
http://tiny.cc/hpcg

ACCIDENTAL
BENCHMARKER
Jack Dongarra & Piotr Luszczek
University of Tennessee/ORNL

Michael Heroux
Sandia National Labs

1

http://tiny.cc/hpcg

Started 36 Years Ago
 •  In the late 70’s the

fastest computer ran
LINPACK at 14 Mflop/s

•  In the late 70’s floating
point operations were
expensive compared to
other operations and
data movement

• Matrix size, n = 100
•  That’s what would fit in

memory

2

•  LINPACK code is based on “right-looking”
algorithm:
•  O(n3) Flop/s and O(n3) data movement

http://tiny.cc/hpcg

LINPACK to HPL to TOP500
Changes over time
•  LINPACK Benchmark report, ANL TM-23, 1984

•  Performance of Various Computers Using Standard Linear
Equations Software, listed about 70 systems.

•  Over time the LINPACK Benchmark when through a number of changes.
•  Began with Fortran code, run the code as is, no changes, N = 100 (Table 1)
•  Later N = 1000 introduced, hand coding to allow for optimization and parallelism

(Table 2)
•  Timing harness provided to generate matrix, check the solution
•  The basic algorithm, GE/PP, remained the same.

•  1989 started putting together Table 3 (Toward Peak Performance) of the
LINPACK benchmark report.
•  N allowed to be any size
•  Timing harness provided to generate matrix, check the solution
•  List Rmax, Nmax, Rpeak

•  In 2000 we put together an optimized implementation of the benchmark,
called High Performance LINPACK or HPL.
•  Sets the problem up and checks the results
•  Just needs optimized version of BLAS and MPI.

3

http://tiny.cc/hpcg

TOP500
•  In 1986 Hans Meuer started a list of

supercomputer around the world, they were
ranked by peak performance.

• Hans approached me in 1992 to merge our
lists into the “TOP500”.

•  The first TOP500 list was in June 1993.

4

http://tiny.cc/hpcg

High Performance LINPACK (HPL)
•  Is a widely recognized and discussed metric for ranking

high performance computing systems
• When HPL gained prominence as a performance metric in

the early 1990s there was a strong correlation between
its predictions of system rankings and the ranking
that full-scale applications would realize.

• Computer vendors pursued designs that would
increase their HPL performance, which would in turn
improve overall application performance.

•  Today HPL remains valuable as a measure of historical
trends, and as a stress test, especially for leadership
class systems that are pushing the boundaries of current
technology.

5

http://tiny.cc/hpcg

LINPACK Benchmark – Still Learning Things
•  We use a backwards error residual to

check the “correctness” of the
solution.

•  This is the classical Wilkinson error
bound.
•  If the residual is small O(1) then the

software is doing the best it can
independent of the conditioning of the
matrix.

•  We say O(1) is OK, the code allows
the residual to be less than O(10).

•  For large problems we noticed the
residual was getting smaller.

6

http://tiny.cc/hpcg

LINPACK Benchmark – Still Learning Things
•  We use a backwards error residual to

check the “correctness” of the
solution.

•  This is the classical Wilkinson error
bound.
•  If the residual is small O(1) then the

software is doing the best it can
independent of the conditioning of the
matrix.

•  We say O(1) is OK, the code allows
the residual to be less than O(10).

•  For large problems we noticed the
residual was getting smaller O(10-3).
•  Allowing 4 decimal digits of potential error

7

http://tiny.cc/hpcg

LINPACK Benchmark – Still Learning Things

•  The current criteria might be
about O(103) too lax which
allows error for the last 10-12
bits of the mantissa to go
undetected.

• We believe this has to do with
the rounding errors for
collective ops when done in
parallel, i.e. MatVec and norms

• A better formulation of the
residual might be:

8

Where

comes from the way the sums are done
in Q chucks and then reduced in a log
fashion.

http://tiny.cc/hpcg

Concerns
•  HPL performance of computer systems are no longer so strongly

correlated to real application performance, especially for the broad
set of HPC applications governed by partial differential equations.

•  The gap between HPL predictions and real application
performance will increase in the future.

•  A computer system with the potential to run HPL at an Exaflop is a

design that may be very unattractive for real applications.

•  Future architectures targeted toward good HPL performance will

not be a good match for most applications.

•  This leads us to a think about a different metric

9

http://tiny.cc/hpcg

HPL - Good Things
• Easy to run
• Easy to understand
• Easy to check results
• Stresses certain parts of the system
• Historical database of performance information
• Good community outreach tool
•  “Understandable” to the outside world

•  “If your computer doesn’t perform well on the LINPACK

Benchmark, you will probably be disappointed with the
performance of your application on the computer.”

10

http://tiny.cc/hpcg

HPL - Bad Things
•  LINPACK Benchmark is 36 years old

•  TOP500 (HPL) is 20.5 years old

•  Floating point-intensive performs O(n3) floating point
operations and moves O(n2) data.

