

Acceptance Criteria
Software Engineering Group 6
0/3/2012: Acceptance Criteria, v2.0

March 2012 - Second Deliverable

1

Contents: Page no:

Introduction..3

Test Environment...4

Acceptance Tests..5

Types of Testing...8

Smoke Testing..9

Black Box Testing..10

White Box Testing..11

User Acceptance Testing...12

Conclusion...13

Bibliography..14

2

Introduction

This is the Acceptance Criteria document deliverable that will contain all of the proposed
tests that will be carried out and implemented into the software development of the Software
Engineering Project. The reason for why an Acceptance Criteria is required shall be justified
within this document which will account for the two main parts of the deliverable: Test
Environment and the Acceptance Tests. There will also be sub sections that will hold further
information about the types of testing the Quality Assurance Team would like to conduct
if deemed necessary and relevant. Therefore the classifications of types of testing will be
established ensuring that not only the program software is tested but also the constituent parts
that may affect the design and development of the product.

The Acceptance Criteria will be satisfying the specifications stated by the Analysis Team’s
Analysis Model so that an outline and guidance for the appropriate testing may be formalised.
So through the use of the Analysis Model as well as the Requirements Specification the
Acceptance Criteria will only have the critical specific variables that are required to conduct
the testing processes for the software development.

The Test Environment will contain the anticipated and target system requirements that the
machines that the software will want to run on. This will also state further information on
primary and secondary file (data) packages that may be required to allow testing on the
software. Moreover, the Test Acceptance Test shall incorporate the relevance of Black Box
Testing and White Box Testing where it is appropriate on the series of proposed tests within
this document.

3

Test Environment

As the Acceptance Criteria implements specifications from the deliverable Requirements
Specification, the information required on what system requirements are necessary for the
software to run can be stated:

Operating System: Windows 7

Processor: AMD Athlon(tm) 64 X2 Dual Core Processor 3800+ 2.00 Ghz

OR Intel® Core ™ EQUIVALENT

RAM: 2 GB DDR 2

System Type: 64 - bit Operating System

Software Required: Web browser, Mozilla Firefox v10.0.1

Data Files Required: Ant Game Source Code & Ant Brains

Load Conditions:

Graphics Processing Unit: ATI Radeon HD 5450 (Minimum)

Testing Software Required: Java Testing Software - JUnit, JavaScript Testing - QUnit

Throughout the testing process and by going through each of the proposed tests found in
the Acceptance Tests section, all of the tests will be conducted accordingly and for a robust
process of testing, the Quality Assurance Team will ensure to devise a recording/archiving
system that will store and monitor the results of the tests applied to the different contexts, not
only to the designed software but that may which also effect the Users of the program.

For definite quality testing and unit proofing the source code, the Quality Assurance Team
will try to conduct tests at every major milestone of the development of the source code.
This will also make sure that early detection of bugs and possibly modifications may be
implemented and deployed quickly for the better software engineering as a whole.

By having an archiving/recording system, the Quality Assurance Team will be able to check
through the results fortifying that the tests and findings within the content abide by the
specifications stated not only within the Requirements Specification but possibly through
the Project Specification and Quality Manuals too. This will ensure a fair control is present
within the entire testing of the project software.

There will be the required Ant Brains that will fall into the category of Data Files Required.
As well as that the most important data file will be the source code itself. These two data files
will compliment one another in the running of the overall Ant Game.

4

Acceptance Tests

This is structured according to the Requirements Specification, for each test, following
information shall be provided: section of the Requirements Specification being tested,
Prerequisites (data files) for running the test, test to be performed and Expected Result(s).

Acceptance Tests are black box tests. White box tests are specified in the Test Specification.

Test
No.

Test
Description

Prerequisite(s
)

Action(s) Expected Result(s)

0.1
GUI Testing

Application
itself

Inspect the application
by playing it

The graphics, buttons,
interface of the game should
be displayed clearly for the
users

0.2 GUI
Functionality
Testing

Application
itself

Inspect the application
by playing it

The buttons that the users
click must respond in a
logical result. E.g. Eat = eat
the food

0.3 Smoke
Testing
(Basic
testing)

Application
itself

Run the application The application should run
smoothly with no errors.
All the functionalities of
the application should be in
order.

