
ACCESS CONTROL ABSTRACTIONS Professor Ken Birman
CS4414 Lecture 28

CORNELL CS4414 - FALL 2021. 1

IDEA MAP FOR TODAY

CORNELL CS4414 - FALL 2021. 2

Authentication, Authorization, Access Control

Access Control Lists. Capability models.

Information Flow Monitoring and Control

Security Enclave Model

OUR TOPIC TODAY, IN “PLAIN WORDS”

Think of a doctor’s office: patient data must be protected, yet also
needs to be shared with authorized individuals. This pattern arises in
many applications.

In order to secure data or protect privacy, we need to be able to
express what we are trying to accomplish.

What tools exist for doing this?

CORNELL CS4414 - FALL 2021. 3

HISTORY OF ACCESS CONTROL CONCEPTS

Early systems simply had a user id and password.

Then Unix introduced groups, for people collaborating in teams

But modern systems have needed steadily more structure and
protection, leading to increasingly elaborate options

CORNELL CS4414 - FALL 2021. 4

ACCESS CONTROL: WHO, WHAT, WHEN, HOW?

At the core of access control is a basic question: We have some
actor, and some resource. The actor wishes to perform an action
on the resource. And we ask:
 Who controls this actor?
 What resource is this, and who owns it?
 What policy was specified for access?
 Does that policy permit this access at this time?

CORNELL CS4414 - FALL 2021. 5

USE OF ACCESS CONTROL MODELS

In the actual systems, these models “inspire” the interfaces and
are the proper way to think about our goals and policies.

Theoretical work on security often starts by formalizing access
control in a mathematical notation, at which point one can prove
theorems about policies, and even build verifiers to confirm that
a program is compliant with the theory (like type checking!)

CORNELL CS4414 - FALL 2021. 6

THE SYSTEMS VERSION OF THIS QUESTION
ARISES AT MANY LEVELS
In Linux, access control is applied when a process wishes to read
or write data from a source (including the kernel, or /dev/proc,
or a device)

In C++ it arises whenever code accesses an object in some way.

Networking extends the question to a whole distributed system!

CORNELL CS4414 - FALL 2021. 7

AUTHENTICATION: WHO’S WHO?

The procedure that the kernel uses to decide who this process
belongs to is called authentication.

One user can own many resources and processes. A new process
normally inherits the same user id and group id as its parent, but in
fact the parent can remove the group id and in some situations can
even remove or change the user id.

Example: When you log in, /etc/init (running as root) launches a
bash shell running with your user and group ids (using setuid, setgid).

CORNELL CS4414 - FALL 2021. 8

Abbot and Costello:
“Who’s on first?”

TO SHOW WHO YOU ARE, A PASSWORD IS
OFTEN NOT ENOUGH
We all know how easy passwords are to steal or guess

This has led towards methods that are much stronger and either
don’t require a password or, more often, add extra things
beyond what the password provides.

CORNELL CS4414 - FALL 2021. 9

CREDENTIALS, TWO-FACTOR AUTHENTICATION

Linux centers on the idea of a user-id that is validated either
when you log in and type in a password, or perhaps with some
secondary mechanism (fingerprint, RSA code, text-message code)

There are also cryptographic key-based credentials. These often
split into a public key for talking “with” you and a private key
that only you control.

CORNELL CS4414 - FALL 2021. 10

CREDENTIAL STORAGE: CERTIFICATE
REPOSITORIES
Most systems have some form of secure credential storage
service.

When you create a key (for example, with ssh-keygen) it
generates a file with the public and private portions.

You store the public part into a certificate and upload it to a
repository. Now anyone can download this public data.

CORNELL CS4414 - FALL 2021. 11

PUBLIC AND PRIVATE KEYS

Two functions… one is the inverse of the other.

Kprivate(X): X is encrypted using your secret private key.

Kpublic(X): X is encrypted with your public key

KprivateKpublic(X) = X: private decrypts public.

KpublicKprivate(X) = X: public decrypts private

CORNELL CS4414 - FALL 2021. 12

HOW THESE CAN WORK IN A CHALLENGE
SETTING
Ken: I wish to log into system A

A: Kken-public(“To prove that you are Ken, send me 1718981”)
…. only Ken will be able to decrypt and read this

Ken: Kken-private(“Here’s my proof: 1718981”)
… only Ken would be able to send this proof

CORNELL CS4414 - FALL 2021. 13

SPOOFING

But… what if someone tries to spoof by pretending to be A?

