

# Accident statistics for fixed offshore units on the UK Continental Shelf 1980-2005

Prepared by **Det Norske Veritas** for the Health and Safety Executive 2007





# Accident statistics for fixed offshore units on the UK Continental Shelf 1980-2005

Det Norske Veritas Veritasveien 1 N-1322 Hovik Norway

In 2000, a project was undertaken by Det Norske Veritas (DNV) on behalf of the UK Health & Safety Executive (HSE) with the purpose of obtaining accident statistics for offshore floating units on the UK Continental Shelf (UKCS). In this respect, four databases holding information about incidents having occurred on floating units on the UKCS were interrogated. The survey revealed that that none of them had a complete recording of such incidents. Consequently, the event frequencies being obtained varied with the availability of sources.

There was no reason to believe that the situation and figures for fixed installations should be any different. Hence, it was proposed to initiate a series of projects, but addressing all types of risks to fixed units. It should be noted that fixed units in this project are defined as comprising all bottom-fixed structures, but excluding TLPs, FPSOs, FSUs and production jackups even though they are "fixed" during their production phase. The most recent project related to fixed units, Accident Statistics for Fixed Offshore Units on the UK Continental Shelf 1980 – 2003, was completed in 2005. This current project updates the data of the previous project by two further years, 2004 and 2005. This report supercedes Research Report RR349.

This report and the work it describes were funded by the Health and Safety Executive (HSE). Its contents, including any opinions and/or conclusions expressed, are those of the authors alone and do not necessarily reflect HSE policy.



© Crown copyright 2007

First published 2007

ii

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the prior written permission of the copyright owner.

Applications for reproduction should be made in writing to: Licensing Division, Her Majesty's Stationery Office, St Clements House, 2-16 Colegate, Norwich NR3 1BQ or by e-mail to hmsolicensing@cabinet-office.x.gsi.gov.uk

# Table of Content

# Page

| 1      | EXECUTIVE SUMMARY1                                |
|--------|---------------------------------------------------|
| 1.1    | Background 1                                      |
| 1.1    | Confidentiality 1                                 |
|        | •                                                 |
| 1.3    | Objectives 1                                      |
| 1.4    | Results 2                                         |
| 2      | INTRODUCTION                                      |
| 3      | OBJECTIVES AND SCOPE OF WORK                      |
| 4      | EXPOSURE DATA7                                    |
| 5      | OVERVIEW OF DATABASES                             |
| 5.1    | ORION 9                                           |
| 5.2    | BLOWOUT 9                                         |
| 5.3    | WOAD 10                                           |
| 6      | EVENT CLASSIFICATION AND CODING PRINCIPLES11      |
| 7      | ACCIDENT STATISTICS                               |
| 7.1    | Accident frequencies, all databases combined 14   |
| 7.2    | Occurrence frequencies, all databases combined 14 |
| 8      | CONCLUSIONS                                       |
| 9      | REFERENCES                                        |
| Append | ix A Detailed Statistics                          |

# **1 EXECUTIVE SUMMARY**

#### 1.1 Background

In 2000, a project was undertaken by Det Norske Veritas (DNV) on behalf of the UK Health & Safety Executive (HSE) with the purpose of obtaining accident statistics for offshore floating units on the UK Continental Shelf (UKCS). In this respect, four databases holding information about incidents having occurred on floating units on the UKCS were interrogated. The survey revealed that that none of them had a complete recording of such incidents. Consequently, the event frequencies being obtained varied with the availability of sources.

There was no reason to believe that the situation and figures for fixed installations should be any different. Hence, it was proposed to initiate a series of projects, but addressing all types of risks to fixed units. It should be noted that fixed units in this project are defined as comprising all bottom-fixed structures, but excluding TLPs, FPSOs, FSUs and production jackups even though they are "fixed" during their production phase. The most recent project related to fixed units, *Accident Statistics for Fixed Offshore Units on the UK Continental Shelf 1980 – 2003*, was completed in 2005. This current project updates the data of the previous project by two further years, 2004 and 2005.

# 1.2 Confidentiality

In order to ensure that the final results of the project were accurate and in line with the Quality Control requirements of the DNV's WOAD databank it was necessary to obtain "raw" data from each of the Databases interrogated. Raw data is defined as the data concerning a specific incident which identified the installation, operator, location, date and time. The data so obtained enabled quality checks to be undertaken on the different databases to prevent double counting of an incident or accident.

It is a condition of the contract between the HSE and DNV, the custodians of the WOAD databank, which any information so obtained will only be exported in a non attributable form to protect confidentiality and once the project is completed, the raw data will be destroyed. That is, any request for data obtained by WOAD as a result of this project will result in data being supplied which is non attributable and will not allow identification of the name of the installation, company, location, date or time of an incident. It will thus be impossible to pinpoint the installation or operator by any means.

# 1.3 Objectives

The main objective of the project is to obtain complete statistics for accidents and incidents having occurred on fixed units engaged in the oil and gas exploration and exploitation on the UKCS in the period 1980-2005, including number of accidents and incidents with corresponding frequencies per type of fixed unit. This is published both as a written report and an associated spreadsheet in the MS Excel format listing individually the coding and text for each incident.

Fixed units in this project are defined as comprising all bottom-fixed structures, but excluding TLPs, FPSOs, FSUs and production jackups even though they are "fixed" during their production phase and are classified as "fixed installations" by the HSE under the Safety Case

Regulations. Accident statistics for these excluded units may be found in the report and spreadsheet being published from the parallel project addressing floating installations, *Accident Statistics for Floating Offshore Units on the UK Continental Shelf 1980 – 2005.* 

The results from this study will serve as a reference document for data to be used in future Risk Assessments of offshore Fixed units and furthermore, be a valuable reference document for UK Health & Safety Executive (HSE)/ Offshore Safety Division (OSD) when reviewing Safety Cases.

To fulfil this objective, relevant databases were interrogated with respect to both population and accident data thus forming a complete basis of data for obtaining comprehensive accident statistics for the type of units, geographical area and time period considered in this project. The following databases were selected for interrogation:

- ORION (the former *Sun Safety System*); UK HSE-Offshore Safety Division
- Offshore Blowout Database (SINTEF, Norway)
- Worldwide Offshore Accident Databank *WOAD*; DNV, Norway

It had been noted by the HSE that extensive reference was made to the WOAD database in many of the Safety Cases submitted to them by the offshore operators. Consequently the decision was made to utilise the WOAD incident definitions, codings and format in the new database. Utilising the same methodology and format should enable the operators and owners of offshore installations to readily adapt to the use of the new database. DNV, as the custodians of the WOAD database was therefore selected as the contractor to undertake the work on behalf of the HSE. A major part of the work of DNV has thus been the redefining of each incident, in the various databases interrogated, to reflect the definitions, codings and format used in WOAD.

#### 1.4 Results

The information being available for each incident has been reviewed and the chain of events has been obtained. The classification of events has been done according to the WOAD concept. One accident may comprise a chain of consecutive events (accident outcomes or occurrences), e.g. a blowout resulting in explosion, fire and oil spill. This means that <u>one single accident or incident may give rise to several **occurrences**</u>. The total number of occurrences will thus be much higher than the total number of accidents recorded. When giving frequencies per type of event, this is presented as number of occurrences per unit per year. However, when presenting frequencies irrespective of type of event, the figures are given as number of accidents per unit per year.

By combining and merging the results from the interrogation of the three databases, ORION, WOAD and BLOWOUT, the accident and occurrence frequencies for fixed units in the UKCS in the period 1980-2005 are estimated. In the following tables the accident (or occurrence) frequencies, i.e. number of accidents (or occurrences) per unit year, are given per type of installation, event (only occurrences) and the periods 1980-1989, 1990-2005 and 1980-2005. N denotes number of accidents (or occurrences) and F denotes *average* annual frequency per unit in the specific time period, i.e. number of accidents (or occurrences) per unit and year. The source *All databases combined* refers to the database obtained by pooling the three mentioned databases and removing the overlapping records.

Care should be taken when trying to compare statistics for the period 1980-1989 and 1990-2005, since the reporting requirements and systems changed dramatically in the UK around 1990 following the issuing of the Lord Cullen Report following the Piper Alpha accident in 1988.

Note that '-' is applied where no accidents/occurrences have been recorded (and hence no frequencies calculated) or if the given event is not applicable/relevant for the given type of units.

The results, after having interrogated the databases and removed overlapping records are also detailed in the associated Excel spreadsheet. The spreadsheet, together with this report, may be downloaded by accessing the HSE web site <u>www.hse.gov.uk</u>. Within the spreadsheet, in addition to other fields each of the incidents is described in "free text".

# Table 1 All fixed units.Number of accidents and accident frequencies (per unit-year). UKCS, 1980-2005.Source: All databases combined

|                      |      | Period |           |       |           |       |  |
|----------------------|------|--------|-----------|-------|-----------|-------|--|
|                      | 1980 | -1989  | 1990-2005 |       | 1980-2005 |       |  |
| Type of installation | Ν    | F      | Ν         | F     | N         | F     |  |
| Drilling             | 19   | 0.115  | 41        | 0.141 | 60        | 0.132 |  |
| Production           | 995  | 1.631  | 5515      | 3.684 | 6510      | 3.090 |  |
| Wellhead             | 13   | 0.086  | 338       | 0.308 | 351       | 0.281 |  |
| Compression          | 8    | 0.116  | 62        | 0.360 | 70        | 0.290 |  |
| Pumping              | -    | -      | -         | -     | -         | -     |  |
| Injection/riser      | 1    | 0.022  | 9         | 0.064 | 10        | 0.054 |  |
| Accommodation        | 7    | 0.171  | 10        | 0.065 | 17        | 0.088 |  |
| Total fixed units    | 1043 | 0.9473 | 5975      | 1.766 | 7018      | 1.565 |  |

Table 2 All fixed units.Number of occurrences and occurrence frequencies (per unit year). UKCS, 1980-2005.Source: All databases combined

|                | Period |                      |          |                      |      |                      |
|----------------|--------|----------------------|----------|----------------------|------|----------------------|
|                | 1980   | )-1989               | ) 1990-2 |                      | 1980 | -2005                |
| Type of event  | Ν      | F                    | N        | F                    | N    | F                    |
| Anchor failure | -      | -                    | -        | -                    | -    | -                    |
| Blowout        | 6      | 5.4•10 <sup>-3</sup> | 4        | 1.2•10 <sup>-3</sup> | 10   | 2.2•10 <sup>-3</sup> |
| Capsize        | -      | -                    | -        | -                    | -    | -                    |
| Collision      | 2      | 1.8•10 <sup>-3</sup> | 28       | 8.3•10 <sup>-3</sup> | 30   | 6.7•10 <sup>-3</sup> |
| Contact        | 80     | 0.073                | 108      | 0.032                | 188  | 0.042                |
| Crane          | 422    | 0.383                | 1259     | 0.372                | 1681 | 0.375                |
| Explosion      | 35     | 0.032                | 41       | 0.012                | 76   | 0.017                |
| Falling object | 468    | 0.425                | 1725     | 0.510                | 2193 | 0.489                |
| Fire           | 228    | 0.207                | 717      | 0.212                | 945  | 0.211                |
| Foundering     | -      | -                    | -        | -                    | -    | -                    |
| Grounding      | -      | -                    | -        | -                    | -    | -                    |
| Helicopter     | 7      | 6.4•10 <sup>-3</sup> | 6        | 1.8•10 <sup>-3</sup> | 13   | 2.9•10 <sup>-3</sup> |
| Leakage        | 1      | 9.1•10 <sup>-4</sup> | 1        | 3.0•10 <sup>-4</sup> | 2    | 4.5•10 <sup>-4</sup> |
| List           | 1      | 9.1•10 <sup>-4</sup> | -        | -                    | 1    | 2.2•10 <sup>-4</sup> |
| Machinery      | -      | -                    | -        | -                    | -    | -                    |
| Off position   | -      | -                    | -        | -                    | -    | -                    |
| Spill/release  | 216    | 0.196                | 3108     | 0.919                | 3324 | 0.741                |
| Structural     | 5      | 4.5•10 <sup>-3</sup> | 13       | 3.8•10 <sup>-3</sup> | 18   | 4.0•10 <sup>-3</sup> |
| Towing/towline | -      | -                    | -        | -                    | -    | -                    |
| Well problem   | 22     | 0.020                | 392      | 0.116                | 414  | 0.092                |
| Other          | 6      | 5.4•10 <sup>-3</sup> | 105      | 0.031                | 111  | 0.025                |

### **2** INTRODUCTION

In 2000, a project was undertaken by Det Norske Veritas (DNV) on behalf of the UK Health & Safety Executive (HSE) with the purpose of obtaining accident statistics for offshore floating units on the UK Continental Shelf (UKCS). In this respect, five databases holding information about incidents having occurred on floating units on the UKCS were interrogated. The survey revealed that that none of them had a complete recording of such incidents. Consequently, the event frequencies being obtained varied with the availability of sources. There was no reason to believe that the situation and figures for fixed installations should be any different. Hence, it was proposed to initiate a similar type of project, but addressing all types of risks to fixed units. It should be noted that fixed units in this project are defined as comprising all bottom-fixed structures, but excluding TLPs, FPSOs, FSUs and production jackups even though they are "fixed" during their production phase and are classified as "fixed installations" by the HSE under the Safety Case Regulations. Accident statistics for these excluded units may be found in the report and spreadsheet being published from the parallel project addressing floating installations, *Accident Statistics for Floating Offshore Units on the UK Continental Shelf 1980 – 2005*.

The recent project related to fixed units was completed in 2005 and showing statistics for the period 1980-2003, ref. /1/. This current project updates the data of the previous project by two further years, 2004 and 2005.

# **3 OBJECTIVES AND SCOPE OF WORK**

The main objective of the project is to obtain complete statistics (i.e. accident frequencies) for accidents and incidents having occurred on fixed units engaged in the oil and gas exploration and exploitation activities on the UK Continental Shelf in the period 1980-2005, including number of accidents and incidents with corresponding frequencies per type of fixed unit. This is published both as a written report and an associated spreadsheet in the MS Excel format listing individually the coding and text for each incident.

Fixed units in this project are defined as comprising bottom-fixed installations (manned or unmanned) designed for drilling, accommodation, production, compression, pumping, and injection/riser purposes, or combinations of these. Regarding *production* installations, the study differentiates between the traditional (manned) production platforms, steel jackets or GBSs, and wellhead platforms (normally unmanned).

| Category        | Type of unit – description                                                                                                                                                                       |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drilling        | Drilling platforms whose sole purpose is to drill                                                                                                                                                |
| Production      | Traditional (manned) production platforms, steel jackets or<br>GBSs. Included are also platforms with drilling,<br>production, and accommodation facilities (i.e. large<br>integrated platforms) |
| Wellhead        | Wellhead platforms (normally unmanned) with no processing facilities, serving as "well support". Often linked to the main production platforms.                                                  |
| Compression     | Gas compression platforms                                                                                                                                                                        |
| Pumping         | Pumping platforms                                                                                                                                                                                |
| Injection/riser | Water or gas injection and riser platforms                                                                                                                                                       |
| Accommodation   | Accommodation platforms                                                                                                                                                                          |

The classification of units is according to the following:

The results from this study will serve as a reference document for data to be used in future Risk Assessments of offshore Fixed units and furthermore, be a valuable reference document for HSE/OSD when reviewing Safety Cases.

To fulfil this objective, relevant databases were interrogated with respect to both population and accident data thus forming a complete data basis for obtaining comprehensive accident statistics for the said type of units, geographical area and time period. The following databases were selected for interrogation:

- ORION<sup>\*</sup>, UK HSE-Offshore Safety Division
- Offshore Blowout Database *BLOWOUT*, SINTEF, Norway
- Worldwide Offshore Accident Databank WOAD, Det Norske Veritas (DNV), Norway
   \*): The former "Sun Safety System"

### **4 EXPOSURE DATA**

Exposure (population) data in this context relates to the number of unit- (or platform-) years for each type of installation. By interrogating relevant sources holding such information, the number of unit-years are obtained for each year and type of unit for the UKCS in the period 1980-2005.

From WOAD, the exposure data for fixed units on the UKCS are obtained. The data are given in two following tables. Abandoned or removed/scrapped installations have been accounted for.

|           |          | Type of I  | nstallation |             |
|-----------|----------|------------|-------------|-------------|
| Year      | Drilling | Production | Wellhead    | Compression |
| 1980-1989 | 165      | 610        | 151         | 69          |
| 1990      | 18       | 76         | 39          | 8           |
| 1991      | 18       | 79         | 45          | 9           |
| 1992      | 18       | 81         | 48          | 9           |
| 1993      | 19       | 86         | 51          | 10          |
| 1994      | 19       | 92         | 56          | 10          |
| 1995      | 19       | 92         | 57          | 11          |
| 1996      | 17       | 93         | 65          | 9           |
| 1997      | 18       | 94         | 70          | 11          |
| 1998      | 18       | 97         | 72          | 11          |
| 1999      | 18       | 96         | 79          | 12          |
| 2000      | 18       | 98         | 84          | 12          |
| 2001      | 18       | 99         | 85          | 12          |
| 2002      | 18       | 101        | 86          | 12          |
| 2003      | 18       | 104        | 86          | 12          |
| 2004      | 18       | 104        | 86          | 12          |
| 2005      | 18       | 105        | 90          | 12          |
| 1990-2005 | 290      | 1497       | 1099        | 172         |
| 1980-2005 | 455      | 2107       | 1250        | 241         |

Table 3 Fixed Units (drilling, production, wellhead and compression).UKCS, 1980-2005. Number of unit-years

|           | Type of Installation |                 |               |              |  |  |  |  |
|-----------|----------------------|-----------------|---------------|--------------|--|--|--|--|
| Year      | Pumping              | Injection/riser | Accommodation | Total, fixed |  |  |  |  |
| 1980-1989 | 20                   | 45              | 41            | 1101         |  |  |  |  |
| 1990      | 2                    | 5               | 6             | 154          |  |  |  |  |
| 1991      | 2                    | 6               | 6             | 165          |  |  |  |  |
| 1992      | 2                    | 6               | 7             | 171          |  |  |  |  |
| 1993      | 2                    | 8               | 8             | 184          |  |  |  |  |
| 1994      | 2                    | 9               | 9             | 197          |  |  |  |  |
| 1995      | 2                    | 9               | 9             | 199          |  |  |  |  |
| 1996      | 2                    | 9               | 10            | 205          |  |  |  |  |
| 1997      | 2                    | 9               | 10            | 214          |  |  |  |  |
| 1998      | 2                    | 9               | 11            | 220          |  |  |  |  |
| 1999      | 2                    | 10              | 11            | 228          |  |  |  |  |
| 2000      | 2                    | 10              | 11            | 235          |  |  |  |  |
| 2001      | 2                    | 10              | 11            | 237          |  |  |  |  |
| 2002      | 2                    | 10              | 11            | 240          |  |  |  |  |
| 2003      | 2                    | 10              | 11            | 243          |  |  |  |  |
| 2004      | 2                    | 10              | 11            | 243          |  |  |  |  |
| 2005      | 2                    | 10              | 11            | 248          |  |  |  |  |
| 1990-2005 | 32                   | 140             | 153           | 3383         |  |  |  |  |
| 1980-2005 | 52                   | 185             | 194           | 4484         |  |  |  |  |

Table 4 Fixed Units (pumping, injection, accommodation and total)).UKCS. 1980-2005. Number of unit-years

# **5 OVERVIEW OF DATABASES**

This chapter gives a short presentation of the 3 databases being interrogated in this project.