0.4 None
Functional
Testing

Application
itself

Enter the unexpected,
invalid inputs for the
application and see how
it responds

The application tolerates
the inputs, manages the
error by applying the error-
management routines such as
displaying an error messages
to tell the user to provide the
right inputs

0.5 Load Testing Application
itself

Run the application The loading time should not
take longer than 5 seconds
in any executions of the
application

0.6 Stress
Testing

Application
itself

Run the application
in an unexpected
condition, e.g. a lot of
food or users

The application should still be
able to run

5

0.7 Usability
Testing

Application
itself

Run the application The users should be able to
understand what is going on
in the application, should be
able to navigate to anywhere
they desire

0.8 Sound
Feature
Testing

Application
itself

Run the application The sound should output on
the available audio devices at
the correct time of execution

0.9 Smoke
Testing

Application
itself

Run the application The scores of the players
should start from 0 at the
beginning of the game

1.0 In-game
Testing

Application
itself

Run the application
and play the game for a
while

The correct score of each
player should output to the
GUI

1.1 End of game
Testing

Application
itself

Run the application and
play the game until it
finishes

The end of the game should
result in the application
providing a neat leader board
screen

1.2 Accessibility
Testing

Application
itself

Run the application The application should
be controlled easily with
the keyboard or allocated
peripherals available

1.3 Bottom-up
Testing

Application
itself

Run the application
from the beginning

The application will run
from the start, the scores of
the players should slowly
increase depending on the
scores they have and the
game will finish when the
food is finished or the enemy
team(s) have been eliminated

1.4 Benchmark
Testing

Application
itself and a free
benchmark
testing
application

Run the application and
the benchmark testing
application

The benchmark testing
application will analyse the
application as it’s running
with it, results will be shown
at the end of the test

6

1.5 Compatibilit
y Testing

Application
itself and a few
other devices
with different
operating
systems

Run the application
on different devices
with varying system
specifications

The application should be
able to run smoothly on the
computers with any operating
systems that support Java and
its platforms (JavaScript)

1.6 Branch
Testing

Application
itself (complete
version)

We will test the
application from
beginning to end, we’ll
make sure every single
line of code from the
application is being
used

There shouldn’t be errors,
should be running smoothly
and no irrelevant or unused
code present

1.7 Depth
Testing

Application
itself

Test the application,
playing with all the
features it has

All the features should be
functioning well

1.8 Gorilla
Testing

Application
itself

Break down the
application, test each
particular module one
at a time, we will make
sure that we test it to its
limit

It should run smoothly if
the code has been made sure
that it has error management
protocols and routines

1.9 Installation
Testing

Application
itself and our
test machine

Install the game in our
test machine

The game should be able to
install in our machine and run
smoothly

2.0 Ant brain
text file

Ant brain text
file

Make sure the structure
of the ant brain text file
is correct

Ant brain will be accepted
if the structure is right. E.g.
each line describes no more
than one state

7

Types of Testing

For this section of the Acceptance Criteria, all of the classes of testing that will and may
be used will be documented and described to give an in depth account of the details that
could possibly be used on the different assets that surround the project as a whole but most
importantly, for the testing of the JavaScript, software product.

Brief descriptions of these tests were given previously within the Project Plan, the first
deliverable for the Software Engineering project for the customer. Within it, it was stated that
these tests must be conducted to allow for the correct and smooth execution of the program.
As well as that, the tests will make sure that the specifications and what the customer
wants are met and satisfied to the very best of what was stated within the Requirements
Specification.

Black Box and White Box Testing will perhaps be the two most important types of testing
that will be used throughout and therefore an in depth outlook within those two categories
will be given. Moreover, Smoke Testing and User Acceptance Testing can be found within
this section that will also have information and the justifications as to why they have been
included as well as the relevancy included.

By conducting these tests, the Quality Assurance Team can assure the Programming Team
and the entire Group - as a whole - that the software is bug free, the customer will be satisfied
and all specifications have been critically met.

In the following sections, the types of testing will now be introduced outlining their relevance
and probable importance if circumstances do arise that they should be used.

8

Smoke Testing

Smoke testing in the software development/engineering context, is the first kind of testing
that is conducted before further testing is implemented. Through the application of smoke
testing, the Quality Assurance Team should be able to detect the obvious errors and bugs that
could possibly be present within the source code and other deliverable documents that effect
project as a whole.

This kind of test focuses on the vital functionalities and probable design such as the User
Interface of the software as only the important aspects of the software can be refined. A basic
example of smoke testing can be demonstrated in this question: “Does the program take in
other constituent data files such as the Ant Brains?”. This will therefore assure the Quality
Assurance Team of severe problems if they do exist as a non-executable program cannot be
put forward for delivery to the Customer as a critical error persists.

‘Smoke testing performed on a particular build is also known as a build verification test.’
(Software Development, Wikipedia. 2012.)

The above quotation emphasises the vital principal of smoke testing, it is a verification test
of all basic elements that make software a complete running product that should not have any
errors and can be delivered to the Customer.

Not only does smoke testing allow for the validation of key concepts it also verifies that all
code within the software are operational.

