Journal of Computer Security 23 (2015) 167-195 167
DOI 10.3233/JCS-140515
IOS Press

Accountable wiretapping — or —
I know they can hear you now

Adam Bates »*, Kevin R.B. Butler?, Micah Sherr?, Clay Shields b Patrick Traynor® and
Dan Wallach ¢

4 University of Florida, Gainesville, FL, USA

E-mails: bates@cise.ufl.edu, butler @ufl.edu, traynor@cise.ufl.edu
b Georgetown University, Washington, DC, USA

E-mails: msherr@cs.georgetown.edu, clay@cs.georgetown.edu

¢ Rice University, Houston, TX, USA

E-mail: dwallach@cs.rice.edu

Abstract. In many democratic countries, Communications Assistance for Law Enforcement Act (CALEA) wiretaps are used
by law enforcement agencies to perform investigations and gather evidence for legal procedures. However, existing CALEA
wiretap implementations are often engineered with the assumption that wiretap operators are trustworthy and wiretap targets do
not attempt to evade the wiretap. Although it may be possible to construct more robust wiretap architectures by reengineering
significant portions of the telecommunications infrastructure, such efforts are prohibitively costly. This paper instead proposes a
lightweight accountable wiretapping system for enabling secure audits of existing CALEA wiretapping systems. Our proposed
system maintains a tamper-evident encrypted log over wiretap events, enforces access controls over wiretap records, and enables
privacy-preserving aggregate queries and compliance checks. We demonstrate using campus-wide telephone trace data from
a large university that our approach provides efficient auditing functionalities while incurring only modest overhead. Based
on publicly available wiretap reporting statistics, we conservatively estimate that our architecture can support tamper-evident
logging for all of the United States” ongoing CALEA wiretaps using three commodity PCs.

Keywords: Wiretapping, accountability, secure logging, secure audit

1. Introduction

Legally authorized wiretaps are conducted in every democratic country in the world. Generally ap-
proved by some external judicial process, sanctioned interception allows law enforcement to gather
information about call activity related to potentially illicit activities. The information generated by
this process is both extremely valuable and sensitive, making its protection of paramount impor-
tance.

Like any other process that creates or manages important data, the ability to audit wiretaps is critical.
Verifying the correctness of such data not only gives the public better protection against abuse and
greater confidence in the process, but also provides law enforcement agencies with stronger guarantees

*Corresponding author: Adam Bates, Southeastern Security for Enterprise and Infrastructure (SENSEI) Center, Department
of Computer & Information Science & Engineering, E451 CSE Building, PO Box 116120, Gainesville, FL 32611, USA. Tel.:
+1 352 392 1090; Fax: +1 352 392 1220; E-mail: bates @cise.ufl.edu.

0926-227X/15/$35.00 © 2015 — IOS Press and the authors. All rights reserved

168 A. Bates et al. / Accountable wiretapping — or — I know they can hear you now

for their evidence. However, because the existence of a wiretap is itself a secret, providing verifiable
evidence that legal interception was correctly conducted and logged is difficult.

In this paper, we propose an accountable wiretapping architecture that enhances wiretapping sys-
tems by adding tamper-evident records of wiretap events. In addition to the standard wiretap channel
to law enforcement agencies (LEAs), we introduce ENCRYPTOR devices that interpose on the output of
CALEA switches. ENCRYPTORSs transmit encrypted wiretap records to an external wiretap log storage
provider, referred to as the “L0OG”, that stores the encrypted wiretap data and performs on-demand audits
over the encrypted records. The LOG allows auditors such as a supervising court, a justice department,
or an NGO, to reconcile events captured by LEAs with those in the LOG. Our threat model considers
three potential adversaries: (i) the target of the wiretap who employs known denial-of-service attacks to
overwhelm the wiretap’s resources [44], (ii) a malicious employee of the service provider who wishes
to undetectably perform an unauthorized wiretap using the CALEA APIs, and (iii) a dishonest LOG
that attempts to learn information about current and/or previous wiretaps. We demonstrate that under
our reasonable assumptions, our auditing system detects the former two attacks and provides privacy
mechanisms to limit the unauthorized exposure of wiretap information against the third.