Then Ken could be tricked into thinking he was talking to A.

We can solve that with one more step…

CORNELL CS4414 - FALL 2021. 14

HOW THESE CAN WORK IN A CHALLENGE
SETTING
Ken: I wish to log into system A

A: KA-private Kken-public(“To prove that you are Ken, send me 1718981”)
…. only Ken can read this. Only A could have sent it.

Ken: Kken-privateKA-public (“Here’s my proof: 1718981”)
… only A can read this. Only Ken could have sent it.

CORNELL CS4414 - FALL 2021. 15

HOW THESE HELP WITH AUTHORIZATION

Tammy: Ken, please get some printer paper from Gates 302

KTammy-private(“I authorize [ken] to [enter] [Gates 302] [during the
next five minutes] to [get] [printer paper]”)

… The statement in the certificate describes what I am authorized by
Tammy to do. The signature “proves” that Tammy issued it.

CORNELL CS4414 - FALL 2021. 16

SIGNATURES VERSUS ENCRYPTION

Notice that we didn’t encrypt the certificate. It is slightly costly
to encrypt large objects, but more to the point, encryption hides
even fields like “To” and “From”.

So some systems do encrypt entire objects.

Signatures first compute a hash of the object, then encrypt the
hash. Tampering will break the pairing.

CORNELL CS4414 - FALL 2021. 17

THUS, DIGITAL SIGNATURES ARE A TOOL

In effect, with a notion of entities, we can assign unique public -
private key pairs to each entity.

Then we can create certificates signed by the entity that make
statements that could be verified digitally and used as the basis of
an authorization scheme.

As a user, you would authenticate yourself and the entity could then
issue you a certificate saying “the holder of this logged in as Ken”

CORNELL CS4414 - FALL 2021. 18

SOMETHING YOU KNOW… SOMETHING
ABOUT YOU… SOMETHING YOU HAVE…
You know your password, or perhaps have a file with your
private key in it.

An image of you, or a fingerprint, or your DNA: things true
about you that a system could validate.

RSA app (SecureID) or dongle: Something you have

CORNELL CS4414 - FALL 2021. 19

ACCESS CONTROL MATRIX

If we can somehow name all the resources (like with file system
pathnames), and can describe all the actors (like with the user-id),
we can organize this as a matrix.

Consider these requests:

CORNELL CS4414 - FALL 2021. 20

Who What When How

Ken /usr/ken/fast-wc.cpp Thursday Aug 27, 10:21.351AM Open for read and writes

Alicia /etc/hosts Tuesday Aug 25, 9:11.112PM Open for reads

Sagar …

NOW SUPPOSE WE HAD THIS TABLE

User /etc/hosts /usr/ken/fast-wc.cpp /dev/proc/pid-781 …

Ken no access r/w r/w

Alicia r no access no access

Sagar as “su” r/w/x r/w/x r/w/x

…

CORNELL CS4414 - FALL 2021. 21

… ALL WE DO IS CHECK THE TABLE AS EACH
ACTION IS REQUESTED
Within the Linux system, we can understand many forms of
checking as working in this way.

The file system imposes such checks, but Linux also imposes them
when process A requests to send a signal to process B

The tables do not “exist” but they allow us to model behavior.

CORNELL CS4414 - FALL 2021. 22

ACCESS CONTROL LIST S

Linux only allows objects to have a single owner, and permissions are
expressed for the owner, the group and the world.

For a long time there was pressure to extend these into lists. And
object could have one owner, but perhaps have different permissions
for different users and groups.

Windows still uses this approach, but it never became popular in Linux.

CORNELL CS4414 - FALL 2021. 23

CAPABILITIES

This idea emerged in the 1970’s and become popular in the
1980’s. For a while there was even competition to offer the best
hardware support possible for it.

A capability is a pointer to an object but annotated with the
operations the holder is permitted to do on that object.

CORNELL CS4414 - FALL 2021. 24

CAPABILITIES

The kernel would allow the creator of an object to also obtain
capabilities on it. Like a set of keys

Then the creator can hand out these capabilities, limiting the
permissions as appropriate.

For example, “Line printer 6, please print this object: xxx”. xxx
would be a capability that only permits reading.

CORNELL CS4414 - FALL 2021. 25

One home might have a key
for the front door, a key for
the mailbox, and a key for

the bicycle storage shed.