# 5.1 ORION

The <u>R</u>eporting of <u>I</u>njuries, <u>D</u>iseases and <u>D</u>angerous <u>O</u>ccurrences <u>R</u>egulations 1995 (RIDDOR 95) arrangement came into force on 1 April 1996 and requires that all work-related accidents, diseases and dangerous occurrences in the UK and UK Continental Shelf are to be reported to the HSE. It applies to all work activities and to defined types of incidents. The incidents are to be reported using the OIR/9B and F2508A forms. These forms are to be completed and submitted to the HSE.

Prior to 1 April 1996 injuries and dangerous occurrences were reported on the OIR/9A form. This form was created under the Mineral Workings (Offshore Installations) Act 1971 and the Offshore Installations (Inspectors and Casualties) Regulations 1973.

The information submitted on the OIR/9A, OIR/9B and F2508A forms are recorded in a database, "ORION" (the former *Sun Safety System*), run by the HSE-OSD offices in Bootle, Liverpool.

The Sun Safety System (now ORION) was primarily developed to record incident data reported on the OIR/9A form. Other information is however recorded on the database, including details of inspections, investigations, prosecutions and the registration and location details of Offshore Installations. The OIR/9A form was first published in October 1990, and the Sun Safety System was implemented in 1st January 1991. The Sun Safety System does however contain some data on pre 1991 incidents (imported from previous systems maintained by the Safety Directorate of the Department of Energy), though not all fields on the OIR/9A form are available for this data. The Sun Safety System was decommissioned year 2000 and all data from 1991(incl.) was transferred to ORION.

Note that notification of hydrocarbon releases (voluntarily submitted on the OIR/12 form) are also recorded in a separate and specifically designed database which is maintained by the HSE-OSD offices in Bootle, Liverpool.

# 5.2 BLOWOUT

The SINTEF Offshore Blowout Database (BLOWOUT) is a comprehensive event database for blowout risk assessment. The database includes information on 552 (November 2006) offshore blowouts/well releases that have occurred worldwide since 1955.

The database includes blowout/well release descriptions worldwide and drilling and production exposure data for several areas with focus on the US Gulf of Mexico Outer Continental Shelf (US GoM OCS), Norwegian waters, and UK waters.

The blowouts/well releases are categorized in several parameters, emphasizing blowout causes. The database contains 51 different fields describing each blowout/well release. In addition, the database allows for attachment of any electronic file(s) to the blowout description. The various fields are grouped in six different groups:

- Category and location
- Well description
- Present operation
- Blowout causes
- Blowout Characteristics
- Other

ExproSoft has been contracted to operate the SINTEF Offshore Blowout Database from 1 May 2001 by SINTEF.

# 5.3 WOAD

One of the main sources for offshore accident information for public use is the *Worldwide Offshore Accident Databank* (WOAD) operated by Det Norske Veritas (DNV). WOAD contains some 5,200 events from the period 1970-2006, derived mainly from public-domain sources such as Lloyds Casualty Reports, newspapers and official publications. Most of the data is from the UK and Norwegian Sectors and the US Gulf of Mexico. Exposure data is also provided, allowing accident rates to be calculated for different accident types, , installation/rig/platform types, geographical locations, degrees of damage, etc.

# 6 EVENT CLASSIFICATION AND CODING PRINCIPLES

The WOAD concept of classifying events has been selected for the review work on the records received from the databases being interrogated in this project. Hence all events have been categorised, both within the Reports and Spreadsheets, according to the table below.

| Anchor railure         AN         (e.g. anchor dragging, breaking of mooring lines, loss of anchor(s), winch failures).           Blowout         BL         An uncontrolled flow of gas, oil or other fluids from the reservoir, i.e. loss of 1. barri<br>(i.e. hydrostatic head) or leak and loss of 2. barrier, i.e. BOP/DHSV.           Capsize         CA         Loss of stability resulting in overturn of unit, capsizing, or toppling of unit.           Accidental contact between offshore unit and/or passing marine vessel when at least<br>one of them is propelled or is under tow. Examples: tanker, cargo ship, fishing vessel<br>Also included are collisions with bridges, quays, etc., and vessels engaged in the oil<br>and gas activity on other platforms than the platform affected, and between two<br>offshore installations (to be coded as "Contact" only when intended for close location<br>Contact           CN         Collisions/accidental contacts between vessels engaged in the oil and gas activity on<br>the platform affected, e.g. support/supply/stand-by vessels, tugs or helicopters, and<br>offshore installations ofly when these are intended for close location.           Crane         CR         Any event caused by or involving cranes, derrick and draw-works, or any other lifting<br>equipment.           Explosion         EX         Explosion         Falling load/dropped objects from crane, drill derrick, or any other lifting equipment<br>platform. Crane fall and lifeboats accidentally to sea and man overboard are also<br>included.           Fire         FI         Fire.           Foundering         FO         Loss of buoyancy or unit sinking.           Groundin | Type of event     | Code*                                                                                                                                                                      | Explanation                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Biowout     BL     (i.e. hydrostatic head) or leak and loss of 2. barrier, i.e. BOP/DHSV.       Capsize     CA     Loss of stability resulting in overturn of unit, capsizing, or toppling of unit.       Accidental contact between offshore unit and/or passing marine vessel when at least one of them is propelled or is under tow. Examples: tanker, cargo ship, fishing vessel Also included are collisions with bridges, quays, etc., and vessels engaged in the oil and gas activity on other platforms than the platform affected, and between two offshore installations (to be coded as "Contact" only when intended for close location offshore installations (floating or fixed). Also are included collisions between two offshore installations (floating or fixed). Also are included collisions between two offshore installations (floating or fixed). Also are included collisions between two offshore installations (floating or fixed). Also are included collisions between two offshore installations only when these are intended for close location.       Crane     CR     Any event caused by or involving cranes, derrick and draw-works, or any other lifting equipment.       Explosion     EX     Explosion       Falling object     FA     Falling load/dropped objects from crane, drill derrick, or any other lifting equipment platform. Crane fall and lifeboats accidentally to sea and man overboard are also included.       Fire     FI     Fire.       Foundering     FO     Loss of buoyancy or unit sinking.       Grounding     GR     Floating installation in contact with the sea bottom.       Leakage     LE     Leakage of water into the unit or filling of shaft or other compar          | Anchor failure    | AN                                                                                                                                                                         | Problems with anchor/anchor lines, mooring devices, winching equipment or fairleads (e.g. anchor dragging, breaking of mooring lines, loss of anchor(s), winch failures).         |
| CollisionCLAccidental contact between offshore unit and/or passing marine vessel when at least<br>one of them is propelled or is under tow. Examples: takker, cargo ship, fishing vessel<br>Also included are collisions with bridges, quays, etc., and vessels engaged in the oil<br>and gas activity on other platforms than the platform affected, and between two<br>offshore installations (to be coded as "Contact" only when intended for close locationContactCNCollisions/accidental contacts between vessels engaged in the oil and gas activity on<br>the platform affected, e.g. support/supply/stand-by vessels, tugs or helicopters, and<br>offshore installations only when these are intended for close location.CraneCRAny event caused by or involving cranes, derrick and draw-works, or any other lifting<br>equipment.ExplosionEXExplosionFalling objectFAFalling load/dropped objects from crane, drill derrick, or any other lifting equipment<br>platform. Crane fall and lifeboats accidentally to sea and man overboard are also<br>included.FireFIFire.FounderingFOLoss of buoyancy or unit sinking.GroundingGRFloating installation in contact with the sea bottom.LeakageLELeakage of water into the unit or filling of shaft or other compartments causing<br>potential loss of buoyancy or stability problems.ListL1Uncontrolled inclination of unit.Machinery failureMAPropulsion or thruster machinery failure (incl. control)Off positionPOUnit unintentionally out of its expected position or drifting out of control."Loss of containment". Release of fluid or gas to the surroundings from unit's own<br>equ                                                                                            | Blowout BL        |                                                                                                                                                                            | An uncontrolled flow of gas, oil or other fluids from the reservoir, i.e. loss of 1. barrier (i.e. hydrostatic head) or leak and loss of 2. barrier, i.e. BOP/DHSV.               |
| CollisionCLone of them is propelled or is under tow. Examples: tarker, cargo ship, fishing vessel<br>Also included are collisions with bridges, quays, etc., and vessels engaged in the oil<br>and gas activity on other platform affected, and between two<br>offshore installations (to be coded as "Contact" only when intended for close locationContactCNCollision/Accidental contacts between vessels engaged in the oil and gas activity on<br>the platform affected, e.g. support/supply/stand-by vessels, tugs or helicopters, and<br>offshore installations (floating or fixed). Also are included collisions between two<br>offshore installations only when these are intended for close location.CraneCRAny event caused by or involving cranes, derrick and draw-works, or any other lifting<br>equipment.ExplosionEXExplosionFalling load/dropped objects from crane, drill derrick, or any other lifting equipment<br>platform. Crane fall and lifeboats accidentally to sea and man overboard are also<br>included.FireFIFire.FounderingFOLoss of buoyancy or unit sinking.GroundingGRFloating installation in contact with the sea bottom.ListLIUncontrolled inclination of unit.Machinery failureMAPropulsion or thruster machinery failure (incl. control)Off positionPOUnit unintentionally out of its expected position or drifting out of control.Spill/releaseLG"Loss of containment". Release of fluid or gas to the surroundings from unit's own<br>equipment/vessels/tanks causing (potential pollution and/or risk of explosion and/or<br>fire.StructuralSTBreakage or fatigue failures (mostly failures caused by weat                                                                                            | Capsize           | CA                                                                                                                                                                         | Loss of stability resulting in overturn of unit, capsizing, or toppling of unit.                                                                                                  |
| ContactCNthe platform affected, e.g. support/supply/stand-by vessels, tugs or helicopters, and offshore installations (floating or fixed). Also are included collisions between two offshore installations only when these are intended for close location.CraneCRAny event caused by or involving cranes, derrick and draw-works, or any other lifting equipment.ExplosionEXExplosionFalling objectFAFalling load/dropped objects from crane, drill derrick, or any other lifting equipment platform. Crane fall and lifeboats accidentally to sea and man overboard are also included.FireFIFire.FounderingFOLoss of buoyancy or unit sinking.GroundingGRFloating installation in contact with the sea bottom.HelicopterHEAccident with helicopter either on helideck or in contact with the installation.LeakageLELeakage of water into the unit or filling of shaft or other compartments causing potential loss of buoyancy or stability problems.ListLIUncontrolled inclination of unit.Machinery failureMAPropulsion or thruster machinery failure (incl. control)Off positionPOUnit unintentionally out of its expected position or drifting out of control.Spill/releaseLGBreakage or fatigue failures (mostly failures caused by weather, but not necessarily or fire.StructuralSTBreakage or fatigue failures (mostly failures. "Punch through" also included.Towing/towlineTOTowing failure or breakageWell problemWPAccidental problem with the well, i.e. loss of one barrier (hydrostatic head) or other downhole                                                                                                                                                                                                               | Collision         | CL                                                                                                                                                                         | one of them is propelled or is under tow. Examples: tanker, cargo ship, fishing vessel.<br>Also included are collisions with bridges, quays, etc., and vessels engaged in the oil |
| CraneCRequipment.ExplosionEXExplosionFalling objectFAFalling load/dropped objects from crane, drill derrick, or any other lifting equipment<br>platform. Crane fall and lifeboats accidentally to sea and man overboard are also<br>included.FireFIFire.FounderingFOLoss of buoyancy or unit sinking.GroundingGRFloating installation in contact with the sea bottom.HelicopterHEAccident with helicopter either on helideck or in contact with the installation.LeakageLELeakage of water into the unit or filling of shaft or other compartments causing<br>potential loss of buoyancy or stability problems.ListLIUncontrolled inclination of unit.Machinery failureMAPropulsion or thruster machinery failure (incl. control)Off positionPOUnit unintentionally out of its expected position or drifting out of control.Spill/releaseLGBreakage or fatigue failures (mostly failures caused by weather, but not necessarily or<br>structural support and direct structural failures. "Punch through" also included.Towing/towlineTOTowline failure or breakageWell problemWPAccidental problem with the well, i.e. loss of one barrier (hydrostatic head) or other<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Contact           | the platform affected, e.g. support/supply/stand-by vessels, tugs or helicopters, and offshore installations (floating or fixed). Also are included collisions between two |                                                                                                                                                                                   |
| Falling objectFalling load/dropped objects from crane, drill derrick, or any other lifting equipment<br>platform. Crane fall and lifeboats accidentally to sea and man overboard are also<br>included.FireFIFire.FounderingFOLoss of buoyancy or unit sinking.GroundingGRFloating installation in contact with the sea bottom.HelicopterHEAccident with helicopter either on helideck or in contact with the installation.LeakageLELeakage of water into the unit or filling of shaft or other compartments causing<br>potential loss of buoyancy or stability problems.ListLIUncontrolled inclination of unit.Machinery failureMAPropulsion or thruster machinery failure (incl. control)Off positionPOUnit unintentionally out of its expected position or drifting out of control.Spill/releaseLGBreakage or fatigue failures (mostly failures caused by weather, but not necessarily) of<br>structural support and direct structural failures. "Punch through" also included.Towing/towlineTOTowline failure or breakageWell problemWPAccidental problem with the well, i.e. loss of one barrier (hydrostatic head) or other<br>downhole problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Crane             | CR                                                                                                                                                                         | Any event caused by or involving cranes, derrick and draw-works, or any other lifting equipment.                                                                                  |
| Falling objectFAplatform. Crane fall and lifeboats accidentally to sea and man overboard are also<br>included.FireFIFire.FounderingFOLoss of buoyancy or unit sinking.GroundingGRFloating installation in contact with the sea bottom.HelicopterHEAccident with helicopter either on helideck or in contact with the installation.LeakageLELeakage of water into the unit or filling of shaft or other compartments causing<br>potential loss of buoyancy or stability problems.ListLIUncontrolled inclination of unit.Machinery failureMAPropulsion or thruster machinery failure (incl. control)Off positionPOUnit unintentionally out of its expected position or drifting out of control.Spill/releaseLGBreakage or fatigue failures (mostly failures caused by weather, but not necessarily) or thruster and direct structural failures. "Punch through" also included.Towing/towlineTOTowline failure or breakageWell problemWPAccidental problem with the well, i.e. loss of one barrier (hydrostatic head) or other<br>downhole problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Explosion         | EX                                                                                                                                                                         | Explosion                                                                                                                                                                         |
| FounderingFOLoss of buoyancy or unit sinking.GroundingGRFloating installation in contact with the sea bottom.HelicopterHEAccident with helicopter either on helideck or in contact with the installation.LeakageLELeakage of water into the unit or filling of shaft or other compartments causing potential loss of buoyancy or stability problems.ListLIUncontrolled inclination of unit.Machinery failureMAPropulsion or thruster machinery failure (incl. control)Off positionPOUnit unintentionally out of its expected position or drifting out of control.Spill/releaseLG"Loss of containment". Release of fluid or gas to the surroundings from unit's own equipment/vessels/tanks causing (potential) pollution and/or risk of explosion and/or fire.StructuralSTBreakage or fatigue failures (mostly failures caused by weather, but not necessarily) or structural support and direct structural failures. "Punch through" also included.Towing/towlineTOTowline failure or breakageWell problemWPAccidental problem with the well, i.e. loss of one barrier (hydrostatic head) or other downhole problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Falling object    | FA                                                                                                                                                                         | 1 v                                                                                                                                                                               |
| GroundingGRFloating installation in contact with the sea bottom.HelicopterHEAccident with helicopter either on helideck or in contact with the installation.LeakageLELeakage of water into the unit or filling of shaft or other compartments causing potential loss of buoyancy or stability problems.ListLIUncontrolled inclination of unit.Machinery failureMAPropulsion or thruster machinery failure (incl. control)Off positionPOUnit unintentionally out of its expected position or drifting out of control.Spill/releaseLG"Loss of containment". Release of fluid or gas to the surroundings from unit's own equipment/vessels/tanks causing (potential) pollution and/or risk of explosion and/or fire.StructuralSTBreakage or fatigue failures (mostly failures. "Punch through" also included.Towing/towlineTOTowline failure or breakageWell problemWPAccidental problem with the well, i.e. loss of one barrier (hydrostatic head) or other downhole problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fire              | FI                                                                                                                                                                         | Fire.                                                                                                                                                                             |
| HelicopterHEAccident with helicopter either on helideck or in contact with the installation.LeakageLELeakage of water into the unit or filling of shaft or other compartments causing<br>potential loss of buoyancy or stability problems.ListLIUncontrolled inclination of unit.Machinery failureMAPropulsion or thruster machinery failure (incl. control)Off positionPOUnit unintentionally out of its expected position or drifting out of control.Spill/releaseLG"Loss of containment". Release of fluid or gas to the surroundings from unit's own<br>equipment/vessels/tanks causing (potential) pollution and/or risk of explosion and/or<br>fire.StructuralSTBreakage or fatigue failures (mostly failures caused by weather, but not necessarily) or<br>structural support and direct structural failures. "Punch through" also included.Towing/towlineTOTowline failure or breakageWell problemWPAccidental problem with the well, i.e. loss of one barrier (hydrostatic head) or other<br>downhole problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Foundering        | FO                                                                                                                                                                         | Loss of buoyancy or unit sinking.                                                                                                                                                 |
| LeakageLELeakage of water into the unit or filling of shaft or other compartments causing<br>potential loss of buoyancy or stability problems.ListLIUncontrolled inclination of unit.Machinery failureMAPropulsion or thruster machinery failure (incl. control)Off positionPOUnit unintentionally out of its expected position or drifting out of control.Spill/releaseLG"Loss of containment". Release of fluid or gas to the surroundings from unit's own<br>equipment/vessels/tanks causing (potential) pollution and/or risk of explosion and/or<br>fire.StructuralSTBreakage or fatigue failures (mostly failures caused by weather, but not necessarily) or<br>structural support and direct structural failures. "Punch through" also included.Towing/towlineTOTowline failure or breakageWell problemWPAccidental problem with the well, i.e. loss of one barrier (hydrostatic head) or other<br>downhole problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Grounding         | GR                                                                                                                                                                         | Floating installation in contact with the sea bottom.                                                                                                                             |
| LeakageLEpotential loss of buoyancy or stability problems.ListLIUncontrolled inclination of unit.Machinery failureMAPropulsion or thruster machinery failure (incl. control)Off positionPOUnit unintentionally out of its expected position or drifting out of control.Spill/releaseLG"Loss of containment". Release of fluid or gas to the surroundings from unit's own<br>equipment/vessels/tanks causing (potential) pollution and/or risk of explosion and/or<br>fire.StructuralSTBreakage or fatigue failures (mostly failures caused by weather, but not necessarily) or<br>structural support and direct structural failures. "Punch through" also included.Towing/towlineTOTowline failure or breakageWell problemWPAccidental problem with the well, i.e. loss of one barrier (hydrostatic head) or other<br>downhole problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Helicopter        | HE                                                                                                                                                                         | Accident with helicopter either on helideck or in contact with the installation.                                                                                                  |
| Machinery failureMAPropulsion or thruster machinery failure (incl. control)Off positionPOUnit unintentionally out of its expected position or drifting out of control.Spill/releaseLG"Loss of containment". Release of fluid or gas to the surroundings from unit's own<br>equipment/vessels/tanks causing (potential) pollution and/or risk of explosion and/or<br>fire.StructuralSTBreakage or fatigue failures (mostly failures caused by weather, but not necessarily) or<br>structural support and direct structural failures. "Punch through" also included.Towing/towlineTOTowline failure or breakageWell problemWPAccidental problem with the well, i.e. loss of one barrier (hydrostatic head) or other<br>downhole problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Leakage           | LE                                                                                                                                                                         |                                                                                                                                                                                   |
| Off positionPOUnit unintentionally out of its expected position or drifting out of control.Spill/releaseLG"Loss of containment". Release of fluid or gas to the surroundings from unit's own<br>equipment/vessels/tanks causing (potential) pollution and/or risk of explosion and/or<br>fire.StructuralSTBreakage or fatigue failures (mostly failures caused by weather, but not necessarily) or<br>structural support and direct structural failures. "Punch through" also included.Towing/towlineTOTowline failure or breakageWell problemWPAccidental problem with the well, i.e. loss of one barrier (hydrostatic head) or other<br>downhole problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | List              | LI                                                                                                                                                                         | Uncontrolled inclination of unit.                                                                                                                                                 |
| Spill/release       LG       "Loss of containment". Release of fluid or gas to the surroundings from unit's own equipment/vessels/tanks causing (potential) pollution and/or risk of explosion and/or fire.         Structural       ST       Breakage or fatigue failures (mostly failures caused by weather, but not necessarily) or structural support and direct structural failures. "Punch through" also included.         Towing/towline       TO       Towline failure or breakage         Well problem       WP       Accidental problem with the well, i.e. loss of one barrier (hydrostatic head) or other downhole problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Machinery failure | MA                                                                                                                                                                         | Propulsion or thruster machinery failure (incl. control)                                                                                                                          |
| Spill/releaseLGequipment/vessels/tanks causing (potential) pollution and/or risk of explosion and/or<br>fire.StructuralSTBreakage or fatigue failures (mostly failures caused by weather, but not necessarily) or<br>structural support and direct structural failures. "Punch through" also included.Towing/towlineTOTowline failure or breakageWell problemWPAccidental problem with the well, i.e. loss of one barrier (hydrostatic head) or other<br>downhole problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Off position      | PO                                                                                                                                                                         | Unit unintentionally out of its expected position or drifting out of control.                                                                                                     |
| StructuralS1structural support and direct structural failures. "Punch through" also included.Towing/towlineTOTowline failure or breakageWell problemWPAccidental problem with the well, i.e. loss of one barrier (hydrostatic head) or other<br>downhole problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Spill/release     | LG                                                                                                                                                                         | equipment/vessels/tanks causing (potential) pollution and/or risk of explosion and/or                                                                                             |
| Well problemWPAccidental problem with the well, i.e. loss of one barrier (hydrostatic head) or other<br>downhole problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Structural        | ST                                                                                                                                                                         | Breakage or fatigue failures (mostly failures caused by weather, but not necessarily) of structural support and direct structural failures. "Punch through" also included.        |
| downhole problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Towing/towline    | ТО                                                                                                                                                                         | Towline failure or breakage                                                                                                                                                       |
| Other OT Event other than specified above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Well problem      | WP                                                                                                                                                                         |                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Other             | OT                                                                                                                                                                         | Event other than specified above                                                                                                                                                  |