• No longer so strongly correlated to real apps.
• Reports Peak Flops (although hybrid systems see only 1/2 to 2/3 of Peak)
• Encourages poor choices in architectural features
• Overall usability of a system is not measured
• Used as a marketing tool
• Decisions on acquisition made on one number
• Benchmarking for days wastes a valuable resource

11

http://tiny.cc/hpcg

Running HPL
•  In the beginning to run HPL on the number 1 system

was under an hour.
• On Livermore’s Sequoia IBM BG/Q the HPL run took

about a day to run.
•  They ran a size of n=12.7 x 106 (1.28 PB)

•  16.3 PFlop/s requires about 23 hours to run!!

•  The longest run was 60.5 hours
•  JAXA machine

•  Fujitsu FX1, Quadcore SPARC64 VII 2.52 GHz
•  A matrix of size n = 3.3 x 106

•  .11 Pflop/s #160 today

12

http://tiny.cc/hpcg #1 System on the TOP500 Over the Past 20 Years
(16 machines in that club)

TOP500 List Computer
r_max

(Tflop/s) n_max Hours MW
6/93 (1) TMC CM-5/1024 .060 52224 0.4
11/93 (1) Fujitsu Numerical Wind Tunnel .124 31920 0.1 1.
6/94 (1) Intel XP/S140 .143 55700 0.2

11/94 - 11/95 (3) Fujitsu Numerical Wind Tunnel .170 42000 0.1 1.
6/96 (1) Hitachi SR2201/1024 .220 138,240 2.2
11/96 (1) Hitachi CP-PACS/2048 .368 103,680 0.6

6/97 - 6/00 (7) Intel ASCI Red 2.38 362,880 3.7 .85
11/00 - 11/01 (3) IBM ASCI White, SP Power3 375 MHz 7.23 518,096 3.6
6/02 - 6/04 (5) NEC Earth-Simulator 35.9 1,000,000 5.2 6.4
11/04 - 11/07 (7) IBM BlueGene/L 478. 1,000,000 0.4 1.4
6/08 - 6/09 (3) IBM Roadrunner – PowerXCell 8i 3.2 Ghz 1,105. 2,329,599 2.1 2.3

11/09 - 6/10 (2) Cray Jaguar - XT5-HE 2.6 GHz 1,759. 5,474,272 17.3 6.9
11/10 (1) NUDT Tianhe-1A, X5670 2.93Ghz NVIDIA 2,566. 3,600,000 3.4 4.0

6/11 - 11/11 (2) Fujitsu K computer, SPARC64 VIIIfx 10,510. 11,870,208 29.5 9.9
6/12 (1) IBM Sequoia BlueGene/Q 16,324. 12,681,215 23.1 7.9
11/12 (1) Cray XK7 Titan AMD + NVIDIA Kepler 17,590. 4,423,680 0.9 8.2

6/13 – 11/13 (2) NUDT Tianhe-2 Intel IvyBridge & Xeon Phi 33,862. 9,960,000 5.4 17.8

9 6 2

13

http://tiny.cc/hpcg

Many Other Benchmarks
• TOP500
• Green 500
• Graph 500 160
• Sustained Petascale
Performance

• HPC Challenge
• Perfect
• ParkBench
• SPEC-hpc
• Big Data Top100

• Livermore Loops
• EuroBen
• NAS Parallel Benchmarks
• Genesis
• RAPS
• SHOC
• LAMMPS
• Dhrystone
• Whetstone
•  I/O Benchmarks

14

http://tiny.cc/hpcg

Goals for New Benchmark
•  Augment the TOP500 listing with a benchmark that correlates with important

scientific and technical apps not well represented by HPL

•  Encourage vendors to focus on architecture features needed for high

performance on those important scientific and technical apps.
•  Stress a balance of floating point and communication bandwidth and latency
•  Reward investment in high performance collective ops
•  Reward investment in high performance point-to-point messages of various sizes
•  Reward investment in local memory system performance
•  Reward investment in parallel runtimes that facilitate intra-node parallelism

•  Provide an outreach/communication tool
•  Easy to understand
•  Easy to optimize
•  Easy to implement, run, and check results

•  Provide a historical database of performance information
•  The new benchmark should have longevity

http://tiny.cc/hpcg 15

http://tiny.cc/hpcg

Proposal: HPCG
• High Performance Conjugate Gradient (HPCG).
• Solves Ax=b, A large, sparse, b known, x computed.
• An optimized implementation of PCG contains essential

computational and communication patterns that are
prevalent in a variety of methods for discretization and
numerical solution of PDEs

• Patterns:

•  Dense and sparse computations.
•  Dense and sparse collective.
•  Data-driven parallelism (unstructured sparse triangular solves).

• Strong verification and validation properties (via spectral
properties of CG).

16

