order to meet the
requirements of the evaluation work carried out in WP9. The main goal of Task 5.2 was to refine the
Year 1 post-editing environment prototype by taking into account the feedback received through the
Year 1 User Studies (see deliverables D7.1.1 and D8.1.1) as well as the feedback collected through
our Special Interest Group (see Task 10.2). The main goal of Task 5.3 was to refine the Year 1
evaluation framework prototype, by taking into account user requirements originating from Tasks 8.2,
9.2and9.3.

The deliverable is structured as follows: a quick summary of the ACCEPT infrastructure is presented
before describing all of the ACCEPT components in detail. These components are divided into three
main parts: the Pre-Edit components, the Post-Edit components and the Evaluation components.
These components are described and discussed in separate sections.

2 Overview of the ACCEPT Infrastructure

(ACCEPT API CLIENTS l

e

(" ACCEPT API SERVER

r’/ h M
J AN
-
i (Internet \J
e

|#CCEPT AP| DATABASE &

ACROLINX APl |

{W@

Figure 1: The ACCEPT architecture

The ACCEPT infrastructure comprises three main modules (Pre-Edit, Post-Edit and Evaluation), each
of which is made of multiple components (e.g., API, plug-in, portal section). A fourth module is based

4

on a customised version of the Appraise system and is only available as a portal section. The Appraise
system is an open-source tool for manual evaluation of Machine Translation output (Federmann,
2012). Since this module may be used to perform evaluation tasks, it will be covered in the
Evaluation section of this deliverable. An instance of the ACCEPT APl has been deployed alongside
the ACCEPT Portal (www.accept-portal.eu and www.accept-portal.com). The ACCEPT architecture is

presented in Figure 1.

While the ACCEPT infrastructure is quite simple, a user who visits the ACCEPT portal for the first time
may be overwhelmed by the amount of functionality available, as shown below:

I A‘ o+ 'EPI ABOUT PREEDIT POSTEDIT EVALUATE APPRAISE LEARN LOGOUT

€% English

About
ACCEPT is a Collaborative Project - STREP aimed at developing new methods and techniques to make machine translation (MT) work better
in the environment characterised by internet communities sharing specific information.

Today, anyone can in principle create information and make it available to anyone in the world with internet access. Yet the language
barrier remains: however accessible information is, it is still only available to those who speak the language it is written in. ACCEPT's mission
is to help communities share information more effectively across the language barrier, by improving the gquality of machine-translated
community contant.

Want to know more about it?

Click here.

Figure 2: The ACCEPT Portal landing page

In order to help first-time users navigate the ACCEPT Portal, a quick-start guide has been added to
the Learn section of the Portal, as shown below:

- AC+0EPI ABOUT PREEDIT POSTEDIT EVALUATE APPRAISE LEARN

ACCEPT Portal documentation » next | index

@AC{JEPT ACCEPT Portal Documentation

Table Of Contents | Warning: This documentation set is currently work in progress and available in English only!

ACCEPT Portal Documentation
Indices and tables Note: This documentation set serves as reference documentation so if this is your first time interacting with the Portal or one of the
Nexttopic ACCEPT plug-ins, you may want to start with our Quick Starf Guide.
Quick Start Guide The ACCEPT Portal has been created within the ACCEPT project. The Portal comprises three modules (Pre-Edit, Post-Edit and
Evaluation). each of which being made of multiple components {e.g. AP, plug-in, portal section).

This Page
s Quick Start Guide

Figure 3: The Learn section of the ACCEPT Portal

From a technical perspective, the content of the Learn section is created using the reStructuredText

format and Sphinx. This technology allows the creation of self-contained topics written in a
human-readable format, which can then be combined in multiple ways in order to produce various
documentation sets (e.g., HTML, PDF, etc). The main points of the quick-start guide are summarized
in Appendix 3: First Steps with the ACCEPT Portal and Plug-ins.

http://www.accept-portal.eu/
http://www.accept-portal.com/
http://www.accept-portal.eu/AcceptPortal/en-US/Documentation/Index
http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/

3 The ACCEPT Pre-Edit Components
This section presents the new APl methods that have been introduced to extend the ACCEPT Pre-Edit
functionality and the modifications that have been made to the Pre-Edit plug-in and demo.

3.1 The ACCEPT Pre-Edit API

The ACCEPT Pre-Edit APl can be easily described as a piece of software built as a wrapper for the
Acrolinx services. The ACCEPT Pre-Edit APl combines the main features available within the Acrolinx
services in an independent REST (Representational State Transfer) API. This includes the following
functionalities: spell checking, grammar checking and style checking. Two new Pre-Edit API methods
have been added to retrieve the usage information of a Pre-Edit plug-in instance. The methods are
SimpleGlobalSessionDomain and GlobalSessionDomain.

3.1.1 Overview of the New API Methods
A global session corresponds to what happens between the time when a Pre-Edit client is opened
and when it is closed by a user, as detailed in the diagram below:

Check Check Chedk
Sessian ID J| Session 1D /| Session 1D

ACCEFT DB
[API RequestsAuditI UsedFlags sudit j

)

€ 3ACOEPT

Figure 4: The ACCEPT Pre-Edit session schema

A global session starts when a user triggers a check (when the main window of the Pre-Edit plug-in
opens) and ends when the user closes the window. A global session may have more than one child
session (e.g. auto-check, manual re-check). Each check is associated with an APl request audit trace
and with the Acrolinx response. Global session information for a given Pre-Edit client instance can be
retrieved from a given date up until the present using the following request (which will return a
response in JSON format):

http://[accept_portal server]/AcceptApi/Api/v[api_version]/Core/SimpleGloba
1SessionDomain/?id=[instance_id]&start=[date]&end=[date]&userKey=[user_key],

where [accept_portal_server] is the name or IP address of the server running the ACCEPT portal and
[api_version] is the version of the API (current is 1). [instance_id], [date] and [user_key] correspond
to values for the following parameters:

e id: APl key used by one or more client instance

e start: starting date for range in UTC format

e end: end date for range in UTC format

e userKey: key of user who created the client instance.

6

Note: This request may return usage data for multiple languages (e.g. EN, FR or DE) if the API key is
shared by multiple client instances. To obtain specific usage data (say, for a given language), filtering
on rule set names or language information may be required. To export the usage data in CSV format,
the format parameter is specified as follows:

http://[accept_portal server]/AcceptApi/Api/v[api_version]/Core/SimpleGloba
1SessionDomain/?id=[instance_id]&start=[date]&end=[date]&userKey=[user_key]
&format=csv

To export the data in Excel format, the format parameter is specified as follows:

http://[accept_portal_server]/AcceptApi/Api/v[api_version]/Core/SimpleGloba
1SessionDomain/?id=[instance_id]&start=[date]&end=[date]&userKey=[user_key]
&format=excel

Note: The SimpleGlobalSessionDomain method only generates global session data. To get the data
including child session information, which is much more detailed since it contains all of the checks
that were made in a given global session, the GlobalSessionDomain may be used as follows:

http://[accept_portal_server]/AcceptApi/Api/v[api_version]/Core/GlobalSessi
onDomain/?id=[instance id]&start=[date]&end=[date]&userKey=[user key]

o The GlobalSessionDomain method does not currently accept any format parameter, its only
response format being a JSON format, but this may change in the future. Detailed
information on the response format is provided in Appendix 4: Overview of the JSON
Response Format.

3.2 The ACCEPT Pre-Edit Plug-in
The ACCEPT plug-in uses the CORS (Cross Origin Resource Sharing) mechanism, which confines the
Pre-Edit plug-in support to the following browsers:

e Motzilla Firefox 3.6.28+
e Internet Explorer 8+

e Safari 4+

e QOperal2+

e Chrome 20+.

Support for Internet Explorer 8 was added in order to ensure that the most common browsers would
be supported.

3.2.1 Installation and Configuration

The plug-in can be installed in a number of ways, such as using a context menu or embedding into a
text editor, as detailed in Deliverable 5.1. Another way to achieve the installation is to perform an
external call integration. An external call integration allows the developer to use an existing HTML
element in the Web page (or even inject a new HTML element) to trigger the plug-in dialog. This is
best approach for situations where there is an existing embedded text editor in place and even minor
changes in the Web page style are undesirable. A full walkthrough is provided in Appendix 1: External
Call Integration for the Pre-Edit plug-in.

http://enable-cors.org/client.html

3.2.2 Configuration Options
In order to use the ACCEPT plug-in, an API Key is required. To get an API key, a user may log into the
Accept Portal and go to: http://www.accept-portal.eu/AcceptPortal/Account/UserProfile.

This page lists a user’s current list of applications. To generate an APl key, the “Create new
Application” button may be clicked and the form filled in. The newly created application is listed in
the user’s profile details. To get the API key, the application name can be clicked. The API details will
be displayed alongside the API Key. The APl key will be associated with an IP address.

The ACCEPT Pre-Edit plug-in can be configured to work in many different ways. The supported
configuration options are described in Appendix 2: Pre-Edit Plug-in Configuration Options.

3.2.3 New and Updated Functionality
The feedback received throughout Year 1 suggested that the initial prototype should be refined to
allow users to:

e Be presented with pre-editing rule violations, suggestions and recommendations in a clear
and intuitive manner

e Edit the text while reviewing suggestions and recommendations without introducing conflicts
in the original text environment

e Check and edit HTML content

e Trigger manual checks

e Select specific rule sets and avoid being confused with the “ReplaceAll” functionality

e “Learn” words

e Ignore rules

e Provide active feedback to the system

e Get access to clear and concise help on how to use the plug-in.

3.2.3.1 Simplifying the display of rule violations and suggestions

One of the most frequent comments from the usability study conducted in Year 1 was complaints
about the excessive amount of tooltips, highlighting and underlining present in the window, as
shown below:

I ACGOEPT

To improve readability and
transiatabiity, aveid using modal verbs in | ever heard of the websile/program 5l
N your content. Modal verbs
This sentence is too long. Long sentel) .y e maymiphtmustshalishouldcanought |20 application when launched <11 keep

are difficult to read and to translate| B :
: toought tolacal verbs create anbiguily. | hen will compare against your friends'
short sentences instead. They reduce transiatability and 2 =

readability. 1 play a specific game. the more you
This Demo shows how we have . Fm’ms[zmce,‘ (keep in g 5 ZE). This editor has a lot of
. : s purely an example. not a legit sifualon). 1hr of Diablo 3 grants you = N
functionality, most of which is not 7 res: one of them is the green
nothing, however 6hrs of gameplay grant you a 20% off coupon for a

. The second feature can be
EPT) or one of the individual

ACCEPT button, which triggers a
accessed by right-clicking anywher
checks (spelling, grammar, or style

mouse courtesy of Raptr.com Or another example (again example). A
certain # of hours of gameplay grants you a beta access code to test out a
new game thats about to be released. So Raptr.com is about keeping your
gameplay stats, comparing against friends, and is cross platform your
XBox. Playstation Network and Steam Accounts all go hand in hand a
client that also allows you to talk as well to each other. Moving

Once your text is checked, results 1 aroblems will be highlighted or

underlined. In simple cases, clickir 0 improve your text. In more

complex cases, suggestions will no — - d decide whether you want to
on when T lannrh the Rantr axa annlication the ntneram Ings me the

make any changes in the text are: dicking “Replace”. Enjoy your

A

Figure 5: First Pre-Edit prototype

http://www.accept-portal.eu/AcceptPortal/Account/UserProfile

In order to address this problem, the following modifications were made:

e New types of tooltips were introduced (not only to improve the visual display of information
but also to better control their position in relation to the text and the plug-in)
e The time spent displaying a tooltip was adjusted in order to:
0 Give users enough time to read the text and interact with the tooltip (using the
mouse)
0 Avoid having two tooltips opened at the same time
0 Prevent tooltips from masking drop-down menus
e The amount of recommendation text returned by the language checking provider (Acrolinx)
was reduced (e.g. alongside the rule name, a short text description is now returned instead
of the complete rule specification)
e The color-coding scheme was simplified
e The amount of underlining was reduced (e.g. instead of underlining all of the words of a long
sentence, only the first and last words are now underlined; these first and last words are also
highlighted when the user hovers over one of them in order to help them visualize where the
long sentence ends).

I have 3 PCs, all running Windows 7 64-bit Home Premium, all with the latest version of N360 (20.2.0.19),
all connected to the same switch, which is connected to a router, and from there to my ISP All PCs arc on
the same workproup, all have network discovery and file and printer sharing tumed on, ¢tc, All can
independently access the internet.

Problem: none of the none of the PCs can see other in Windows Network. N360 is at least part of the

problem.
Fule:
Repeated word or character,

When I ping the PCs from a command prompt, the ping is unsuccessful. However, if T tum off N360's
firewall, the PCs can successfully ping each other. However, they still don't shaw up in Windows Explorer's
Network and Sharing Center.

With the N360 firewall tumed on. all the PCs do show up in N360's Network Security Map. T have set each
of them to *Full Trust” in Trust Control. [have set the default Network Trust level to "Shared”.

Why is N360's firewall blocking my own network PCs, even though I have set them all to "Full Trust™...2!
What can I do to have the PCs show up agaim in the Windows Network & Shering Center...?

o €3

Figure 6: New tooltips with short recommendations

The screenshot above shows that only two colors are now used to underline text: red for general
recommendations (e.g. “this sentence is too long”) and green for rules with actual replacement
suggestions. While the first prototype used colors to make a distinction between rule types (e.g.
spelling vs. style), the new plug-in focuses on the question of whether a replacement can be
suggested to the user. After another round of internal usability testing, we decided to switch the use
of these colors, since red is often is associated with errors (for which the system should suggest
alternatives).

3.2.3.2 Editing text while reviewing suggestions and recommendations

The other common complaint from users was the inability to edit their text while reviewing
suggestions. For instance, when they were being advised to reduce the length of a sentence, they
had to close the plug-in, edit the original text and check the text again. This workflow was clearly

9

inefficient, so support for text editing was introduced in the new version of the plug-in, as shown
below:

We is testing this new cogol approach whereby new words can be lgarnt and
annoying rules can be skipped on the client side - let's see how this works...

Path: Y

o
s

Figure 7: The editable area of the new Pre-Edit plug-in

Besides adding support for inline editing, we also decided to add the isModal configuration option to
control whether the plug-in window should behave in a modal way (which is now the default). Modal
windows are used to display additional content on a new page layer (window) on top of the loaded
content (i.e. the original Web page). This was done to ensure that users do not introduce conflicts by
modifying text in the plug-in window while also editing their original text in the native environment.

3.2.3.3 Checking HTML content

In addition to allowing users to edit their text while reviewing suggestions, we decided to introduce
support for non-text content. The first version of the plug-in only offered users the ability to check
text content, thus limiting the potential adoption of the tool in most Web applications. As shown
below, HTML content (including pictures, style and hyperlinks) can easily be checked, annotated and
edited using the Pre-Edit plug-in. Hyperlinks are actually disabled in the plug-in window but re-
enabled once the edited text is applied in the user’s native environment.

About =

ACCEPT is a Collaborative Project — STREP aimed at developing new methods and technigues to
make machine translation [MT) werk better in the environment characterised by internet
communities sharing specific information. l e

fii characterized
Today, anyone can in principle create information and make it available o srpame e ore wrere e
internet access, Yet the language barrier remains: however accessible informatien is, it is still enly
available to those who speak the language it is written in, ACCEPT's mission is to help communities
share infermation more effectively across the language barrier, by improving the quality of machine-
translated community content.

m

Want to know more about it ?

Click here.,

Stexcelers @ETE @ oot Psymantec

o oo [e

Figure 8: Presenting annotated HTML content

10

3.2.3.4 Triggering manual checks

As shown in Figure 8: Presenting annotated HTML content, a “Check” button is available in the
plug-in window if the showManualCheck configuration option is set to True. This button allows users
to manually re-check their text whenever they think new modifications require re-checking.

3.2.3.5 Displaying the “Replace All” button

Another source of confusion among users was the “FixAll” button in the first version of the plug-in.
This button requested automatic modification of the user’s text based on suggestions provided by
the language checking tool. Since this replacement approach is automatic, some modifications
introduced errors in the text, suggesting that the choice of the phrase “FixAll” was not appropriate.
To work around this problem, we decided to rename this option to “Replace All” and make it inactive
by default. One possible implementation is therefore to let the user decide whether this option
should be shown in the plug-in, as shown in Figure 9.

B I U | === |‘5| Rule Set I=]| Show Button "Replace All":
Portal_Set_{
Portal_Set_2
Portal_Set_3
Preediting_AutoSuggest
Preediting_MT
Path: p |

Figure 9: Selection of a rule set and the display of the “Replace All” button

3.2.3.6 Selecting a specific rule set

Figure 9 also shows that this plug-in implementation (which is in place on the Demo section of the
ACCEPT portal) lets users decide which rule set should be used to check their text. More information
on this option is available in the following section: The ACCEPT Pre-Edit Demo.

3.2.3.7 Learning words

One of the most popular feature requests was the ability to have the system “learn” words so that
they would no longer be flagged by the system. While the initial version of the plug-in offered users
the ability to ignore flags, these decisions were lost as soon as the user closed the plug-in window. In
this version of the plug-in, we decided to use a client-side storage mechanism to make such choices
persistent (i.e. using local storage or cookies depending on the browser used). We also decided to
provide the user with a way to manage the words they had learnt. As shown in Figure 8: Presenting
annotated HTML content, contextual menus with suggestions now contain an extra option (Learn),
which allows users to inform the system that they wish to consider the form of the flagged word as
correct. Once they click on “Learn”, the underlining disappears. Users then have to review this choice
by clicking the “Settings” button. Once they do so, the plug-in window rotates and displays a list of
learnt words, as shown below:

11

——————————————————————————————————————— |
Learnt Words |Ignored Rules|

distro_[Remave |[No rules ignored... |

@ e

Figure 10: The management of learnt words

Learnt words can be easily deleted by clicking the “Remove” link, the list of words being updated
dynamically.