This paper makes the following contributions:

e Proposes methods for detecting attacks against the CALEA infrastructure: A number of recent pa-
pers have demonstrated potential vulnerabilities in the wiretapping infrastructure [43,44]. However,
research in this area is largely outside of the public’s purview. Our work represents the first public
effort to improve both confidence and accuracy of legal telephony interception.

o [ntroduces system and associated protocols to enable trustworthy wiretap auditing: We introduce a
threat model for accountable wiretapping, and argue that existing wiretap collection and retention
services do not adequately protect the integrity of wiretap records. We describe protocols for per-
forming efficient auditing, reporting and compliance verification over encrypted wiretap records. In
particular, we present protocols for protecting the confidentiality of wiretap records and providing
tabulation and proofs of completeness to an auditor. These protocols are deployed in distributed
architecture that forms a minimal-impact retrofit for current interception systems.

o FEvaluates implementation through extensive performance study: We build a proof-of-concept im-
plementation of our auditing infrastructure and conduct a range of performance benchmarks. We
measure our system using anonymized call data from a major university. Based on the reported
number of CALEA wiretaps [13], we estimate that our system could accommodate all U.S. wire-
taps on 3 commodity machines.

o [ntroduce microauditing procedures to enable real-time assurance of audit goals: In our conference
version of this paper, we assumed that wiretap record auditing is an infrequent offline cost [3].
Leveraging the properties of the history tree data structure [12], we create online audit protocols
that facilitate frequent challenges of wiretap record Integrity, Completeness, Date Compliance and
Reporting. In exchange for a manageable increase in record insertion cost, these new procedures
create upwards of a 99.8% speed improvement for trustworthy wiretap auditing; for example, court
audit speed improves from 0.2 audits per second to 312 audits per second.

The rest of this paper is organized as follows. In Section 2 we review lawful access as well as the
CALEA architecture and its known vulnerabilities. We define the requirements of an accountable wire-
tapping system in Section 3. In Section 4 we present our protocols for secure logging and auditing of
wiretap records. A security analysis of our architecture and protocols follows in Section 5. Section 6
evaluates the performance of a proof-of-concept accountable wiretapping implementation. In Section 7,

A. Bates et al. / Accountable wiretapping — or — I know they can hear you now 169

we present an optimized set of microaudit protocols that enable auditing challenges to efficiently run
in parallel with regular call interception. Related work is discussed in Section 8, and we conclude in
Section 9.

2. Background

This paper makes the distinction between lawfully authorized surveillance and illegal eavesdropping.
The latter is a much more widely understood threat: an eavesdropper surreptitiously observes some traf-
fic and attempts to learn the content of the communication and/or the identities of the communicants.
The problem of illicit eavesdropping has been well studied, and eavesdropping tools as well as counter-
measures are readily available. In contrast, lawfully authorized wiretaps are subject to legal constraints.
Courts, or in some instances a law enforcement agency, must approve of the wiretap.

Wiretaps can be divided into two classes: Pen register/trap and trace (‘“pen/trap”) devices record call
information such as call establishment, call disconnection, call waiting, call redirection and dialed digits.
Pen register devices record the metadata related to outgoing calls; trap and trace devices do the same for
incoming calls. Neither system records call content. In the United States, the requirements for obtaining
pen/trap wiretaps are much lower than that for content wiretaps: law enforcement agencies (LEAs) need
only assert that metadata is pertinent to an ongoing investigation [52].

The second class, Content wiretaps, capture both call metadata and call content. In many jurisdictions,
LEAs must convince a court that they have a reasonable belief that a target has committed a crime
(i.e., “probable cause”). In the U.S., pen/trap orders are more common than full content wiretaps. For
example, 20,899 pen/trap orders [51] and 386 content wiretap orders [13] were authorized in 2008.
For both pen/trap and content wiretaps, the wiretapping is carried out by technicians employed by the
service provider. Wiretap data are then transferred in real-time to a listening post maintained by a law
enforcement agency.

Despite the importance of wiretap evidence to investigators and the courts, there are only a few pub-
licly available and impartial studies of wiretap systems and architectures [25,43,44]. In part, this is be-
cause conducting an academic study of wiretap systems is complicated by legal constraints and business
practices. Wiretap systems are often closed-source “black boxes” with little publicly available informa-
tion, and manufacturers often provide technical specifications only to law enforcement organizations. In
the U.S., the possession of wiretap equipment by non-law enforcement personnel is generally prohibited
and punishable by up to five years in prison [52].

