http://tiny.cc/hpcg

ACCIDENTAL
BENCHMARKER

Jack Dongarra & Piotr Luszczek
University of Tennessee/ORNL

Michael Heroux
Sandia National Labs

http://tiny.cc/hpcg

LINPABS
TR

Started 36 Years Ao wpass

Pl

- In the late 70’s the “m,‘== 2

fastest computer ran soIBE
LINPACK at 14 Mflop/s

J.R.Bunch G.W. Stewart
’ 1 b e n~— = 10%%6 ""V l(; 1/3 100%%*3 + 100%%2)
- In the late 70’s floating 2N e T T
= Facility

TIME UNIT
. . H=100 micro- Computer Type Compiler
point operations were e
. KCAR 142 049 0.14 CRAY-1 8§ CFT, Assembly BLAS
LASL 464 .148 0.43 CDC 7600 S FIN, Assembly BLAS
expensive compared to w A R BRI f @
LASL 5,27 210 0.61 . CDC 7600 5 FIN
Argunne 2.3) .297 0.86 IBM 370/195 D H
. KCAR 44l .35 1.05 CDC 7600 S Lacal
O er O era |OnS an Argonne A7 1388 . 1.33 IBM 3033 D H
NASA langley « \:92 489 1.42 CDC Cyber 175 S FIN
U, 111. Urbana \%% .506 1.47 CDC Cyber 175 S Ext. 4.6
LLL Y 554 1.61 CDC 7600 S CHAT, No optimize
a a ' I |Ove| I |en SLAC 119 .579 1.69 IBM 370/168 D H Lxt., Fast mult.
Michigan 1©9.631 1.84 Amdahl 470/Vé D H
Toronto T'z-; $90 2.59 IBM 370/165 D N Ext., Fast mult.
. R Northwestern ,’ %3‘3‘ ggg cbC gggg S FTN
— Texas 2356 1, v CDC S RUN
° M t —_ 1 OO China Lake .%21.95% 5.69 Univac 1110 s
a rIX Slze! n Yale . 152,59 7,53 TDEC KL-20 “"*“s-'-rzo
Bell Labs 97 3.46. 10.1 Honeywell 6080 S .Y
3 d f- . Wisconsin AF73.49 10,1 . Univac 1110 S .V _
° Iowa State “q3.54 _10.2 Itel AS/5 modI "D H
That's what would fit in s 10 1S BT)
Purdue ;:13362 ;6.2 CDC 6500 6700 FUN
U, C. San Diego+f} Burroughs 67 S H
memory Yale~ g.umu 1¥ 49.9 DEC xufllo F40

* TIME(LO0) = (100/75)**3 SGEFA(75) + (100/75)**2 SGESL(75)

- LINPACK code is based on “right-looking”
algorithm:

- O(n3) Flop/s and O(n3) data movement

MCS-TM-23

PERFORMANCE OF VARIOUS COMPUTERS

LINPACK to HPL to TOP500 o UGS aUT0S

Changes over time
- LINPACK Benchmark report, ANL TM-23, 1984

- Performance of Various Computers Using Standard A MATHEMATICS AND
Equations Software, listed about 70 systems. .7 COMPUTER Bision
- Over time the LINPACK Benchmark when through a number of changes.
- Began with Fortran code, run the code as is, no changes, N = 100 (Table 1)

- Later N = 1000 introduced, hand coding to allow for optimization and parallelism
(Table 2)

- Timing harness provided to generate matrix, check the solution
- The basic algorithm, GE/PP, remained the same.

- 1989 started putting together Table 3 (Toward Peak Performance) of the
LINPACK benchmark report.
- N allowed to be any size

- Timing harness provided to generate matrix, check the solution
- List Rmax’ Nmax’ Rpeak

- In 2000 we put together an optimized implementation of the benchmark,
called High Performance LINPACK or HPL.

- Sets the problem up and checks the results
- Just needs optimized version of BLAS and MPI.

Januar y 1984

http://tiny.cc/hpc

TOP300

- In 1986 Hans Meuer started a list of
supercomputer around the world, they were
ranked by peak performance.

- Hans approached me in 1992 to merge our
lists into the “TOP500”.

- The first TOP500 list was in June 1993.