3.2.3.8 Ignoring rules

In the same way that words can be learnt, rules can be ignored (i.e. disabled) by users when they
think the rule is not useful. Once a rule is disabled, all violation instances of this rule are ignored and
disappear from the plug-in window. Users can revert their decisions at any time by removing rules
from the “Ignored rules” table in the “Settings” window.

3.2.3.9 Providing active feedback to the system

In order to collect and export usage information as detailed in Section 3.1.1, some client-side
changes were made to ensure that user interactions can be precisely captured in the following
situations:

e When a tooltip is displayed but the rule is not ignored

e When a tooltip is displayed and the rule is ignored

e When a drop-down menu is displayed but no option is clicked

e When a drop-down menu is displayed and a suggestion is selected
e When a drop-down menu is displayed and the phrase is learnt.

3.2.3.10 Getting help

The help available to users in the first version of the plug-in was hard to find and extremely text-
heavy. In the new plug-in version, we decided to use an easily-recognisable blue icon (symbolized
with a question mark) as shown in Figure 8: Presenting annotated HTML content. It was also decided
to use the actual buttons from the plug-in in the help dialog to avoid any confusion:

12

Help *

A red underline suggests that 3 word is misspelt or that it is not grammatically corsct. Some
Matron slternative suggestions will appear when you hover over the underlined word. “ou can then accept one
of these suggestions by clicking on it.

let's suppose | A gresn underline suggests that youwr text may be improved by following grammatical or stylistic
L3 long recommendations. Thess recommendations will appear in 3 tooltip when you hover over an undarlined
sentence, word or punctuation mark.

‘When you click this button, your original text will be replaced with the text from the pop-up where you
may have mads some changses.

Setti When you click this button, the Ssttings window appears. This window sllows you to manage the words
that the tool has learnt as well 35 the rules that you want to ignore.

This button triggers & spelling, grammar and style check on your text. Onoe youwr text is checked,
potentisl spelling, grammar or stylistic problems will b2 underlined. |n simple cases, hovering over an
underfined word will bring up suggestions, which you may decide to use to improve your text. In more
complex cases, suggestions will not be available and you will have the possibility to read the advice
{in the tooltips) and decide whether you want to make any changes in the text ares itself.

n When you click the X button, the pop-up window closes and any changs you may have made will be

QISCANDEd.

€ 3ACOEPT

Thiz tool iz brought to you by the ACCEPT project thanks to grant agreament 288760,

Figure 11: Contextual help dialog

3.2.4 Downloadable Package
The Pre-Edit plug-in can be accessed from the ACCEPT Content Delivery Network (CDN) by including
the following references in the head element of an HTML document:

<script src="http://www.accept-portal.eu/Plugin/v2.0/js/jquery-1.5.1.min.js
" type="text/javascript"></script>

<script src="http://www.accept-portal.eu/Plugin/v2.0/js/jquery-ui-1.8.24.cu
stom.min.js" type="text/javascript"></script>

<link href="http://www.accept-portal.eu/Plugin/v2.0/css/Accept.css" rel="st
ylesheet" type="text/css" />

<link href="http://www.accept-portal.eu/Plugin/v2.0/css/jquery-ui.css" rel=
"stylesheet" type="text/css" />

<script src="http://www.accept-portal.eu/Plugin/v2.0/extras/tiny_mce/tiny m
ce.js" type="text/javascript"></script>

<script src="http://www.accept-portal.eu/Plugin/v2.0/js/accept-jquery-plugi
n-2.0.js" type="text/javascript"></script>

The plug-in has also been made available as a downloadable package with the contents shown in
Table 1.

/ index.html (ACCEPT Pre-Edit plug-in documentation)
/docs index.html (ACCEPT Pre-Edit plug-in documentation)
/js jquery-1.5.1.min.js (jQuery core library)

jquery-ui-1.8.24.custom.min.js (jQuery Ul library)

accept-jquery-plugin-2.0.js (ACCEPT plug-in core file)

13

/css jquery-ui.css (jQuery Ul CSS)

accept.css (ACCEPT plug-in CSS)

/examples Examplel.htm (Use case code example.)

Example2.htm (Use case code example.)

/extra/tinyMce tiny_mce.js (TinyMCE plugin core file.)

Table 1: Pre-Edit plug-in package contents
The version of the plug-in described in this document is version 2.0, which can be downloaded from:

http://www.accept-portal.eu/AcceptPortal/en-US/Download/Index

3.3 The ACCEPT Pre-Edit Demo

A Pre-Edit demo is available to any registered user of the ACCEPT portal. This demo shows how the
JQuery plug-in works in a TinyMCE environment, by offering source French, English and German
language checking. The French demo differs from the English and German demos because the plug-in
has been configured to allow users to perform checks in multiple steps, as shown in Figure 12:

ACCEPT est un projet collaboratif STREP, qui 2 pour but de développer de nouvelles méthodes et
techniques wvisant a améliorer |a traduction automatique [TA) dans le cadre des communautés Internet
partageant des informations specialisges.

De nos jours, n'importe qui peut, en théarie, créer et partager des informations avec le reste du monde
gréce 3 Internet. Et pourtant |z barriére linguistique est toujours |a: méme si l'information est
disponible, elle n'est dispenible que pour ceux qui parlent |z langue dans laguelle elle a &té écrite. La
mission d'ACCEPT est d'zider les communautés & partager leurs informations de maniére plus efficace
malgré la barrigre linguistique, en améliorant la qualité du contenu communautaire traduit par un outil
automatigue.

“ous voulez en savoir plus?

0 1 N 20 n Options Appliquer

Figure 12: The French Pre-Edit demo on the ACCEPT Portal

As shown above, the Pre-Edit plug-in contains three extra buttons next to the Help button. These
buttons correspond to specific checks that can be triggered on the text, each based on a separate
rule set. Using this type of configuration may be advantageous in situations where the precision of
certain rules can be significantly increased if other errors have been corrected first. Instead of
grouping all rules in one rule set, it is therefore possible to group rules in smaller rule sets.

14

http://www.accept-portal.eu/AcceptPortal/en-US/Download/Index

Note: This configuration option can be combined with the use of the “ReplaceAll” functionality in
order to fully automate the application of suggestions provided by the rule set which has been
specified as consisting of automatic rules.

4 The ACCEPT Post-Edit Components

This section presents the new Post-Edit plug-in functionality before describing new characteristics of
Post-Edit projects. The new API functionality is presented in this second sub-section. Finally the
ACCEPT Post-Edit demos are introduced.

4.1 New Post-Edit Plug-in Functionality
The following functionality has been added in version 2 of the Post-Edit plug-in:

e The ability to customize the display of the target text in the navigation pane on the left.
e The ability to control whether source segments may be shown or hidden by the user
e The ability to record how much time is spent by a user on a specific segment.

4.1.1 Target Text Display

A new functionality was introduced to control the display of target text in the Post-Edit window. This
new functionality is fully described in Roturier et al (2013). The following figures show the use of
tgt_templates to separate each source segment with a line break.

"tgt_templates": [

Klicken Sie auf den Text um diesen zu bearbeiten: {
) . . . - "markup”: "%3Cdiv%3E@TARGETE%3C/div%3E%3Chr /%3E"
Kann Norton Antivirus License Be iibertragen 3,
von One Computer So Anderer? {
"markup”: "%3Cdiv%3ERTARGETE%3C/divi3E%3Chbr /F%3E"
Hallo, ich habe ein Norton Antivirus Lizenz, die bis s {
Februar 2013. “markup”: "%3Cdiv3EETARGETE%3C/div%3E%3Chr /%3E"
E ¥,
Allerdings hatte ich meinen Laptop kiirzlich zu |~ { . .
indern, und mein Norton Antivirus Lizenz erworben markup": "%3Cdiv%3EERTARGETE%3C/diuv%3E%3Chr /%3E
wurde fiir meinen alten Laptop. 3 {
"markup": "%3Cdiv%3ERTARGETE%3C/divi3ER3Chr F%3E"™
Ich verwende meiner alten Laptop mehr. ¥,

{
Gibt es eine Moglichkeit, mit der gleichen Lizenz "markup”: "%3Cdiv%3EETARGETE%3C/divk3E%3Chr /F%3E™
- . - L

kann ich meinen neuen Laptop nutzen kénnen, so {

dass ich mein Abonnement den vollen Nutzen? "markup”: “%3Cdivi3EETARGETERIC/divi3ERIChr F%3E™
¥,

Informationen fiber das wire sehr geschitzt. 4

fonmanonen Hher ¢as wire sehr gese "markup”: "%3Cdiv%3ERTARGETE%3C/divi3E%3Chbr /F%3E"
¥,

Dank und mit freundlichen. {

"markup": "%3Cdiv%3ERTARGETE%3C/divi3E%3Chr /%3E™
Hallo, die beste Option wire, wenden Sie sich an s

{

0 ST SRR T, S [T “narkup”: “%3CO1v%3EETARGETE%3C/d1v%3E%3Chr /%3E"

}s

Figure 13: Source text display using target templates

4.1.2 Source Segment Display

Post-editing is traditionally believed to be most successful in a bilingual mode (i.e. post-editing with
reference to the source text) so that meaning which may have been lost or distorted in the machine
translation process can be retrieved from the source. While research in monolingual post-editing is
scarce, especially with regard to domain experts as post-editors rather than linguists/translators,
providing the post-editor with the opportunity of choosing the post-editing setup dynamically (i.e.
monolingual/bilingual) has been identified as a potential way of minimising or preventing user
frustration. This is supported by feedback that has been gathered in internal studies, which indicated

15

that users were eager to see the source. To illustrate switching between bilingual and monolingual
modes, consider what happens if the project default is the monolingual mode. The source will then
not be shown in the interface when a task is opened initially. The user can then decide to switch to
being shown the original segment for the current segment. Regardless of how many switches are
performed per segment, the last state the switch is in is retained for the next segment the user
chooses to edit. The button can be toggled at any time. When the editor is closed, the page is
refreshed or a new task is selected, the project default is displayed again (in this case the source is
not shown).

Bearbeiten

Origina
ausblenden

Klicken Sie auf den Text um diesen zu bearbeiten:

Ausgangssatz:

»

Norton Online R6025 — |Norton Online R6025 Runtime eftor
Laufzeitfehler ——-—-—-—-—-——- Hallo, ich
Jjetzt Installation von Norton Online Family. Auf 3
Computern habe ich kein Problem. Aber auf einem
wird generiert, Runtime Fehler nach dem Starten
Jjeder Internet-Browser (Internet Explorer, Chrome,
Firefox, Opera). Auch alle Browser ist sehr Aktueller Satz zum Bearbeiten:
langsam. Exakte Nachricht Text ist: Runtime
Error! Programm: C:\ Program Files' Norton Online'
Engine' 2307, ccSveHstexe R6025 -pure
virtueller Funktionsaufruf. Betriebssystem:
Windows XP SP3 installiet Norton Produkte:
Norton Safety Minder 2.3.0.17, Norton Online
Framework 2.3.0.7, Norton Online Datastore 2.3.0.7 | |

Norton Online Re025 Laufzeitfehler

m

Figure 14: Showing or hiding the source segment

4.1.3 Recording Time
Once users have started working on a Post-Edit project, project administrators can export
post-editing activity data at user, document or project level. The data is exported in an XLIFF format.

The following example shows the type of usage data that is captured by the system and made
available in the header of the XLIFF report.

<header=

<phase- group>
<phase phase-name="mt_baseline" process-name="Machine Translation" tool="th"
toold-id="accept.statmt.org/demostranslate.php" date="2013-08-28T10:28:25,7722"
contact-email=""/>
<phase phase-name="start_pe" process-name="bilingual" tool="ACCEPT Portal"
toold-1d="ACCEPT Post Edit Plug-in 1.0" date="2013-11-27T11:46:45.0002"
contact-email="..."/>
<phase phase-name="rl.1" process-name="bilingual" date="2013-11-27T11:47:16,000Z"
contact-email="..."

<note annotate
<note annotate

</phase>
<phase phase-name="t1.1" date="2013-11-27T11:46:45,000Z" contact-email=".
<phase phase-name="t1.2" date="2013-11-27T11:47:09,000Z" contact-email=".

</phase-group>

<count-group name="1">
<count phase-name="rl.1" count-type="x-keys" unit="instance">129</count>
<coumt phase-name="rl.1" count-ty x-delete-keys" unit="instance"»5</coumt>
<count phase-name="rl.1" count-ty x-white-keys" unit="instance">5«</count>

arget” from="user"sYes</note> : ;
eneral" from="user">good baseline translation!</note>

Sl
B

<counmt phase-name="rl.1" count-ty x-nonwhite-keys" unit="instance">3l</count>
<count phase-name="rl.1" count-ty x-arrow-keys" unit="instance">&l</coumnt>
<counmt phase-name="rl.1" count-ty x-editing-time" unit="x-seconds"»55.133</count>
<count phase-name="rl.1" count-ty x-typing-time" unit="x-seconds"»55.133</count>

<coumt phase-name="t1.1" count-type="x-think-time" unit="x-seconds"»16.099</count>
<count phase-name="t1.1" count-type="x-start_source_switch" unit="instance"s>show=/coumt:>
<coumt phase-name="t1.1" count-type="x-source_switch" unit="instance"»2=z/count:>
<coumt phase-name="t1.1" count-type="x-source_switch" unit="x-seconds">6.662</count:>
<coumt phase-name="t1.1" count-type="x-source_switch" unit="x-seconds"s5.483=/count:>
<count phase-name="t1.2" count-type="x-think-time" unit="x-seconds"»6.651<,/count>

</ count - group>

<count-group name="2"/>

<count-group name="3"/>

<count-group name="4"/>

<count-group name="5"/>

</header=

Figure 15: Displaying Post-Editing phase information in XLIFF reports

16

Thanks to the information present in the header element, the steps that were taken during the post-
editing process can be retraced. The phase-group element contains a number of phases
corresponding to processes that were used to interact with the target text. The first of these phases
(in chronological order) actually occurred before the post-editing process since it corresponds to the
automatic translation of the source text using the relevant Machine Translation tool.

The first post-editing phase is the one whose phase-name attribute has a start_pe value. The starting
time of this phase is indicated in the value of the date attribute. The times indicate that the start of
this phase coincided with the start of another phase, whose phase-name attribute has a t1.1 value.
The syntax of this value is based on the following parts:

e phase_type: r (for revision) or t (for thinking)
e translation unit ID: starting at 1
e teration ID for a given translation unit: starting at 1

The t1.1 value therefore means that the first iteration of a thinking phase started for the first
translation unit of the file. During this phase, some countable events occurred. These events are
captured in a number of count elements with a matching phase-name attribute value. In this
example, the phase lasted just over 16 seconds (as indicated by the element with the x-think-time
value). The element with the x-start_source_switch value indicates that the Ul displayed the source
text when the phase was started. However, this was changed twice by the user, as indicated by the
element with the x-source_switch value where the value of unit is instance. Other elements also
indicate precisely when the Ul was changed.

In short, a thinking phase is used to capture events that happened in the Post-Edit client when these
events are not directly related to the editing of the target text. For instance, if the user had
commented on the quality of the target text, a note child element would have been attached to the
phase element.

Based on the times present in the report, it is possible to determine that the t1.1 phase was not
immediately followed by the t1.2 phase, since the difference between the starting time of the t1.2
phase and that of the t1.1 phase is 24 seconds (whereas the t1.1 phase lasted just over 16 seconds).
This means that the user closed the client application and re-opened it 8 seconds later. As soon as
the client application was re-opened, the t1.2 phase started and lasted over 6 seconds. This time,
however, the t1.2 phase was immediately followed by another phase in the client application, the
r1.1 phase (which was a revision phase).

Multiple events occurred during the rl.1 phase, including the generation of two comments by the
user (as indicated by the two child note elements) on lines 11 and 12. Other events were captured in
count elements, including how long the editing of the target text lasted (as indicated by the x-
editing-time value). In this example, the x-editing-time value is the same as the x-typing-time value,
indicating that the user started editing the target text using a keyboard key (instead of using a
contextual translation option). Various numbers of pressed keys are available for this phase, thus
allowing for a detailed analysis of the type of post-editing that was conducted.

x-editing-time and x-typing-time values must be interpreted with caution. For unavoidable practical
reasons, the calculation of these times may not accurately reflect the reality of the situation. For
instance, an x-typing-time value of 50 seconds does not necessarily mean that the user was typing

17

for 50 seconds. It means that the user started typing and that the phase ended 50 seconds later. It is
possible, however, that the user typed for 10 seconds, thought for 2 seconds, typed again for 12
seconds, etc. Trying to capture and analyse this data in full detail is extremely challenging, which is
why the calculations are currently simplified.