Table 5 Event classification, WOAD

\*) Codes for Chain of events (CH1-CH5) used in the associated spreadsheet.

It should be noted that not all types of events apply to <u>fixed</u> units, like anchor failure, grounding, machinery failure, off position and towing/towline problems. This is mainly due to FPSO's, FSU's, and TLP's are classified as "floating installations" (and hence to included in this report) although they are classified as "fixed installations" by the HSE under the Safety Case Regulations.

The categorisation of the incidents has been performed according to principles outlined below.

- Events coded as *Falling load* involve loads and objects either rolling, leaning, tilting, falling, rotating, swinging, or sliding. Man over board is also included here.
- "Occupational Hazard" (OH) incidents, with personal injuries or not, are defined to be events which are not related to operations of equipment and events caused by obvious human errors during maintenance. Such events have only been counted, but are excluded from these statistics.
- Anchor handling involving supply boat which causes personal injuries to personnel being involved are coded as *Anchor failure* (and not OH).
- Maloperation of lifting equipment or technical failure leading to falling load is coded as *Crane failure + Falling load*.
- Problems with riser tensioners are coded as *Crane failure*
- Events involving equipment or part of equipment bursting or blowing out, are coded as *Spill/Release*
- Events involving problems with gangways/bridges between floating unit and other floating or fixed units, are coded as *Out of position* + *Falling load*.
- Incidents that occur during maintenance indicates lack of design have been coded accordingly (crane failure, falling load, anchor failure, etc.)

# 7 ACCIDENT STATISTICS

The information being available for each incident has been reviewed and the chain of events has been obtained. The classification of events has been done according to the WOAD concept. One accident may comprise a chain of consecutive events (accident outcomes or occurrences), e.g. a blowout resulting in explosion, fire and oil spill. This means that <u>one single accident or incident may give rise to several **occurrences**. The total number of occurrences will thus be much higher than the total number of accidents recorded. When giving frequencies per type of event, this is presented as number of occurrences per unit per year. However, when presenting frequencies irrespective of type of event, the figures are given as number of accidents per unit per year.</u>

By combining and merging the results from the interrogation of all 3 databases, the accident/occurrence frequencies for fixed units in the UKCS in the period 1980-2005 are estimated. All tables in this chapter present the number of accidents and occurrences with corresponding frequencies per type of unit, event (only occurrences) and time periods 1980-1989, 1990-2005 and 1980-2005. N denotes number of occurrences and F denotes average annual frequency, i.e. number of accidents or occurrences per unit year. Note that '-' is applied where no accidents/occurrences have been recorded (and hence no frequencies calculated) or if the given event is not applicable/relevant for the given type of units.

The source *All databases combined* refers to the database obtained by pooling the databases ORION, BLOWOUT and WOAD and removing the overlapping records.

Care should be taken when trying to compare statistics for the period 1980-1989 and 1990-2005, since the reporting requirements and systems changed dramatically in the UK around 1990 following the issuing of the Lord Cullen Report following the Piper Alpha accident in 1988.

<u>Note:</u> More detailed statistics are given in appendix A where the number of accidents/occurrences and corresponding frequencies is given by type of unit and year in the period 1990-2005.

The results, after having interrogated the databases and removed overlapping records are also detailed in the associated Excel spreadsheet. The spreadsheet, together with this report, may be downloaded by accessing the HSE web site <u>www.hse.gov.uk</u>. Within the spreadsheet, in addition to other fields each of the incidents is described in "free text".

#### 7.1 Accident frequencies, all databases combined

In this section the accident frequencies for fixed units in the UKCS in the period 1980-2003 are presented. The following tables give the number of accidents and corresponding frequencies per type of unit.

|                      |           |       | Per       | riod  |           |       |
|----------------------|-----------|-------|-----------|-------|-----------|-------|
|                      | 1980-1989 |       | 1990-2005 |       | 1980-2005 |       |
| Type of installation | Ν         | F     | N         | F     | N         | F     |
| Drilling             | 19        | 0.115 | 41        | 0.141 | 60        | 0.132 |
| Production           | 995       | 1.631 | 5515      | 3.684 | 6510      | 3.090 |
| Wellhead             | 13        | 0.086 | 338       | 0.308 | 351       | 0.281 |
| Compression          | 8         | 0.116 | 62        | 0.360 | 70        | 0.290 |
| Pumping              | -         | -     | -         | -     | -         | -     |
| Injection/riser      | 1         | 0.022 | 9         | 0.064 | 10        | 0.054 |
| Accommodation        | 7         | 0.171 | 10        | 0.065 | 17        | 0.088 |
| Total fixed units    | 1043      | 0.947 | 5975      | 1.766 | 7018      | 1.565 |

#### Table 6 All fixed units.

. . . . \_\_\_\_ ..... ,

As can be seen from the table above, no accidents are recorded on fixed pumping platforms in either of the databases in the period 1980-2005.

#### 7.2 Occurrence frequencies, all databases combined

In this section the occurrence frequencies for fixed units in the UKCS in the period 1980-2005 are presented. The following tables give the number of occurrences and corresponding frequencies per type of occurrence/event and type of unit.

| Table 7 | All fixed units.       |
|---------|------------------------|
| Number  | of accurrences and acc |

| Number of occurrences and occurrence frequencies (per unit year). UKCS, 1980-2005. |
|------------------------------------------------------------------------------------|
| Source: All databases combined                                                     |

|                |      | Period               |      |                      |      |                      |  |
|----------------|------|----------------------|------|----------------------|------|----------------------|--|
|                | 1980 | -1989                | 1990 | -2005                | 1980 | -2005                |  |
| Type of event  | Ν    | F                    | Ν    | F                    | Ν    | F                    |  |
| Anchor failure | -    | -                    | -    | -                    | -    | -                    |  |
| Blowout        | 6    | 5.4•10 <sup>-3</sup> | 4    | 1.2•10 <sup>-3</sup> | 10   | 2.2•10 <sup>-3</sup> |  |
| Capsize        | -    | -                    | -    | -                    | -    | -                    |  |
| Collision      | 2    | 1.8•10 <sup>-3</sup> | 28   | 8.3•10 <sup>-3</sup> | 30   | 6.7•10 <sup>-3</sup> |  |
| Contact        | 80   | 0.073                | 108  | 0.032                | 188  | 0.042                |  |
| Crane          | 422  | 0.383                | 1259 | 0.372                | 1681 | 0.375                |  |
| Explosion      | 35   | 0.032                | 41   | 0.012                | 76   | 0.017                |  |
| Falling object | 468  | 0.425                | 1725 | 0.510                | 2193 | 0.489                |  |
| Fire           | 228  | 0.207                | 717  | 0.212                | 945  | 0.211                |  |
| Foundering     | -    | -                    | -    | -                    | -    | -                    |  |
| Grounding      | -    | -                    | -    | -                    | -    | -                    |  |
| Helicopter     | 7    | 6.4•10 <sup>-3</sup> | 6    | 1.8•10 <sup>-3</sup> | 13   | 2.9•10 <sup>-3</sup> |  |
| Leakage        | 1    | 9.1•10 <sup>-4</sup> | 1    | 3.0•10 <sup>-4</sup> | 2    | 4.5•10 <sup>-4</sup> |  |
| List           | 1    | 9.1•10 <sup>-4</sup> | -    | -                    | 1    | 2.2•10 <sup>-4</sup> |  |
| Machinery      | -    | -                    | -    | -                    | -    | -                    |  |
| Off position   | -    | -                    | -    | -                    | -    | -                    |  |
| Spill/release  | 216  | 0.196                | 3108 | 0.919                | 3324 | 0.741                |  |
| Structural     | 5    | 4.5•10 <sup>-3</sup> | 13   | 3.8•10 <sup>-3</sup> | 18   | 4.0•10 <sup>-3</sup> |  |
| Towing/towline | -    | -                    | -    | -                    | -    | -                    |  |
| Well problem   | 22   | 0.020                | 392  | 0.116                | 414  | 0.092                |  |
| Other          | 6    | 5.4•10 <sup>-3</sup> | 105  | 0.031                | 111  | 0.025                |  |

| Source: All databases combined |                             |        |   |   |   |   |  |  |  |
|--------------------------------|-----------------------------|--------|---|---|---|---|--|--|--|
|                                |                             | Period |   |   |   |   |  |  |  |
|                                | 1980-1989 1990-2005 1980-20 |        |   |   |   |   |  |  |  |
| Type of event                  | N                           | F      | N | F | N | F |  |  |  |
| Anchor failure                 | -                           | -      | - | - | - | - |  |  |  |
| Blowout                        | -                           | -      | - | - | - | - |  |  |  |
| Capsize                        | -                           | -      | - | - | - | - |  |  |  |

Table 8 Drilling units.Number of occurrences and occurrence frequencies (per unit year). UKCS, 1980-2005.

| Blowout        | - | -                    | -  | -                    | -  | -                    |
|----------------|---|----------------------|----|----------------------|----|----------------------|
| Capsize        | - | -                    | -  | -                    | -  | -                    |
| Collision      | - | -                    | -  | -                    | -  | -                    |
| Contact        | 4 | 0.024                | 1  | 3.4•10 <sup>-3</sup> | 5  | 0.011                |
| Crane          | 6 | 0.036                | 16 | 0.055                | 22 | 0.048                |
| Explosion      | 1 | 6.1•10 <sup>-3</sup> | -  | -                    | 1  | 2.2•10 <sup>-3</sup> |
| Falling object | 6 | 0.036                | 18 | 0.062                | 24 | 0.053                |
| Fire           | 3 | 0.018                | 6  | 0.021                | 9  | 0.020                |
| Foundering     | - | -                    | -  | -                    | -  | -                    |
| Grounding      | - | -                    | -  | -                    | -  | -                    |
| Helicopter     | - | -                    | -  | -                    | -  | -                    |
| Leakage        | - | -                    | -  | -                    | -  | -                    |
| List           | - | -                    | -  | -                    | -  | -                    |
| Machinery      | - | -                    | -  | -                    | -  | -                    |
| Off position   | - | -                    | -  | -                    | -  | -                    |
| Spill/release  | 5 | 0.030                | 9  | 0.031                | 14 | 0.031                |
| Structural     | - | -                    | -  | -                    | -  | -                    |
| Towing/towline | - | -                    | -  | -                    | -  | -                    |
| Well problem   | - | -                    | 6  | 0.021                | 6  | 0.013                |
| Other          | - | -                    | -  | -                    | -  | -                    |

#### Table 9 Production units.

Number of occurrences and occurrence frequencies (per unit year). UKCS, 1980-2005. Source: All databases combined

|                | Period |                      |      |                      |           |                      |  |  |  |
|----------------|--------|----------------------|------|----------------------|-----------|----------------------|--|--|--|
|                | 1980   | )-1989               | 1990 | -2005                | 1980-2005 |                      |  |  |  |
| Type of event  | N      | F                    | N    | F                    | N         | F                    |  |  |  |
| Anchor failure | -      | -                    | -    | -                    | -         | -                    |  |  |  |
| Blowout        | 5      | 8.2•10 <sup>-3</sup> | 4    | 2.7•10 <sup>-3</sup> | 9         | 4.3•10 <sup>-3</sup> |  |  |  |
| Capsize        | -      | -                    | -    | -                    | -         | -                    |  |  |  |
| Collision      | 2      | 3.3•10 <sup>-3</sup> | 21   | 0.014                | 23        | 0.011                |  |  |  |
| Contact        | 73     | 0.120                | 88   | 0.059                | 161       | 0.076                |  |  |  |
| Crane          | 410    | 0.672                | 1198 | 0.800                | 1608      | 0.763                |  |  |  |
| Explosion      | 34     | 0.056                | 40   | 0.027                | 74        | 0.035                |  |  |  |
| Falling object | 453    | 0.743                | 1659 | 1.108                | 2112      | 1.002                |  |  |  |
| Fire           | 218    | 0.357                | 662  | 0.442                | 880       | 0.418                |  |  |  |
| Foundering     | -      | -                    | -    | -                    | -         | -                    |  |  |  |
| Grounding      | -      | -                    | -    | -                    | -         | -                    |  |  |  |
| Helicopter     | 5      | 8.2•10 <sup>-3</sup> | 6    | 4.0•10 <sup>-3</sup> | 11        | 5.2•10 <sup>-3</sup> |  |  |  |
| Leakage        | 1      | 1.6•10 <sup>-3</sup> | 1    | 6.7•10 <sup>-4</sup> | 2         | 9.5•10 <sup>-4</sup> |  |  |  |
| List           | 1      | 1.6•10 <sup>-3</sup> | -    | -                    | 1         | 4.7•10 <sup>-4</sup> |  |  |  |
| Machinery      | -      | -                    | -    | -                    | -         | -                    |  |  |  |
| Off position   | -      | -                    | -    | -                    | -         | -                    |  |  |  |
| Spill/release  | 205    | 0.336                | 2804 | 1.873                | 3009      | 1.428                |  |  |  |
| Structural     | 4      | 6.6•10 <sup>-3</sup> | 13   | 8.7•10 <sup>-3</sup> | 17        | 8.1•10 <sup>-3</sup> |  |  |  |
| Towing/towline | -      | -                    | -    | -                    | -         | -                    |  |  |  |
| Well problem   | 21     | 0.034                | 379  | 0.253                | 400       | 0.190                |  |  |  |
| Other          | 6      | 9.8•10 <sup>-3</sup> | 99   | 0.066                | 105       | 0.050                |  |  |  |