9

Black Box Testing

Black box testing can be called as functionality testing. It is to test if the function of the application
is working or not. During the test, you will see the application as a box that cannot be opened, which
means that you will not consider what is really happening inside the application such as internal
structure and application’s code. Putting the inputs to the application and determine the outputs
according to the requirements from the specification, to see if the application is able to receive
appropriate input data and also able to produce the correct output data. This black box testing focus
on the external structure of the application, this is a main test for the interface and features of the
application.

Commentary

Black box testing is based on the user/ customer‘s point of view to test the correspondence between
the inputs and outputs. Hence, black box testing is not a test that would be able to tell if the
application has design problems.

Function

Black box testing has a role that mainly finds the following types of errors:

● Interface error
● Performance error
● Data base error
● Function incorrect or missing
● Initialization error
● Termination error

Outline

Black box testing has to test with all the possible inputs in order to detect the errors correctly from
the application. There are numbers of tests in black box testing, we have to test with the valid inputs
and also the illegitimate inputs. However, we have to conduct targeted testing in order to get the
application fully tested.

Black box main testing test case methods are listed below:

● Equivalence partitioning
● Boundary value analysis
● Error guessing

10

White Box Testing

White box testing is based on structural testing or logic- driven testing. It is to test the procedures of
the application depending on the internal structure of the application. We could detect the internal
action of the application is in accordance with the provisions of the design specification. We could
detect if each platform or pathway is determined to function well or not. This method is to see the
application like a box which can be opened, which means that the testers (QA team) do need to
understand what is happening internally of the application such as the logical structure of the code and
the design of the code. The testers (QA team) will test all the logic paths through the state inspection
at different points to see if the actual state is consistent with the expected state.

Outline

There are two categories of testing methods, static and dynamic testing methods. Static testing method
is based on using the simulation technology to run the test and analysis to the application. Dynamic
testing method is to enter a set of preset data which built according to the specification to test the
application until it finds the errors.

White box testing main testing methods are listed below:

● Code checks
● Static structural analysis
● Domain test
● Basic path testing

11

User Acceptance Testing

User Acceptance Testing may only take effect once an agreement of specific requirements
and objective goals have been determined and identified. This information can be gathered
from the Requirements Specification whom the Analysis Team is responsible for as well
as (if personally stated) the Customer himself has specified and requested for compulsory
requirements.

It is standard practice that conducting this test will require volunteers from the target users
that understand the Customer’s criteria and can therefore provide a judgement whether the
software engineering team was able to fulfill all of the demands that were previously set
beforehand. In doing so, if the User Acceptance Testing is 100% effective in its success and
purpose, the new developed system will be more refined in terms of a full proofed product
now possible to submit and deliver to the final Customer.

An example of a basic User Acceptance Test would be the relationship between the user
and the program itself. Take for example the interaction between the user and the program’s
interface, if the interface works correctly where the game is accessible within a click or few,
the interface’s functionality can be deemed a success. On the other hand, in terms of user
interface aesthetics, we can ask the question:

‘Does the user interface for this program appeal and entice you to play the game?’

If so, we can also conclude that the user interface on the context of User Acceptance Testing
can be accepted as a fully successful element within the software.

When the time comes that a User Acceptance Test must be conducted upon the apparent
final software, usually, this kind of test can be classed a final verification of all systems
that have been designed and implemented within the Ant Game. This test shall focus on the
functionality, aesthetics, relevancy and most importantly the Users’ needs that should be
present within the design of the game.

Specific implementation of User Acceptance Testing (Wikipedia 2012), shows all of
the different approaches and variables that must be Incorporated to be able to conduct a
successful class of this kind of testing.

12

Conclusion

Within this document, an outlook of all of the types of testing and the proposed purposes
and justifications of such tests have been provided and described. More importantly, the Test
Environment(s) and the Acceptance Tests have been established and identified. As these
two main elements have been clarified, a foundation for the acceptance of what the team is
to produce is now official in the application of testing all created aspects that will affect the
source code and the project itself.

By proposing a foundation for testing, the software engineering project for the target Ant
Game may be approached not only systematically but also efficiently and effectively as
the testing will allow for the assurance of well-designed software and a level of customer
satisfaction met.

The most important thing that should be considered in the application of these tests will be
that by allowing for these tests to be conducted, the team may be able to look at the software
how it would perform once it is in production and available in the market and especially to
the target users.

As a whole, through the incorporation of these tests and their practice implementations,
assurance that the Customer will have a fully functional and enticing product that
successfully deploys the initial system proposed at the beginning of the project and its
development stages. All of the test should cater for every constituent element(s) that affect
the project and the software itself as a complete software deliverable.

13

Bibliography

1. Software Development, 2012. Wikipedia. [online] Available at: <http://
en.wikipedia.org/wiki/Smoke_testing#Software_development> [Accessed 6/3/2012].

2. User Acceptance Testing, 2012. Wikipedia. [online] Available at: <http://
en.wikipedia.org/wiki/Acceptance_testing> [Accessed 6/3/2012].