Since an editing revision occurred, the target text is likely to have changed in the first translation unit.
This is confirmed when examining the first trans-unit element of the body element:

<body>
<trans-unit id="1"=>
<source>ACCEPT est un projet collaberatif STREP, qui a pour but de développer
de nouvelles méthodes et technigues visant & améliorer la traduction
automatique (TA) dans le cadre des communautés Internet partageant des
informations spécialisées. </sources>
<target phase-name="r1.1">ACCEPT is a collaborative STREP project, which aims
at developing new methods and techniques to improve machine translation
(MT) within the framework of Internet communities specialised in sharing
information.</target>
<alt-trans phase-name="mt baseline"s>
<target>Accept 1s a collaborative project STREP, which aims to develop
new methods and techniques aimed to improve the translation automatic
{ITA) in the framework of the communities specialised Internet
sharing information.</target>
</alt-trans>
</trans-unit=>

Figure 16: Displaying Post-Editing revision in XLIFF reports

In this example, it is possible to see that the current target text corresponds to what was produced in
the rl.1 phase, relegating the translation from the mt_baseline phase to an alt-trans element.

It should be noted that thinking phases do not have any impact on trans-unit elements since the
target text does not get modified during these phases.

4.2 New Portal-Based Project Functionality

4.2.1 External Projects

While creating post-editing projects within the ACCEPT Portal can be useful to conduct studies or
centralize post-editing activities, it can be cumbersome when project participants (i.e. post-editors)
are used to working in another environment (e.g. a crowdsourcing platform, an online discussion
forum, a content management system, etc.). To address this issue, we decided that the post-edit
plug-in should behave in the same way as the pre-edit plug-in and become accessible from outside
the ACCEPT portal. To achieve this goal, some modifications had to be made to post-editing projects,
by giving project users the possibility to create external projects (i.e. a project where the actual post-
editing activity would take place outside of the ACCEPT Portal, while leveraging the ACCEPT API to
access translation assistance material and to save any post-editing action).

The following steps can be used to create and manage an external Post-editing environment using
the ACCEPT Post-Edit plug-in:

18

1. Create an external Post-Editing project using the Portal’s project creation page.

Create Project

Project Name:

l

Organization:

l

ProjectDomain:

| ACCEPT Domain

Allow user to display source:

Project Source Language: | English =
Project Target Language: | English = |
Ul Configuration: | BiLingual 2|

| End user cannot switch Hide/Show source

External Project ?:

O

Show Translation Options:

| Translation Options

H

Project Options:

Project Question: [l

Invitations Email Body Text: [l

Project Survey Link: [l

Figure 17: External Post-Edit Project Creation
2. Add Post-Editing tasks to this newly created project using the Portal or the API

While a task upload functionality was already present on the ACCEPT Portal, we decided to expose
this functionality via the API to speed up the upload process for projects containing multiple tasks. To
achieve this, it was necessary to introduce a private project token to restrict task upload to project
owners. This token can then be used by leveraging any HTTP compliant client application (e.g. any
HTTP debugging proxy server application such as Fiddler) as follows:

e Set the proper ACCEPT APl URL to add tasks to projects. For example:
http://[accept_portal_server]/AcceptApi/Api/v[api_version]/PostEdi
t/AddDocumentToProject/?token=[token]
where [accept_portal_server] is the ACCEPT portal server to target, [api_version] is the
version of the API (current is 1), and [token] is the project’s admin token

e Add the following HTTP header to the request: Content-Type : application/json

e Add the JSON that corresponds to the task in the request body

e Post the request

3. Add external users to this newly created project using the API

To add users to a project, the following POST method can be used:

19

http://fiddler2.com/

http://[accept_portal server]/AcceptApi/Api/v[api_version]/Admin/AddUserPro
ject

where [accept_portal_server] is the ACCEPT portal server you want to target and [api_version] is the
version of the API (current is 1).

The request must include the following in the HTTP header: Content-Type:application/json

The request must include a JSON body based on the following format:

{

"userName": "..",
lltokenll : n n

}

where token is the project’s admin token and userName the name of the user who will be allowed to
work on the task (as specified during the initialisation of the Post-Edit plug-in, as described in next
step).

4. Set up an external Post-Editing environment

Since the plug-in is written on top of the jQuery and jQuery Ul libraries, these are both a mandatory
requirement for deployment in any Web-based environment. The ACCEPT Post-Edit plug-in has the
following initialisation options:

Field Description

dialogHeight Height for the dialog window where the plug-in will be triggered
dialogWidth Width for the dialog window where the plug-in will be triggered
leftPaneWidth Width for the left hand-side navigation pane.

leftPaneHeight Height for the left hand-side navigation pane.

leftPaneFontSize Font size for the text in the left hand-side navigation pane.
textAreasWidth Width for the right hand-side pane.

textAreasHeight Height for the right hand-side pane.

imagesPath URL path for all plug-in images

acceptSenverPath URL path for the ACCEPT API

textldContainer Attribute name that might contain the Post Editing text identifier
userldSelector jQuery selector for the DOM element that contains the user identifier
userldContainer Attribute name that might contain the Post Editing user identifier
preEditApiKey API key for the ACCEPT Pre-Edit plug-in

preEditimagesPath URL path for the Pre-Edit plug-in images

preEditWith Width for the Pre-Edit plug-in dialog

preEditHeight Height for the Pre-Edit plug-in dialog

preEditingLanguageUl Ul language for the Pre-Edit plug-in

Figure 18: Post-Edit plug-in initialisation options

The other plug-in files (CSS and JavaScript) can be referenced using the ACCEPT content delivery
network, as shown in the example below.

5. Check project task status
To check the status of a project, the following GET method can be used:

http://[accept_portal_server]/AcceptApi/Api/v[api_version]/Admin/ProjectTas
kStatus?token=token

20

where [accept_portal_server] is the ACCEPT portal server you want to target, [api_version] is the
version of the API (current is 1), and [token] is the project’s admin token.

The request must include the following in the HTTP header: Content-Type:application/json
This method returns a JSON object:

"ResponseObject": [

{
"TextId": "[UniqueTaskID]",
"UserId": "ExtDeVUserl",
"Status": ©

s

{
"TextId": "[UniqueTaskID]",
"UserId": "ExtDeVUser2",
"Status": 1

s

{
"TextId": "[UniqueTaskID]",
"UserId": "ExtDeVUser3",
"Status”: 2

}

]

The status values are:

e 0:task not started by user
e 1 :taskstarted but not finished by user
e 2 :task completed by user

6. Collect recorded data using the Portal

At all times, it is also possible to get project information to keep track of the project’s task and users.
To get information about a project, the following GET method can be used:

http://[accept_portal_server]/AcceptApi/Api/v[api_version]/Admin/ProjectInf
ortoken=token

where [accept_portal_server] is the ACCEPT portal server you want to target, [api_version] is the
version of the API (current is 1), and [token] is the project’s admin token.

The request must include the following in the HTTP header: Content-Type:application/json

This method returns a JSON object whose ResponseObject value is composed of two lists: a list of
tasks and a list of users.

4.2.2 Projects with Single Revision

While projects with multiple, independent revisions can be extremely useful for studying how
different post-editors edit a given target text, they do not address the need to have a single,
collaborative revision, which would be required in most real-life deployment scenarios. In order to

21

meet this requirement, we decided to give project creators the ability to define collaborative projects
where post-editors work on a single revision of the text. The advantage of this approach resides in
the fact that the modifications made by a post-editor do not have to be repeated when a second
post-editor starts working on the same project task.

To implement this functionality, the challenge posed by conflicting edits had to be resolved. Two
approaches were considered:

e Having a fully synchronized, real-time editing environment where the changes made by User
A are immediately seen by User B (if both User A and User B are working on the same project
task at the same time)

e Having a mechanism to prevent users from working on a task if a user is already working on it

The first approach is obviously much more challenging from a technical perspective and it is not clear
that it would be suitable for short post-editing tasks, especially at the segment level. We decided to
implement the second approach with the following restriction: project creators can decide how long
a task can be held by a given user before it can be “claimed” by another one. If users were able to
keep working on a task indefinitely, the collaborative aspect of the task would be lost. Project
creators can therefore define at project creation the maximum amount of time that should be used
to lock a task for a given user, as shown in Figure 19:

Create Project
Project Name:
Organization:
ProjectDomain: ACCEPT Domain -
Project Source Language: English -
Project Target Language: English -
Ul Configuration: BiLingual -
Allow user to display source: End user cannot switch Hide/Show source -
External Project 7: 0
Single Revision Project:
Max. Locking Period: 00:20:00

Figure 19: Creation of a single revision project with a 20-minute lock

When a project is configured as shown in Figure 19, it gives users at least 20 minutes to complete a
task before another user is able to try to claim it. Once a user has successfully claimed a task, all
other users are presented with the warning shown in Figure 20 for the duration of the project’s
locking period.

22

You reached the max. threshold allowed for document edition: , this document is currently locked by another user.
Please try again later.
Thank you.

Figure 20: Locking period warning

The use of this configuration will be tested in natural environments (e.g. online forums) to determine
whether users in these environments can improve machine-translated texts in a collaborative
manner.

4.3 The ACCEPT Post-Edit Demos
In order to showcase the Post-Edit plug-in to users of the ACCEPT portal, three demo projects have
been created, one for each of the following language pairs:

e French > English
e English > German
e English > French

Project Project

Project

Project Name Organization Project Type Source Target Question Options Survey Project Owner
Language Language P
ACCEPT DEMO FREMCH TO EMGLISH ACCEPT Monolingual | French English 4 v Y portalpreedit@accept.com | Details
ACCEPT DEMO EMGLISCH 7U DEUTSCH ACCEPT Monolingual | English German v v * portalpreedit@accept.com | Details
ACCEPT DEMO ANGLAIS VERS FRANCAIS | ACCEPT Monolingual | English French v 4 < portalpreedit@accept.com | Details

Figure 21: Post-Edit demos on the ACCEPT Portal

Portal users can click on any of these tasks to get access to a small post-editing task, as shown below:

Click on text to Edit: Original sentence: Hide Source

Accept is a collaborative project STREP, which | [ACCEPT est un projet collaboratif STREP, qui a pour but de
aims to develop new methods and technigues | |développer de nouvelles méthodes et techniques visant & améli
aimed to improve the tramslation automatic (12 traduction automatique (TA) dans le cadre des communautés
(ITA) in the framework of the communities | [[nternet partageant des informations spécialisées.
specialised Internet sharing
information. Nowadays, anyone can, in theofV, | Cuarrent sentence to edit-
(G iy T i o T % e e Accept is a collaborative project STREP, which aims to develop new
world through the Internet. And yet the language methods and technigues aimed to improve the translation automatic
barrier is still there: Even if the information is (ITA) in the framework of the communities specialised Internet

A o) sharing information,
available, it is only available for those who speak
the language in which it has been written. The
mission of ACCEPT is to help the communities to e
share therr mformation more effectively despite
the language barrier, by improving the quality of
the content of Community translated by an
automatic tool. You want to know more?

Comments ?
Was this segment hard to post-edit? -

Figure 22: Post-Edit demo task

23

The figure above shows machine-translated text on the left-hand side of the window, with the first
sentence to post-edit highlighted in yellow. On the right-hand side, the same sentence is available for
editing in a text area, under the label “Current sentence to edit”. In this screenshot, the user decided
to show the source (original) sentence by clicking the switch button on the top right hand-side of the
window. This source sentence could be hidden again by clicking “Hide Source”.

5 The ACCEPT Evaluation Components

The ACCEPT Evaluation components are now divided into two parts:

e The ACCEPT Evaluation API and the Evaluate section of the ACCEPT Portal
e The ACCEPT Appraise component

The first component has been updated in Year 2 to address the following shortcomings:

e Evaluation content could not be added to projects, so a client-side mechanism had to be
used

e No public method existed to export project data

5.1 Updated ACCEPT Evaluate Project Management Section

Instead of relying on a client-side mechanism to make content available for evaluation, content may
be added to an evaluation project. To do so, a JSON file may be uploaded by clicking the Add Content
link and selecting a file. The file must comply with the following format:

“chunklList": [
1

"chunk":"Alle Resourcen sagen, dass diese Infektion nur auf PCs zutrifft und bieten Lésungen fir PCs an.",
"chunkInfo":"",
tmctive®: T

{
“chunk""Die Anzeige in der Dropdown-Liste in allen Dateiinfo Fenstern wurde zur Unterstitzung der Windows & Touch-Fahigkeit neu gestaltet.®,

“chunkInfo®:"",
“active":1

Figure 23: Format of evaluation content

As shown in the example above, any number of sentences (or text chunks) may be uploaded in a
chunkList array. Each chunk, which will be used during the actual evaluation task, must be a UTF-8
string. Additional metadata may be included in chunkinfo. The active value may be set to 1 (active)
or 0 (not active) depending on whether this specific chunk should be considered on the client side.

5.2 Updated ACCEPT Evaluation API
Two new methods have been added: the ContentChunks method and the Scores method.

The ContentChunks method is a GET method. The ContentChunks method returns two lists: a list of
chunks and list of questions.

http://[accept_portal server]/AcceptApi/api/v[api_version]/Evaluation/Conte
ntChunks/[ID]

24

where [accept_portal_server] is the ACCEPT portal server you want to target, [api_version] is the
version of the API (current is 1), and [ID] is the Evaluation project ID. For an evaluation project with
an ID of 1 the call would be:

http://[accept_portal_server]/AcceptApi/api/v[api_version]/Evaluation/Conte
ntChunks/9?key=21fdc25bebdf456db5c9e0993977bb12

The following parameters can be passed on the URL:

key This is a MANDATORY parameter. If this parameter is not key=21fdc25bebdf4
passed then the API call will fail. This value can be found on 56db5c9e0993977b
the Project page. b12

language This is a MANDATORY parameter. If this parameter is passed language=en_us

then only the questions in the specified language will be
returned. Language code is based on RFC 4646. Examples of
language codes are: en, fr, en-us, fr_fr

question This is a MANDATORY parameter. If this parameter is passed question=1
then only this question will be returned.

category This is a MANDATORY parameter. If this parameter is passed category=1
then only the questions in the specified category will be
returned.

The Scores method, which can be used to retrieve answer data, is a GET method. The Scores method
returns a list of answers and associated metadata.

http://[accept_portal server]/AcceptApi/api/v[api_version]/Scores/[ID]

where [accept_portal_server] is the ACCEPT portal server you want to target, [api_version] is the
version of the API (current is 1), and [ID] is the Evaluation project ID. For an evaluation project with
an ID of 1 the call would be:

http://[accept_portal_server]/AcceptApi/api/v[api_version]/Scores/9?token=
[token_id]

The following parameter must be passed on the URL: token. This is a MANDATORY parameter. If this
parameter is not passed then the API call will fail. This value can be found on the Project Details page
under My Project Token. A response example is shown below, with the actual question answer
highlighted in yellow:

25

-

@ e W

L e e el el el ol e o
JRMHOLD- AW RN W

B

"Response0bject”: [
i

"ProjectID": 3,

"Domain": "“www.accept-portal.eu",
"QuestionCategoryId": 3,
"QuestionCategory™: "Comprehensibility",
"QuestionId": 5,

"Question":
"AnswerId": 1@,

"AnswarValue": "1",

"Answer": "Yes",

"Language": "en_us",

"TimeStamp': "/Date(13509202300080)/",
b 1 R 1l

"War2": null,

"Var3": muall,

"Var4": null,

"Vars": mull,

"Varg": mull,

"Var7": null,

"War2": nmull,

"Var3": null

"Varlg": Iluli.,
n g

295

Figure 24: Scores method's response

5.3 The ACCEPT Appraise Component

5.3.1 Motivation

"Is the translated text comprehensible?",

One of the original objectives of Task 5.3 was to integrate functionality from an existing evaluation

system into the ACCEPT Portal (a system similar to the one deployed at http://eval4all.com). In order

to justify such integration, however, this existing system had to be compared against at least another

(more recent) evaluation system. One such system is Appraise, which has been used by the SMT

community in shared tasks such as WMT 2013. The table below summarizes the main characteristics

of both systems.

Functionality/System Evaldall.com

Data export format

Evaluation Type

Extensibility to add extra
evaluation type
Agreement scores generation

Score statistics

User Progress Status
User Management

Localised versions

License

C#/MS SQL server

Yes

XLIFF

No

N/A (Excel after running SQL
queries)
Comprehensibility
point scale); Fidelity
yes/no scale)

(fixed 5-
(fixed

Difficult

No
Yes (average per task)

Yes
Yes (including
registration)

self-service

Yes (French, German, Chinese,
Japanese)
Unknown

Python/Django (DB-agnostic)
Yes

XML

Yes

XML + TXT

translation quality
checking (fixed 3-pt scale; 3 o5
way ranking of translations;
error classification; manual
post-editing)

Straightforward

Yes

Yes (number of score instances
per task)

Yes

Yes (through Django interface)
but administrator must create
user accounts

No.

Modified BSD

Table 2: Comparison between Eval4All and Appraise

26

http://eval4all.com/
https://github.com/cfedermann/Appraise
http://www.statmt.org/wmt13/
https://raw.github.com/cfedermann/Appraise/master/appraise/LICENSE

As this table clearly shows, the Appraise system has more functionality and is easier to extend than
its evaldall.com counterpart, especially from a data export perspective. The Appraise system offers
project creators the ability to easily export project data using a combination of XML and TXT files (for
rating and statistics respectively) by pushing a button. In contrast the evaldall.com system requires
an administrative access to the database, where SQL queries have to be run before an Excel file can
be exported.