#### Table 10 Wellhead units.

| Number of occurrences and occurrence frequencies (per unit year). UKCS, 1980-2005. |
|------------------------------------------------------------------------------------|
| Source: All databases combined                                                     |

|                | Period    |                      |      |                      |           |                      |  |
|----------------|-----------|----------------------|------|----------------------|-----------|----------------------|--|
|                | 1980-1989 |                      | 1990 | -2005                | 1980-2005 |                      |  |
| Type of event  | N         | F                    | N    | F                    | N         | F                    |  |
| Anchor failure | -         | -                    | -    | -                    | -         | -                    |  |
| Blowout        | 1         | 6.6•10 <sup>-3</sup> | -    | -                    | 1         | 8.0•10 <sup>-4</sup> |  |
| Capsize        | -         | -                    | -    | -                    | -         | -                    |  |
| Collision      | -         | -                    | 6    | 5.5•10 <sup>-3</sup> | 6         | 4.8•10 <sup>-3</sup> |  |
| Contact        | 1         | 6.6•10 <sup>-3</sup> | 14   | 0.013                | 15        | 0.012                |  |
| Crane          | 3         | 0.020                | 45   | 0.041                | 48        | 0.038                |  |
| Explosion      | -         | -                    | -    | -                    | -         | -                    |  |
| Falling object | 4         | 0.027                | 58   | 0.053                | 62        | 0.050                |  |
| Fire           | 4         | 0.027                | 29   | 0.026                | 33        | 0.026                |  |
| Foundering     | -         | -                    | -    | -                    | -         | -                    |  |
| Grounding      | -         | -                    | -    | -                    | -         | -                    |  |
| Helicopter     | -         | -                    | -    | -                    | -         | -                    |  |
| Leakage        | -         | -                    | -    | -                    | -         | -                    |  |
| List           | -         | -                    | -    | -                    | -         | -                    |  |
| Machinery      | -         | -                    | -    | -                    | -         | -                    |  |
| Off position   | -         | -                    | -    | -                    | -         | -                    |  |
| Spill/release  | 4         | 0.027                | 223  | 0.203                | 227       | 0.182                |  |
| Structural     | -         | -                    | -    | -                    | -         | -                    |  |
| Towing/towline | -         | -                    | -    | -                    | -         | -                    |  |
| Well problem   | 1         | 6.6•10 <sup>-3</sup> | 14   | 0.013                | 15        | 0.012                |  |
| Other          | -         | -                    | -    | -                    | -         | -                    |  |

#### Table 11 Compression units.

| Number of occurrences and occurrence frequencies (per unit year). U | UKCS, 1980-2005. |
|---------------------------------------------------------------------|------------------|
| Source: All databases combined                                      |                  |

|                | Period |        |      |       |       |                      |
|----------------|--------|--------|------|-------|-------|----------------------|
|                | 198    | 0-1989 | 1990 | -2005 | 1980- | -2005                |
| Type of event  | N      | F      | N    | F     | N     | F                    |
| Anchor failure | -      | -      | -    | -     | -     | -                    |
| Blowout        | -      | -      | -    | -     | -     | -                    |
| Capsize        | -      | -      | -    | -     | -     | -                    |
| Collision      | -      | -      | -    | -     | -     | -                    |
| Contact        | -      | -      | -    | -     | -     | -                    |
| Crane          | 2      | 0.029  | 6    | 0.035 | 8     | 0.033                |
| Explosion      | -      | -      | -    | -     | -     | -                    |
| Falling object | 3      | 0.044  | 9    | 0.052 | 12    | 0.050                |
| Fire           | 1      | 0.015  | 11   | 0.064 | 12    | 0.050                |
| Foundering     | -      | -      | -    | -     | -     | -                    |
| Grounding      | -      | -      | -    | -     | -     | -                    |
| Helicopter     | 2      | 0.029  | -    | -     | 2     | 8.3•10 <sup>-3</sup> |
| Leakage        | -      | -      | -    | -     | -     | -                    |
| List           | -      | -      | -    | -     | -     | -                    |
| Machinery      | -      | -      | -    | -     | -     | -                    |
| Off position   | -      | -      | -    | -     | -     | -                    |
| Spill/release  | 1      | 0.015  | 36   | 0.209 | 37    | 0.154                |
| Structural     | -      | -      | -    | -     | -     | -                    |
| Towing/towline | -      | -      | -    | -     | -     | -                    |
| Well problem   | -      | -      | -    | -     | -     | -                    |
| Other          | -      | -      | -    | -     | -     | -                    |

### Table 12 Injection/riser units.

| Number of occurrences and occurrence frequencies (per unit year). UKCS, 1980-2005. |
|------------------------------------------------------------------------------------|
| Source: All databases combined                                                     |

|                | Period |           |   |                      |           |                      |  |  |  |
|----------------|--------|-----------|---|----------------------|-----------|----------------------|--|--|--|
|                | 198    | 1980-1989 |   | 0-2005               | 1980-2005 |                      |  |  |  |
| Type of event  | N      | F         | N | F                    | N         | F                    |  |  |  |
| Anchor failure | -      | -         | - | -                    | -         | -                    |  |  |  |
| Blowout        | -      | -         | - | -                    | -         | -                    |  |  |  |
| Capsize        | -      | -         | - | -                    | -         | -                    |  |  |  |
| Collision      | -      | -         | - | -                    | -         | -                    |  |  |  |
| Contact        | -      | -         | 1 | 7.1•10 <sup>-3</sup> | 1         | 5.4•10 <sup>-3</sup> |  |  |  |
| Crane          | -      | -         | - | -                    | -         | -                    |  |  |  |
| Explosion      | -      | -         | - | -                    | -         | -                    |  |  |  |
| Falling object | 1      | 0.022     | 2 | 0.014                | 3         | 0.016                |  |  |  |
| Fire           | 1      | 0.022     | 4 | 0.029                | 5         | 0.027                |  |  |  |
| Foundering     | -      | -         | - | -                    | -         | -                    |  |  |  |
| Grounding      | -      | -         | - | -                    | -         | -                    |  |  |  |
| Helicopter     | -      | -         | - | -                    | -         | -                    |  |  |  |
| Leakage        | -      | -         | - | -                    | -         | -                    |  |  |  |
| List           | -      | -         | - | -                    | -         | -                    |  |  |  |
| Machinery      | -      | -         | - | -                    | -         | -                    |  |  |  |
| Off position   | -      | -         | - | -                    | -         | -                    |  |  |  |
| Spill/release  | -      | -         | - | -                    | -         | -                    |  |  |  |
| Structural     | -      | -         | - | -                    | -         | -                    |  |  |  |
| Towing/towline | -      | -         | - | -                    | -         | -                    |  |  |  |
| Well problem   | -      | -         | - | -                    | -         | -                    |  |  |  |
| Other          | -      | -         | - | -                    | -         | -                    |  |  |  |

#### Table 13 Accommodation units.

| Number of occurrences and occurrence frequencies (per unit year). UKCS, 1980-2005. |
|------------------------------------------------------------------------------------|
| Source: All databases combined                                                     |

|                | Period |           |   |                      |           |                      |  |  |  |
|----------------|--------|-----------|---|----------------------|-----------|----------------------|--|--|--|
|                | 198    | 1980-1989 |   | -2005                | 1980-2005 |                      |  |  |  |
| Type of event  | N      | F         | N | F                    | N         | F                    |  |  |  |
| Anchor failure | -      | -         | - | -                    | -         | -                    |  |  |  |
| Blowout        | -      | -         | - | -                    | -         | -                    |  |  |  |
| Capsize        | -      | -         | - | -                    | -         | -                    |  |  |  |
| Collision      | -      | -         | 1 | 6.5•10 <sup>-3</sup> | 1         | 5.2•10 <sup>-3</sup> |  |  |  |
| Contact        | 2      | 0.049     | 2 | 0.013                | 4         | 0.021                |  |  |  |
| Crane          | 1      | 0.024     | - | -                    | 1         | 5.2•10 <sup>-3</sup> |  |  |  |
| Explosion      | -      | -         | - | -                    | -         | -                    |  |  |  |
| Falling object | 1      | 0.024     | 1 | 6.5•10 <sup>-3</sup> | 2         | 0.010                |  |  |  |
| Fire           | 2      | 0.049     | 4 | 0.026                | 6         | 0.031                |  |  |  |
| Foundering     | -      | -         | - | -                    | -         | -                    |  |  |  |
| Grounding      | -      | -         | - | -                    | -         | -                    |  |  |  |
| Helicopter     | -      | -         | - | -                    | -         | -                    |  |  |  |
| Leakage        | -      | -         | - | -                    | -         | -                    |  |  |  |
| List           | -      | -         | - | -                    | -         | -                    |  |  |  |
| Machinery      | -      | -         | - | -                    | -         | -                    |  |  |  |
| Off position   | -      | -         | - | -                    | -         | -                    |  |  |  |
| Spill/release  | 1      | 0.024     | 2 | 0.013                | 3         | 0.015                |  |  |  |
| Structural     | 1      | 0.024     | - | -                    | 1         | 5.2•10 <sup>-3</sup> |  |  |  |
| Towing/towline | -      | -         | - | -                    | -         | -                    |  |  |  |
| Well problem   | -      | -         | - | -                    | -         | -                    |  |  |  |
| Other          | -      | -         | - | -                    | -         | -                    |  |  |  |

# 8 CONCLUSIONS

The main source for accident and incident information available to the UKCS offshore industry should be this database as it, and the associated spreadsheet, together contain comprehensive UKCS data from the most relevant accident databases.

This database is understood to be the only UKCS accident and incident database which is both publicly and freely available to the offshore industry and others. It has been created in the WOAD format, with which the offshore industry is familiar and it is regularly updated with accident and incident information from relevant international databases. In addition the format of the spreadsheet, which contains a free text description of each incident, allows a sort capability to be utilised thus enabling specific data to be extracted from the database as and when required.

The results from this study would serve as a reference document for data to be used in future Risk Assessments of offshore fixed units and furthermore, be a valuable reference document for UK Health & Safety Executive (HSE)/ Offshore Safety Division (OSD) when reviewing Safety Cases for fixed installations.

To fulfil the objectives set out for this project, relevant UK and Norwegian databases were interrogated with respect to both population and accident data forming a complete data basis for obtaining comprehensive accident statistics for the listed type of units, geographical area and time period.

The result after having interrogated the identified databases and removing overlapping records shows a total of 7018 events comprising accidents, hazardous situations and near-misses on fixed units on the UKCS in the period 1980-2005.

#### **9 REFERENCES**

 Accident statistics for fixed offshore units on the UK Continental Shelf 1980 – 2003.
 Det Norske Veritas/UK Health & Safety Executive. Research Report Series. Report No. RR349. <u>http://www.hse.gov.uk/research/rrhtm/rr349.htm</u>

- 000 -

# APPENDIX

A DETAILED STATISTICS

#### A. 1 Introduction

The information being available for each incident has been reviewed and the chain of events has been obtained. The classification of events has been done according to the WOAD concept. One accident may comprise a chain of consecutive events (accident outcomes or occurrences), e.g. a blowout resulting in explosion, fire and oil spill. This means that <u>one single accident or incident may give rise to several **occurrences**. The total number of occurrences will thus be much higher than the total number of accidents recorded. When giving frequencies per type of event, this is presented as number of occurrences per unit per year. However, when presenting frequencies irrespective of type of event, the figures are given as number of accidents per unit per year</u>

#### A. 2 Accident statistics

By combining and merging the results from the interrogation of all 3 databases, the occurrence frequencies for fixed units in the UKCS in the period 1980-2005 are estimated. All tables in this appendix present the number of accidents and occurrences with corresponding frequencies per type of unit and event for the time periods 1980-1989, 1990-2005 and 1980-2005 and for each year in the period 1990-2005. N denotes number of accidents/occurrences and F denotes average annual frequency per unit, i.e. number of accidents/occurrences per unit year. Note that '-' is applied where no accidents/occurrences have been recorded (and hence no frequencies calculated) or if the given event is not applicable/relevant for the given type of units.

The source *All databases combined* refers to the database obtained by pooling the databases ORION, BLOWOUT and WOAD and removing the overlapping records.

Care should be taken when trying to compare statistics for the period 1980-1989 and 1990-2005, since the reporting requirements and systems changed dramatically in the UK around 1990 following the issuing of the Lord Cullen Report following the Piper Alpha accident in 1988.

The results, after having interrogated the databases and removed overlapping records are also detailed in the associated Excel spreadsheet. The spreadsheet, together with this report, may be downloaded by accessing the HSE web site <u>www.hse.gov.uk</u>. Within the spreadsheet, in addition to other fields each of the incidents is described in "free text".

An index of sections and tables in this appendix is shown below in order to ease retrieval of relevant data.

(Please observe that since no accidents are recorded on fixed pumping units (section A.2.7) in any of the databases in the period 1980-2005, no separate tables are provided for these units.)

| Section and table number                                                                                                     | Page No.       |
|------------------------------------------------------------------------------------------------------------------------------|----------------|
| A.2.1 Accident frequencies – All Fixed Units                                                                                 | 11 480 1101    |
| Table 14 Fixed Units. UKCS, 1980-2005                                                                                        | A- 4           |
| Table 15 Fixed Units (cont.). UKCS, 1980-2005                                                                                | A- 5           |
| A.2.2 Occurrence frequencies – All Fixed Units                                                                               |                |
| Table 16 Fixed Units. UKCS, 1980-2005                                                                                        | A- 6           |
| Table 17 Fixed Units (cont). UKCS, 1980-2005                                                                                 | A- 7           |
| Table 18 All Fixed Units. UKCS, 1980-1989, 1990-1992                                                                         | A- 8           |
| Table 19 All Fixed Units. UKCS, 1993-1996                                                                                    | A- 9           |
| Table 20 All Fixed Units. UKCS, 1997-1999                                                                                    | A- 10          |
| Table 21 All Fixed Units. UKCS, 2000-2003                                                                                    | A- 11          |
| Table 22     All Fixed Units. UKCS, 2004-2005                                                                                | A- 12          |
| Table 23         All Fixed Units. UKCS, 1990-2005, 1980-2005                                                                 | A- 13          |
| A.2.3 Occurrence frequencies – Drilling Units                                                                                | 11 15          |
| Table 24 Drilling units. UKCS, 1980-2005                                                                                     | A- 14          |
| A.2.4 Occurrence frequencies – Production Units                                                                              |                |
| Table 25 Production Units. UKCS, 1980-1989, 1990-1992                                                                        | A- 15          |
| Table 26 Production Units. UKCS, 1993-1996                                                                                   | A- 16          |
| Table 27 Production Units. UKCS, 1997-1999                                                                                   | A- 17          |
| Table 28 Production Units. UKCS, 2000-2003                                                                                   | A- 18          |
| Table 29     Production Units. UKCS, 2004-2005                                                                               | A- 19          |
| Table 30 Production Units. UKCS, 1990-2005, 1980-2005                                                                        | A- 20          |
| A.2.5 Occurrence frequencies – Wellhead Units                                                                                | 11 20          |
| Table 31 Wellhead Units. UKCS, 1980-1989, 1990-1992                                                                          | A- 21          |
| Table 32     Wellhead Units. UKCS, 1993-1996                                                                                 | A- 22          |
| Table 33     Wellhead Units. UKCS, 1997-1999                                                                                 | A- 23          |
| Table 34 Wellhead Units. UKCS, 2000-2003                                                                                     | A- 24          |
| Table 35     Wellhead Units. UKCS, 2000-2005                                                                                 | A- 25          |
| Table 36         Wellhead Units. UKCS, 1990-2005, 1980-2005                                                                  | A- 26          |
| A.2.6 Occurrence frequencies – Compression Units                                                                             | 11 20          |
| Table 37 Compression Units. UKCS, 1980-1989, 1990-1992                                                                       | A- 27          |
| Table 37 Compression Units. UKCS, 1980-1989, 1990-1992       Table 38 Compression Units. UKCS, 1993-1996                     | A- 28          |
| Table 39 Compression Units. UKCS, 1993-1990       Table 39 Compression Units. UKCS, 1997-1999                                | A- 29          |
| Table 40 Compression Units. UKCS, 2000-2003                                                                                  | A- 30          |
| Table 40     Compression Units: UKCS, 2000-2005       Table 41     Compression Units: UKCS, 2004-2005                        | A- 30<br>A- 31 |
| Table 41         Compression Units. UKCS, 2004-2005           Table 42         Compression Units. UKCS, 1990-2005, 1980-2005 | A- 32          |
| A.2.8 Occurrence frequencies – Injection/riser Units                                                                         | 11 52          |
| Table 43 Injection/riser units. UKCS. 1980-2005                                                                              | A- 33          |
| A.2.9 Occurrence frequencies – Injection/riser Units                                                                         | 11 55          |
| Table 44     Accommodation Units. UKCS. 1980-2005                                                                            | A- 34          |
|                                                                                                                              | 11- 54         |

#### A.2. 1 Accident frequencies – All fixed units

In this section the <u>accident frequencies</u> for fixed units in the UKCS in the period 1980-2005 are presented. The following tables give the number of accidents ( $\mathbf{N}$ ) and corresponding frequencies ( $\mathbf{F}$ ) per type of unit.

|             | Type of installation |       |       |            |     |          |    |             |  |  |
|-------------|----------------------|-------|-------|------------|-----|----------|----|-------------|--|--|
|             | Dri                  | lling | Produ | Production |     | Wellhead |    | Compression |  |  |
| Year/period | Ν                    | F     | N     | F          | N   | F        | N  | F           |  |  |
| 1980-1989   | 19                   | 0.115 | 995   | 1.631      | 13  | 0.086    | 8  | 0.116       |  |  |
| 1990        | 8                    | 0.444 | 172   | 2.276      | 9   | 0.231    | 1  | 0.125       |  |  |
| 1991        | 3                    | 0.167 | 199   | 2.519      | 7   | 0.156    | 2  | 0.222       |  |  |
| 1992        | -                    | -     | 320   | 3.951      | 9   | 0.188    | 6  | 0.667       |  |  |
| 1993        | 1                    | 0.053 | 407   | 4.733      | 17  | 0.333    | 3  | 0.300       |  |  |
| 1994        | 9                    | 0.474 | 474   | 5.152      | 9   | 0.161    | 5  | 0.500       |  |  |
| 1995        | -                    | -     | 350   | 3.804      | 21  | 0.368    | 13 | 1.182       |  |  |
| 1996        | 1                    | 0.059 | 359   | 3.860      | 22  | 0.339    | 8  | 0.889       |  |  |
| 1997        | 3                    | 0.167 | 368   | 3.915      | 37  | 0.529    | 4  | 0.364       |  |  |
| 1998        | 1                    | 0.056 | 365   | 3.763      | 36  | 0.500    | 2  | 0.182       |  |  |
| 1999        | 1                    | 0.056 | 319   | 3.323      | 41  | 0.519    | 5  | 0.417       |  |  |
| 2000        | -                    | -     | 410   | 4.184      | 40  | 0.476    | 2  | 0.167       |  |  |
| 2001        | -                    | -     | 411   | 4.152      | 24  | 0.282    | -  | -           |  |  |
| 2002        | -                    | -     | 411   | 4.069      | 16  | 0.047    | -  | -           |  |  |
| 2003        | -                    | -     | 323   | 3.106      | 23  | 0.267    | -  | -           |  |  |
| 2004        | 5                    | 0.278 | 346   | 3.327      | 16  | 0.178    | 7  | 0.583       |  |  |
| 2005        | 9                    | 0.500 | 283   | 2.695      | 11  | 0.122    | 4  | 0.333       |  |  |
| 1990-2005   | 41                   | 0.141 | 5515  | 3.684      | 338 | 0.308    | 62 | 0.360       |  |  |
| 1980-2005   | 60                   | 0.132 | 6510  | 3.090      | 351 | 0.281    | 70 | 0.290       |  |  |