The inability to properly study deployed wiretap systems gives an advantage to those who wish to
circumvent them; those who intend to illegally subvert a surveillance system are not usually constrained
by the laws governing access to the wiretaps. Indeed, the limited amount of research that has looked
at wiretap systems [43] and standards [44] has shown that existing wiretaps are vulnerable to unilateral
countermeasures by the target of the wiretap, resulting in incorrect call records and/or omissions in audio
recordings.

It has recently been argued [39] that wiretapping architectures can be made more robust by, for exam-
ple, mandating that traffic flow through centralized “interception points” and imposing key escrow for
all encrypted communication. There are significant technological and economic costs and risks [6,25]
associated with such a massive re-architecting of our communications networks. Modification would
likely require billions of dollars. As legal wiretaps make up a small faction of all communications, re-
engineering the system to improve wiretap capabilities is impractical and costly.

170 A. Bates et al. / Accountable wiretapping — or — I know they can hear you now
2.1. CALEA wiretap architecture

The 1994 U.S. Communications Assistance for Law Enforcement Act (CALEA) [11] requires
telecommunication service providers to incorporate wiretapping functionality into their switches. Previ-
ous wiretap architectures relied on the physical cloning of wireline connections. The growth of cellular
communication led to the promotion and eventual adoption of the newer and more flexible CALEA
wiretapping architecture. The CALEA law seeks to standardize methods and protocols for conveying
wiretap information from providers’ switches to law enforcement agencies. A major impetus of the Act
was to standardize wiretap processing for new service offerings — in particular, cellular voice and data
services. In 2003, telecommunication industry associations with input from law enforcement officials
published ANSI Standard J-STD-025 (commonly referred to as the “J-Standard”) [46], a collection of
deployment guidelines and protocol specifications for communicating wiretap data to LEAs. Somewhat
confusingly, “CALEA” is often used to refer to both the U.S. law regarding wiretap requirements as well
as the J-Standard systems that are used by several countries to conduct wiretapping.

An overview of the CALEA wiretap architecture is presented in Fig. 1. Each subscribed service (e.g.,
landline phone, cellular, etc.) connects to the service provider through a switch located at the subscriber’s
central office. The switch relays the user’s communication to and from the rest of the telephone network
(solid lines). If the subscriber is also a target of a wiretap, then the CALEA-compliant switch also
sends a copy of the traffic to a Delivery Function (DF). Located at the service provider, the DF collects
wiretap information from the switches and transfers it via J-Standard defined protocols to the LEA
(dashed lines). We note that the last-mile connection between a mobile phone and the switch is actually
considerably more complex. Conceptually, voice and data packets are routed via a Mobile Switching
Center to the subscriber’s central office. For clarity, Fig. 1 omits these extra hops, which are orthogonal
to the operation of the wiretap. We note also that service providers maintain many such central offices,
and a typical central office may serve a few thousand customers.

Call metadata (e.g., the identities of the communicants) are relayed via separate channels than call
content to the LEA. The DF combines all sources of call metadata that are associated with a given
wiretap, and encodes the information using the Lawfully Authorized Electronic Surveillance Protocol
(LAESP) that is defined by the J-Standard. Metadata from different services (landline telephone, cellu-
lar, etc.) are multiplexed over the same call metadata channel between the DF and the LEA. LAESP

Wiretap target 11 | Telecommunications Service Provider (TSP)
l < e < -,
Switch H Metadata channel >
H . N eecemc====- 3
@ < sesimmgy «— | | Delivery
Switch i+ Function Content channel 1 »| Enforcement
!
Wiretap target 2 ! (DF) | Content channeln_ Ly
]
E
I - e I
— Switch i Telephone
- e+ | > Network
Switch

Fig. 1. CALEA wiretap architecture. Solid arrows indicate standard telephony communication. Dashed arrows denote CALEA
wiretap traffic flows. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/JCS-140515.)

A. Bates et al. / Accountable wiretapping — or — I know they can hear you now 171

protocol headers identify the pertinent wiretap order as well as the switch that captured the call event.
The J-Standard also permits call metadata events belonging to different wiretap orders to be multiplexed
together over the same call metadata channel, so long as they are associated with the same LEA.