5.3.2 Modifications

The following modifications were performed to add a new evaluation task type to the Appraise
system. This new task type was required for the study conducted in WP8, during which multiple
versions of post-edited segments were collected.

e An ACCEPT Ranking evaluation type choice was added to the
APPRAISE_TASK_TYPE_CHOICES object. This type choice indicates that a new type of ranking
task becomes available to project creators. The objective of this task type is to combine a
traditional (system) ranking task with a quality rating task. Ranking tasks may be useful to
determine whether a system is better than another system, but it does not quantify the
difference that may exist between the two systems. By combining the two approaches, it is
possible for a user to indicate that two (or more) translations (produced by MT systems or
human translators/post-editors) are ties at a given point on a scale. To simplify things, we
decided in this implementation to keep the number of scale points consistent with the
number of translations to evaluate. By uploading a file with five translations, an ACCEPT
ranking task becomes available using a 5-point scale. Actually, the current implementation
defaults to having two questions presented to users (one for fidelity and one for
comprehensibility), as shown by the template and the rendered user view below:

tri
).children

27

A- Wie viel der in der Quellibersetzung enthaltenen Bedeutung wird auch in der Zieliibersetzung ausgedriickt? (Vollsténdigkeit) ||| B: Wie wiirden Sie die sprachliche
Qualitat der Ubersetzung einschétzen? (Sprachfluss)

Kopieren in Zwischenablage fir "Rote Bedrohung erkannt” Bildschirm nicht méglich Friher bei Norton NIS 2012 wurden die Tracking-
Cookies nach dem Kopieren in die Zwischenablage beim Einfligen in einen Editor angezeigt.

A @ nichts @ wenig ¢ vieles ¢ das Meiste o alles ||| B:) unverstandlich = zusammenhangslos & nicht muttersprachlich & gut & perfekt
Kopieren, clip Board fur Red erkannte Bedrohungen Bildschirm

A @ nichts @ wenig @) vieles ¢ das Meiste ¢ alles ||| B: ¢, unverstandiich & zusammenhangslos @ nicht muttersprachlich ¢, gut = perfekt
Kopieren zur Zwischenablage filr rot erkannte Bedrohungen nicht méglich

A @ nichts @ wenig @ vieles ¢ das Meiste @ alles ||| B: @ unverstandiich @ zusammenhangslos @ nicht muttersprachiich @ gut & perfekt
"In Zwischenablage kopieren" fehlerhaft fir Bildschirm "Red Threats erkannt"

A @ nichts @ wenig ¢, vieles) das Meiste ¢ alles || B ¢ unversténdlich =, zusammenhangslos) nicht muttersprachlich & gut) perfekt
Das Kopieren der auf dem Bildschirm rot ausgewiesenen Bedrohungen in die Zwischenablage funktioniert nicht.

A @ nichts @ wenig ¢ vieles) das Meiste o alles || B: o unverstandlich & zusammenhangslos o nicht muttersprachlich @ gut o perfekt
Kopieren in die Zwischenablage fiir rot erkannte Bedrohungen auf dem Bildschirm

W C Reset @ Flag Error

Figure 25: ACCEPT evaluation task using Appraise

e An extra video_url field was added to the EvaluationTask class. This optional field may be
used to embed a video into a user’s task page. This can be useful to provide visual evaluation
guidelines, instead of relying on text-based guidelines (which are often ignored or
misunderstood), as shown below:

- AC_,_OEPI ABOUT PREEDIT POSTEDIT EVALUATE APPRAISE

Bewertungstutorial ACCEPT

(]

Bitte sehen Sie sich das Video an, bevor Sie mit der Bewertung beginnen. Datei-Download fir eine bessere Bildqualitat gibt es hier.

ACCEPT Ranking Tasks

Task name Overall completion Average duration
Aufgabe 1-A 0.00 sec

Figure 26: Adding video-based evaluation guidelines to Appraise tasks

e We created a template to export the evaluation results into an XML file:

28

5.3.3 Integration
For this initial release, an instance of the modified Appraise system was integrated into the ACCEPT
portal using an iframe, as shown below:

ABOUT PREEDIT POSTEDIT EVALUATE APPRAISE

>
Q
QO
m
U
-

Feedback

Welcome to Appraise!

An open-source system for manual evaluation of MT output

This is Appraise. |t supports collaborative collection of human feedback for evaluation tasks such as Transfation Quality Checking,
Ranking and Error Classification, and Manual Post-Editing. It has been extended within the ACCEPT Project.

Access your evaluation tasks »

Qriginal code base is on cithub

Figure 27: Integrating Appraise within the ACCEPT Portal

This integration may be revisited in the future to determine whether it might be possible to use the
ACCEPT credentials to log into the Appraise system.

References

e Christian Federmann:
Appraise: An Open-Source Toolkit for Manual Evaluation of Machine Translation Output
In The Prague Bulletin of Mathematical Linguistics, volume 98, Prague, Czech Republic,
9/2012.

e Roturier, Johann, Linda Mitchell, David Silva:
The ACCEPT Post-Editing Environment: a Flexible and Customisable Online Tool to Perform
and Analyse Machine Translation Post-Editing.
In Proceedings of MT Summit XIV Workshop on Post-editing Technology and Practice, Nice,
France, September 2013.

29

http://www.w3.org/wiki/HTML/Elements/iframe

Appendix 1: External Call Integration for the Pre-Edit plug-in

For this example we are using the simple editor example from the Yahoo! Ul 2 download package.
Let’s suppose this HTML page is actually the environment where we want to integrate the ACCEPT
Pre-Edit plug-in.

STEP 1
The first action to perform is always to identify the text source we wish to target. In this example we
want the same element used by the Yahoo editor.

[pody |
ber

u

st

esources Metwork Sources Timeline Profiles Audits Console

fiframe>
ofdive
P cdiv id="editor_dompath" class="dompath"z.</dive

or" name="edito

< Form:

Figure 28: Step 1 of external call example

Now we know that the element with the editor ID is the text area where the Yahoo editor is being
used and as such the one where we want to implement the ACCEPT Pre-Edit plug-in. The plug-in
configuration starts with:

$('#editor').Accept({
configurationType: 'externalCall’,

A closer look at the Web page is required to understand where the plug-in dialog could be triggered
from (e.g. which HTML button, HTML image, etc.):

il 'YUI 2. users should
| a

ullatin, which discusses 2
:‘_.‘il_r&';?:liw presend in Yl This examgle demanstrates how 1o use the SimpleEditor Control with Advanced Buttans.

Rich Text Editor: Simple Editor — Advanced Buttons

=
G E] =
visig Taxt Editing Tools =

Frug Finports:Fonture: Requests Forit Ry wed Sicw Ford St Lists Vit bem

YLl on Gt sal ALK nnnu b7 @I

V1A Lietnan -~
|aiv. yui-tocibar—subcont bas - SOos
iH

ilernents | Fesources Mebwork Sowrces Tamebne Profiles Audits Congole

Pogiv classs"hd exsmplelld

¥ <div id-"editor_toolbar® tabindeas"-1" class="yui-toolbar-container yui-toolbar-groupeds
Fcafy tabdnaene® -1 classeyul-toolbar-tftiehar=s.c/divs

v -grensg -Fant sy le”
bar-separatar-1
~toclbar-group yui-toolbar-group-textstyle” >
itor_toclbar_forecolor_menu® class-"yui-module yui-overlsy yui-cverlay-hideen yui-button-menu yui-color-button-menu” style-"viedbility: nideen; z-indem: 1;=ratigiv:
r_toolbar_backcolor_senu® class="yui-sudule
yul -tanikar-separator yui -tanlkbar-separator -3
yul-toclbar-group yul-toclbar-group-Indentlist
i-toclbar-separstor yui-toclbar-sepsrstor-4

= yui-tovlbar-grouw yui-tovlbar-group-insertites® . </di

Figure 29: Step 2 of external call example

Looking at the image. it is apparent that a good way to trigger the ACCEPT Pre-Edit dialog would be
from a button located in the editor toolbar. Since there are no available buttons, we need to set up
the ACCEPT Pre-Edit plug-in to magically create a new HTML element for us.

30

http://developer.yahoo.com/yui/examples/editor/simple_adv_editor.html

STEP 2
To add a new HTML element to the toolbar, we need first to identify the HTML element that contains
all the toolbar elements.

il
nal)

div.yui-toolbar-subcont G6@@px = SBpxl -
w

Fliz 2B |1 |u|ae =] o [m

ANANEE

[tuvark Source: Timeline Profiles Audits Console

P zh2 tabindex="-1">.</h2>
X
ofdive
¥ ofieldset>
<legend>Toolbar</legend:
¥odiv class="yui-toolbar-subcont">
Fodiv class="yui-toolbar-group yui-toolbar-group-fontstyle"s. </ /dive
<span class="wui-toolbar-separator yui-toolbar-separator-1":|</spans
Fodiv class="yui-toolbar-group vui-toolbar-group-textstyle"z. </ dive
Fodiv id="editor_toolbar_forecolor_menu" class="yul-module wui-owverlay wui-overlay-hidden wui-button
P odiv id="editor_toolbar_backcolor_menu" class="yui-module yui-owerlay wyul-overlay-hidden wui-button
<span class="yui-toolbar-separator yvui-toolbar-separator-3":|</spanz
Fodiv class="wyui-toolbar-group yui-toolbar-group-indentlist"s.</dive
<span class="wui-toolbar-separator yui-toolbar-separator-4":|</spans
Fodiv class="yui-toolbar-group yui-toolbar-group-insertitem" . </ dive
< dive

Figure 30: Step 3 of external call example

As shown above, the div element selected is indeed the container for all the elements in the editor
toolbar. Therefore this div element works as a placeholder for the new element. Now that we know
what the element is, we also need to find a way to identify it, but the div does not have any id
attribute. This may at first glance look like a problem, but the plug-in can use any valid jQuery
selector to find the placeholder. In this case, we know that the CSS class attribute is unique for this
element. We can use it to “teach” the ACCEPT Pre-Edit plug-in how to find it:

$("#editor').Accept({
configurationType: ‘'externalCall’,
injectSelector: '.yui-toolbar-subcont’,

STEP 3

At this stage we know the text area where the plug-in will be used and the toolbar element where we
want to add new HTML content, so now we only need to decide what HTML content we want to add.
For this example, we will inject a div element containing the ACCEPT ABC icon.

<div style="float: right;margin-top: 20px;">

<img id="triggerInjectedACCEPTbutton" style="cursor:pointer;height:24px;wid
th:24px;float:right;" src="http://www.accept-portal.eu/Plugin/v2.0/css/imag
es/actions-tools-check-spelling-icon.png">

</div>

This needs to be added under the injectContent setting as part of the plug-in configuration:

$("#editor').Accept({
configurationType: 'externalCall’,
injectSelector:'.yui-toolbar-subcont’,

31

injectContent: '<div style="float: right;margin-top: 20px;"><img id="trigger
InjectedACCEPTbutton" style="cursor:pointer;height:24px;width:24px;float:ri
ght;" src="http://www.accept-portal.eu/Plugin/v2.0/css/images/actions-tools
-check-spelling-icon.png"></div>",

STEP 4

In this step, we need to identify the HTML element from which the click event that displays the
ACCEPT dialog is triggered. In STEP 3, we injected code into the page precisely so as to have an extra
element to act as the element we are now looking for. Looking carefully at STEP 3 we can see that
the img element is an ID property we made up for this purpose, so this is the value we want to use
for the triggerCheckSelector setting, as shown below:

$('#editor').Accept({

configurationType: 'externalCall’,

injectSelector:'.yui-toolbar-subcont’,

injectContent:'<div style="float: right;margin-top: 20px;"><img id="trigger
InjectedACCEPTbutton" style="cursor:pointer;height:24px;width:24px;float:ri
ght;" src="http://www.accept-portal.eu/Plugin/v2.0/css/images/actions-tools
-check-spelling-icon.png"></div>",

triggerCheckSelector: '#triggerInjectedACCEPTbutton',

STEP 5

The main steps are now completed, but in this case they are not sufficient. If we went ahead and
tried to run this example with the current configuration, the plug-in would not work because the text
content to check is not loaded into the dialog or properly submitted back to the source. The reason is
the same as that explained in STEP 4 of Example 3. Basically the Yahoo! Ul editor does not keep the
text content in the text area where it was installed but instead within an iframe built during the
initialization. This is actually the most common behaviour nowadays in WYSIWYG editors. Let’s take a
closer look:

“iew example in new window

Text Editing Tools -

Fort Name snd Size Fonit Stle Lists Insert tem

[T T T 1 = ‘ = ‘ % | =

ifrane#editor_editor. yui-editor editable 6@@ps = J@@ps| = | i b |
=

This is the Yahoo User Interface editor!

bources Timeline Profiles Audits Console

[ET IS T FULSTUUITAT =S e ara T Or UL TOUIIar =S EaraTOT== o SFam
b adiv class="yui-toolbar-group yui-toolbar-group-indentlists.</divs
|</spans
b adiv class="yui-toolbar-group yui-toolbar-group-insertiten’s.</divs
cfdivs
</Fieldset>
foivs
2 class="yui-editor-skipheader” tabindes="-1
i "yul i i ~container”
rder="0" fra @' marginwidth="@" marginheight="0" leftmargin="0" topmargin="0" allowtransparency="true' width="18@%" src="isuascript:;"
='width: 10%; height: 108%; ">

¥i#document

¥ <html>
P cheads.</head>
<body onload="document.body. _rteloaded = true;” narginuidth="@" marginheight="@" class="webkit chrome os webkit3 webkit4">This Iz the Vahoo User Interface editor! </body
</html>
</iframe:

Figure 31: Step 4 of external call example

32

http://www.accept-portal.eu/Learn/pre-edit/plugin/examples.html#example3step4

What do we need to do in order to correct this issue? As part of the plug-in configuration, we need to
provide custom methods to get the content into the dialog box and set it back to the source, in this
case the iframe with an editor_editor ID. Here is the code:

$('#editor').Accept({

configurationType: 'externalCall’,

injectSelector:'.yui-toolbar-subcont’,

injectContent:'<div style="float: right;margin-top: 20px;"><img id="trigger
InjectedACCEPTbutton" style="cursor:pointer;height:24px;width:24px;float:ri
ght;" src="http://www.accept-portal.eu/Plugin/v2.0/css/images/actions-tools
-check-spelling-icon.png"></div>",

LoadInputText:function()

{

return $(document).contents().find('#editor_editor').contents().find('b
ody').html();

s
SubmitInputText:function(text)

{
$(document).contents().find('#editor_editor').contents().find("
body ') .html(myContent);

}

The ACCEPT Pre-Edit plug-in should now be working! Here is how it should look and below the full
code snippet:

Rich Text Editor: Simple Editor — Basic Buttons

This example demanstrates how to use the SimpleEditar Cantral with Basic Buttans.

Text Editing Tools -

Fort Narme and Size Fort Style Im=ert tkern

Li=t:
2l :(e] [u]=](B]s om] B
this is an testt

testt

lgnore
i

a testt
[test

[tests

0 testy

Figure 32: Step 5 of external call example

33

<script src="http://www.accept-portal.eu/Plugin/v2.0/js/jquery-1.5.1.min.js
"></script>

<script src="http://www.accept-portal.eu/Plugin/v2.0/js/jquery-ui-1.8.24.cu
stom.min.js"></script>

<link href="http://www.accept-portal.eu/Plugin/v2.0/css/Accept.css" rel="st
ylesheet" type="text/css" />

<link href="http://www.accept-portal.eu/Plugin/v2.0/css/jquery-ui.css" rel=
"stylesheet" type="text/css" />

<script src="http://www.accept-portal.eu/Plugin/v2.0/extras/tiny_mce/tiny_m
ce.js"></script>
<script src="http://www.accept-portal.eu/Plugin/v2.0/js/accept-jquery-plugi
n-2.0.js?v=9"></script>
<script type="text/javascript">
$(document) .ready(function(){
$("#editor').Accept({
configurationType: 'externalCall’,
injectSelector:’'.yui-toolbar-subcont’,
injectContent:'<div style="float: right;margin-top: 20px;"><img
id="triggerInjectedACCEPTbutton" style="cursor:pointer!important;height:24
px;width:24px;float:right;" src="http://www.accept-portal.eu/Plugin/v2.0/cs
s/images/actions-tools-check-spelling-icon.png"></div>",
triggerCheckSelector: '#triggerInjectedACCEPTbutton',
LoadInputText:function()
{

return $(document).contents().find('#editor_editor').conten
ts().find('body').html();
s
SubmitInputText:function(text)

{
$(document).contents().find('#editor_editor').contents().fi
nd('body').html(myContent);

s

AcceptServerPath:"http://www.accept-portal.eu/AcceptApiStg/Api/
vl",

ApiKey:"APIKEY",

Lang:"en",

Rule:"Preediting Forum",

imagesPath:"http://www.accept-portal.eu/Plugin/v2.0/css/images"”,

requestFormat:"HTML",

languageUi:'en’,

showFixAll:true,

isModal:false,

editorWidth: "480px",

styleSheetPath:'http://www.accept-portal.eu/Plugin/v2.0/css"’,

showManualCheck:true

1)
1)

34

Appendix 2: Pre-Edit Plug-in Configuration Options

Name Type | Value

configurationType | String | Default: "contextMenu"

Describes how the plug-in should behave. This parameter can only receive two values, contextMenu
or tinyMCEEmbedded.

Name Type | Value

AcceptServerPath | String | Default: ""

The URL for the ACCEPT API.

Name | Type | Value

Lang | String | Default: "en"

Language that will be used for the input text. Can be fr for French, en for English or de for German.

Name Type | Value

imagesPath | String | Default: "../css/images"

The path to the directory that contains all the images used by the plug-in.