®
200

SUPERCOMPUTER SITES

Rank Site System Cores Rmax (GFlopis) Rpeak (GFlop/s) Power (kW)

€D Los Alamos National Laboratory CM-5/1024 1,024 59.7 131.0
United States Thinking Machines Corporation

o Minnesota Supercomputer Cantear CM-5/544 544 304 636
United States Thinking Machines Corporation

€ National Security Agency CM-5/512 512 30.4 65.5
United States Thinking Machines Corporation

© ncsa CM-5/512 512 30.4 65.5
United States Thinking Machines Corporation

© nec SX-3/44R] 232 258
Japan NEC

o Atmospheric Environment Service (AES) SX-3/44 4 20.0 220

http://tiny.cc/hpcg 5

High Performance LINPACK (HPL)

- Is a widely recognized and discussed metric for ranking
high performance computing systems

- When HPL gained prominence as a performance metric in
the early 1990s there was a strong correlation between
its predictions of system rankings and the ranking
that full-scale applications would realize.

- Computer vendors pursued designs that would
increase their HPL performance, which would in turn

improve overall application performance.

- Today HPL remains valuable as a measure of historical
trends, and as a stress test, especially for leadership
class systems that are pushing the boundaries of current
technology.

http://tiny.cc/hpcg 6

LINPACK Benchmark — Still Learning Things

- We use a backwards error residual to
check the “correctness” of the
solution. .
"b - A"B"oo

eN ([Iblloc + llAllcollzll o) ’

0.1

Norm of Residual vs Size of Problem

LK

0.01

- This is the classical Wilkinson error

Normalized Residual
«0
®
.0
’g.
®

0.001 ’ :
bound. o K
- If the residual is small O(1) then the oo'm
software is doing the best it can | ¢
independent of the conditioning of the = 100000 R —
matrix. et

- We say O(1) is OK, the code allows
the residual to be less than O(10).

- For large problems we noticed the
residual was getting smaller.

http://tiny.cc/hpcg 7

LINPACK Benchmark — Still Learning Things

- We use a backwards error residual to
check the “correctness” of the
solution. .
"b - A-'L'"oo

eN ([Iblloc + llAllcollzll o) ‘

0.1

Norm of Residual vs Size of Problem

‘e

0.01

- This is the classical Wilkinson error

0.001

Normalized Residual
«0
®
® 0
Ky
’g.
®

bound. n K

- If the residual is small O(1) then the .
software is doing the best it can B
independent of the conditioning of the = i R —
matrix. N

- We say O(1) is OK, the code allows
the residual to be less than O(10).

- For large problems we noticed the
residual was getting smaller O(10-3).
- Allowing 4 decimal digits of potential error

http://tiny.cc/hpcg 8

LINPACK Benchmark — Still Learning Things

- The current criteria might be
abOUt 0(103) tOO |aX WhICh l:l:rm of Modified Res vs:i_ie of Problem
allows error for the last 10-12 10 s .
bits of the mantissa to go *

undetected.

s a—
- We believe this has to do with .

the rounding errors for 000001

10000 100000 1000000 10000000 100000000

collective ops when done in |
parallel, i.e. MatVec and norms

- A better formulation of the
residual might be: Where (N /Q)log(Q)

b — Ax | comes from the way the sums are done
- in Q chucks and then reduced in a log

eEN/Q)log(O)UIDIN, +IWAN_Nx_) fashion.

Mod Norm Based on paralle | reduction

*

http://tiny.cc/hpcg 9

Concerns

- HPL performance of computer systems are no longer so strongly
correlated to real application performance, especially for the broad
set of HPC applications governed by partial differential equations.

- The gap between HPL predictions and real application
performance will increase in the future.

- A computer system with the potential to run HPL at an Exaflop is a
design that may be very unattractive for real applications.

- Future architectures targeted toward good HPL performance will
not be a good match for most applications.

- This leads us to a think about a different metric

HPL - Good Things

Easy to run

Easy to understand

Easy to check results

Stresses certain parts of the system

Historical database of performance information
Good community outreach tool
“Understandable” to the outside world

“If your computer doesn’t perform well on the LINPACK
Benchmark, you will probably be disappointed with the
performance of your application on the computer.”

HPL - Bad Things

LINPACK Benchmark is 36 years old
TOP500 (HPL) is 20.5 years old

Floating point-intensive performs O(n3) floating point
operations and moves O(n?) data.

No longer so strongly correlated to real apps.