Table 14Fixed Units (drilling, production, wellhead and compression).UKCS, 1980-2005. No. of accidents and accident frequencies (per unit year).Source: All databases combined

|             | Type of installation |   |                 |       |               |       |              |       |  |
|-------------|----------------------|---|-----------------|-------|---------------|-------|--------------|-------|--|
| Year/period | Pumping              |   | Injection/riser |       | Accommodation |       | Total, fixed |       |  |
|             | N                    | F | N               | F     | N             | F     | N            | F     |  |
| 1980-1989   | -                    | - | 1               | 0.022 | 7             | 0.171 | 1043         | 0.947 |  |
| 1990        | -                    | - | 1               | 0.200 | -             | -     | 191          | 1.246 |  |
| 1991        | -                    | - | 2               | 0.333 | -             | -     | 213          | 1.291 |  |
| 1992        | -                    | - | 2               | 0.333 | 1             | 0.167 | 338          | 1.977 |  |
| 1993        | -                    | - | 1               | 0.125 | 1             | 0.143 | 430          | 2.337 |  |
| 1994        | -                    | - | -               | -     | 2             | 0.250 | 499          | 2.533 |  |
| 1995        | -                    | - | -               | -     | -             | -     | 384          | 1.930 |  |
| 1996        | -                    | - | -               | -     | 1             | 0.111 | 391          | 1.907 |  |
| 1997        | -                    | - | -               | -     | 1             | 0.100 | 413          | 1.930 |  |
| 1998        | -                    | - | -               | -     | 1             | 0.100 | 405          | 1.841 |  |
| 1999        | -                    | - | -               | -     | 1             | 0.091 | 367          | 1.610 |  |
| 2000        | -                    | - | -               | -     | 1             | 0.091 | 453          | 1.928 |  |
| 2001        | -                    | - | -               | -     | -             | -     | 435          | 1.835 |  |
| 2002        | -                    | - | -               | -     | -             | -     | 427          | 1.779 |  |
| 2003        | -                    | - | -               | -     | -             | -     | 346          | 1.424 |  |
| 2004        | -                    | - | 2               | 0.200 | -             | -     | 376          | 1.516 |  |
| 2005        | -                    | - | 1               | 0.100 | 1             | 0.091 | 309          | 1.246 |  |
| 1990-2005   | -                    | - | 9               | 0.064 | 10            | 0.065 | 5975         | 1.766 |  |
| 1980-2005   | -                    | - | 10              | 0.054 | 17            | 0.088 | 7018         | 1.565 |  |

Table 15Fixed Units (pumping, injection, accommodation and total).UKCS, 1980-2005. No. of accidents and accident frequencies (per unit year).Source: All databases combined

#### A.2. 2 Occurrence frequencies – All fixed units

In this section the <u>occurrence frequencies</u> for fixed units in the UKCS in the period 1980-2005 are presented.

In the following tables the number of occurrences (N) and corresponding frequencies (F) for all fixed units are given per year/period.

|                | Type of installation |       |            |                      |          |                      |             |                      |
|----------------|----------------------|-------|------------|----------------------|----------|----------------------|-------------|----------------------|
|                | Drilling             |       | Production |                      | Wellhead |                      | Compression |                      |
| Type of event  | N                    | F     | N          | F                    | N        | F                    | N           | F                    |
| Anchor failure | -                    | -     | -          | -                    | -        | -                    | -           | -                    |
| Blowout        | -                    | -     | 9          | 4.3•10 <sup>-3</sup> | 1        | 8.0•10 <sup>-4</sup> | -           | -                    |
| Capsize        | -                    | -     | -          | -                    | -        | -                    | -           | -                    |
| Collision      | -                    | -     | 23         | 0.011                | 6        | 4.8•10 <sup>-3</sup> | -           | -                    |
| Contact        | 5                    | 0.011 | 161        | 0.076                | 15       | 0.012                | -           | -                    |
| Crane          | 22                   | 0.048 | 1608       | 0.763                | 48       | 0.038                | 8           | 0.033                |
| Explosion      | 1                    | 0.002 | 74         | 0.035                | -        | -                    | -           | -                    |
| Falling object | 24                   | 0.053 | 2112       | 1.002                | 62       | 0.050                | 12          | 0.050                |
| Fire           | 9                    | 0.020 | 880        | 0.418                | 33       | 0.026                | 12          | 0.050                |
| Foundering     | -                    | -     | -          | -                    | -        | -                    | -           | -                    |
| Grounding      | -                    | -     | -          | -                    | -        | -                    | -           | -                    |
| Helicopter     | -                    | -     | 5          | 2.4•10 <sup>-3</sup> | -        | -                    | 2           | 8.3•10 <sup>-3</sup> |
| Leakage        | -                    | -     | 2          | 9.5•10 <sup>-4</sup> | -        | -                    | -           | -                    |
| List           | -                    | -     | 1          | 4.7•10 <sup>-4</sup> | -        | -                    | -           | -                    |
| Machinery      | -                    | -     | -          | -                    | -        | -                    | -           | -                    |
| Off position   | -                    | -     | -          | -                    | -        | -                    | -           | -                    |
| Spill/release  | 14                   | 0.031 | 3009       | 1.428                | 227      | 0.182                | 37          | 0.154                |
| Structural     | -                    | -     | 17         | 8.1•10 <sup>-3</sup> | -        | -                    | -           | -                    |
| Towing/towline | -                    | -     | -          | -                    | -        | -                    | -           | -                    |
| Well problem   | 6                    | 0.013 | 400        | 0.190                | 15       | 0.012                | -           | -                    |
| Other          | -                    | -     | 105        | 0.050                | -        | -                    | -           | -                    |

Table 16Fixed Units (drilling, production, wellhead and compression).UKCS, 1980-2005. No. of occurrences and occurrence frequencies (per unit year).Source: All databases combined

| Table 17         | Fixed Units (pumping, injection, accommodation and total).              |
|------------------|-------------------------------------------------------------------------|
| <b>UKCS</b> , 19 | 80-2005. No. of occurrences and occurrence frequencies (per unit year). |
| Source: A        | ll databases combined                                                   |

|                | Type of installation |      |                 |                      |               |                      |              |                      |
|----------------|----------------------|------|-----------------|----------------------|---------------|----------------------|--------------|----------------------|
|                | Pum                  | ping | Injection/riser |                      | Accommodation |                      | Total, fixed |                      |
| Type of event  | N                    | F    | N               | F                    | N             | F                    | N            | F                    |
| Anchor failure | -                    | -    | -               | -                    | -             | -                    | -            | -                    |
| Blowout        | -                    | -    | -               | -                    | -             | -                    | 10           | 2.2•10 <sup>-3</sup> |
| Capsize        | -                    | -    | -               | -                    | -             | -                    | -            | -                    |
| Collision      | -                    | -    | -               | -                    | 1             | 5.2•10 <sup>-3</sup> | 30           | 6.7•10 <sup>-3</sup> |
| Contact        | -                    | -    | 1               | 5.4•10 <sup>-3</sup> | 4             | 0.021                | 188          | 0.042                |
| Crane          | -                    | -    | -               | -                    | 1             | 5.2•10 <sup>-3</sup> | 1681         | 0.375                |
| Explosion      | -                    | -    | -               | -                    | -             | -                    | 76           | 0.017                |
| Falling object | -                    | -    | 3               | 0.016                | 2             | 0.010                | 2193         | 0.489                |
| Fire           | -                    | -    | 5               | 0.027                | 6             | 0.031                | 945          | 0.211                |
| Foundering     | -                    | -    | -               | -                    | -             | -                    | -            | -                    |
| Grounding      | -                    | -    | -               | -                    | -             | -                    | -            | -                    |
| Helicopter     | -                    | -    | -               | -                    | -             | -                    | 13           | 2.9•10 <sup>-3</sup> |
| Leakage        | -                    | -    | -               | -                    | -             | -                    | 2            | 4.5•10 <sup>-4</sup> |
| List           | -                    | -    | -               | -                    | -             | -                    | 1            | 2.2•10 <sup>-4</sup> |
| Machinery      | -                    | -    | -               | -                    | -             | -                    | -            | -                    |
| Off position   | -                    | -    | -               | -                    | -             | -                    | -            | -                    |
| Spill/release  | -                    | -    | -               | -                    | 3             | 0.015                | 3324         | 0.741                |
| Structural     | -                    | -    | -               | -                    | 1             | 5.2•10 <sup>-3</sup> | 18           | 4.0•10 <sup>-3</sup> |
| Towing/towline | -                    | -    | -               | -                    | -             | -                    | -            | -                    |
| Well problem   | -                    | -    | -               | -                    | -             | -                    | 414          | 0.092                |
| Other          | -                    | -    | -               | -                    | -             | -                    | 111          | 0.025                |

|                |      | Year/period          |    |                      |    |                      |     |                      |
|----------------|------|----------------------|----|----------------------|----|----------------------|-----|----------------------|
|                | 1980 | -1989                | 19 | 990                  | 19 | 991                  | 19  | 992                  |
| Type of event  | N    | F                    | N  | F                    | N  | F                    | N   | F                    |
| Anchor failure | -    | -                    | -  | -                    | -  | -                    | -   | -                    |
| Blowout        | 6    | 5.4•10 <sup>-3</sup> | -  | -                    | -  | -                    | -   | -                    |
| Capsize        | -    | -                    | -  | -                    | -  | -                    | -   | -                    |
| Collision      | 2    | 1.8•10 <sup>-3</sup> | -  | -                    | -  | -                    | 1   | 5.4•10 <sup>-3</sup> |
| Contact        | 80   | 0.073                | 12 | 0.078                | 8  | 0.049                | 5   | 0.027                |
| Crane          | 422  | 0.383                | 63 | 0.409                | 62 | 0.376                | 70  | 0.380                |
| Explosion      | 35   | 0.032                | 4  | 0.026                | 6  | 0.036                | 6   | 0.033                |
| Falling object | 468  | 0.425                | 68 | 0.442                | 82 | 0.497                | 94  | 0.511                |
| Fire           | 228  | 0.207                | 36 | 0.234                | 16 | 0.097                | 73  | 0.397                |
| Foundering     | -    | -                    | -  | -                    | -  | -                    | -   | -                    |
| Grounding      | -    | -                    | -  | -                    | -  | -                    | -   | -                    |
| Helicopter     | 7    | 6.4•10 <sup>-3</sup> | 2  | 0.013                | 1  | 6.1•10 <sup>-3</sup> | 1   | 5.4•10 <sup>-3</sup> |
| Leakage        | 1    | 9.1•10 <sup>-4</sup> | -  | -                    | -  | -                    | -   | -                    |
| List           | 1    | 9.1•10 <sup>-4</sup> | -  | -                    | -  | -                    | -   | -                    |
| Machinery      | -    | -                    | -  | -                    | -  | -                    | -   | -                    |
| Off position   | -    | -                    | -  | -                    | -  | -                    | -   | -                    |
| Spill/release  | 216  | 0.196                | 71 | 0.461                | 75 | 0.455                | 247 | 1.342                |
| Structural     | 5    | 4.5•10 <sup>-3</sup> | -  | -                    | 1  | 6.1•10 <sup>-3</sup> | 4   | 0.023                |
| Towing/towline | -    | -                    | -  | -                    | -  | -                    | -   | -                    |
| Well problem   | 22   | 0.020                | 2  | 0.013                | 2  | 0.012                | 9   | 0.049                |
| Other          | 6    | 5.4•10 <sup>-3</sup> | 1  | 6.5•10 <sup>-3</sup> | 6  | 0.036                | 4   | 0.022                |

## Table 18All Fixed Units. UKCS, 1980-1989, 1990, 1991, 1992.No. of occurrences and occurrence frequencies (per unit year).Source: All databases combined

|                |     | Year                 |     |                      |      |                      |      |                      |
|----------------|-----|----------------------|-----|----------------------|------|----------------------|------|----------------------|
|                | 19  | 93                   | 19  | 94                   | 1995 |                      | 1996 |                      |
| Type of event  | Ν   | F                    | Ν   | F                    | Ν    | F                    | Ν    | F                    |
| Anchor failure | -   | -                    | -   | -                    | -    | -                    | -    | -                    |
| Blowout        | -   | -                    | 1   | 5.1•10 <sup>-3</sup> | 1    | 5.0•10 <sup>-3</sup> | 1    | 4.9•10 <sup>-3</sup> |
| Capsize        | -   | -                    | -   | -                    | -    | -                    | -    | -                    |
| Collision      | 1   | 5.8•10 <sup>-3</sup> | 3   | 0.015                | 3    | 0.015                | -    | -                    |
| Contact        | 7   | 0.041                | 10  | 0.051                | 12   | 0.060                | 10   | 0.049                |
| Crane          | 70  | 0.409                | 94  | 0.478                | 78   | 0.392                | 68   | 0.332                |
| Explosion      | 1   | 5.8•10 <sup>-3</sup> | 3   | 0.015                | 1    | 5.0•10 <sup>-3</sup> | 1    | 4.9•10 <sup>-3</sup> |
| Falling object | 88  | 0.515                | 126 | 0.640                | 101  | 0.508                | 94   | 0.459                |
| Fire           | 48  | 0.281                | 66  | 0.335                | 47   | 0.236                | 34   | 0.166                |
| Foundering     | -   | -                    | -   | -                    | -    | -                    | -    | -                    |
| Grounding      | -   | -                    | -   | -                    | -    | -                    | -    | -                    |
| Helicopter     | -   | -                    | -   | -                    | 1    | 5.0•10 <sup>-3</sup> | -    | -                    |
| Leakage        | -   | -                    | -   | -                    | -    | -                    | -    | -                    |
| List           | -   | -                    | -   | -                    | -    | -                    | -    | -                    |
| Machinery      | -   | -                    | -   | -                    | -    | -                    | -    | -                    |
| Off position   | -   | -                    | -   | -                    | -    | -                    | -    | -                    |
| Spill/release  | 188 | 1.099                | 321 | 1.629                | 217  | 1.091                | 162  | 0.790                |
| Structural     | -   | -                    | -   | -                    | 2    | 0.010                | 1    | 4.9•10 <sup>-3</sup> |
| Towing/towline | -   | -                    | -   | -                    | -    | -                    | -    | -                    |
| Well problem   | 2   | 0.012                | 14  | 0.071                | 9    | 0.045                | 50   | 0.244                |
| Other          | 4   | 0.023                | 7   | 0.036                | 8    | 0.040                | 3    | 0.015                |

# Table 19 All Fixed Units. UKCS, 1993, 1994, 1995, 1996. No. of occurrences and occurrence frequencies (per unit year). Source: All databases combined

|                | Year |                      |      |                      |     |                      |  |  |  |
|----------------|------|----------------------|------|----------------------|-----|----------------------|--|--|--|
|                | 19   | 97                   | 1998 |                      | 19  | 99                   |  |  |  |
| Type of event  | N    | F                    | N    | F                    | N   | F                    |  |  |  |
| Anchor failure | -    | -                    | -    | -                    | -   | -                    |  |  |  |
| Blowout        | -    | -                    | -    | -                    | -   | -                    |  |  |  |
| Capsize        | -    | -                    | -    | -                    | -   | -                    |  |  |  |
| Collision      | 1    | 4.7•10 <sup>-3</sup> | 3    | 0.014                | 3   | 0.013                |  |  |  |
| Contact        | 9    | 0.042                | 5    | 0.023                | 8   | 0.035                |  |  |  |
| Crane          | 93   | 0.435                | 104  | 0.473                | 80  | 0.351                |  |  |  |
| Explosion      | 7    | 0.033                | 1    | 4.5•10 <sup>-3</sup> | 2   | 8.8•10 <sup>-3</sup> |  |  |  |
| Falling object | 117  | 0.547                | 134  | 0.609                | 126 | 0.553                |  |  |  |
| Fire           | 48   | 0.224                | 44   | 0.200                | 41  | 0.180                |  |  |  |
| Foundering     | -    | -                    | -    | -                    | -   | -                    |  |  |  |
| Grounding      | -    | -                    | -    | -                    | -   | -                    |  |  |  |
| Helicopter     | -    | -                    | -    | -                    | -   | -                    |  |  |  |
| Leakage        | -    | -                    | -    | -                    | -   | -                    |  |  |  |
| List           | -    | -                    | -    | -                    | -   | -                    |  |  |  |
| Machinery      | -    | -                    | -    | -                    | -   | -                    |  |  |  |
| Off position   | -    | -                    | -    | -                    | -   | -                    |  |  |  |
| Spill/release  | 200  | 0.935                | 198  | 0.900                | 173 | 0.759                |  |  |  |
| Structural     | 1    | 4.7•10 <sup>-3</sup> | 1    | 4.5•10 <sup>-3</sup> |     |                      |  |  |  |
| Towing/towline | -    | -                    | -    | -                    | -   | -                    |  |  |  |
| Well problem   | 43   | 0.201                | 44   | 0.200                | 38  | 0.167                |  |  |  |
| Other          | 3    | 0.014                | 5    | 0.023                | 5   | 0.022                |  |  |  |

Table 20All Fixed Units. UKCS, 1997, 1998, 1999.No. of occurrences and occurrence frequencies (per unit year).Source: All databases combined

|                |     |                      |     | Ye                   | ear |                      |     |                      |
|----------------|-----|----------------------|-----|----------------------|-----|----------------------|-----|----------------------|
|                | 20  | 000                  | 20  | 001                  | 20  | 002                  | 20  | 003                  |
| Type of event  | N   | F                    | Ν   | F                    | Ν   | F                    | N   | F                    |
| Anchor failure | -   | -                    | -   | -                    | -   | -                    | -   | -                    |
| Blowout        | -   | -                    | 1   | 4.2•10 <sup>-3</sup> | -   | -                    | -   | -                    |
| Capsize        | -   | -                    | -   | -                    | -   | -                    | -   | -                    |
| Collision      | 5   | 0.021                | -   | -                    | 7   | 0.029                | -   | -                    |
| Contact        | 8   | 0.034                | 3   | 0.013                | -   | -                    | 3   | 0.012                |
| Crane          | 90  | 0.383                | 100 | 0.422                | 112 | 0.467                | 54  | 0.222                |
| Explosion      | 3   | 0.013                | -   | -                    | 3   | 0.013                | 1   | 4.2•10 <sup>-3</sup> |
| Falling object | 137 | 0.583                | 145 | 0.612                | 155 | 0.646                | 96  | 0.395                |
| Fire           | 50  | 0.213                | 52  | 0.219                | 35  | 0.146                | 28  | 0.115                |
| Foundering     | -   | -                    | -   | -                    | -   | -                    | -   | -                    |
| Grounding      | -   | -                    | -   | -                    | -   | -                    | -   | -                    |
| Helicopter     | -   | -                    | 1   | 4.2•10 <sup>-3</sup> | -   | -                    | -   | -                    |
| Leakage        | -   | -                    | -   | -                    | -   | -                    | -   | -                    |
| List           | -   | -                    | -   | -                    | -   | -                    | -   | -                    |
| Machinery      | -   | -                    | -   | -                    | -   | -                    | -   | -                    |
| Off position   | -   | -                    | -   | -                    | -   | -                    | -   | -                    |
| Spill/release  | 217 | 0.923                | 220 | 0.928                | 196 | 0.817                | 201 | 0.827                |
| Structural     | 2   | 8.5•10 <sup>-3</sup> | -   | -                    | 1   | 4.2•10 <sup>-3</sup> | -   | -                    |
| Towing/towline | -   | -                    | -   | -                    | -   | -                    | -   | -                    |
| Well problem   | 35  | 0.149                | 35  | 0.148                | 38  | 0.158                | 25  | 0.103                |
| Other          | 15  | 0.064                | 5   | 0.021                | 13  | 0.054                | 6   | 0.025                |