In the case of content wiretaps, the DF creates one or more call content channels between itself and the
LEA. Unlike the call metadata, call content is not multiplexed — each intercepted service is allocated with
its own dedicated call content channel. Intercepted content communication is typically copied verbatim
and transferred over the call content channel.

2.2. Vulnerabilities in CALEA wiretaps

Previous work has shown that CALEA wiretaps are vulnerable to target-initiated DoS attacks [44].
Although the J-Standard does not mandate a particular type of connection between the DF and the LEA,
it recommends using a 64 kbps ISDN B line for each call content and call metadata channel. The target of
the wiretap may overwhelm the 64 kbps connection by purposefully inducing a high rate of call events.
For example, in the case of content wiretaps, six LAESP messages are sent via the call metadata channel
whenever the subject attempts and aborts a phone call, consuming 1.3 kB of bandwidth per attempt.
Telephony services which enable the target to attempt more than 6.2 calls per second (as is the case
for VoIP services) permit the target to overwhelm the 64 kbps capacity of the call metadata channel.
Additionally, the target may apply other signaling techniques (e.g., rapid ISDN feature key selection) to
similarly exhaust the call metadata channel. (Recall that the DF multiplexes signaling information from
multiple services over the same call metadata channel, improving the target’s ability to conduct DoS
attacks.) Since the call metadata channel carries control messages which indicate the start and end times
of audio content [46], its exhaustion may also lead to gaps in content recordings [44].

3. Accountable wiretapping

There is little publicly available information regarding the operation and features of existing CALEA
wiretap implementations. Manufacturers often closely guard the operation, security features, and limita-
tions of their wiretap systems. However, the product white papers and manuals that are accessible [9,10]
indicate that wiretap systems perform little logging. In part, this is by design: the existence of a wiretap is
considered sensitive information. Preventing a (potentially rogue) technician from enumerating all past
and present wiretaps reduces the risk that wiretaps become exposed.

This paper argues that wiretap events can be logged in a privacy-preserving manner, enabling secure
audits of CALEA wiretaps. There are unfortunately no previously defined or well-established security
requirements for conducting auditable wiretaps: neither the J-Standard nor any product literature of
which we are aware describe technologies for conducting audits. Similarly, U.S. and European law do
not appear to consider an audit process.

We note that at least one company advertises collection and retention services that can be used in a
wiretap audit [54]. However, their product receives cleartext wiretap information from service providers,
and is therefore inherently trusted with such data. In contrast, our architecture assumes a potentially
untrusted logging service, and ensures that the LOG (i) never obtains access to plaintext wiretap records,
(i1) cannot determine the number or scope of wiretaps, and (iii) can provide proofs to the auditors that
it has correctly recorded all (encrypted) data. Given the sensitivity of wiretap data and the ease at which
trusted systems may become compromised, we argue that the storage service should be modeled as an
untrusted participant.

172 A. Bates et al. / Accountable wiretapping — or — I know they can hear you now
3.1. Security goals

Our accountable wiretapping system aims to achieve the following audit goals:

Integrity: A wiretap audit should identify modified or corrupted wiretap records. Formally, if L. =
{7j,..., T} are the wiretap records belonging to wiretap ¥ that are sent by the service provider
between times [T, T¢], and L' = {7/,...,7,,} are the wiretap records received by the LEA that
purportedly belong to W within times [T, 7T.], then the audit should identify the true wiretap
records L N L.

Completeness: A wiretap audit should identify gaps in the records collected by the LEA. Given the
above definitions of L and L/, the audit should determine whether L' O L. Note that this definition
of completeness encompasses the scenario in which L' = L.

Date Compliance: A wiretap-granting authority authorizes a wiretap for a date range. The audit process
should determine whether events were captured outside of that range. That is, given a date range
[T5s,T.] and a wiretap event 7, the audit should reveal whether the interception of T occurred
within [T, T¢].

Importantly, the audit goals are sufficient to detect the DoS attacks described in Section 2.2: An auditor
can detect LAESP messages that have been corrupted or lost due to target-initiated signaling attacks by
verifying the wiretap records’ Integrity and Completeness.