Reports Peak F|OpS (although hybrid systems see only 1/2 to 2/3 of Peak)
Encourages poor choices in architectural features
Overall usability of a system is not measured

Used as a marketing tool

Decisions on acquisition made on one number
Benchmarking for days wastes a valuable resource

http://tiny.cc/hpcg 12

Running HPL

- In the beginning to run HPL on the number 1 system
was under an hour.

- On Livermore’s Sequoia IBM BG/Q the HPL run took
about a day to run.

- They ran a size of n=12.7 x 10%(1.28 PB)
- 16.3 PFlop/s requires about 23 hours to run!!

- The longest run was 60.5 hours

- JAXA machine
- Fujitsu FX1, Quadcore SPARC64 VIl 2.52 GHz
- A matrix of size n = 3.3 x 106

- .11 Pflop/s #160 today

#1 System on the TOP500 Over the Past 20 Years
(16 machines 1n that club) 9

TMC CM-5/1024

11/93 (1) Fujitsu Numerical Wind Tunnel

6/94 (1) Intel XP/S140
11/94 - 11/95 (3) [Fujitsu Numerical Wind Tunnel

6/96 (1) Hitachi SR2201/1024

11/96 (1) Hitachi CP-PACS/2048
6/97 - 6/00 (7) Intel ASCI Red
11/00 - 11/01 (3) IBM ASCI White, SP Power3 375 MHz
6/02 - 6/04 (5) INEC Earth-Simulator
11/04 - 11/07 (7) IBM BlueGene/L
6/08 - 6/09 (3) IBM Roadrunner - PowerXCell 8i 3.2 Ghz
11/09 - 6/10 (2) Cray Jaguar - XT5-HE 2.6 GHz

11/10 (1) NUDT Tianhe-1A, X5670 2.93Ghz NVIDIA
6/11-11/11 (2) [Fujitsu K computer, SPARC64 VIIIfx

6/12 (1) IBM Sequoia BlueGene/Q

11/12 (1) Cray XK7 Titan AMD + NVIDIA Kepler
6/13-11/13 (2) NUDT Tianhe-2 Intel IvyBridge & Xeon Phi

6/93 (1)

060
124
143
170
.220
.368
2.38
7.23

I

2

5222
31920
55700
42000
138,24C
103,68C

362,880
518,096

35.9 1,000,00C

478.

1,000,000

1,105. 2,329,59
1,759. 5,474,227
2,566, 3,600,00
10,510, 11,870,20
16,324. 12,681,215
17,590. 4,423,680
33,862. 9,960,000

0.4
0.1
0.2
0.1
2.2
0.6
3.7
3.6
5.2
0.4
2.1
17.3
3.4
29.5
23.1
0.9
5.4

.85

6.4
1.4
2.3
6.9
4.0
9.9
7.9
8.2
17.8

http://tiny.cc/hpc 14

Many Other Benchmarks

- TOP500 - Livermore Loops
- Green 500 - EuroBen
- Graph 800-160 - NAS Parallel Benchmarks
- Sustained Petascale - Genesis
Performance - RAPS
- HPC Challenge . SHOC
- Perfect - LAMMPS
- ParkBench . Dhrystone
- SPEC-hpc - Whetstone

- Big Data Top100 - 1/0 Benchmarks

http://tiny.cc/hpc

Goals for New Benchmark

- Augment the TOPS500 listing with a benchmark that correlates with important
scientific and technical apps not well represented by HPL

Compact
Model

- Encourage vendors to focus on architecture features needed for high
performance on those important scientific and technical apps.

- Stress a balance of floating point and communication bandwidth and latency
- Reward investment in high performance collective ops
- Reward investment in high performance point-to-point messages of various sizes
- Reward investment in local memory system performance
- Reward investment in parallel runtimes that facilitate intra-node parallelism
- Provide an outreach/communication tool
- Easy to understand
- Easy to optimize
- Easy to implement, run, and check results
- Provide a historical database of performance information
- The new benchmark should have longevity

Proposal: HPCG

High Performance Conjugate Gradient (HPCG).
Solves Ax=b, A large, sparse, b known, x computed.

An optimized implementation of PCG contains essential
computational and communication patterns that are
prevalent in a variety of methods for discretization and
numerical solution of PDEs

Patterns:
Dense and sparse computations.
Dense and sparse collective.
Data-driven parallelism (unstructured sparse triangular solves).

Strong verification and validation properties (via spectral
properties of CG).