## Table 21 All Fixed Units. UKCS, 2000, 2001, 2002, 2003.No. of occurrences and occurrence frequencies (per unit year).Source: All databases combined

#### Table 22 All Fixed Units. UKCS, 2004, 2005.

No. of occurrences and occurrence frequencies (per unit year). Source: All databases combined

|                | Period |                      |     |                      |  |  |  |
|----------------|--------|----------------------|-----|----------------------|--|--|--|
|                | 20     | )04                  | 20  | 005                  |  |  |  |
| Type of event  | N      | F                    | N   | F                    |  |  |  |
| Anchor failure | -      | -                    | -   | -                    |  |  |  |
| Blowout        | -      | -                    | -   | -                    |  |  |  |
| Capsize        | -      | -                    | -   | -                    |  |  |  |
| Collision      | 1      | 4.1•10 <sup>-3</sup> | 1   | 4.0•10 <sup>-3</sup> |  |  |  |
| Contact        | 3      | 0.012                | 3   | 0.012                |  |  |  |
| Crane          | 63     | 0.259                | 63  | 0.254                |  |  |  |
| Explosion      | 1      | 4.1•10 <sup>-3</sup> | -   | -                    |  |  |  |
| Falling object | 99     | 0.407                | 85  | 0.343                |  |  |  |
| Fire           | 43     | 0.177                | 25  | 0.101                |  |  |  |
| Foundering     | -      | -                    | -   | -                    |  |  |  |
| Grounding      | -      | -                    | -   | -                    |  |  |  |
| Helicopter     | -      | -                    | -   | -                    |  |  |  |
| Leakage        | 1      | 4.1•10 <sup>-3</sup> | -   | -                    |  |  |  |
| List           | -      | -                    | -   | -                    |  |  |  |
| Machinery      | -      | -                    | -   | -                    |  |  |  |
| Off position   | -      | -                    | -   | -                    |  |  |  |
| Spill/release  | 216    | 0.889                | 172 | 0.694                |  |  |  |
| Structural     | -      | -                    | -   | -                    |  |  |  |
| Towing/towline | -      | -                    | -   | -                    |  |  |  |
| Well problem   | 24     | 0.099                | 29  | 0.117                |  |  |  |
| Other          | 9      | 0.037                | 9   | 0.036                |  |  |  |

### Table 23 All Fixed Units. UKCS, 1990-2005, 1980-2005.No. of occurrences and occurrence frequencies (per unit year).Source: All databases combined

|                |      | Per                  | iod   |                      |
|----------------|------|----------------------|-------|----------------------|
|                | 1990 | -2005                | 1980- | -2005                |
| Type of event  | N    | F                    | Ν     | F                    |
| Anchor failure | -    | -                    | -     | -                    |
| Blowout        | 4    | 1.2•10 <sup>-3</sup> | 10    | 2.2•10 <sup>-3</sup> |
| Capsize        | -    | -                    | -     | -                    |
| Collision      | 28   | 8.3•10 <sup>-3</sup> | 30    | 6.7•10 <sup>-3</sup> |
| Contact        | 108  | 0.032                | 188   | 0.042                |
| Crane          | 1259 | 0.372                | 1681  | 0.375                |
| Explosion      | 41   | 0.012                | 76    | 0.017                |
| Falling object | 1725 | 0.510                | 2193  | 0.489                |
| Fire           | 717  | 0.212                | 945   | 0.211                |
| Foundering     | -    | -                    | -     | -                    |
| Grounding      | -    | -                    | -     | -                    |
| Helicopter     | 6    | 1.8•10 <sup>-3</sup> | 13    | 2.9•10 <sup>-3</sup> |
| Leakage        | 1    | 3.0•10 <sup>-4</sup> | 2     | 4.5•10 <sup>-4</sup> |
| List           | -    | -                    | 1     | 2.2•10 <sup>-4</sup> |
| Machinery      | -    | -                    | -     | -                    |
| Off position   | -    | -                    | -     | -                    |
| Spill/release  | 3108 | 0.919                | 3324  | 0.741                |
| Structural     | 13   | 3.8•10 <sup>-3</sup> | 18    | 4.0•10 <sup>-3</sup> |
| Towing/towline | -    | -                    | -     | -                    |
| Well problem   | 392  | 0.116                | 414   | 0.092                |
| Other          | 105  | 0.031                | 111   | 0.025                |

#### A.2. 3 Occurrence frequencies – Drilling units

The recorded number and type of occurrences (N) and the corresponding frequencies (F) are given for fixed drilling units in the following table.

#### Table 24 Drilling Units. UKCS, 1980-2005.

No. of occurrences and occurrence frequencies (per unit year). Source: All databases combined

| Year          | Type of event  | N | F                    | Year  |
|---------------|----------------|---|----------------------|-------|
| Average       | Contact        | 4 | 0.024                | 2004  |
| 1980-<br>1989 | Crane          | 6 | 0.036                |       |
|               | Explosion      | 1 | 6.1•10 <sup>-3</sup> |       |
|               | Falling object | 6 | 0.036                | 2005  |
|               | Fire           | 3 | 0.018                |       |
|               | Spill/release  | 5 | 0.030                |       |
| 1990          | Crane          | 5 | 0.278                |       |
|               | Falling object | 3 | 0.167                |       |
|               | Fire           | 1 | 0.056                | Aver  |
|               | Spill/release  | 2 | 0.111                | 1990- |
| 1991          | Contact        | 1 | 0.056                |       |
|               | Crane          | 1 | 0.056                |       |
|               | Spill/release  | 1 | 0.056                |       |
| 1993          | Spill/release  | 1 | 0.053                |       |
| 1994          | Crane          | 1 | 0.053                | Aver  |
|               | Falling object | 1 | 0.053                | 1980  |
|               | Fire           | 3 | 0.158                |       |
|               | Spill/release  | 4 | 0.211                |       |
|               | Well problem   | 1 | 0.053                |       |
| 1996          | Falling object | 1 | 0.059                |       |
| 1997          | Crane          | 1 | 0.056                |       |
|               | Falling object | 3 | 0.167                |       |
| 1998          | Crane          | 1 | 0.056                |       |
|               | Falling object | 1 | 0.056                |       |
|               | Well problem   | 1 | 0.056                |       |
| 1999          | Crane          | 1 | 0.056                |       |
|               | Falling object | 1 | 0.056                |       |

| Year      | Type of event  | Ν  | F                    |  |
|-----------|----------------|----|----------------------|--|
| 2004      | Crane          | 3  | 0.167                |  |
|           | Falling object | 4  | 0.222                |  |
|           | Fire           | 1  | 0.056                |  |
| 2005      | Crane          | 3  | 0.167                |  |
|           | Falling object | 4  | 0.222                |  |
|           | Fire           | 1  | 0.056                |  |
|           | Spill/release  | 1  | 0.056                |  |
|           | Well problem   | 4  | 0.222                |  |
| Average   | Contact        | 1  | 3.4•10 <sup>-3</sup> |  |
| 1990-2005 | Crane          | 16 | 0.055                |  |
|           | Falling object | 18 | 0.062                |  |
|           | Fire           | 6  | 0.021                |  |
|           | Spill/release  | 9  | 0.031                |  |
|           | Well problem   | 6  | 0.021                |  |
| Average   | Contact        | 5  | 0.011                |  |
| 1980-2005 | Crane          | 22 | 0.048                |  |
|           | Explosion      | 1  | 2.2•10 <sup>-3</sup> |  |
|           | Falling object | 24 | 0.053                |  |
|           | Fire           | 9  | 0.020                |  |
|           | Spill/release  | 14 | 0.031                |  |
|           | Well problem   | 6  | 0.013                |  |

#### A.2. 4 Occurrence frequencies – Production units

In the following tables the number of occurrences (N) and corresponding frequencies (F) for fixed production units are given per year/period.

| Table 25   | Production Units. UKCS, 1980-1989, 1990, 1991, 1992.  |
|------------|-------------------------------------------------------|
| No. of occ | currences and occurrence frequencies (per unit year). |
| Source: A  | All databases combined                                |

|                |      |                      |    | Year/j | period |       |      |       |
|----------------|------|----------------------|----|--------|--------|-------|------|-------|
|                | 1980 | -1989                | 19 | 90     | 19     | 91    | 1992 |       |
| Type of event  | N    | F                    | Ν  | F      | Ν      | F     | Ν    | F     |
| Anchor failure | -    | -                    | -  | -      | -      | -     | -    | -     |
| Blowout        | 5    | 8.2•10 <sup>-3</sup> | -  | -      | -      | -     | -    | -     |
| Capsize        | -    | -                    | -  | -      | -      | -     | -    | -     |
| Collision      | 2    | 3.3•10 <sup>-3</sup> | -  | -      | -      | -     | 1    | 0.012 |
| Contact        | 73   | 0.120                | 11 | 0.145  | 8      | 0.101 | 4    | 0.049 |
| Crane          | 410  | 0.672                | 53 | 0.697  | 59     | 0.747 | 68   | 0.840 |
| Explosion      | 34   | 0.056                | 4  | 0.053  | 6      | 0.076 | 1    | 0.012 |
| Falling object | 453  | 0.743                | 57 | 0.750  | 78     | 0.987 | 86   | 1.062 |
| Fire           | 218  | 0.357                | 34 | 0.447  | 14     | 0.177 | 47   | 0.580 |
| Foundering     | -    | -                    | -  | -      | -      | -     | -    | -     |
| Grounding      | -    | -                    | -  | -      | -      | -     | -    | -     |
| Helicopter     | 5    | 8.2•10 <sup>-3</sup> | 2  | 0.026  | 1      | 0.013 | -    | -     |
| Leakage        | 1    | 1.6•10 <sup>-3</sup> | -  | -      | -      | -     | -    | -     |
| List           | 1    | 1.6•10 <sup>-3</sup> | -  | -      | -      | -     | -    | -     |
| Machinery      | -    | -                    | -  | -      | -      | -     | -    | -     |
| Off position   | -    | -                    | -  | -      | -      | -     | -    | -     |
| Spill/release  | 205  | 0.336                | 66 | 0.868  | 69     | 0.873 | 176  | 2.173 |
| Structural     | 4    | 6.6•10 <sup>-3</sup> | -  | -      | 1      | 0.013 | 4    | 0.049 |
| Towing/towline | -    | -                    | -  | -      | -      | -     | -    | -     |
| Well problem   | 21   | 0.034                | 2  | 0.026  | 2      | 0.025 | 3    | 0.035 |
| Other          | 6    | 9.8•10 <sup>-3</sup> | 1  | 0.013  | 6      | 0.076 | 4    | 0.049 |

| Table 26   | Production Units. UKCS, 1993, 1994, 1995, 1996.       |
|------------|-------------------------------------------------------|
| No. of occ | currences and occurrence frequencies (per unit year). |
| Source: A  | All databases combined                                |

|                |     |       |     | Ye      | ear |       |     |       |  |
|----------------|-----|-------|-----|---------|-----|-------|-----|-------|--|
|                | 19  | 93    | 19  | 1994 19 |     | 995   | 19  | 1996  |  |
| Type of event  | N   | F     | N   | F       | N   | F     | N   | F     |  |
| Anchor failure | -   | -     | -   | -       | -   | -     | -   | -     |  |
| Blowout        | -   | -     | 1   | 0.011   | 1   | 0.011 | 1   | 0.011 |  |
| Capsize        | -   | -     | -   | -       | -   | -     | -   | -     |  |
| Collision      | 1   | 0.012 | 2   | 0.022   | 2   | 0.022 | -   | -     |  |
| Contact        | 4   | 0.047 | 8   | 0.087   | 11  | 0.120 | 8   | 0.086 |  |
| Crane          | 67  | 0.779 | 92  | 1.000   | 76  | 0.826 | 65  | 0.699 |  |
| Explosion      | 6   | 0.070 | 3   | 0.033   | 1   | 0.011 | 1   | 0.011 |  |
| Falling object | 91  | 1.058 | 124 | 1.348   | 98  | 1.065 | 88  | 0.946 |  |
| Fire           | 70  | 0.814 | 60  | 0.652   | 38  | 0.413 | 34  | 0.366 |  |
| Foundering     | -   | -     | -   | -       | -   | -     | -   | -     |  |
| Grounding      | -   | -     | -   | -       | -   | -     | -   | -     |  |
| Helicopter     | -   | -     | -   | -       | 1   | 0.011 | -   | -     |  |
| Leakage        | -   | -     | -   | -       | -   | -     | -   | -     |  |
| List           | -   | -     | -   | -       | -   | -     | -   | -     |  |
| Machinery      | -   | -     | -   | -       | -   | -     | -   | -     |  |
| Off position   | -   | -     | -   | -       | -   | -     | -   | -     |  |
| Spill/release  | 231 | 2.686 | 305 | 3.315   | 197 | 2.141 | 147 | 1.581 |  |
| Structural     | -   | -     | -   | -       | 2   | 0.022 | 1   | 0.011 |  |
| Towing/towline | -   | -     | -   | -       | -   | -     | -   | -     |  |
| Well problem   | 9   | 0.105 | 13  | 0.141   | 7   | 0.076 | 50  | 0.538 |  |
| Other          | 4   | 0.047 | 7   | 0.076   | 7   | 0.076 | 3   | 0.032 |  |

|                | Year |       |     |       |      |       |  |
|----------------|------|-------|-----|-------|------|-------|--|
|                | 19   | 97    | 19  | 98    | 1999 |       |  |
| Type of event  | N    | F     | Ν   | F     | Ν    | F     |  |
| Anchor failure | -    | -     | -   | -     | -    | -     |  |
| Blowout        | -    | -     | -   | -     | -    | -     |  |
| Capsize-       | -    | -     | -   | -     | -    | -     |  |
| Collision      | 1    | 0.011 | 2   | 0.021 | 2    | 0.021 |  |
| Contact        | 8    | 0.085 | 5   | 0.052 | 5    | 0.052 |  |
| Crane          | 86   | 0.915 | 100 | 1.031 | 76   | 0.792 |  |
| Explosion      | 7    | 0.075 | 1   | 0.010 | 2    | 0.021 |  |
| Falling object | 107  | 1.138 | 130 | 1.340 | 119  | 1.240 |  |
| Fire           | 44   | 0.468 | 41  | 0.423 | 35   | 0.365 |  |
| Foundering     | -    | -     | -   | -     | -    | -     |  |
| Grounding      | -    | -     | -   | -     | -    | -     |  |
| Helicopter     | -    | -     | -   | -     | -    | -     |  |
| Leakage        | -    | -     | -   | -     | -    | -     |  |
| List           | -    | -     | -   | -     | -    | -     |  |
| Machinery      | -    | -     | -   | -     | -    | -     |  |
| Off position   | -    | -     | -   | -     | -    | -     |  |
| Spill/release  | 173  | 1.840 | 169 | 1.742 | 142  | 1.479 |  |
| Structural     | 1    | 0.011 | 1   | 0.010 | -    | -     |  |
| Towing/towline | -    | -     | -   | -     | -    | -     |  |
| Well problem   | 43   | 0.457 | 40  | 0.412 | 37   | 0.385 |  |
| Other          | 3    | 0.032 | 4   | 0.041 | 3    | 0.031 |  |