3. Black-box testing, 2012. Wikipedia. [online] Available at <http://en.wikipedia.org/
wiki/Black-box_testing> [Accessed 6/3/2012].

4. 黑盒测试, 2012. Baidu. [online] Available at: <http://baike.baidu.com/view/
51274.htm> [Accessed 6/3/2012].

5. 白盒测试, 2012. Baidu. [online] Available at: <http://baike.baidu.com/view/
51297.htm> [Accessed 6/3/2012].

6. Software Testing Glossary, 2012. Ap Test. [online] Available at: <http://
www.aptest.com/glossary.html> [Accessed 10/3/2012].

7. Acceptance Testing, 2012. Wikipedia. [online] Available at:
<http://en.wikipedia.org/wiki/Software_testing#Acceptance_testing> [Accessed 10/3/
2012].

14

http://en.wikipedia.org/wiki/Black-box_testing
http://en.wikipedia.org/wiki/Black-box_testing
http://en.wikipedia.org/wiki/Black-box_testing
http://en.wikipedia.org/wiki/Black-box_testing
http://en.wikipedia.org/wiki/Black-box_testing
http://en.wikipedia.org/wiki/Black-box_testing
http://en.wikipedia.org/wiki/Black-box_testing
http://en.wikipedia.org/wiki/Black-box_testing
http://en.wikipedia.org/wiki/Black-box_testing
http://en.wikipedia.org/wiki/Black-box_testing
http://en.wikipedia.org/wiki/Black-box_testing
http://en.wikipedia.org/wiki/Black-box_testing
http://en.wikipedia.org/wiki/Black-box_testing
http://en.wikipedia.org/wiki/Black-box_testing
http://en.wikipedia.org/wiki/Black-box_testing
http://en.wikipedia.org/wiki/Black-box_testing
http://baike.baidu.com/view/51274.htm
http://baike.baidu.com/view/51274.htm
http://baike.baidu.com/view/51274.htm
http://baike.baidu.com/view/51274.htm
http://baike.baidu.com/view/51274.htm
http://baike.baidu.com/view/51274.htm
http://baike.baidu.com/view/51274.htm
http://baike.baidu.com/view/51274.htm
http://baike.baidu.com/view/51274.htm
http://baike.baidu.com/view/51274.htm
http://baike.baidu.com/view/51274.htm
http://baike.baidu.com/view/51274.htm
http://baike.baidu.com/view/51297.htm
http://baike.baidu.com/view/51297.htm
http://baike.baidu.com/view/51297.htm
http://baike.baidu.com/view/51297.htm
http://baike.baidu.com/view/51297.htm
http://baike.baidu.com/view/51297.htm
http://baike.baidu.com/view/51297.htm
http://baike.baidu.com/view/51297.htm
http://baike.baidu.com/view/51297.htm
http://baike.baidu.com/view/51297.htm
http://baike.baidu.com/view/51297.htm
http://baike.baidu.com/view/51297.htm
http://www.aptest.com/glossary.html
http://www.aptest.com/glossary.html
http://www.aptest.com/glossary.html
http://www.aptest.com/glossary.html
http://www.aptest.com/glossary.html
http://www.aptest.com/glossary.html
http://www.aptest.com/glossary.html
http://www.aptest.com/glossary.html
http://www.aptest.com/glossary.html
http://www.aptest.com/glossary.html
http://www.aptest.com/glossary.html
http://www.aptest.com/glossary.html
http://en.wikipedia.org/wiki/Software_testing#Acceptance_testing
http://en.wikipedia.org/wiki/Software_testing#Acceptance_testing
http://en.wikipedia.org/wiki/Software_testing#Acceptance_testing
http://en.wikipedia.org/wiki/Software_testing#Acceptance_testing
http://en.wikipedia.org/wiki/Software_testing#Acceptance_testing
http://en.wikipedia.org/wiki/Software_testing#Acceptance_testing
http://en.wikipedia.org/wiki/Software_testing#Acceptance_testing
http://en.wikipedia.org/wiki/Software_testing#Acceptance_testing
http://en.wikipedia.org/wiki/Software_testing#Acceptance_testing
http://en.wikipedia.org/wiki/Software_testing#Acceptance_testing
http://en.wikipedia.org/wiki/Software_testing#Acceptance_testing
http://en.wikipedia.org/wiki/Software_testing#Acceptance_testing
http://en.wikipedia.org/wiki/Software_testing#Acceptance_testing
http://en.wikipedia.org/wiki/Software_testing#Acceptance_testing
http://en.wikipedia.org/wiki/Software_testing#Acceptance_testing
http://en.wikipedia.org/wiki/Software_testing#Acceptance_testing
http://en.wikipedia.org/wiki/Software_testing#Acceptance_testing