Name Type | Value

tinyMceUrl | String | Default: "extra/tiny_mce/tiny_mce.js"

The path to the tiny MCE JavaScript file. This option is mandatory.

Name Type Value

LoadInputText | JavaScript Function | Default: see code below

var inputText = 5

inputText = settings.requestFormat == 'TEXT' ? inputText = $("#" + acceptOb
jectId).val() : inputText = $("#" + acceptObjectId).html();

return inputText;

Customize the way to load the input text. This parameter is consumed as a function; this means it

expected a function to be passed. This function should return the text to check. Example:

function () {
var inputText = /* INPUT TEXT or HTML */
return inputText;

}

Name Type Value

SubmitlnputText | JavaScript Function | Default: see code below

35

settings.requestFormat == 'TEXT' ? $('#' + acceptObjectId).val(text) : $('#
' + acceptObjectId).html(text);

Customize the way the input text is submitted from the dialog box back into the text editor. This
parameter is also consumed as a function, in this case the plug-in expects to pass the text as an input
parameter. Example:

function (textParameter) { /* SEND THE TEXT OR HTML BACK TO THE TEXT INPUT
AREA */ }

Name Type | Value

languageUi | String | Default: "en"

Language to use for the Ul labels. Currently the following languages are supported:

. en = English
. fr =French

o de = German

Name Type | Value

requestFormat | String | Default: "TEXT"

Format of the text input, which can be TEXT for text content or HTML for text containing markup
language.

Name | Type | Value

Rule | String | Default: The language-specific rule set.

Optional rule set that should be used by the Acrolinx server to check the content. By default, a
language-specific rule set will be used.

Name Type Value

checkinglevels | String Array | Default: []

Instead of defining the Rule setting above it is also possible to define multiple rule sets by using the
checkingLevels setting. The rule names provided will then be interpreted as checking levels where
the first rule name provided is used to perform the first content check. Subsequent checks can then
be triggered by clicking the remaining check level buttons.

Name Type Value

rightClickEnable | Boolean | Default: false

Indicates whether the right-click context menu should be active.

Name Type Value

showFixAll | Boolean | Default: false

Indicates whether the :guilabel:"Replace All" button should be active.

36

Name Type Value

isModal | Boolean | Default: true

Indicates whether the dialog box that shows the results should behave as a modal.

Name Type Value

isModal | Boolean | Default: true

Indicates whether the dialog box that shows the results can be dragged.

Name Type Value

dialogHeight | Number/String | Default: "auto"

Height (in pixels) of the dialog box that shows the results. Alternatively the value can be set to the
string auto.

Name Type Value

dialogWidth | Number/String | Default: "auto"

Width (in pixels) of the dialog box that shows the results. Alternatively the value can be set to the
string auto.

Name Type Value

placeHolderMaxHeight | Number/String | Default: S(window).height()

Maximum height (in pixels) of the dialog box that shows the results.

Name Type Value

placeHolderMaxWidth | Number/String | Default: S(window).width()

Maximum width (in pixels) of the dialog box that shows the results.

Name Type Value

placeHolderMinHeight | Number/String | Default: 100

Minimum height (in pixels) of the dialog box that shows the results.

Name Type Value

placeHolderMinWidth | Number/String | Default: 380

Minimum width (in pixels) of the dialog box that shows the results.

Name Type Value

showManualCheck | Boolean | Default: false

When set to true, this button allows the user to manually re-check the content.
37

Name Type | Value

styleSheetPath | String | Default: "../css"

Path to the Accept.css file. This path needs to be set correctly in order to inject the necessary styles
in the tinyMCE iframe (rendered within the dialog).

Name Type Value

htmIBlockElements | String | Default:
"p ,h1,h2 ,h3 ,h4 ,h5 ,h6 ol ,ul li,,pre ,address ,blockquote ,dl ,di
v fieldset ,form ,hr ,noscript ,table"

List of block level HTML elements the plug-in should consider. A control node is added after each
HTML element in this list to simulate a line break in the content to check. These nodes are removed
before the content is applied back to the source placeholder.

Name Type Value

refreshStatusAttempts | Number | Default: 5

Number of attempts the plug-in will make to check if the response containing the results for the
content sent to check are ready. If the attempts' value reaches the threshold limit, subsequent
manual triggers may be needed by the user.

Name Type Value

editorWidth | Number/String | Default: "380px"

Initial width of the dialog inline editor.

Name Type Value

editorHeight | Number/String | Default: "80px"

Initial height of the dialog inline editor.

Name Type Value

getSessionUser | JavaScript/Function | Default: function () { return ""; }

It is possible to configure the plug-in to search for end user information (login name, etc...) and
attach that info as part of the metadata collected. This can be achieved by writing the necessary code
to search and then mandatorily return a string value representative of the desired information.

Name Type Value

injectSelector | jQuery Selector/String | Default: null

When the plug-in is configured in External Call mode, this setting combined with the injectContent
setting is used to inject extra HTML code on the page. The idea here is to trigger the content check
from one element injected by the combination of these properties. The value expected is a jQuery

38

http://api.jquery.com/category/selectors/

selector, the selector being used to find at least one existing DOM element where the new HTML
code (provided via the injectContent setting value) is injected.

Name Type Value

injectContent | HTML/String | Default: null

The HTML content that is injected in the element(s) found by the jQuery selector provided in the
setting injectSelector.

Name Type Value

injectWaitingPeriod | Number | Default: 100

Value in milliseconds the plug-in should wait to inject the HTML content from the injectContent
setting into the DOM elements matched in the jQuery selector provided by the injectSelector setting.

Name Type Value

triggerCheckSelector | jQuery Selector/String | Default: null

Expects a jQuery selector. This value is used to find the DOM element from where a mouse click will
trigger the content check.

Name Type Value

timeoutWaitingTime | Number | Default: 7000

Value in milliseconds that Ajax requests take before falling into a timeout exception.

39

http://api.jquery.com/category/selectors/

Appendix 3: First Steps with the ACCEPT Portal and Plug-ins
In order to get started with the ACCEPT Portal and its plug-ins, a user should decide whether their
profile best corresponds to:

e An online community member who is interested in authoring textual content that is easier to
understand by other community members and easier to translate into other languages;

e An online community member who is interested in helping make previously translated
content understandable (e.g. translated textual content that may have been automatically
translated is likely to require some editing);

e An online community content or technology owner or manager who is interested in giving
community members some assistance in editing textual content (either original or translated
content) or who is interested in collecting ratings for translated content.

If the user belongs to the first category and is somewhat proficient in English, French or German,
they may want to:

e Go to the Demos section to become familiar with the ACCEPT online Pre-Edit demos, which
show how the Pre-Edit plug-in can be used to make their textual content easier to
understand and translate;

e Get in touch with their online community manager or community content technology owner
to make them aware of the ACCEPT Pre-Edit plug-in (which they can easily download and
integrate into the online platform that the user is currently using to contribute community
content).

If the user belongs to the second category, they may want to:

e Go to the Demos section to become familiar with the ACCEPT online Post-Edit demos which
show how the Post-Edit plug-in can be used to make machine-translated content easier to
understand;

e Get in touch with their online community manager to discuss whether some of their
community’s textual content could be translated into other languages, using a combination
of translation suggestions (possibly provided by machine-translation providers) and post-
editing. The ACCEPT Portal allows project managers to create Post-Edit tasks, so the user
could be assigned some of these small tasks very easily.

e Go to the Working on tasks section to become familiar with the ACCEPT Post-Edit plug-in.

If the user belongs to the third category, they may want to:

e Become familiar with the Pre-Edit, Post-Edit, Evaluation and Portal parts of the

documentation. If they are technical, they may want to specifically look into the Plug-in and
Managing an external Post-Edit project sections to understand better how the plug-ins can

be integrated into their own environment. If they are interested in putting a mechanism in
place to collect ratings for translated content, they may also want to take a look at an
evaluation Client example.

e |dentify community members who may be interested in authoring their textual content with
the Pre-Edit plug-in or conducting Post-Edit tasks. They may need to communicate to these
members the value of content editing and find ways to motivate them in using these tools.

40

http://www.accept-portal.eu/Learn/pre-edit/portal/demo.html#preeditdemos
http://www.accept-portal.eu/Learn/post-edit/portal/demo.html#posteditdemos
http://www.accept-portal.eu/Learn/post-edit/portal.html#postedittask
http://www.accept-portal.eu/Learn/pre-edit/index.html#preeditall
http://www.accept-portal.eu/Learn/post-edit/index.html#posteditall
http://www.accept-portal.eu/Learn/evaluation/index.html#evaluationall
http://www.accept-portal.eu/Learn/portal.html#portalall
http://www.accept-portal.eu/Learn/pre-edit/index.html#preeditplugin
http://www.accept-portal.eu/Learn/post-edit/external_project.html#postexternalproject
http://www.accept-portal.eu/Learn/evaluation/client_example.html#evaluationclientexample

Appendix 4: Overview of the JSON Response Format

A request made against the GlobalSessionDomain method returns a response in JSON format. A

response example is shown below.

,
"Childsessions": [
"ClientResults": [...1,
"Context": "If is installed, this demo is used as a testt te explain how the report is structred.
In this demo we have the possibility to change most., if not all, rules that are used to check the
text by selecting an option from the \u20lcRule Set\u20ld drop-down list.
Results does not vary depending en your Linux distro.\n",
"ProviderResults": [...],
"Results": [...]
¥
1.
"GlobalEndTime":
“GlobalStartTime": "2C Z",
"Input”: "If is installed, used as a testt to explain how the report is structred.
In this demo we have the possibility to change most, if not all, rules that are used to check the text by
selecting an opt from the Zw20lcRule Set\u20ld drop-down list.
Results does not vary depending on your Linux distro.in"
"MetaData": {
GlobalSessionId": "44f35e3a_40c0ach495fed4cc4anBi0c6f951c8cod",
"Langu *ent,
"Rul "Preediting_Forum",
"Use " -556e42228"
i
"Output”: "If it is installed, this demo is used as a test to explain how the report is structured.
In this demo we have the possibility to change most, if not all, rules that are used to check the text by
selecting an option from the \u20lcRule Set\u20ld drop-down list.
Results do not wary depending on your Linux distro."
¥
1,
“ResponseStatus": “"OK",
"TimeStamp": "/Date(1385465000747)/"
¥

Figure 33: Structure of usage report in JSON format

When a request is successful, the ResponseObject value of the response contains the following

information:

e When the checking session started, as indicated by the GlobalStartTime value

e When the checking session ended, as indicated by the GlobalEndTime value
e The original text sent for checking, as indicated by the Input value

e The final text at the end of checking sessions, as indicated by the Output value

e The language configuration used by the language checking provider, as indicated by the

Language value in Metadata

e The rule set used by the language checking provider, as indicated by the RuleSet value in
Metadata
e A unique anonymised value of the user that triggered the checking session, as indicated by

the User value in Metadata

e An array of ChildSessions containing precise information about at least one specific check

performed on the text present in the Context value. Three sets of results are available for

each check:

0 ProviderResults, which correspond to the detailed output generated by the language
checking provider

0 ClientResults, which correspond to actions performed in the Settings window, as
explained below.

0 Results, which correspond to actions performed in the main window, as explained

below.

41

"ClientResults": [

"Action": "remove_learn_word",
"ActionValue*: "",
"Fla ntexi”: “structred”,

"Name": “"spelling_flag"
L
i
"Action": "remove_ignore_rule",
"ActionValue": "',
“FlagCentext™: "",
"Name": "use comma_after_introductory_ phrase"
¥

Figure 34: ClientResults usage information

"Results": [
{

"Action”: "learn_word",

¢ "structred",

exStart": ¥5.
"Name": "spelling flag"

¥

1
"Action": "learn word",
"ActionValue": *™,
"FlagContext": "distro",
"IndexEnd": 300,
"IndexStart": 294,
"Name": "spelling_flag"

Ty

1
“Action": “ignore_rule*,
"ActionValue": "",
"FlagContext": "In this demo we have the possibility to change most, if not all, " +

“rules that are used to check the text by selecting an option from the \u20lcRule Set\u20ld drop-down list",
"IndexEnd": 246,
"IndexStart”; Be;

"Name": "sentence_too_long"
h
&
“Action": “ignore_rule",
"ActionvValue”: ",
"FlagContext": "In",
"IndexEnd": 88,
"IndexStart": 86,
3 "Name": "use_comma_after_introductory_phrase"
1
“IndexStart": 0,
"MName": "wrong_sequence_of words"
1.
£

"Action": "accept_suggestion",
ionValue": "Results dao",
“FlagContext": "Results does",
"IndexEnd": 260,
"TndexStart": 248,

Figure 35: Results usage information

In the example shown in Figure 35, the ClientResults section of the report allows us to understand
that the user:

e Removed the word structred that they had previously learnt
e Removed the use_comma_after_introductory_phrase rule that they had previously decided
to ignore.

In the example above, the Results section of the report allows us to understand that the user (among
other things):

e Decided to learn the 6-letter word distro, which had been flagged between indexes 294 and
300 (but not including index 300) as a spelling error
e Decided to ignore the sentence_too _long rule, based on an instance starting at index 86

42

Displayed the recommendation tooltip for the wrong_sequence_of words rule at index 0 but
decided not to ignore the rule

Decided to accept the suggestion ‘Results do’ for ungrammatical phrase ‘Results does’ at
index 248.

43

	 /
	SEVENTH FRAMEWORK PROGRAMME
	THEME ICT-2011.4.2(a)
	Language Technologies
	ACCEPT
	Automated Community Content Editing PorTal
	www.accept.unige.ch
	Starting date of the project: 1 January 2012
	Overall duration of the project: 36 months
	Browser-based client demonstrator and adapted postediting environment and evaluation portal prototypes
	Workpackage n° 5 Name: Portal Integration
	Deliverable n° 5.6 Name: Browser-based client demonstrator and adapted post-editing environment and evaluation portal prototypes
	Due date: 31 December 2013 Submission date: 19 December 2013
	Dissemination level: PU
	Organisation name of lead contractor for this deliverable: SYMANTEC
	The research leading to these results has received funding from the European
	Community's Seventh Framework Programme (FP7/2007-2013) under grant
	agreement n° 288769.
	/ /
	Table of Contents
	Foreword 4
	1 Objectives and Structure of the Deliverable 4
	2 Overview of the ACCEPT Infrastructure 4
	3 The ACCEPT Pre-Edit Components 6
	3.1 The ACCEPT Pre-Edit API 6
	3.1.1 Overview of the New API Methods 6
	3.2 The ACCEPT Pre-Edit Plug-in 7
	3.2.1 Installation and Configuration 7
	3.2.2 Configuration Options 8
	3.2.3 New and Updated Functionality 8
	3.2.4 Downloadable Package 13
	3.3 The ACCEPT Pre-Edit Demo 14
	4 The ACCEPT Post-Edit Components 15
	4.1 New Post-Edit Plug-in Functionality 15
	4.1.1 Target Text Display 15
	4.1.2 Source Segment Display 15
	4.1.3 Recording Time 16
	4.2 New Portal-Based Project Functionality 18
	4.2.1 External Projects 18
	4.2.2 Projects with Single Revision 21
	4.3 The ACCEPT Post-Edit Demos 23
	5 The ACCEPT Evaluation Components 24
	5.1 Updated ACCEPT Evaluate Project Management Section 24
	5.2 Updated ACCEPT Evaluation API 24
	5.3 The ACCEPT Appraise Component 26
	5.3.1 Motivation 26
	5.3.2 Modifications 27
	5.3.3 Integration 29
	References 29
	Appendix 1: External Call Integration for the Pre-Edit plug-in 30
	STEP 1 30
	STEP 2 31
	STEP 3 31
	STEP 4 32
	STEP 5 32
	Appendix 2: Pre-Edit Plug-in Configuration Options 35
	Appendix 3: First Steps with the ACCEPT Portal and Plug-ins 40
	Appendix 4: Overview of the JSON Response Format 41
	List of Figures
	Figure 1: The ACCEPT architecture 4
	Figure 2: The ACCEPT Portal landing page 5
	Figure 3: The Learn Section of the ACCEPT Portal 5
	Figure 4: The ACCEPT Pre-Edit session schema 6
	Figure 5: First Pre-Edit prototype 8
	Figure 6: New tooltips with short recommendations 9
	Figure 7: The editable area of the new Pre-Edit plug-in 10
	Figure 8: Presenting annotated HTML content 10
	Figure 9: Selection of a rule set and the display of the “Replace All” button 11
	Figure 10: The management of learnt words 12
	Figure 11: Contextual help dialog 13
	Figure 12: The French Pre-Edit demo on the ACCEPT Portal 14
	Figure 13: Source text display using target templates 15
	Figure 14: Showing or hiding the source segment 16
	Figure 15: Displaying Post-Editing phase information in XLIFF reports 16
	Figure 16: Displaying Post-Editing revision in XLIFF reports 18
	Figure 17: External Post-Edit Project Creation 19
	Figure 18: Post-Edit plug-in initialisation options 20
	Figure 19: Creation of a single revision project with a 20-minute lock 22
	Figure 20: Locking period warning 23
	Figure 21: Post-Edit demos on the ACCEPT Portal 23
	Figure 22: Post-Edit demo task 23
	Figure 23: Format of evaluation content 24
	Figure 24: Scores method's response 26
	Figure 25: ACCEPT evaluation task using Appraise 28
	Figure 26: Adding video-based evaluation guidelines to Appraise tasks 28
	Figure 27: Integrating Appraise within the ACCEPT Portal 29
	Figure 28: Step 1 of external call example 30
	Figure 29: Step 2 of external call example 30
	Figure 30: Step 3 of external call example 31
	Figure 31: Step 4 of external call example 32
	Figure 32: Step 5 of external call example 33
	Figure 33: Structure of usage report in JSON format 41
	Figure 34: ClientResults usage information 42
	Figure 35: Results usage information 42
	Foreword
	As agreed with the Project Officer on 7 May 2013, the original deliverables D5.4 (Browser-based client demonstrator used to access acrolinx IQ server), D5.5 (Adapted Post-Editing Environment prototype) and D5.6 (Adapted evaluation portal prototype) are being merged into the present, common deliverable (D5.6).
	1 Objectives and Structure of the Deliverable
	The main objective of this deliverable, which encompasses Tasks 5.1, 5.2 and 5.3, was to refine the prototypes that had been developed in Year 1. Specifically, the main goal of Task 5.1 was to transform the Year 1 checking client prototype into a full-fledged demonstrator in order to meet the requirements of the evaluation work carried out in WP9. The main goal of Task 5.2 was to refine the Year 1 post-editing environment prototype by taking into account the feedback received through the Year 1 User Studies (see deliverables D7.1.1 and D8.1.1) as well as the feedback collected through our Special Interest Group (see Task 10.2). The main goal of Task 5.3 was to refine the Year 1 evaluation framework prototype, by taking into account user requirements originating from Tasks 8.2, 9.2 and 9.3.
	The deliverable is structured as follows: a quick summary of the ACCEPT infrastructure is presented before describing all of the ACCEPT components in detail. These components are divided into three main parts: the Pre-Edit components, the Post-Edit components and the Evaluation components. These components are described and discussed in separate sections.
	2 Overview of the ACCEPT Infrastructure
	/
	Figure 1: The ACCEPT architecture
	The ACCEPT infrastructure comprises three main modules (Pre-Edit, Post-Edit and Evaluation), each of which is made of multiple components (e.g., API, plug-in, portal section). A fourth module is based on a customised version of the Appraise system and is only available as a portal section. The Appraise system is an open-source tool for manual evaluation of Machine Translation output (Federmann, 2012). Since this module may be used to perform evaluation tasks, it will be covered in the Evaluation section of this deliverable. An instance of the ACCEPT API has been deployed alongside the ACCEPT Portal (www.accept-portal.eu and www.accept-portal.com). The ACCEPT architecture is presented in Figure 1.
	While the ACCEPT infrastructure is quite simple, a user who visits the ACCEPT portal for the first time may be overwhelmed by the amount of functionality available, as shown below:
	/
	Figure 2: The ACCEPT Portal landing page
	In order to help first-time users navigate the ACCEPT Portal, a quick-start guide has been added to the Learn section of the Portal, as shown below:
	/
	Figure 3: The Learn section of the ACCEPT Portal
	From a technical perspective, the content of the Learn section is created using the reStructuredText format and Sphinx. This technology allows the creation of self-contained topics written in a humanreadable format, which can then be combined in multiple ways in order to produce various documentation sets (e.g., HTML, PDF, etc). The main points of the quick-start guide are summarized in Appendix 3: First Steps with the ACCEPT Portal and Plug-ins.
	3 The ACCEPT Pre-Edit Components
	3.1 The ACCEPT Pre-Edit API
	3.1.1 Overview of the New API Methods