Table 27 Production Units. UKCS, 1997, 1998, 1999.No. of occurrences and occurrence frequencies (per unit year).Source: All databases combined

|     |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |  |
|-----|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|
| 20  | 00                                                                                                      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2001 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 02                                                                                                                                                                                                                                                                                             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2003                                                   |  |
| Ν   | F                                                                                                       | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F                                                                                                                                                                                                                                                                                              | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F                                                      |  |
| -   | -                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                      |  |
| -   | -                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                      |  |
| -   | -                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                      |  |
| 4   | 0.041                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.050                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                      |  |
| 6   | 0.061                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.019                                                  |  |
| 89  | 0.908                                                                                                   | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.069                                                                                                                                                                                                                                                                                          | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.471                                                  |  |
| 3   | 0.031                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.030                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.6•10 <sup>-3</sup>                                   |  |
| 136 | 1.388                                                                                                   | 143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.495                                                                                                                                                                                                                                                                                          | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.856                                                  |  |
| 49  | 0.500                                                                                                   | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.327                                                                                                                                                                                                                                                                                          | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.260                                                  |  |
| -   | -                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                      |  |
| -   | -                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                      |  |
| -   | -                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                      |  |
| -   | -                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                      |  |
| -   | -                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                      |  |
| -   | -                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                      |  |
| -   | -                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                      |  |
| 181 | 1.847                                                                                                   | 207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.851                                                                                                                                                                                                                                                                                          | 189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.817                                                  |  |
| 2   | 0.020                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.9•10 <sup>-3</sup>                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                      |  |
| -   | -                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                      |  |
| 33  | 0.337                                                                                                   | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.366                                                                                                                                                                                                                                                                                          | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.231                                                  |  |
| 13  | 0.133                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.129                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.048                                                  |  |
|     | N<br>-<br>-<br>4<br>6<br>89<br>3<br>136<br>49<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>181<br>2<br>-<br>33 | -       -         -       -         -       -         4       0.041         6       0.061         89       0.908         3       0.031         136       1.388         49       0.500         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         33       0.337 <td>N         F         N           -         -         -           -         -         1           -         -         1           -         -         1           -         -         1           -         -         -           4         0.041         -           6         0.061         2           89         0.908         98           3         0.031         -           136         1.388         143           49         0.500         45           -         -         -           -         -         1           -         -         -           -         -         1           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           181</td> <td>2000         2001           N         F         N         F           -         -         -         -           -         -         1         0.010           -         -         -         -           4         0.041         -         -           6         0.061         2         0.020           89         0.908         98         0.990           3         0.031         -         -           136         1.388         143         1.444           49         0.500         45         0.455           -         -         -         -         -           136         1.388         143         1.444           49         0.500         45         0.455           -         -         -         -         -           -         -         1         0.010         -           -         -         -         -         -           -         -         -         -         -           -         -         -         -         -           -         -         -         -</td> <td>NFNFN<math>       1</math><math>0.010</math><math>      4</math><math>0.041</math><math>  5</math><math>6</math><math>0.061</math><math>2</math><math>0.020</math><math> 89</math><math>0.908</math><math>98</math><math>0.990</math><math>108</math><math>3</math><math>0.031</math><math>  3</math><math>136</math><math>1.388</math><math>143</math><math>1.444</math><math>151</math><math>49</math><math>0.500</math><math>45</math><math>0.455</math><math>33</math><math>                                                                                              -</math></td> <td>2000 <math>2001</math> <math>2002</math>           N         F         N         F         N         F           -         -         -         -         -         -           -         -         1         <math>0.010</math>         -         -           -         -         1         <math>0.010</math>         -         -           -         -         -         -         -         -           4         <math>0.041</math>         -         -         5         <math>0.050</math>           6         <math>0.061</math>         2         <math>0.020</math>         -         -           89         <math>0.908</math>         98         <math>0.990</math>         108         <math>1.069</math>           3         <math>0.031</math>         -         -         3         <math>0.030</math>           136         <math>1.388</math> <math>143</math> <math>1.444</math> <math>151</math> <math>1.495</math>           49         <math>0.500</math> <math>45</math> <math>0.455</math> <math>33</math> <math>0.327</math>           -         -         -         -         -         -         -           -         -         1         <math>0.010</math>         -         -         -           -         -         &lt;</td> <td><math display="block">\begin{array}{ c c c c c c c c c c c c c c c c c c c</math></td> | N         F         N           -         -         -           -         -         1           -         -         1           -         -         1           -         -         1           -         -         -           4         0.041         -           6         0.061         2           89         0.908         98           3         0.031         -           136         1.388         143           49         0.500         45           -         -         -           -         -         1           -         -         -           -         -         1           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           181 | 2000         2001           N         F         N         F           -         -         -         -           -         -         1         0.010           -         -         -         -           4         0.041         -         -           6         0.061         2         0.020           89         0.908         98         0.990           3         0.031         -         -           136         1.388         143         1.444           49         0.500         45         0.455           -         -         -         -         -           136         1.388         143         1.444           49         0.500         45         0.455           -         -         -         -         -           -         -         1         0.010         -           -         -         -         -         -           -         -         -         -         -           -         -         -         -         -           -         -         -         - | NFNFN $       1$ $0.010$ $      4$ $0.041$ $  5$ $6$ $0.061$ $2$ $0.020$ $ 89$ $0.908$ $98$ $0.990$ $108$ $3$ $0.031$ $  3$ $136$ $1.388$ $143$ $1.444$ $151$ $49$ $0.500$ $45$ $0.455$ $33$ $                                                                                              -$ | 2000 $2001$ $2002$ N         F         N         F         N         F           -         -         -         -         -         -           -         -         1 $0.010$ -         -           -         -         1 $0.010$ -         -           -         -         -         -         -         -           4 $0.041$ -         -         5 $0.050$ 6 $0.061$ 2 $0.020$ -         -           89 $0.908$ 98 $0.990$ 108 $1.069$ 3 $0.031$ -         -         3 $0.030$ 136 $1.388$ $143$ $1.444$ $151$ $1.495$ 49 $0.500$ $45$ $0.455$ $33$ $0.327$ -         -         -         -         -         -         -           -         -         1 $0.010$ -         -         -           -         -         < | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |  |

### Table 28 Production units. UKCS, 2000, 2001, 2002, 2003.No. of occurrences and occurrence frequencies (per unit year).Source: All databases combined

### Table 29 Production units. UKCS, 2004, 2005.No. of occurrences and occurrence frequencies (per unit year).Source: All databases combined

|                |     | Period               |     |       |  |  |  |
|----------------|-----|----------------------|-----|-------|--|--|--|
|                | 20  | 04                   | 20  | 2005  |  |  |  |
| Type of event  | N   | F                    | N   | F     |  |  |  |
| Anchor failure | -   | -                    | -   | -     |  |  |  |
| Blowout        | -   | -                    | -   | -     |  |  |  |
| Capsize        | -   | -                    | -   | -     |  |  |  |
| Collision      | 1   | 9.6•10 <sup>-3</sup> | -   | -     |  |  |  |
| Contact        | 3   | 0.029                | 3   | 0.029 |  |  |  |
| Crane          | 54  | 0.519                | 58  | 0.552 |  |  |  |
| Explosion      | 1   | 9.6•10 <sup>-3</sup> | -   | -     |  |  |  |
| Falling object | 84  | 0.808                | 78  | 0.743 |  |  |  |
| Fire           | 41  | 0.394                | 22  | 0.210 |  |  |  |
| Foundering     | -   | -                    | -   | -     |  |  |  |
| Grounding      | -   | -                    | -   | -     |  |  |  |
| Helicopter     | -   | -                    | -   | -     |  |  |  |
| Leakage        | 1   | 9.6•10 <sup>-3</sup> | -   | -     |  |  |  |
| List           | -   | -                    | -   | -     |  |  |  |
| Machinery      | -   | -                    | -   | -     |  |  |  |
| Off position   | -   | -                    | -   | -     |  |  |  |
| Spill/release  | 205 | 1.971                | 160 | 1.524 |  |  |  |
| Structural     | -   | -                    | -   | -     |  |  |  |
| Towing/towline | -   | -                    | -   | -     |  |  |  |
| Well problem   | 22  | 0.212                | 24  | 0.229 |  |  |  |
| Other          | 9   | 0.087                | 9   | 0.086 |  |  |  |

|                |      | Period               |      |                      |  |  |  |
|----------------|------|----------------------|------|----------------------|--|--|--|
|                | 1990 | -2005                | 1980 | -2005                |  |  |  |
| Type of event  | N    | F                    | Ν    | F                    |  |  |  |
| Anchor failure | -    | -                    | -    | -                    |  |  |  |
| Blowout        | 4    | 2.7•10 <sup>-3</sup> | 9    | 4.3•10 <sup>-3</sup> |  |  |  |
| Capsize        | -    | -                    | -    | -                    |  |  |  |
| Collision      | 21   | 0.014                | 23   | 0.011                |  |  |  |
| Contact        | 88   | 0.059                | 161  | 0.076                |  |  |  |
| Crane          | 1198 | 0.800                | 1608 | 0.763                |  |  |  |
| Explosion      | 40   | 0.027                | 74   | 0.035                |  |  |  |
| Falling object | 1659 | 1.108                | 2112 | 1.002                |  |  |  |
| Fire           | 662  | 0.442                | 880  | 0.418                |  |  |  |
| Foundering     | -    | -                    | -    | -                    |  |  |  |
| Grounding      | -    | -                    | -    | -                    |  |  |  |
| Helicopter     | 6    | 4.0•10 <sup>-3</sup> | 11   | 5.2•10 <sup>-3</sup> |  |  |  |
| Leakage        | 1    | 6.7•10 <sup>-4</sup> | 2    | 9.5•10 <sup>-4</sup> |  |  |  |
| List           | -    | -                    | 1    | 4.7•10 <sup>-4</sup> |  |  |  |
| Machinery      | -    | -                    | -    | -                    |  |  |  |
| Off position   | -    | -                    | -    | -                    |  |  |  |
| Spill/release  | 2804 | 1.873                | 3009 | 1.428                |  |  |  |
| Structural     | 13   | 8.7•10 <sup>-3</sup> | 17   | 8.1•10 <sup>-3</sup> |  |  |  |
| Towing/towline | -    | -                    | -    | -                    |  |  |  |
| Well problem   | 379  | 0.253                | 400  | 0.190                |  |  |  |
| Other          | 99   | 0.066                | 105  | 0.050                |  |  |  |

Table 30 Production units. UKCS, 1990-2005, 1980-2005.No. of occurrences and occurrence frequencies (per unit year).Source: All databases combined

#### A.2. 5 Occurrence frequencies – Wellhead units

In the following tables the number of occurrences (N) and corresponding frequencies (F) for fixed wellhead (production) units are given per year/period.

### Table 31Wellhead Units. UKCS, 1980-1989, 1990, 1991, 1992.No. of occurrences and occurrence frequencies (per unit year).Source: All databases combined

|                |      |                      |    | Year/j               | period |                      |    |       |
|----------------|------|----------------------|----|----------------------|--------|----------------------|----|-------|
|                | 1980 | -1989                | 19 | 90                   | 19     | 991                  | 19 | 92    |
| Type of event  | N    | F                    | Ν  | F                    | Ν      | F                    | Ν  | F     |
| Anchor failure | -    | -                    | -  | -                    | -      | -                    | -  | -     |
| Blowout        | 1    | 6.6•10 <sup>-3</sup> | -  | -                    | -      | -                    | -  | -     |
| Capsize        | -    | -                    | -  | -                    | -      | -                    | -  | -     |
| Collision      | -    | -                    | -  | -                    | -      | -                    | -  | -     |
| Contact        | 1    | 6.6•10 <sup>-3</sup> | 1  | 0.026                | -      | -                    | 1  | 0.021 |
| Crane          | 3    | 0.012                | 5  | 0.128                | 2      | 0.044                | 1  | 0.021 |
| Explosion      | -    | -                    | 3  | 3.4•10 <sup>-3</sup> | 8      | 5.3•10 <sup>-3</sup> | -  | -     |
| Falling object | 4    | 0.027                | 7  | 0.180                | 3      | 0.067                | 1  | 0.021 |
| Fire           | 4    | 0.027                | -  | -                    | -      | -                    | -  | -     |
| Foundering     | -    | -                    | -  | -                    | -      | -                    | -  | -     |
| Grounding      | -    | -                    | -  | -                    | -      | -                    | -  | -     |
| Helicopter     | -    | -                    | -  | -                    | -      | -                    | -  | -     |
| Leakage        | -    | -                    | -  | -                    | -      | -                    | -  | -     |
| List           | -    | -                    | -  | -                    | -      | -                    | -  | -     |
| Machinery      | -    | -                    | -  | -                    | -      | -                    | -  | -     |
| Off position   | -    | -                    | -  | -                    | -      | -                    | -  | -     |
| Spill/release  | 4    | 0.027                | 3  | 0.077                | 5      | 0.111                | 7  | 0.146 |
| Structural     | -    | -                    | -  | -                    | -      | -                    | -  | -     |
| Towing/towline | -    | -                    | -  | -                    | -      | -                    | -  | -     |
| Well problem   | 1    | 6.6•10 <sup>-3</sup> | -  | -                    | -      | -                    | -  | -     |
| Other          | -    | -                    | -  | -                    | -      | -                    | -  | -     |

### Table 32Wellhead Units. UKCS, 1993, 1994, 1995, 1996.No. of occurrences and occurrence frequencies (per unit year).Source: All databases combined

|                |    |       |    | Ye    | ear |       |    |       |
|----------------|----|-------|----|-------|-----|-------|----|-------|
|                | 19 | 93    | 19 | 994   | 19  | 995   | 1  | 996   |
| Type of event  | Ν  | F     | Ν  | F     | N   | F     | N  | F     |
| Anchor failure | -  | -     | -  | -     | -   | -     | -  | -     |
| Blowout        | -  | -     | -  | -     | -   | -     | -  | -     |
| Capsize        | -  | -     | -  | -     | -   | -     | -  | -     |
| Collision      | -  | -     | -  | -     | 1   | 0.018 | -  | -     |
| Contact        |    |       | 1  | 0.018 | 1   | 0.018 | 2  | 0.031 |
| Crane          | 3  | 0.059 | 1  | 0.018 | 1   | 0.018 | 3  | 0.046 |
| Explosion      | -  | -     | -  | -     | -   | -     | -  | -     |
| Falling object | 3  | 0.059 | 1  | 0.018 | 1   | 0.018 | 5  | 0.077 |
| Fire           | 1  | 0.020 | 2  | 0.036 | 3   | 0.053 | -  | -     |
| Foundering     | -  | -     | -  | -     | -   | -     | -  | -     |
| Grounding      | -  | -     | -  | -     | -   | -     | -  | -     |
| Helicopter     | -  | -     | -  | -     | -   | -     | -  | -     |
| Leakage        | -  | -     | -  | -     | -   | -     | -  | -     |
| List           | -  | -     | -  | -     | -   | -     | -  | -     |
| Machinery      | -  | -     | -  | -     | -   | -     | -  | -     |
| Off position   | -  | -     | -  | -     | -   | -     | -  | -     |
| Spill/release  | 13 | 0.255 | 7  | 0.125 | 14  | 0.246 | 15 | 0.231 |
| Structural     | -  | -     | -  | -     | -   | -     | -  | -     |
| Towing/towline | -  | -     | -  | -     | -   | -     | -  | -     |
| Well problem   | -  | -     | -  | -     | -   | -     | -  | -     |
| Other          | -  | -     | -  | -     | 1   | 0.018 | -  | -     |

|                | Year |       |    |       |      |       |  |
|----------------|------|-------|----|-------|------|-------|--|
|                | 19   | 97    | 19 | 98    | 1999 |       |  |
| Type of event  | N    | F     | N  | F     | N    | F     |  |
| Anchor failure | -    | -     | -  | -     | -    | -     |  |
| Blowout        | -    | -     | -  | -     | -    | -     |  |
| Capsize        | -    | -     | -  | -     | -    | -     |  |
| Collision      | -    | -     | 1  | 0.014 | 1    | 0.013 |  |
| Contact        | 1    | 0.014 | -  | -     | 3    | 0.038 |  |
| Crane          | 6    | 0.086 | 3  | 0.042 | 3    | 0.038 |  |
| Explosion      | -    | -     | -  | -     | -    | -     |  |
| Falling object | 6    | 0.086 | 3  | 0.042 | 5    | 0.063 |  |
| Fire           | 3    | 0.043 | 3  | 0.042 | 4    | 0.051 |  |
| Foundering     | -    | -     | -  | -     | -    | -     |  |
| Grounding      | -    | -     | -  | -     | -    | -     |  |
| Helicopter     | -    | -     | -  | -     | -    | -     |  |
| Leakage        | -    | -     | -  | -     | -    | -     |  |
| List           | -    | -     | -  | -     | -    | -     |  |
| Machinery      | -    | -     | -  | -     | -    | -     |  |
| Off position   | -    | -     | -  | -     | -    | -     |  |
| Spill/release  | 25   | 0.357 | 26 | 0.361 | 26   | 0.329 |  |
| Structural     | -    | -     | -  | -     | -    | -     |  |
| Towing/towline | -    | -     | -  | -     | -    | -     |  |
| Well problem   | -    | -     | 3  | 0.042 | 1    | 0.013 |  |
| Other          | -    | -     | 1  | 0.014 | 2    | 0.025 |  |

Table 33 Wellhead Units. UKCS, 1997, 1998, 1999.No. of occurrences and occurrence frequencies (per unit year).Source: All databases combined

|                |    |       |    | Ye    | ear |       |    |       |
|----------------|----|-------|----|-------|-----|-------|----|-------|
|                | 20 | 000   | 20 | 01    | 20  | 002   | 20 | 003   |
| Type of event  | N  | F     | N  | F     | N   | F     | N  | F     |
| Anchor failure | -  | -     | -  | -     | -   | -     | -  | -     |
| Blowout        | -  | -     | -  | -     | -   | -     | -  | -     |
| Capsize        | -  | -     | -  | -     | -   | -     | -  | -     |
| Collision      | -  | -     | -  | -     | 2   | 0.023 | -  | -     |
| Contact        | 2  | 0.024 | 1  | 0.012 | -   | -     | 1  | 0.012 |
| Crane          | 1  | 0.012 | 2  | 0.024 | 4   | 0.047 | 5  | 0.058 |
| Explosion      | -  | -     | -  | -     | -   | -     | -  | -     |
| Falling object | 1  | 0.012 | 2  | 0.024 | 4   | 0.047 | 7  | 0.081 |
| Fire           | 1  | 0.012 | 7  | 0.082 | 2   | 0.023 | 1  | 0.012 |
| Foundering     | -  | -     | -  | -     | -   | -     | -  | -     |
| Grounding      | -  | -     | -  | -     | -   | -     | -  | -     |
| Helicopter     | -  | -     | -  | -     | -   | -     | -  | -     |
| Leakage        | -  | -     | -  | -     | -   | -     | -  | -     |
| List           | -  | -     | -  | -     | -   | -     | -  | -     |
| Machinery      | -  | -     | -  | -     | -   | -     | -  | -     |
| Off position   | -  | -     | -  | -     | -   | -     | -  | -     |
| Spill/release  | 34 | 0.405 | 13 | 0.153 | 9   | 0.105 | 12 | 0.140 |
| Structural     | -  | -     | -  | -     | -   | -     | -  | -     |
| Towing/towline | -  | -     | -  | -     | -   | -     | -  | -     |
| Well problem   | 2  | 0.024 | 3  | 0.035 | 1   | 0.012 | 1  | 0.012 |
| Other          | 2  | 0.024 | -  | -     | -   | -     | -  | -     |

## Table 34 Wellhead units. UKCS, 2000, 2001, 2002, 2003.No. of occurrences and occurrence frequencies (per unit year).Source: All databases combined