CAPABILITIES

The kernel would allow the creator of an object to also obtain
capabilities on it. Like a set of keys

Then the creator can hand out these capabilities, limiting the
permissions as appropriate.

For example, “Line printer 6, please print this object: xxx”. xxx
would be a capability that only permits reading.

CORNELL CS4414 - FALL 2021. 26

One home might have a key
for the front door, a key for
the mailbox, and a key for

the bicycle storage shed.

A home is an object.

Capabilities are like
keys, accessing

distinct features.

CAPABILITIES

The operations could be any methods the objects support.

So, if an object has a print method, and Alicia has a capability
permitting her to invoke print, and a capability on a printer, she
could print this object on that printer.

Support for capabilities involves a mix of hardware, kernel and
application software features.

CORNELL CS4414 - FALL 2021. 27

REFERENCE MONITORS

This is a concept that starts with a formal model of how a system
should behave.

The reference monitor has some form of control over all accesses to
resources (including devices, process-to-process interactions).

It validates each action against the model and blocks any that would
violate model constraints.

CORNELL CS4414 - FALL 2021. 28

GENERALIZATION OF OTHER APPROACHES

A reference monitor is an abstraction, powerful enough to cover all
the concrete options we’ve mentioned.

But the issue then arises of whether or not it can be implemented.

A model that only covers reads and writes to files can be described
in terms of a reference monitor implemented by the Linux file system

CORNELL CS4414 - FALL 2021. 29

… BUT

We could also describe models that confront the reference monitor
with undecidable problems!

This is because type checking is undecidable and one could view
runtime type checking as a case of a reference monitor!

The mathematical model is very powerful… perhaps too powerful!
It lets us model policies that are impossible to implement.

CORNELL CS4414 - FALL 2021. 30

The 10th Dr. Who:
“But that’s impossible.”

EXAMPLE: INFORMATION FLOW MONITORING

This generalizes the idea of sending data and looks at the idea of
protecting information rather than just data.

The distinction makes sense if you think about how one form of
information can sometimes be hidden in another, like hiding one
image in the “noise” behind some other image (steganography)

For example think about the least-significant-bits in a color image

CORNELL CS4414 - FALL 2021. 31

WOULD YOU NOTICE TINY CHANGES?

The low-order bit carries very
limit visual information.

In fact, it is even hard to judge
whether it is correct or incorrect

One could use this to create a
covert information channel

CORNELL CS4414 - FALL 2021. 32

WOULD YOU NOTICE TINY CHANGES?

The low-order bit carries very
limit visual information.

In fact, it is even hard to judge
whether it is correct or incorrect

One could use this to create a
covert information channel

CORNELL CS4414 - FALL 2021. 33

Did DaVinci hide a tiny
message in Mona Lisa’s

eyes? Some believe he did

CORNELL CS4414 - FALL 2021. 34https://www.switchfast.com/blog/threats-hiding-in-plain-sight-digital-steganography-on-the-rise

INFORMATION FLOW MONITORING

As a concept, similar to the idea of reference monitoring.

Mathematical model captures notion of information, as distinct
from where that information might currently be.

Then explores ways to limit leakage, or to limit rate of leakage
via both explicit and covert channels.

CORNELL CS4414 - FALL 2021. 35

THE PROBLEM IS THAT INFORMATION FLOW
TRACKING IS HARD!
In normal Linux systems we have pretty blunt “tools” we can use
to implement our policies, like firewalls.

These might accomplish a fancy goal like information flow
protection: if you can’t send images, you can’t hide information in
them. But this would be very crude.

CORNELL CS4414 - FALL 2021. 36

HOW DO LINUX PERMISSIONS “STACK UP”?

Fancier ideas like capabilities can be implemented in Linux, and
this was done by a project called Mach at CMU in the 1990’s.

But in fact the approach did not gain much market excitement
and eventually was abandoned.

Today Linux simply has a lot of mechanisms, but no explicit
access control models or matrix.

CORNELL CS4414 - FALL 2021. 37

HOW DO LINUX PERMISSIONS “STACK UP”?

But Linux has absolutely nothing for fancy tasks like information
flow monitoring, or reference monitoring at object granularity

The kernel just treats all data as bytes

CORNELL CS4414 - FALL 2021. 38

THERE ARE TOOLS THAT WILL VISUALIZE THE
ACCESS-CONTROL MATRIX FOR YOU
These tools study a Linux system and construct an access control
matrix from all the information that is relevant to access.