	3.2 The ACCEPT Pre-Edit Plug-in
	3.2.1 Installation and Configuration
	3.2.2 Configuration Options
	3.2.3 New and Updated Functionality
	3.2.3.1 Simplifying the display of rule violations and suggestions
	3.2.3.2 Editing text while reviewing suggestions and recommendations
	3.2.3.3 Checking HTML content
	3.2.3.4 Triggering manual checks
	3.2.3.5 Displaying the “Replace All” button
	3.2.3.6 Selecting a specific rule set
	3.2.3.7 Learning words
	3.2.3.8 Ignoring rules
	3.2.3.9 Providing active feedback to the system
	3.2.3.10 Getting help

	3.2.4 Downloadable Package

	3.3 The ACCEPT Pre-Edit Demo

	This section presents the new API methods that have been introduced to extend the ACCEPT Pre-Edit functionality and the modifications that have been made to the Pre-Edit plug-in and demo.
	The ACCEPT Pre-Edit API can be easily described as a piece of software built as a wrapper for the Acrolinx services. The ACCEPT Pre-Edit API combines the main features available within the Acrolinx services in an independent REST (Representational State Transfer) API. This includes the following functionalities: spell checking, grammar checking and style checking. Two new Pre-Edit API methods have been added to retrieve the usage information of a Pre-Edit plug-in instance. The methods are SimpleGlobalSessionDomain and GlobalSessionDomain.
	A global session corresponds to what happens between the time when a Pre-Edit client is opened and when it is closed by a user, as detailed in the diagram below:
	/
	Figure 4: The ACCEPT Pre-Edit session schema
	A global session starts when a user triggers a check (when the main window of the Pre-Edit plug-in opens) and ends when the user closes the window. A global session may have more than one child session (e.g. auto-check, manual re-check). Each check is associated with an API request audit trace and with the Acrolinx response. Global session information for a given Pre-Edit client instance can be retrieved from a given date up until the present using the following request (which will return a response in JSON format):
	http://[accept_portal_server]/AcceptApi/Api/v[api_version]/Core/SimpleGlobalSessionDomain/?id=[instance_id]&start=[date]&end=[date]&userKey=[user_key],
	where [accept_portal_server] is the name or IP address of the server running the ACCEPT portal and [api_version] is the version of the API (current is 1). [instance_id], [date] and [user_key] correspond to values for the following parameters:
	 id: API key used by one or more client instance
	 start: starting date for range in UTC format
	 end: end date for range in UTC format
	 userKey: key of user who created the client instance.
	Note: This request may return usage data for multiple languages (e.g. EN, FR or DE) if the API key is shared by multiple client instances. To obtain specific usage data (say, for a given language), filtering on rule set names or language information may be required. To export the usage data in CSV format, the format parameter is specified as follows:
	http://[accept_portal_server]/AcceptApi/Api/v[api_version]/Core/SimpleGlobalSessionDomain/?id=[instance_id]&start=[date]&end=[date]&userKey=[user_key]&format=csv
	To export the data in Excel format, the format parameter is specified as follows:
	http://[accept_portal_server]/AcceptApi/Api/v[api_version]/Core/SimpleGlobalSessionDomain/?id=[instance_id]&start=[date]&end=[date]&userKey=[user_key]&format=excel
	Note: The SimpleGlobalSessionDomain method only generates global session data. To get the data including child session information, which is much more detailed since it contains all of the checks that were made in a given global session, the GlobalSessionDomain may be used as follows:
	http://[accept_portal_server]/AcceptApi/Api/v[api_version]/Core/GlobalSessionDomain/?id=[instance_id]&start=[date]&end=[date]&userKey=[user_key]
	 The GlobalSessionDomain method does not currently accept any format parameter, its only response format being a JSON format, but this may change in the future. Detailed information on the response format is provided in Appendix 4: Overview of the JSON Response Format.
	The ACCEPT plug-in uses the CORS (Cross Origin Resource Sharing) mechanism, which confines the Pre-Edit plug-in support to the following browsers:
	 Mozilla Firefox 3.6.28+
	 Internet Explorer 8+
	 Safari 4+
	 Opera 12+
	 Chrome 20+.
	Support for Internet Explorer 8 was added in order to ensure that the most common browsers would be supported.
	The plug-in can be installed in a number of ways, such as using a context menu or embedding into a text editor, as detailed in Deliverable 5.1. Another way to achieve the installation is to perform an external call integration. An external call integration allows the developer to use an existing HTML element in the Web page (or even inject a new HTML element) to trigger the plug-in dialog. This is best approach for situations where there is an existing embedded text editor in place and even minor changes in the Web page style are undesirable. A full walkthrough is provided in Appendix 1: External Call Integration for the Pre-Edit plug-in.
	In order to use the ACCEPT plug-in, an API Key is required. To get an API key, a user may log into the Accept Portal and go to: http://www.accept-portal.eu/AcceptPortal/Account/UserProfile.
	This page lists a user’s current list of applications. To generate an API key, the “Create new Application” button may be clicked and the form filled in. The newly created application is listed in the user’s profile details. To get the API key, the application name can be clicked. The API details will be displayed alongside the API Key. The API key will be associated with an IP address.
	The ACCEPT Pre-Edit plug-in can be configured to work in many different ways. The supported configuration options are described in Appendix 2: Pre-Edit Plug-in Configuration Options.
	The feedback received throughout Year 1 suggested that the initial prototype should be refined to allow users to:
	 Be presented with pre-editing rule violations, suggestions and recommendations in a clear and intuitive manner
	 Edit the text while reviewing suggestions and recommendations without introducing conflicts in the original text environment
	 Check and edit HTML content
	 Trigger manual checks
	 Select specific rule sets and avoid being confused with the “ReplaceAll” functionality
	 “Learn” words
	 Ignore rules
	 Provide active feedback to the system
	 Get access to clear and concise help on how to use the plug-in.
	One of the most frequent comments from the usability study conducted in Year 1 was complaints about the excessive amount of tooltips, highlighting and underlining present in the window, as shown below:
	/
	Figure 5: First Pre-Edit prototype
	In order to address this problem, the following modifications were made:
	 New types of tooltips were introduced (not only to improve the visual display of information but also to better control their position in relation to the text and the plug-in)
	 The time spent displaying a tooltip was adjusted in order to:
	o Give users enough time to read the text and interact with the tooltip (using the mouse)
	o Avoid having two tooltips opened at the same time
	o Prevent tooltips from masking drop-down menus
	 The amount of recommendation text returned by the language checking provider (Acrolinx) was reduced (e.g. alongside the rule name, a short text description is now returned instead of the complete rule specification)
	 The color-coding scheme was simplified
	 The amount of underlining was reduced (e.g. instead of underlining all of the words of a long sentence, only the first and last words are now underlined; these first and last words are also highlighted when the user hovers over one of them in order to help them visualize where the long sentence ends).
	/
	Figure 6: New tooltips with short recommendations
	The screenshot above shows that only two colors are now used to underline text: red for general recommendations (e.g. “this sentence is too long”) and green for rules with actual replacement suggestions. While the first prototype used colors to make a distinction between rule types (e.g. spelling vs. style), the new plug-in focuses on the question of whether a replacement can be suggested to the user. After another round of internal usability testing, we decided to switch the use of these colors, since red is often is associated with errors (for which the system should suggest alternatives).
	The other common complaint from users was the inability to edit their text while reviewing suggestions. For instance, when they were being advised to reduce the length of a sentence, they had to close the plug-in, edit the original text and check the text again. This workflow was clearly inefficient, so support for text editing was introduced in the new version of the plug-in, as shown below:
	/
	Figure 7: The editable area of the new Pre-Edit plug-in
	Besides adding support for inline editing, we also decided to add the isModal configuration option to control whether the plug-in window should behave in a modal way (which is now the default). Modal windows are used to display additional content on a new page layer (window) on top of the loaded content (i.e. the original Web page). This was done to ensure that users do not introduce conflicts by modifying text in the plug-in window while also editing their original text in the native environment.
	In addition to allowing users to edit their text while reviewing suggestions, we decided to introduce support for non-text content. The first version of the plug-in only offered users the ability to check text content, thus limiting the potential adoption of the tool in most Web applications. As shown below, HTML content (including pictures, style and hyperlinks) can easily be checked, annotated and edited using the Pre-Edit plug-in. Hyperlinks are actually disabled in the plug-in window but re-enabled once the edited text is applied in the user’s native environment.
	/
	Figure 8: Presenting annotated HTML content
	As shown in Figure 8: Presenting annotated HTML content, a “Check” button is available in the plugin window if the showManualCheck configuration option is set to True. This button allows users to manually re-check their text whenever they think new modifications require re-checking.
	Another source of confusion among users was the “FixAll” button in the first version of the plug-in. This button requested automatic modification of the user’s text based on suggestions provided by the language checking tool. Since this replacement approach is automatic, some modifications introduced errors in the text, suggesting that the choice of the phrase “FixAll” was not appropriate. To work around this problem, we decided to rename this option to “Replace All” and make it inactive by default. One possible implementation is therefore to let the user decide whether this option should be shown in the plug-in, as shown in Figure 9.
	/
	Figure 9: Selection of a rule set and the display of the “Replace All” button
	Figure 9 also shows that this plug-in implementation (which is in place on the Demo section of the ACCEPT portal) lets users decide which rule set should be used to check their text. More information on this option is available in the following section: The ACCEPT Pre-Edit Demo.
	One of the most popular feature requests was the ability to have the system “learn” words so that they would no longer be flagged by the system. While the initial version of the plug-in offered users the ability to ignore flags, these decisions were lost as soon as the user closed the plug-in window. In this version of the plug-in, we decided to use a client-side storage mechanism to make such choices persistent (i.e. using local storage or cookies depending on the browser used). We also decided to provide the user with a way to manage the words they had learnt. As shown in Figure 8: Presenting annotated HTML content, contextual menus with suggestions now contain an extra option (Learn), which allows users to inform the system that they wish to consider the form of the flagged word as correct. Once they click on “Learn”, the underlining disappears. Users then have to review this choice by clicking the “Settings” button. Once they do so, the plug-in window rotates and displays a list of learnt words, as shown below:
	/
	Figure 10: The management of learnt words
	Learnt words can be easily deleted by clicking the “Remove” link, the list of words being updated dynamically.
	In the same way that words can be learnt, rules can be ignored (i.e. disabled) by users when they think the rule is not useful. Once a rule is disabled, all violation instances of this rule are ignored and disappear from the plug-in window. Users can revert their decisions at any time by removing rules from the “Ignored rules” table in the “Settings” window.
	In order to collect and export usage information as detailed in Section 3.1.1, some client-side changes were made to ensure that user interactions can be precisely captured in the following situations:
	 When a tooltip is displayed but the rule is not ignored
	 When a tooltip is displayed and the rule is ignored
	 When a drop-down menu is displayed but no option is clicked
	 When a drop-down menu is displayed and a suggestion is selected
	 When a drop-down menu is displayed and the phrase is learnt.
	The help available to users in the first version of the plug-in was hard to find and extremely text-heavy. In the new plug-in version, we decided to use an easily-recognisable blue icon (symbolized with a question mark) as shown in Figure 8: Presenting annotated HTML content. It was also decided to use the actual buttons from the plug-in in the help dialog to avoid any confusion:
	/
	Figure 11: Contextual help dialog
	The Pre-Edit plug-in can be accessed from the ACCEPT Content Delivery Network (CDN) by including the following references in the head element of an HTML document:
	<script src="http://www.accept-portal.eu/Plugin/v2.0/js/jquery-1.5.1.min.js" type="text/javascript"></script>
	<script src="http://www.accept-portal.eu/Plugin/v2.0/js/jquery-ui-1.8.24.custom.min.js" type="text/javascript"></script>
	<link href="http://www.accept-portal.eu/Plugin/v2.0/css/Accept.css" rel="stylesheet" type="text/css" />
	<link href="http://www.accept-portal.eu/Plugin/v2.0/css/jquery-ui.css" rel="stylesheet" type="text/css" />
	<script src="http://www.accept-portal.eu/Plugin/v2.0/extras/tiny_mce/tiny_mce.js" type="text/javascript"></script>
	<script src="http://www.accept-portal.eu/Plugin/v2.0/js/accept-jquery-plugin-2.0.js" type="text/javascript"></script>
	The plug-in has also been made available as a downloadable package with the contents shown in Table 1.
	index.html (ACCEPT Pre-Edit plug-in documentation)
	/
	index.html (ACCEPT Pre-Edit plug-in documentation)
	/docs
	jquery-1.5.1.min.js (jQuery core library)
	/js
	jquery-ui-1.8.24.custom.min.js (jQuery UI library)
	accept-jquery-plugin-2.0.js (ACCEPT plug-in core file)
	jquery-ui.css (jQuery UI CSS)
	/css
	accept.css (ACCEPT plug-in CSS)
	Example1.htm (Use case code example.)
	/examples
	Example2.htm (Use case code example.)
	tiny_mce.js (TinyMCE plugin core file.)
	/extra/tinyMce
	Table 1: Pre-Edit plug-in package contents
	The version of the plug-in described in this document is version 2.0, which can be downloaded from:
	http://www.accept-portal.eu/AcceptPortal/en-US/Download/Index
	A Pre-Edit demo is available to any registered user of the ACCEPT portal. This demo shows how the JQuery plug-in works in a TinyMCE environment, by offering source French, English and German language checking. The French demo differs from the English and German demos because the plug-in has been configured to allow users to perform checks in multiple steps, as shown in Figure 12:
	/
	Figure 12: The French Pre-Edit demo on the ACCEPT Portal
	As shown above, the Pre-Edit plug-in contains three extra buttons next to the Help button. These buttons correspond to specific checks that can be triggered on the text, each based on a separate rule set. Using this type of configuration may be advantageous in situations where the precision of certain rules can be significantly increased if other errors have been corrected first. Instead of grouping all rules in one rule set, it is therefore possible to group rules in smaller rule sets.
	Note: This configuration option can be combined with the use of the “ReplaceAll” functionality in order to fully automate the application of suggestions provided by the rule set which has been specified as consisting of automatic rules.
	4 The ACCEPT Post-Edit Components
	4.1 New Post-Edit Plug-in Functionality
	4.1.1 Target Text Display
	4.1.2 Source Segment Display
	4.1.3 Recording Time