### Table 35 Wellhead units. UKCS, 2004, 2005.No. of occurrences and occurrence frequencies (per unit year).Source: All databases combined

|                | Period |       |    |       |  |  |
|----------------|--------|-------|----|-------|--|--|
|                | 20     | 04    | 20 | 005   |  |  |
| Type of event  | N      | F     | N  | F     |  |  |
| Anchor failure | -      | -     | -  | -     |  |  |
| Blowout        | -      | -     | -  | -     |  |  |
| Capsize        | -      | -     | -  | -     |  |  |
| Collision      | -      | -     | 1  | 0.011 |  |  |
| Contact        | -      | -     | -  | -     |  |  |
| Crane          | 4      | 0.047 | 1  | 0.011 |  |  |
| Explosion      | -      | -     | -  | -     |  |  |
| Falling object | 7      | 0.081 | 2  | 0.022 |  |  |
| Fire           | 1      | 0.012 | -  | -     |  |  |
| Foundering     | -      | -     | -  | -     |  |  |
| Grounding      | -      | -     | -  | -     |  |  |
| Helicopter     | -      | -     | -  | -     |  |  |
| Leakage        | -      | -     | -  | -     |  |  |
| List           | -      | -     | -  | -     |  |  |
| Machinery      | -      | -     | -  | -     |  |  |
| Off position   | -      | -     | -  | -     |  |  |
| Spill/release  | 6      | 0.070 | 8  | 0.089 |  |  |
| Structural     | -      | -     | -  | -     |  |  |
| Towing/towline | -      | -     | -  | -     |  |  |
| Well problem   | 2      | 0.023 | 1  | 0.011 |  |  |
| Other          | -      | -     | -  | -     |  |  |

|                | Period |                      |      |                      |  |  |
|----------------|--------|----------------------|------|----------------------|--|--|
|                | 1990   | -2005                | 1980 | -2005                |  |  |
| Type of event  | N      | F                    | N    | F                    |  |  |
| Anchor failure | -      | -                    | -    | -                    |  |  |
| Blowout        | -      | -                    | 1    | 8.0•10 <sup>-4</sup> |  |  |
| Capsize        | -      | -                    | -    | -                    |  |  |
| Collision      | 6      | 5.5•10 <sup>-3</sup> | 6    | 4.8•10 <sup>-3</sup> |  |  |
| Contact        | 14     | 0.013                | 15   | 0.012                |  |  |
| Crane          | 45     | 0.041                | 48   | 0.038                |  |  |
| Explosion      | -      | -                    | -    | -                    |  |  |
| Falling object | 58     | 0.053                | 62   | 0.050                |  |  |
| Fire           | 29     | 0.026                | 33   | 0.026                |  |  |
| Foundering     | -      | -                    | -    | -                    |  |  |
| Grounding      | -      | -                    | -    | -                    |  |  |
| Helicopter     | -      | -                    | -    | -                    |  |  |
| Leakage        | -      | -                    | -    | -                    |  |  |
| List           | -      | -                    | -    | -                    |  |  |
| Machinery      | -      | -                    | -    | -                    |  |  |
| Off position   | -      | -                    | -    | -                    |  |  |
| Spill/release  | 223    | 0.203                | 227  | 0.182                |  |  |
| Structural     | -      | -                    | -    | -                    |  |  |
| Towing/towline | -      | -                    | -    | -                    |  |  |
| Well problem   | 14     | 0.013                | 15   | 0.012                |  |  |
| Other          | -      | -                    | -    | -                    |  |  |

Table 36 Wellhead units. UKCS, 1990-2005, 1980-2005.No. of occurrences and occurrence frequencies (per unit year).Source: All databases combined

#### A.2. 6 Occurrence frequencies – Compression units

In the following tables the number of occurrences (N) and corresponding frequencies (F) for fixed compression units are given per year/period.

|                |      |       |    | Year/ | period |       |    |       |
|----------------|------|-------|----|-------|--------|-------|----|-------|
|                | 1980 | -1989 | 19 | 90    | 19     | 991   | 19 | 92    |
| Type of event  | N    | F     | N  | F     | N      | F     | N  | F     |
| Anchor failure | -    | -     | -  | -     | -      | -     | -  | -     |
| Blowout        | -    | -     | -  | -     | -      | -     | -  | -     |
| Capsize        | -    | -     | -  | -     | -      | -     | -  | -     |
| Collision      | -    | -     | -  | -     | -      | -     | -  | -     |
| Contact        | -    | -     | -  | -     | -      | -     | -  | -     |
| Crane          | 2    | 0.029 | -  | -     | 1      | 0.111 | -  | -     |
| Explosion      | -    | -     | -  | -     | -      | -     | -  | -     |
| Falling object | 3    | 0.044 | 1  | 0.125 | 1      | 0.111 | -  | -     |
| Fire           | 1    | 0.015 | -  | -     | -      | -     | 1  | 0.111 |
| Foundering     | -    | -     | -  | -     | -      | -     | -  | -     |
| Grounding      | -    | -     | -  | -     | -      | -     | -  | -     |
| Helicopter     | 2    | 0.029 | -  | -     | -      | -     | -  | -     |
| Leakage        | -    | -     | -  | -     | -      | -     | -  | -     |
| List           | -    | -     | -  | -     | -      | -     | -  | -     |
| Machinery      | -    | -     | -  | -     | -      | -     | -  | -     |
| Off position   | -    | -     | -  | -     | -      | -     | -  | -     |
| Spill/release  | 1    | 0.015 | -  | -     | 1      | 0.111 | 2  | 0.222 |
| Structural     | -    | -     | -  | -     | -      | -     | -  | -     |
| Towing/towline | -    | -     | -  | -     | -      | -     | -  | -     |
| Well problem   | -    | -     | -  | -     | -      | -     | -  | -     |
| Other          | -    | -     | -  | -     | -      | -     | -  | -     |

### Table 37 Compression Units. UKCS, 1980-1989, 1990, 1991, 1992.No. of occurrences and occurrence frequencies (per unit year).Source: All databases combined

| Table 38   | Compression Units. UKCS, 1993, 1994, 1995, 1996.      |
|------------|-------------------------------------------------------|
| No. of occ | currences and occurrence frequencies (per unit year). |
| Source: A  | All databases combined                                |

|                | Year |       |    |       |    |       |    |    |
|----------------|------|-------|----|-------|----|-------|----|----|
|                | 19   | 93    | 19 | 94    | 19 | 95    | 19 | 96 |
| Type of event  | N    | F     | N  | F     | N  | F     | Ν  | F  |
| Anchor failure | -    | -     | -  | -     | -  | -     | -  | -  |
| Blowout        | -    | -     | -  | -     | -  | -     | -  | -  |
| Capsize        | -    | -     | -  | -     | -  | -     | -  | -  |
| Collision      | -    | -     | -  | -     | -  | -     | -  | -  |
| Contact        | -    | -     | -  | -     | -  | -     | -  | -  |
| Crane          | 1    | 0.100 | -  | -     | 1  | 0.091 | -  | -  |
| Explosion      | -    | -     | -  | -     | -  | -     | -  | -  |
| Falling object | 1    | 0.100 | -  | -     | 2  | 0.182 | -  | -  |
| Fire           | -    | -     | 1  | 0.100 | 6  | 0.546 | -  | -  |
| Foundering     | -    | -     | -  | -     | -  | -     | -  | -  |
| Grounding      | -    | -     | -  | -     | -  | -     | -  | -  |
| Helicopter     | -    | -     | -  | -     | -  | -     | -  | -  |
| Leakage        | -    | -     | -  | -     | -  | -     | -  | -  |
| List           | -    | -     | -  | -     | -  | -     | -  | -  |
| Machinery      | -    | -     | -  | -     | -  | -     | -  | -  |
| Off position   | -    | -     | -  | -     | -  | -     | -  | -  |
| Spill/release  | 5    | 0.500 | 4  | 0.400 | 6  | 0.546 | -  | -  |
| Structural     | -    | -     | -  | -     | -  | -     | -  | -  |
| Towing/towline | -    | -     | -  | -     | -  | -     | -  | -  |
| Well problem   | -    | -     | -  | -     | -  | -     | -  | -  |
| Other          | -    | -     | -  | -     | -  | -     | -  | -  |

|                | Year |       |    |       |      |       |  |
|----------------|------|-------|----|-------|------|-------|--|
|                | 1997 |       | 19 | 98    | 1999 |       |  |
| Type of event  | N    | F     | N  | F     | N    | F     |  |
| Anchor failure | -    | -     | -  | -     | -    | -     |  |
| Blowout        | -    | -     | -  | -     | -    | -     |  |
| Capsize        | -    | -     | -  | -     | -    | -     |  |
| Collision      | -    | -     | -  | -     | -    | -     |  |
| Contact        | -    | -     | -  | -     | -    | -     |  |
| Crane          | -    | -     | -  | -     | -    | -     |  |
| Explosion      | -    | -     | -  | -     | -    | -     |  |
| Falling object | 1    | 0.091 | -  | -     | -    | -     |  |
| Fire           | -    | -     | -  | -     | 1    | 0.083 |  |
| Foundering     | -    | -     | -  | -     | -    | -     |  |
| Grounding      | -    | -     | -  | -     | -    | -     |  |
| Helicopter     | -    | -     | -  | -     | -    | -     |  |
| Leakage        | -    | -     | -  | -     | -    | -     |  |
| List           | -    | -     | -  | -     | -    | -     |  |
| Machinery      | -    | -     | -  | -     | -    | -     |  |
| Off position   | -    | -     | -  | -     | -    | -     |  |
| Spill/release  | 2    | 0.182 | 2  | 0.182 | 4    | 0.333 |  |
| Structural     | -    | -     | -  | -     | -    | -     |  |
| Towing/towline | -    | -     | -  | -     | -    | -     |  |
| Well problem   | -    | -     | -  | -     | -    | -     |  |
| Other          | -    | -     | -  | -     | -    | -     |  |

Table 39 Compression Units. UKCS, 1997, 1998, 1999.No. of occurrences and occurrence frequencies (per unit year).Source: All databases combined

|                | Year |       |    |    |    |    |    |    |
|----------------|------|-------|----|----|----|----|----|----|
|                | 20   | 000   | 20 | 01 | 20 | 02 | 20 | 03 |
| Type of event  | N    | F     | N  | F  | N  | F  | N  | F  |
| Anchor failure | -    | -     | -  | -  | -  | -  | -  | -  |
| Blowout        | -    | -     | -  | -  | -  | -  | -  | -  |
| Capsize        | -    | -     | -  | -  | -  | -  | -  | -  |
| Collision      | -    | -     | -  | -  | -  | -  | -  | -  |
| Contact        | -    | -     | -  | -  | -  | -  | -  | -  |
| Crane          | -    | -     | -  | -  | -  | -  | -  | -  |
| Explosion      | -    | -     | -  | -  | -  | -  | -  | -  |
| Falling object | -    | -     | -  | -  | -  | -  | -  | -  |
| Fire           | -    | -     | -  | -  | -  | -  | -  | -  |
| Foundering     | -    | -     | -  | -  | -  | -  | -  | -  |
| Grounding      | -    | -     | -  | -  | -  | -  | -  | -  |
| Helicopter     | -    | -     | -  | -  | -  | -  | -  | -  |
| Leakage        | -    | -     | -  | -  | -  | -  | -  | -  |
| List           | -    | -     | -  | -  | -  | -  | -  | -  |
| Machinery      | -    | -     | -  | -  | -  | -  | -  | -  |
| Off position   | -    | -     | -  | -  | -  | -  | -  | -  |
| Spill/release  | 2    | 0.167 | -  | -  | -  | -  | -  | -  |
| Structural     | -    | -     | -  | -  | -  | -  | -  | -  |
| Towing/towline | -    | -     | -  | -  | -  | -  | -  | -  |
| Well problem   | -    | -     | -  | -  | -  | -  | -  | -  |
| Other          | -    | -     | -  | -  | -  | -  | -  | -  |

## Table 40 Compression units. UKCS, 2000, 2001, 2002, 2003.No. of occurrences and occurrence frequencies (per unit year).Source: All databases combined

### Table 41 Compression units. UKCS, 2004, 2005.No. of occurrences and occurrence frequencies (per unit year).Source: All databases combined

|                | Period |       |    |       |  |  |
|----------------|--------|-------|----|-------|--|--|
|                | 20     | 04    | 20 | 05    |  |  |
| Type of event  | N      | F     | Ν  | F     |  |  |
| Anchor failure | -      | -     | -  | -     |  |  |
| Blowout        | -      | -     | -  | -     |  |  |
| Capsize        | -      | -     | -  | -     |  |  |
| Collision      | -      | -     | -  | -     |  |  |
| Contact        | -      | -     | -  | -     |  |  |
| Crane          | 2      | 0.167 | 1  | 0.083 |  |  |
| Explosion      | -      | -     | -  | -     |  |  |
| Falling object | 2      | 0.167 | 1  | 0.083 |  |  |
| Fire           | -      | -     | -  | -     |  |  |
| Foundering     | -      | -     | -  | -     |  |  |
| Grounding      | -      | -     | -  | -     |  |  |
| Helicopter     | -      | -     | -  | -     |  |  |
| Leakage        | -      | -     | -  | -     |  |  |
| List           | -      | -     | -  | -     |  |  |
| Machinery      | -      | -     | -  | -     |  |  |
| Off position   | -      | -     | -  | -     |  |  |
| Spill/release  | 5      | 0.417 | 3  | 0.250 |  |  |
| Structural     | -      | -     | -  | -     |  |  |
| Towing/towline | -      | -     | -  | -     |  |  |
| Well problem   | -      | -     | -  | -     |  |  |
| Other          | -      | -     | -  | -     |  |  |

|                | Period    |       |      |                      |  |  |
|----------------|-----------|-------|------|----------------------|--|--|
|                | 1990-2005 |       | 1980 | -2005                |  |  |
| Type of event  | N         | F     | N    | F                    |  |  |
| Anchor failure | -         | -     | -    | -                    |  |  |
| Blowout        | -         | -     | -    | -                    |  |  |
| Capsize        | -         | -     | -    | -                    |  |  |
| Collision      | -         | -     | -    | -                    |  |  |
| Contact        | -         | -     | -    | -                    |  |  |
| Crane          | 6         | 0.035 | 8    | 0.033                |  |  |
| Explosion      | -         | -     | -    | -                    |  |  |
| Falling object | 9         | 0.052 | 12   | 0.050                |  |  |
| Fire           | 11        | 0.064 | 12   | 0.050                |  |  |
| Foundering     | -         | -     | -    | -                    |  |  |
| Grounding      | -         | -     | -    | -                    |  |  |
| Helicopter     | -         | -     | 2    | 8.3•10 <sup>-3</sup> |  |  |
| Leakage        | -         | -     | -    | -                    |  |  |
| List           | -         | -     | -    | -                    |  |  |
| Machinery      | -         | -     | -    | -                    |  |  |
| Off position   | -         | -     | -    | -                    |  |  |
| Spill/release  | 36        | 0.209 | 37   | 0.154                |  |  |
| Structural     | -         | -     | -    | -                    |  |  |
| Towing/towline | -         | -     | -    | -                    |  |  |
| Well problem   | -         | -     | -    | -                    |  |  |
| Other          | -         | -     | -    | -                    |  |  |

 Table 42 Compression units. UKCS, 1990-2005, 1980-2005.

 No. of occurrences and occurrence frequencies (per unit year).

 Source: All databases combined

#### A.2. 7 Occurrence frequencies – Pumping Units

No accidents are recorded on fixed pumping platforms in either of the databases in the period 1980-2005, and hence the overall calculated occurrence frequency is 0.

#### A.2. 8 Occurrence frequencies – Injection/riser Units

The recorded number (N) and type of occurrences and the corresponding frequencies (F) are given in the following table.

#### Table 43 Injection/riser units. UKCS. 1980-2005.No. of occurrences per unit year.

| Year          | Type of event  | Ν | F                    |
|---------------|----------------|---|----------------------|
| Average       | Falling object | 1 | 0.022                |
| 1980-<br>1989 | Fire           | 1 | 0.022                |
| 1990          | Fire           | 1 | 0.200                |
| 1991          | Fire           | 2 | 0.333                |
| 1993          | Contact        | 1 | 0.125                |
| 2004          | Falling object | 2 | 0.200                |
| 2005          | Fire           | 1 | 0.100                |
| Average       | Contact        | 1 | 7.1•10 <sup>-3</sup> |
| 1990-<br>2005 | Falling object | 2 | 0.014                |
|               | Fire           | 4 | 0.029                |
| Average       | Contact        | 1 | 5.4•10 <sup>-3</sup> |
| 1980-<br>2005 | Falling object | 3 | 0.016                |
|               | Fire           | 5 | 0.027                |

Source: All databases combined

#### A.2.9 Occurrence frequencies – Accommodation units

The recorded number (N) and type of occurrences and the corresponding frequencies (F) are given in the following table.

| Year                     | Type of event  | N | F                    |
|--------------------------|----------------|---|----------------------|
| Average<br>1980-<br>1989 | Contact        | 2 | 0.049                |
|                          | Crane          | 1 | 0.024                |
|                          | Falling object | 1 | 0.024                |
|                          | Fire           | 2 | 0.049                |
|                          | Spill/release  | 1 | 0.024                |
|                          | Structural     | 1 | 0.024                |
| 1992                     | Contact        | 1 | 0.143                |
| 1993                     | Fire           | 1 | 0.125                |
| 1994                     | Contact        | 1 | 0.111                |
|                          | Spill/release  | 1 | 0.111                |
| 1996                     | Fire           | 1 | 0.100                |
| 1997                     | Fire           | 1 | 0.100                |
| 1998                     | Spill/release  | 1 | 0.091                |
| 1999                     | Falling object | 1 | 0.091                |
| 2000                     | Collision      | 1 | 0.091                |
| 2005                     | Fire           | 1 | 0.091                |
| Average<br>1990-<br>2005 | Collision      | 1 | 6.5•10 <sup>-3</sup> |
|                          | Contact        | 2 | 0.013                |
|                          | Falling object | 1 | 6.5•10 <sup>-3</sup> |
|                          | Fire           | 4 | 0.026                |
|                          | Spill/release  | 2 | 0.013                |
| Average                  | Collision      | 1 | 5.2•10 <sup>-3</sup> |
| 1980-<br>2005            | Contact        | 4 | 0.021                |
|                          | Crane          | 1 | 5.2•10 <sup>-3</sup> |
|                          | Falling object | 2 | 0.010                |
|                          | Fire           | 5 | 0.026                |
|                          | Spill/release  | 3 | 0.015                |
|                          | Structural     | 1 | 5.2•10 <sup>-3</sup> |

| Table 44   | Accommodation units. UKCS. 1980-2005.                  |   |
|------------|--------------------------------------------------------|---|
| No. of occ | irrences per unit year. Source: All databases combined | l |



#### Accident statistics for fixed offshore units on the UK Continental Shelf 1980-2005

In 2000, a project was undertaken by Det Norske Veritas (DNV) on behalf of the UK Health & Safety Executive (HSE) with the purpose of obtaining accident statistics for offshore floating units on the UK Continental Shelf (UKCS). In this respect, four databases holding information about incidents having occurred on floating units on the UKCS were interrogated. The survey revealed that that none of them had a complete recording of such incidents. Consequently, the event frequencies being obtained varied with the availability of sources.

There was no reason to believe that the situation and figures for fixed installations should be any different. Hence, it was proposed to initiate a series of projects, but addressing all types of risks to fixed units. It should be noted that fixed units in this project are defined as comprising all bottomfixed structures, but excluding TLPs, FPSOs, FSUs and production jackups even though they are "fixed" during their production phase. The most recent project related to fixed units, Accident Statistics for Fixed Offshore Units on the UK Continental Shelf 1980 – 2003, was completed in 2005. This current project updates the data of the previous project by two further years, 2004 and 2005. This report supercedes Research Report RR349.

This report and the work it describes were funded by the Health and Safety Executive (HSE). Its contents, including any opinions and/or conclusions expressed, are those of the authors alone and do not necessarily reflect HSE policy.

**RR566** 

www.hse.gov.uk