Then they let the viewer see the data and even change it.

Very valuable in corporate settings where security is important!

CORNELL CS4414 - FALL 2021. 39

BUT THIS IS FAR FROM OUR REAL GOAL

Recall that Tammy wanted to briefly authorize me to get paper.

How does that map to our understanding, and how well can
Linux support this?

CORNELL CS4414 - FALL 2021. 40

ATTESTATION: “CORNELL GAVE ME THIS ID”

You arrive at Gates Hall and show an id to the scanner at the
door (it runs Linux!)

It checks to see that you have permission, then unlocks the door.

But why should it trust this id? Cornell-issued ids are trusted by the
scanner. This is a form of attestation. Cornell attests for you.

CORNELL CS4414 - FALL 2021. 41

CHALLENGE: “WHO” IS CORNELL?

Any large organization has some sort of root of decision-making
control, like the CEO.

This role delegates various sub-roles to other people. For
example, HR signs employment contracts (and lays people off).

Roles are dynamic: people gain and lose roles & authorizations

CORNELL CS4414 - FALL 2021. 42

DOES RSA LET US IMPLEMENT SUCH
POLICIES?
A tool like RSA lets individuals sign statements, like “I have hired
Janet Smith as our new director of marketing”, but these words
have no real “logical definitions” unless we provide more detail

Ultimately we are forced to create an entity and roles and
authorizations description for the entire organization, and then it
evolves as people and roles and tasks evolve – almost like a
software description of the entire company and every task.

CORNELL CS4414 - FALL 2021. 43

… YET EVEN IF WE TRIED, WE WON’T BE
ABLE TO DO THIS!
First, most companies are much more relaxed about the rules
than you might expect (even military or government agencies).

The rules may not really be known or suitable for writing down.

And we often find that even for simple cases, you need the
entire database of rules to evaluate even trivial questions!

CORNELL CS4414 - FALL 2021. 44

AUTHORIZATION: “YOU WANT TO DO W H AT ?”

We’ll use just a trivial example:

Inside Gates Hall, you wish to enter the 3rd floor supplies room
where printer paper is stored. Supplies are tracked on a log.

As a student, you do have permission to be in the building, yet
are not authorized to sign out printer supplies.

CORNELL CS4414 - FALL 2021. 45

AUTHORIZATION: “YOU WANT TO DO W H AT ?”

We’ll use just a trivial example:

Inside Gates Hall, you wish to enter the 3rd floor supplies room
to get printer paper. Supplies are tracked on a log.

As a student, you do have permission to be in the building, yet
are not authorized to sign out printer supplies.

CORNELL CS4414 - FALL 2021. 46

An “entity”

AUTHORIZATION: “YOU WANT TO DO W H AT ?”

We’ll use just a trivial example:

Inside Gates Hall, you wish to enter the 3rd floor supplies room
to get printer paper. Supplies are tracked on a log.

As a student, you do have permission to be in the building, yet
are not authorized to sign out printer supplies.

CORNELL CS4414 - FALL 2021. 47

An “actor”

AUTHORIZATION: “YOU WANT TO DO W H AT ?”

We’ll use just a trivial example:

Inside Gates Hall, you wish to enter the 3rd floor supplies room
to get printer paper. Supplies are tracked on a log.

As a student, you do have permission to be in the building, yet
are not authorized to sign out printer supplies.

CORNELL CS4414 - FALL 2021. 48

A secondary entity
and action

AUTHORIZATION: “YOU WANT TO DO W H AT ?”

We’ll use just a trivial example:

Inside Gates Hall, you wish to enter the 3rd floor supplies room
to get printer paper. Supplies are tracked on a log.

As a student, you do have permission to be in the building, yet
are not authorized to sign out printer supplies.

CORNELL CS4414 - FALL 2021. 49

A required follow-
on action

NOW WE CAN ASK: HOW DO YOU PROVE
THAT YOU ARE AUTHORIZED TO DO THIS?
As a student, you need to have been given special permission.

Once you have that permission, and can prove it (and for a
limited period of time), you are allowed to perform actions A
and B (enter room, take paper) provided you also do C (log it).

CORNELL CS4414 - FALL 2021. 50

DELEGATION: “TAMMY SENT ME FOR
PRINTER PAPER”
The term delegation is used if someone who has a right to
delegate a particular form of authorization gives some other
agent permission to act “on behalf” of them.