	4.2 New Portal-Based Project Functionality
	4.2.1 External Projects
	4.2.2 Projects with Single Revision

	4.3 The ACCEPT Post-Edit Demos

	This section presents the new Post-Edit plug-in functionality before describing new characteristics of Post-Edit projects. The new API functionality is presented in this second sub-section. Finally the ACCEPT Post-Edit demos are introduced.
	The following functionality has been added in version 2 of the Post-Edit plug-in:
	 The ability to customize the display of the target text in the navigation pane on the left.
	 The ability to control whether source segments may be shown or hidden by the user
	 The ability to record how much time is spent by a user on a specific segment.
	A new functionality was introduced to control the display of target text in the Post-Edit window. This new functionality is fully described in Roturier et al (2013). The following figures show the use of tgt_templates to separate each source segment with a line break.
	//
	Figure 13: Source text display using target templates
	Post-editing is traditionally believed to be most successful in a bilingual mode (i.e. post-editing with reference to the source text) so that meaning which may have been lost or distorted in the machine translation process can be retrieved from the source. While research in monolingual post-editing is scarce, especially with regard to domain experts as post-editors rather than linguists/translators, providing the post-editor with the opportunity of choosing the post-editing setup dynamically (i.e. monolingual/bilingual) has been identified as a potential way of minimising or preventing user frustration. This is supported by feedback that has been gathered in internal studies, which indicated that users were eager to see the source. To illustrate switching between bilingual and monolingual modes, consider what happens if the project default is the monolingual mode. The source will then not be shown in the interface when a task is opened initially. The user can then decide to switch to being shown the original segment for the current segment. Regardless of how many switches are performed per segment, the last state the switch is in is retained for the next segment the user chooses to edit. The button can be toggled at any time. When the editor is closed, the page is refreshed or a new task is selected, the project default is displayed again (in this case the source is not shown).
	/
	Figure 14: Showing or hiding the source segment
	Once users have started working on a Post-Edit project, project administrators can export postediting activity data at user, document or project level. The data is exported in an XLIFF format.
	The following example shows the type of usage data that is captured by the system and made available in the header of the XLIFF report.
	/
	Figure 15: Displaying Post-Editing phase information in XLIFF reports
	Thanks to the information present in the header element, the steps that were taken during the post-editing process can be retraced. The phase-group element contains a number of phases corresponding to processes that were used to interact with the target text. The first of these phases (in chronological order) actually occurred before the post-editing process since it corresponds to the automatic translation of the source text using the relevant Machine Translation tool.
	The first post-editing phase is the one whose phase-name attribute has a start_pe value. The starting time of this phase is indicated in the value of the date attribute. The times indicate that the start of this phase coincided with the start of another phase, whose phase-name attribute has a t1.1 value. The syntax of this value is based on the following parts:
	 phase_type: r (for revision) or t (for thinking)
	 translation unit ID: starting at 1
	 iteration ID for a given translation unit: starting at 1
	The t1.1 value therefore means that the first iteration of a thinking phase started for the first translation unit of the file. During this phase, some countable events occurred. These events are captured in a number of count elements with a matching phase-name attribute value. In this example, the phase lasted just over 16 seconds (as indicated by the element with the x-think-time value). The element with the x-start_source_switch value indicates that the UI displayed the source text when the phase was started. However, this was changed twice by the user, as indicated by the element with the x-source_switch value where the value of unit is instance. Other elements also indicate precisely when the UI was changed.
	In short, a thinking phase is used to capture events that happened in the Post-Edit client when these events are not directly related to the editing of the target text. For instance, if the user had commented on the quality of the target text, a note child element would have been attached to the phase element.
	Based on the times present in the report, it is possible to determine that the t1.1 phase was not immediately followed by the t1.2 phase, since the difference between the starting time of the t1.2 phase and that of the t1.1 phase is 24 seconds (whereas the t1.1 phase lasted just over 16 seconds). This means that the user closed the client application and re-opened it 8 seconds later. As soon as the client application was re-opened, the t1.2 phase started and lasted over 6 seconds. This time, however, the t1.2 phase was immediately followed by another phase in the client application, the r1.1 phase (which was a revision phase).
	Multiple events occurred during the r1.1 phase, including the generation of two comments by the user (as indicated by the two child note elements) on lines 11 and 12. Other events were captured in count elements, including how long the editing of the target text lasted (as indicated by the x-editing-time value). In this example, the x-editing-time value is the same as the x-typing-time value, indicating that the user started editing the target text using a keyboard key (instead of using a contextual translation option). Various numbers of pressed keys are available for this phase, thus allowing for a detailed analysis of the type of post-editing that was conducted.
	x-editing-time and x-typing-time values must be interpreted with caution. For unavoidable practical reasons, the calculation of these times may not accurately reflect the reality of the situation. For instance, an x-typing-time value of 50 seconds does not necessarily mean that the user was typing for 50 seconds. It means that the user started typing and that the phase ended 50 seconds later. It is possible, however, that the user typed for 10 seconds, thought for 2 seconds, typed again for 12 seconds, etc. Trying to capture and analyse this data in full detail is extremely challenging, which is why the calculations are currently simplified.
	Since an editing revision occurred, the target text is likely to have changed in the first translation unit. This is confirmed when examining the first trans-unit element of the body element:
	/
	Figure 16: Displaying Post-Editing revision in XLIFF reports
	In this example, it is possible to see that the current target text corresponds to what was produced in the r1.1 phase, relegating the translation from the mt_baseline phase to an alt-trans element.
	It should be noted that thinking phases do not have any impact on trans-unit elements since the target text does not get modified during these phases.
	While creating post-editing projects within the ACCEPT Portal can be useful to conduct studies or centralize post-editing activities, it can be cumbersome when project participants (i.e. post-editors) are used to working in another environment (e.g. a crowdsourcing platform, an online discussion forum, a content management system, etc.). To address this issue, we decided that the post-edit plug-in should behave in the same way as the pre-edit plug-in and become accessible from outside the ACCEPT portal. To achieve this goal, some modifications had to be made to post-editing projects, by giving project users the possibility to create external projects (i.e. a project where the actual post-editing activity would take place outside of the ACCEPT Portal, while leveraging the ACCEPT API to access translation assistance material and to save any post-editing action).
	The following steps can be used to create and manage an external Post-editing environment using the ACCEPT Post-Edit plug-in:
	1. Create an external Post-Editing project using the Portal’s project creation page.
	/
	Figure 17: External Post-Edit Project Creation
	2. Add Post-Editing tasks to this newly created project using the Portal or the API
	While a task upload functionality was already present on the ACCEPT Portal, we decided to expose this functionality via the API to speed up the upload process for projects containing multiple tasks. To achieve this, it was necessary to introduce a private project token to restrict task upload to project owners. This token can then be used by leveraging any HTTP compliant client application (e.g. any HTTP debugging proxy server application such as Fiddler) as follows:
	 Set the proper ACCEPT API URL to add tasks to projects. For example: http://[accept_portal_server]/AcceptApi/Api/v[api_version]/PostEdit/AddDocumentToProject/?token=[token] where [accept_portal_server] is the ACCEPT portal server to target, [api_version] is the version of the API (current is 1), and [token] is the project’s admin token
	 Add the following HTTP header to the request: Content-Type : application/json
	 Add the JSON that corresponds to the task in the request body
	 Post the request
	3. Add external users to this newly created project using the API
	To add users to a project, the following POST method can be used:
	http://[accept_portal_server]/AcceptApi/Api/v[api_version]/Admin/AddUserProject
	where [accept_portal_server] is the ACCEPT portal server you want to target and [api_version] is the version of the API (current is 1).
	The request must include the following in the HTTP header: Content-Type:application/json
	The request must include a JSON body based on the following format:
	{
	 "userName": "…",
	 "token": "…"
	}
	where token is the project’s admin token and userName the name of the user who will be allowed to work on the task (as specified during the initialisation of the Post-Edit plug-in, as described in next step).
	4. Set up an external Post-Editing environment
	Since the plug-in is written on top of the jQuery and jQuery UI libraries, these are both a mandatory requirement for deployment in any Web-based environment. The ACCEPT Post-Edit plug-in has the following initialisation options:
	/
	Figure 18: Post-Edit plug-in initialisation options
	The other plug-in files (CSS and JavaScript) can be referenced using the ACCEPT content delivery network, as shown in the example below.
	5. Check project task status
	To check the status of a project, the following GET method can be used:
	http://[accept_portal_server]/AcceptApi/Api/v[api_version]/Admin/ProjectTaskStatus?token=token
	where [accept_portal_server] is the ACCEPT portal server you want to target, [api_version] is the version of the API (current is 1), and [token] is the project’s admin token.
	The request must include the following in the HTTP header: Content-Type:application/json
	This method returns a JSON object:
	"ResponseObject": [
	 {
	 "TextId": "[UniqueTaskID]",
	 "UserId": "ExtDeVUser1",
	 "Status": 0
	 },
	 {
	 "TextId": "[UniqueTaskID]",
	 "UserId": "ExtDeVUser2",
	 "Status": 1
	 },
	 {
	 "TextId": "[UniqueTaskID]",
	 "UserId": "ExtDeVUser3",
	 "Status": 2
	 }
]
	The status values are:
	 0 : task not started by user
	 1 : task started but not finished by user
	 2 : task completed by user
	6. Collect recorded data using the Portal
	At all times, it is also possible to get project information to keep track of the project’s task and users. To get information about a project, the following GET method can be used:
	http://[accept_portal_server]/AcceptApi/Api/v[api_version]/Admin/ProjectInfo?token=token
	where [accept_portal_server] is the ACCEPT portal server you want to target, [api_version] is the version of the API (current is 1), and [token] is the project’s admin token.
	The request must include the following in the HTTP header: Content-Type:application/json
	This method returns a JSON object whose ResponseObject value is composed of two lists: a list of tasks and a list of users.
	While projects with multiple, independent revisions can be extremely useful for studying how different post-editors edit a given target text, they do not address the need to have a single, collaborative revision, which would be required in most real-life deployment scenarios. In order to meet this requirement, we decided to give project creators the ability to define collaborative projects where post-editors work on a single revision of the text. The advantage of this approach resides in the fact that the modifications made by a post-editor do not have to be repeated when a second post-editor starts working on the same project task.
	To implement this functionality, the challenge posed by conflicting edits had to be resolved. Two approaches were considered:
	 Having a fully synchronized, real-time editing environment where the changes made by User A are immediately seen by User B (if both User A and User B are working on the same project task at the same time)
	 Having a mechanism to prevent users from working on a task if a user is already working on it
	The first approach is obviously much more challenging from a technical perspective and it is not clear that it would be suitable for short post-editing tasks, especially at the segment level. We decided to implement the second approach with the following restriction: project creators can decide how long a task can be held by a given user before it can be “claimed” by another one. If users were able to keep working on a task indefinitely, the collaborative aspect of the task would be lost. Project creators can therefore define at project creation the maximum amount of time that should be used to lock a task for a given user, as shown in Figure 19:
	/
	Figure 19: Creation of a single revision project with a 20-minute lock
	When a project is configured as shown in Figure 19, it gives users at least 20 minutes to complete a task before another user is able to try to claim it. Once a user has successfully claimed a task, all other users are presented with the warning shown in Figure 20 for the duration of the project’s locking period.
	/
	Figure 20: Locking period warning
	The use of this configuration will be tested in natural environments (e.g. online forums) to determine whether users in these environments can improve machine-translated texts in a collaborative manner.
	In order to showcase the Post-Edit plug-in to users of the ACCEPT portal, three demo projects have been created, one for each of the following language pairs:
	 French > English
	 English > German
	 English > French
	/
	Figure 21: Post-Edit demos on the ACCEPT Portal
	Portal users can click on any of these tasks to get access to a small post-editing task, as shown below:
	/
	Figure 22: Post-Edit demo task
	The figure above shows machine-translated text on the left-hand side of the window, with the first sentence to post-edit highlighted in yellow. On the right-hand side, the same sentence is available for editing in a text area, under the label “Current sentence to edit”. In this screenshot, the user decided to show the source (original) sentence by clicking the switch button on the top right hand-side of the window. This source sentence could be hidden again by clicking “Hide Source”.
	5 The ACCEPT Evaluation Components
	5.1 Updated ACCEPT Evaluate Project Management Section
	5.2 Updated ACCEPT Evaluation API
	5.3 The ACCEPT Appraise Component
	5.3.1 Motivation
	5.3.2 Modifications
	5.3.3 Integration

	The ACCEPT Evaluation components are now divided into two parts:
	 The ACCEPT Evaluation API and the Evaluate section of the ACCEPT Portal
	 The ACCEPT Appraise component
	The first component has been updated in Year 2 to address the following shortcomings:
	 Evaluation content could not be added to projects, so a client-side mechanism had to be used
	 No public method existed to export project data
	Instead of relying on a client-side mechanism to make content available for evaluation, content may be added to an evaluation project. To do so, a JSON file may be uploaded by clicking the Add Content link and selecting a file. The file must comply with the following format:
	/
	Figure 23: Format of evaluation content
	As shown in the example above, any number of sentences (or text chunks) may be uploaded in a chunkList array. Each chunk, which will be used during the actual evaluation task, must be a UTF-8 string. Additional metadata may be included in chunkInfo. The active value may be set to 1 (active) or 0 (not active) depending on whether this specific chunk should be considered on the client side.
	Two new methods have been added: the ContentChunks method and the Scores method.
	The ContentChunks method is a GET method. The ContentChunks method returns two lists: a list of chunks and list of questions.
	http://[accept_portal_server]/AcceptApi/api/v[api_version]/Evaluation/ContentChunks/[ID]
	where [accept_portal_server] is the ACCEPT portal server you want to target, [api_version] is the version of the API (current is 1), and [ID] is the Evaluation project ID. For an evaluation project with an ID of 1 the call would be:
	http://[accept_portal_server]/AcceptApi/api/v[api_version]/Evaluation/ContentChunks/9?key=21fdc25bebdf456db5c9e0993977bb12
	The following parameters can be passed on the URL:
	The Scores method, which can be used to retrieve answer data, is a GET method. The Scores method returns a list of answers and associated metadata.
	http://[accept_portal_server]/AcceptApi/api/v[api_version]/Scores/[ID]
	where [accept_portal_server] is the ACCEPT portal server you want to target, [api_version] is the version of the API (current is 1), and [ID] is the Evaluation project ID. For an evaluation project with an ID of 1 the call would be:
	http://[accept_portal_server]/AcceptApi/api/v[api_version]/Scores/9?token=[token_id]
	The following parameter must be passed on the URL: token. This is a MANDATORY parameter. If this parameter is not passed then the API call will fail. This value can be found on the Project Details page under My Project Token. A response example is shown below, with the actual question answer highlighted in yellow:
	/
	Figure 24: Scores method's response
	One of the original objectives of Task 5.3 was to integrate functionality from an existing evaluation system into the ACCEPT Portal (a system similar to the one deployed at http://eval4all.com). In order to justify such integration, however, this existing system had to be compared against at least another (more recent) evaluation system. One such system is Appraise, which has been used by the SMT community in shared tasks such as WMT 2013. The table below summarizes the main characteristics of both systems.
	Table 2: Comparison between Eval4All and Appraise
	As this table clearly shows, the Appraise system has more functionality and is easier to extend than its eval4all.com counterpart, especially from a data export perspective. The Appraise system offers project creators the ability to easily export project data using a combination of XML and TXT files (for rating and statistics respectively) by pushing a button. In contrast the eval4all.com system requires an administrative access to the database, where SQL queries have to be run before an Excel file can be exported.
	The following modifications were performed to add a new evaluation task type to the Appraise system. This new task type was required for the study conducted in WP8, during which multiple versions of post-edited segments were collected.
	 An ACCEPT Ranking evaluation type choice was added to the APPRAISE_TASK_TYPE_CHOICES object. This type choice indicates that a new type of ranking task becomes available to project creators. The objective of this task type is to combine a traditional (system) ranking task with a quality rating task. Ranking tasks may be useful to determine whether a system is better than another system, but it does not quantify the difference that may exist between the two systems. By combining the two approaches, it is possible for a user to indicate that two (or more) translations (produced by MT systems or human translators/post-editors) are ties at a given point on a scale. To simplify things, we decided in this implementation to keep the number of scale points consistent with the number of translations to evaluate. By uploading a file with five translations, an ACCEPT ranking task becomes available using a 5-point scale. Actually, the current implementation defaults to having two questions presented to users (one for fidelity and one for comprehensibility), as shown by the template and the rendered user view below:
	/
	/
	Figure 25: ACCEPT evaluation task using Appraise
	 An extra video_url field was added to the EvaluationTask class. This optional field may be used to embed a video into a user’s task page. This can be useful to provide visual evaluation guidelines, instead of relying on text-based guidelines (which are often ignored or misunderstood), as shown below:
	/
	Figure 26: Adding video-based evaluation guidelines to Appraise tasks
	 We created a template to export the evaluation results into an XML file:
	/
	For this initial release, an instance of the modified Appraise system was integrated into the ACCEPT portal using an iframe, as shown below:
	/
	Figure 27: Integrating Appraise within the ACCEPT Portal
	This integration may be revisited in the future to determine whether it might be possible to use the ACCEPT credentials to log into the Appraise system.
	References
	 Christian Federmann:
	Appraise: An Open-Source Toolkit for Manual Evaluation of Machine Translation Output
	In The Prague Bulletin of Mathematical Linguistics, volume 98, Prague, Czech Republic, 9/2012.
	 Roturier, Johann, Linda Mitchell, David Silva:
	The ACCEPT Post-Editing Environment: a Flexible and Customisable Online Tool to Perform and Analyse Machine Translation Post-Editing.
	In Proceedings of MT Summit XIV Workshop on Post-editing Technology and Practice, Nice, France, September 2013.
	Appendix 1: External Call Integration for the Pre-Edit plug-in
	STEP 1
	STEP 2
	STEP 3
	STEP 4
	STEP 5