Perhaps you work for Tammy, and she asks you to fetch paper.
She is delegating that task to you, and you are now authorized
to get paper on behalf of Tammy.

CORNELL CS4414 - FALL 2021. 51

AUGMENTATION: “NORMALLY, I CAN’T, BUT
I’VE OBTAINED SPECIAL PERMISSION”
Delegation gives you a right you didn’t have, but you are acting
on behalf of Tammy.

In contrast, we say that a right has been augmented if you
personally gain that right (perhaps temporarily).

The process acts on its own.

CORNELL CS4414 - FALL 2021. 52

RSA ONLY HELPS A LITTLE

If we write this down in logic (the “BAN” logic is the obvious
choice: Burrows, Abbadi and Needham), we could get the active
entities to issue credentials that can be signed with RSA

Then the door to the room could check that you have the needed
permission and that it was issued by an entity with permission to
issue that form of authorization… and the door stays locked,
otherwise!

CORNELL CS4414 - FALL 2021. 53

EXAMPLE SEEN IN LINUX

Normally, a process cannot issue operations to the GPU.

But when Linux authorizes a process to use the GPU, it also
augments the process to have a memory segment shared with
the GPU, and to control the GPU through that segment.

CORNELL CS4414 - FALL 2021. 54

TEMPORARY AUGMENTATION: “I’LL ALLOW
YOU IN, BUT ONLY FOR THAT ONE TASK”
When using a library, like a GPU library, the library might be
more trusted than the user process.

Here, rights are augmented while inside the library, but revert
(like popping from a stack!) when the call returns.

Andrew Myers has done a lot of research on this idea.

CORNELL CS4414 - FALL 2021. 55

“ARE YOU A BOT?”

Some systems demand a proof of work as part of authentication.
The goal is to filter bots out.

For example, “If you want to connect with me, first solve this
homework problem.”

To carry out a SYN attack the attacker would need to solve one
puzzle for each attempted connection!

CORNELL CS4414 - FALL 2021. 56

GRANULARITY: “JUST BECAUSE YOU CAN DO
THAT DOESN’T MEAN YOU CAN DO THIS!”
Our GPU is actually shared with other processes.

Being allowed to access it for one computation doesn’t mean you
can disrupt those other users, or spy on them.

So, augmented permissions always have some granularity or
scope within which they apply.

CORNELL CS4414 - FALL 2021. 57

ROLES: “IN MY ROLE AS DEAN, I AUTHORIZE
YOU TO …”
Many systems distinguish who you are from the roles you play.

Think of Kavita Bala. She was a professor, but then became
department chair, and now she is dean of CIS.

She is the same individual, but in different roles. As dean she
can authorize things a professor cannot, like signing contracts.
Our logic will need to have a way to model this (it is hard!)

CORNELL CS4414 - FALL 2021. 58

REPUDIATION: “I DENY THAT I SAID THAT”

In many systems we worry that a person (or a process they run!) will
perform some action but later, the person will claim they did not
perform it.

“I didn’t fool around with the engine controls and cause it to
overheat!”

This is “repudiation”. We often want audit trails that give us a way
to prove that A did X, and prevent A from repudiating their actions.

CORNELL CS4414 - FALL 2021. 59

TAMPERING: “REALLY? CHECK THE LOGS… ”

CORNELL CS4414 - FALL 2021. 60

With superuser permissions, a hacker might try to tamper with logs.

This is why blockchain has become important in modern systems. A
blockchain entangles records, so that changing anything requires
regenerating the entire chain.

Another option is to put the audit log on a write-once medium, so it
can’t be erased.

FORMALIZING ROLE-BASED SECURITY

Several Cornell researchers have studied was to express these
security concepts mathematically.

Perhaps by delegating permission to you to get line printer paper,
Tammy unknowingly gave you some other permission…

Formal analytic tools allow systems to evaluate the consequences of
actions, perhaps revealing loopholes, contradictions, etc.

CORNELL CS4414 - FALL 2021. 61

HOW EFFECTIVE IS LINUX?

The basic, simple Linux mechanisms work fairly well.

Modern systems often run applications within containerized
environments that impose “personal” firewalls and other limits,
and these use Linux to gain strong protections.

Kubnetes is an example of a tool for creating containers of this
kind, and managing them.

CORNELL CS4414 - FALL 2021. 62

HIGHLY VISIBLE EXPLOITS

Even so, hackers find a way.