	For this example we are using the simple editor example from the Yahoo! UI 2 download package. Let’s suppose this HTML page is actually the environment where we want to integrate the ACCEPT Pre-Edit plug-in.
	The first action to perform is always to identify the text source we wish to target. In this example we want the same element used by the Yahoo editor.
	/
	Figure 28: Step 1 of external call example
	Now we know that the element with the editor ID is the text area where the Yahoo editor is being used and as such the one where we want to implement the ACCEPT Pre-Edit plug-in. The plug-in configuration starts with:
	$('#editor').Accept({
	configurationType: 'externalCall',
	...
	A closer look at the Web page is required to understand where the plug-in dialog could be triggered from (e.g. which HTML button, HTML image, etc.):
	/
	Figure 29: Step 2 of external call example
	Looking at the image. it is apparent that a good way to trigger the ACCEPT Pre-Edit dialog would be from a button located in the editor toolbar. Since there are no available buttons, we need to set up the ACCEPT Pre-Edit plug-in to magically create a new HTML element for us.
	To add a new HTML element to the toolbar, we need first to identify the HTML element that contains all the toolbar elements.
	/
	Figure 30: Step 3 of external call example
	As shown above, the div element selected is indeed the container for all the elements in the editor toolbar. Therefore this div element works as a placeholder for the new element. Now that we know what the element is, we also need to find a way to identify it, but the div does not have any id attribute. This may at first glance look like a problem, but the plug-in can use any valid jQuery selector to find the placeholder. In this case, we know that the CSS class attribute is unique for this element. We can use it to “teach” the ACCEPT Pre-Edit plug-in how to find it:
	$('#editor').Accept({
	configurationType: 'externalCall',
	injectSelector: '.yui-toolbar-subcont',
	...
	At this stage we know the text area where the plug-in will be used and the toolbar element where we want to add new HTML content, so now we only need to decide what HTML content we want to add. For this example, we will inject a div element containing the ACCEPT ABC icon.
	<div style="float: right;margin-top: 20px;">
	
	</div>
	This needs to be added under the injectContent setting as part of the plug-in configuration:
	$('#editor').Accept({
	configurationType:'externalCall',
	injectSelector:'.yui-toolbar-subcont',
	injectContent:'<div style="float: right;margin-top: 20px;"></div>',
	...
	In this step, we need to identify the HTML element from which the click event that displays the ACCEPT dialog is triggered. In STEP 3, we injected code into the page precisely so as to have an extra element to act as the element we are now looking for. Looking carefully at STEP 3 we can see that the img element is an ID property we made up for this purpose, so this is the value we want to use for the triggerCheckSelector setting, as shown below:
	$('#editor').Accept({
	configurationType:'externalCall',
	injectSelector:'.yui-toolbar-subcont',
	injectContent:'<div style="float: right;margin-top: 20px;"></div>',
	triggerCheckSelector: '#triggerInjectedACCEPTbutton',
	...
	The main steps are now completed, but in this case they are not sufficient. If we went ahead and tried to run this example with the current configuration, the plug-in would not work because the text content to check is not loaded into the dialog or properly submitted back to the source. The reason is the same as that explained in STEP 4 of Example 3. Basically the Yahoo! UI editor does not keep the text content in the text area where it was installed but instead within an iframe built during the initialization. This is actually the most common behaviour nowadays in WYSIWYG editors. Let’s take a closer look:
	/
	Figure 31: Step 4 of external call example
	What do we need to do in order to correct this issue? As part of the plug-in configuration, we need to provide custom methods to get the content into the dialog box and set it back to the source, in this case the iframe with an editor_editor ID. Here is the code:
	$('#editor').Accept({
	configurationType:'externalCall',
	injectSelector:'.yui-toolbar-subcont',
	injectContent:'<div style="float: right;margin-top: 20px;"></div>',
	LoadInputText:function()
	{
	 return $(document).contents().find('#editor_editor').contents().find('body').html();
	},
	SubmitInputText:function(text)
	{
	 $(document).contents().find('#editor_editor').contents().find('body').html(myContent);
	}
	The ACCEPT Pre-Edit plug-in should now be working! Here is how it should look and below the full code snippet:
	/
	Figure 32: Step 5 of external call example
	<script src="http://www.accept-portal.eu/Plugin/v2.0/js/jquery-1.5.1.min.js"></script>
	<script src="http://www.accept-portal.eu/Plugin/v2.0/js/jquery-ui-1.8.24.custom.min.js"></script>
	<link href="http://www.accept-portal.eu/Plugin/v2.0/css/Accept.css" rel="stylesheet" type="text/css" />
	<link href="http://www.accept-portal.eu/Plugin/v2.0/css/jquery-ui.css" rel="stylesheet" type="text/css" />
	<script src="http://www.accept-portal.eu/Plugin/v2.0/extras/tiny_mce/tiny_mce.js"></script>
	<script src="http://www.accept-portal.eu/Plugin/v2.0/js/accept-jquery-plugin-2.0.js?v=9"></script>
	<script type="text/javascript">
	$(document).ready(function(){
	 $('#editor').Accept({
	 configurationType:'externalCall',
	 injectSelector:'.yui-toolbar-subcont',
	 injectContent:'<div style="float: right;margin-top: 20px;"></div>',
	 triggerCheckSelector: '#triggerInjectedACCEPTbutton',
	 LoadInputText:function()
	 {
	 return $(document).contents().find('#editor_editor').contents().find('body').html();
	 },
	 SubmitInputText:function(text)
	 {
	 $(document).contents().find('#editor_editor').contents().find('body').html(myContent);
	 },
	 AcceptServerPath:"http://www.accept-portal.eu/AcceptApiStg/Api/v1",
	 ApiKey:"APIKEY",
	 Lang:"en",
	 Rule:"Preediting_Forum",
	 imagesPath:"http://www.accept-portal.eu/Plugin/v2.0/css/images",
	 requestFormat:"HTML",
	 languageUi:'en',
	 showFixAll:true,
	 isModal:false,
	 editorWidth:'480px',
	 styleSheetPath:'http://www.accept-portal.eu/Plugin/v2.0/css',
	 showManualCheck:true
	 });
	});
	Appendix 2: Pre-Edit Plug-in Configuration Options
	Value
	Type
	Name
	Default: "contextMenu"
	String
	configurationType
	Describes how the plug-in should behave. This parameter can only receive two values, contextMenu or tinyMCEEmbedded.
	Value
	Type
	Name
	Default: ""
	String
	AcceptServerPath
	The URL for the ACCEPT API.
	Value
	Type
	Name
	Default: "en"
	String
	Lang
	Language that will be used for the input text. Can be fr for French, en for English or de for German.
	Value
	Type
	Name
	Default: "../css/images"
	String
	imagesPath
	The path to the directory that contains all the images used by the plug-in.
	Value
	Type
	Name
	Default: "extra/tiny_mce/tiny_mce.js"
	String
	tinyMceUrl
	The path to the tiny MCE JavaScript file. This option is mandatory.
	Value
	Type
	Name
	Default: see code below
	JavaScript Function
	LoadInputText
	var inputText = "";inputText = settings.requestFormat == 'TEXT' ? inputText = $("#" + acceptObjectId).val() : inputText = $("#" + acceptObjectId).html();return inputText;
	Customize the way to load the input text. This parameter is consumed as a function; this means it expected a function to be passed. This function should return the text to check. Example:
	function () { var inputText = /* INPUT TEXT or HTML */ return inputText;
	}
	Value
	Type
	Name
	Default: see code below
	JavaScript Function
	SubmitInputText
	settings.requestFormat == 'TEXT' ? $('#' + acceptObjectId).val(text) : $('#' + acceptObjectId).html(text);
	Customize the way the input text is submitted from the dialog box back into the text editor. This parameter is also consumed as a function, in this case the plug-in expects to pass the text as an input parameter. Example:
	function (textParameter) { /* SEND THE TEXT OR HTML BACK TO THE TEXT INPUT AREA */ }
	Value
	Type
	Name
	Default: "en"
	String
	languageUi
	Language to use for the UI labels. Currently the following languages are supported:
	• en = English
	• fr = French
	• de = German
	Value
	Type
	Name
	Default: "TEXT"
	String
	requestFormat
	Format of the text input, which can be TEXT for text content or HTML for text containing markup language.
	Value
	Type
	Name
	Default: The language-specific rule set.
	String
	Rule
	Optional rule set that should be used by the Acrolinx server to check the content. By default, a language-specific rule set will be used.
	Value
	Type
	Name
	Default: []
	String Array
	checkingLevels
	Instead of defining the Rule setting above it is also possible to define multiple rule sets by using the checkingLevels setting. The rule names provided will then be interpreted as checking levels where the first rule name provided is used to perform the first content check. Subsequent checks can then be triggered by clicking the remaining check level buttons.
	Value
	Type
	Name
	Default: false
	Boolean
	rightClickEnable
	Indicates whether the right-click context menu should be active.
	Value
	Type
	Name
	Default: false
	Boolean
	showFixAll
	Indicates whether the :guilabel:`Replace All` button should be active.
	Value
	Type
	Name
	Default: true
	Boolean
	isModal
	Indicates whether the dialog box that shows the results should behave as a modal.
	Value
	Type
	Name
	Default: true
	Boolean
	isModal
	Indicates whether the dialog box that shows the results can be dragged.
	Type Value
	Name
	Default: "auto"
	Number/String
	dialogHeight
	Height (in pixels) of the dialog box that shows the results. Alternatively the value can be set to the string auto.
	Type Value
	Name
	Default: "auto"
	Number/String
	dialogWidth
	Width (in pixels) of the dialog box that shows the results. Alternatively the value can be set to the string auto.
	Value
	Type
	Name
	Default: $(window).height()
	Number/String
	placeHolderMaxHeight
	Maximum height (in pixels) of the dialog box that shows the results.
	Value
	Type
	Name
	Default: $(window).width()
	Number/String
	placeHolderMaxWidth
	Maximum width (in pixels) of the dialog box that shows the results.
	Value
	Type
	Name
	Default: 100
	Number/String
	placeHolderMinHeight
	Minimum height (in pixels) of the dialog box that shows the results.
	Value
	Type
	Name
	Default: 380
	Number/String
	placeHolderMinWidth
	Minimum width (in pixels) of the dialog box that shows the results.
	Value
	Type
	Name
	Default: false
	Boolean
	showManualCheck
	When set to true, this button allows the user to manually re-check the content.
	Value
	Type
	Name
	Default: "../css"
	String
	styleSheetPath
	Path to the Accept.css file. This path needs to be set correctly in order to inject the necessary styles in the tinyMCE iframe (rendered within the dialog).
	Value
	Type
	Name
	Default: "p ,h1 ,h2 ,h3 ,h4 ,h5 ,h6 ,ol ,ul ,li ,pre ,address ,blockquote ,dl ,div ,fieldset ,form ,hr ,noscript ,table"
	String
	htmlBlockElements
	List of block level HTML elements the plug-in should consider. A control node is added after each HTML element in this list to simulate a line break in the content to check. These nodes are removed before the content is applied back to the source placeholder.
	Value
	Type
	Name
	Default: 5
	Number
	refreshStatusAttempts
	Number of attempts the plug-in will make to check if the response containing the results for the content sent to check are ready. If the attempts' value reaches the threshold limit, subsequent manual triggers may be needed by the user.
	Value
	Type
	Name
	Default: "380px"
	Number/String
	editorWidth
	Initial width of the dialog inline editor.
	Value
	Type
	Name
	Default: "80px"
	Number/String
	editorHeight
	Initial height of the dialog inline editor.
	Value
	Type
	Name
	Default: function () { return ""; }
	JavaScript/Function
	getSessionUser
	It is possible to configure the plug-in to search for end user information (login name, etc...) and attach that info as part of the metadata collected. This can be achieved by writing the necessary code to search and then mandatorily return a string value representative of the desired information.
	Value
	Type
	Name
	Default: null
	jQuery Selector/String
	injectSelector
	When the plug-in is configured in External Call mode, this setting combined with the injectContent setting is used to inject extra HTML code on the page. The idea here is to trigger the content check from one element injected by the combination of these properties. The value expected is a jQuery selector, the selector being used to find at least one existing DOM element where the new HTML code (provided via the injectContent setting value) is injected.
	Value
	Type
	Name
	Default: null
	HTML/String
	injectContent
	The HTML content that is injected in the element(s) found by the jQuery selector provided in the setting injectSelector.
	Value
	Type
	Name
	Default: 100
	Number
	injectWaitingPeriod
	Value in milliseconds the plug-in should wait to inject the HTML content from the injectContent setting into the DOM elements matched in the jQuery selector provided by the injectSelector setting.
	Value
	Type
	Name
	Default: null
	jQuery Selector/String
	triggerCheckSelector
	Expects a jQuery selector. This value is used to find the DOM element from where a mouse click will trigger the content check.
	Value
	Type
	Name
	Default: 7000
	Number
	timeoutWaitingTime
	Value in milliseconds that Ajax requests take before falling into a timeout exception.
	Appendix 3: First Steps with the ACCEPT Portal and Plug-ins
	In order to get started with the ACCEPT Portal and its plug-ins, a user should decide whether their profile best corresponds to:
	 An online community member who is interested in authoring textual content that is easier to understand by other community members and easier to translate into other languages;
	 An online community member who is interested in helping make previously translated content understandable (e.g. translated textual content that may have been automatically translated is likely to require some editing);
	 An online community content or technology owner or manager who is interested in giving community members some assistance in editing textual content (either original or translated content) or who is interested in collecting ratings for translated content.
	If the user belongs to the first category and is somewhat proficient in English, French or German, they may want to:
	 Go to the Demos section to become familiar with the ACCEPT online Pre-Edit demos, which show how the Pre-Edit plug-in can be used to make their textual content easier to understand and translate;
	 Get in touch with their online community manager or community content technology owner to make them aware of the ACCEPT Pre-Edit plug-in (which they can easily download and integrate into the online platform that the user is currently using to contribute community content).
	If the user belongs to the second category, they may want to:
	 Go to the Demos section to become familiar with the ACCEPT online Post-Edit demos which show how the Post-Edit plug-in can be used to make machine-translated content easier to understand;
	 Get in touch with their online community manager to discuss whether some of their community’s textual content could be translated into other languages, using a combination of translation suggestions (possibly provided by machine-translation providers) and post-editing. The ACCEPT Portal allows project managers to create Post-Edit tasks, so the user could be assigned some of these small tasks very easily.
	 Go to the Working on tasks section to become familiar with the ACCEPT Post-Edit plug-in.
	If the user belongs to the third category, they may want to:
	 Become familiar with the Pre-Edit, Post-Edit, Evaluation and Portal parts of the documentation. If they are technical, they may want to specifically look into the Plug-in and Managing an external Post-Edit project sections to understand better how the plug-ins can be integrated into their own environment. If they are interested in putting a mechanism in place to collect ratings for translated content, they may also want to take a look at an evaluation Client example.
	 Identify community members who may be interested in authoring their textual content with the Pre-Edit plug-in or conducting Post-Edit tasks. They may need to communicate to these members the value of content editing and find ways to motivate them in using these tools.
	Appendix 4: Overview of the JSON Response Format
	A request made against the GlobalSessionDomain method returns a response in JSON format. A response example is shown below.
	/
	Figure 33: Structure of usage report in JSON format
	When a request is successful, the ResponseObject value of the response contains the following information:
	 When the checking session started, as indicated by the GlobalStartTime value
	 When the checking session ended, as indicated by the GlobalEndTime value
	 The original text sent for checking, as indicated by the Input value
	 The final text at the end of checking sessions, as indicated by the Output value
	 The language configuration used by the language checking provider, as indicated by the Language value in Metadata
	 The rule set used by the language checking provider, as indicated by the RuleSet value in Metadata
	 A unique anonymised value of the user that triggered the checking session, as indicated by the User value in Metadata
	 An array of ChildSessions containing precise information about at least one specific check performed on the text present in the Context value. Three sets of results are available for each check:
	o ProviderResults, which correspond to the detailed output generated by the language checking provider
	o ClientResults, which correspond to actions performed in the Settings window, as explained below.
	o Results, which correspond to actions performed in the main window, as explained below.
	/
	Figure 34: ClientResults usage information
	/
	Figure 35: Results usage information
	In the example shown in Figure 35, the ClientResults section of the report allows us to understand that the user:
	 Removed the word structred that they had previously learnt
	 Removed the use_comma_after_introductory_phrase rule that they had previously decided to ignore.
	In the example above, the Results section of the report allows us to understand that the user (among other things):
	 Decided to learn the 6-letter word distro, which had been flagged between indexes 294 and 300 (but not including index 300) as a spelling error
	 Decided to ignore the sentence_too_long rule, based on an instance starting at index 86
	 Displayed the recommendation tooltip for the wrong_sequence_of_words rule at index 0 but decided not to ignore the rule
	 Decided to accept the suggestion ‘Results do’ for ungrammatical phrase ‘Results does’ at index 248.