In recent years, hackers discovered that the Linux SSL security
code kept some data in a kernel memory area.

They found an exploit that could read this area.

CORNELL CS4414 - FALL 2021. 63

CORNELL CS4414 - FALL 2021. 64

Heartbleed exploit
against SSL heartbeat feature

INTEL CACHE ATTACKS

Hackers discovered that Intel processors prefetch data even before
permissions on the memory segments have been checked.

They configured a process to ignore segmentation faults. Doing so
gave them a tiny window in which they could peek at data that the
process should not be able to see. (The “peek” step was tricky)

Successfully able to extract security keys from protected code.

CORNELL CS4414 - FALL 2021. 65

BUT EVEN SO, THE PROGRESS IS VERY
ENCOURAGING!
In that hospital we mentioned on slide 3, or in an air traffic
control system, we really can specify access control policies and
enforce them in sensible ways.

The hard cases, today, are mostly seen when organizations need
to cooperate (like at the Cornell/NYU/Sloan tri-institutional
medical center complex). Use of blockchains for audit trails is a
very promising remedy that may help in such settings.

CORNELL CS4414 - FALL 2021. 66

BASICALLY, ANOTHER “SWISS CHEESE”
STORY
We have powerful conceptual abstractions and tools

We use mixtures of these: in one situation, file system
protections. In a different one, two factor authentication with
digital certificates. A third situation requires a firewall

Individually none is adequate. But jointly, they can solve our
need

CORNELL CS4414 - FALL 2021. 67

SUMMARY: AN ARMS RACE! VERY HARD
PROBLEMS… BUT WE “MIGHT NOT LOSE”
The theory of access control and information flow is powerful, but the
basic Linux and C++ features are limited and favor speed over
security coverage.

There have been many efforts to strengthen Linux and C++, but they
added costs and complexity and were ultimately rejected.

Modern security tools focus on using analysis to discover risks.

CORNELL CS4414 - FALL 2021. 68

	Access Control Abstractions
	Idea Map For Today
	Our topic today, in “plain words”
	History of Access Control Concepts
	Access Control: Who, What, when, how?
	Use of Access control models
	The systems version of this question arises at many levels
	Authentication: Who’s Who?
	To show who you are, a password is often not enough
	Credentials, two-factor authentication
	Credential storage: Certificate repositories
	Public and private keys
	How these can work in a challenge setting
	Spoofing
	How these can work in a challenge setting
	How these help with authorization
	Signatures versus encryption
	Thus, digital signatures are a tool
	Something you know… something about you… something you have…
	Access Control Matrix
	Now suppose we had this table
	… all we do is check the table as each action is requested
	Access control lists
	Capabilities
	Capabilities
	Capabilities
	Capabilities
	Reference monitors
	Generalization of other approaches
	… but
	Example: Information Flow Monitoring
	Would you notice tiny changes?
	Would you notice tiny changes?
	Slide Number 34
	Information flow monitoring
	The problem is that information flow tracking is hard!
	How do Linux permissions “stack up”?
	How do Linux permissions “stack up”?
	There are tools that will visualize the access-control matrix for you
	But this is far from our real goal
	Attestation: “Cornell gave me this id”
	Challenge: “who” is Cornell?
	Does RSA let us implement such policies?
	… Yet even if we tried, we won’t be able to do this!
	Authorization: “You want to Do what?”
	Authorization: “You want to Do what?”
	Authorization: “You want to Do what?”
	Authorization: “You want to Do what?”
	Authorization: “You want to Do what?”
	Now we can ask: How do you prove that you are authorized to do this?
	Delegation: “Tammy sent me for printer paper”
	Augmentation: “Normally, I can’t, but I’ve obtained special permission”
	RSA only helps a little
	Example seen in Linux
	Temporary augmentation: “I’ll allow you in, but only for that one task”
	“Are you a bot?”
	Granularity: “Just because you can do that doesn’t mean you can do this!”
	Roles: “In my role as dean, I authorize you to …”
	Repudiation: “I deny that I said that”
	Tampering: “Really? Check the logs… ”
	Formalizing role-based Security
	How effective is Linux?
	Highly visible exploits
	Slide Number 64
	Intel Cache attacks
	But even so, the progress is very encouraging!
	Basically, another “swiss cheese” story
	Summary: An Arms Race! Very hard problems… But we “might not lose”