Additionally, our audit process should support the efficient collection of information for legally man-
dated wiretap reporting requirements. The Omnibus Crime Control and Safe Streets Act [52] requires
the Administrative Office of the U.S. Courts to present an annual wiretap report to Congress. The report
includes the number of new and expiring pen/trap and content wiretaps. European nations have similar
reporting requirements (e.g., England’s Regulation of Investigatory Powers Act of 2000 [7]). Although
U.S. law requires the Attorney General to separately report the number of pen/trap and content wiretaps,
the number of pen/trap wiretaps has not regularly been disclosed. U.S. Public Law 106-197 additionally
requires the AO to report the number of times that law enforcement detected that the target’s commu-
nications were encrypted [53]. Interestingly, encryption does not seem to be widely applied: the 2010
Wiretap Report discloses only six instances of encryption, and notes that this “...did not prevent offi-
cials from obtaining the plain text of the communications.” [14]. Towards achieving compliance with
these reporting requirements, our architecture supports the following accounting goal:

Reporting: The audit should accurately report the number of new pen/trap wiretaps, new content wire-
taps, expiring pen/trap wiretaps, and expiring content wiretaps within a specified time interval
[T5, Te].

By reconciling with law enforcement and court records, the Reporting functionality can also be applied
to detect unauthorized wiretaps (i.e., a content or pen/trap wiretap that has not been authorized by a
court or law enforcement agency, respectively). In addition to detection, an audit process that supports
Reporting allows the auditor to issue repeated requests to discover the time that the illegal wiretap was
initiated.

Our proposed system is a first step in developing more accountable wiretap systems. As such, we do
not prevent attacks similar to the “Athens Affair” [35] in which telephony switch software was directly
modified by an insider. We believe that our model is still powerful, especially considering that most
other security infrastructure also fails when an adversary gains direct access to a machine. Additionally,

A. Bates et al. / Accountable wiretapping — or — I know they can hear you now 173

Accountant

3

(1) wiretap ID

(2) wiretap records

Law Enforcement
-W\retap records , by r

Fig. 2. Wiretapping audit workflows. Left: The ENCRYPTOR transfers encrypted copies of wiretap records to the LOG. Center:
A court auditor requests wiretap records from the LOG. Right: An accountant gathers coarse-grained statistics about collected
wiretaps.

our current system only considers pen/trap orders and not content wiretaps. As Pen registers represented
98% of total U.S. wiretap orders in 2008 [13,51], our system already achieves our security audit goals
for the vast majority of wiretaps.

3.2. Architecture and participants

Our proposed audit process is designed to augment existing CALEA deployments without requiring
significant (and costly) modifications at the service provider. In particular, our solution introduces a
single component — the ENCRYPTOR — at the provider’s central office.

Recall that the Delivery Function (DF) collects wiretap information from various switches located at
the central office, and transmits call metadata and (optionally) call content pertaining to a wiretap to
a LEA (see Fig. 1). In our accountable wiretapping architecture, the DF is configured to also send a
copy of wiretap events to the ENCRYPTOR. Located at the service provider, the ENCRYPTOR encrypts
wiretap events and transfers them to an off-site storage facility called the LOG (see Fig. 2, left). The
LoOG is an untrusted repository of encrypted wiretap events whose purpose is to archive wiretap data and
assist in the audit process. Unlike commercial wiretap data retention stores [54] which share a similar
architecture to our design, the LOG does not have access to plaintext wiretap information and cannot
enumerate the wiretaps.

The LOG may store data from multiple wiretaps and possibly from multiple telecommunications ser-
vice providers. By outsourcing the burden of wiretap audits away from service providers, the LOG as-
sumes the responsibilities of data maintenance and retention while providing a small barrier to par-
ticipate: From the perspective of the DF, the ENCRYPTOR operates as a sink, collecting call metadata
and content as would a downstream LEA. In turn, the LOG operates as a database of auditable wiretap
records. Although the LOG is not trusted, we argue below that our architecture ensures that insertions,
modifications, or omissions of wiretap events will be detected during an audit.

Finally, we assume the existence of a trusted Wiretap Authority (e.g., a court) that authorizes the
service provider to conduct the wiretap.

Audit types. Our architecture provides support for two types of audits. In a court audit, the auditor
queries the LOG for all records pertaining to a particular wiretap (see Fig. 2, center). For simplicity,
we refer to this authority as a court, although in principle a court audit could be conducted by a non-
judiciary body (e.g., a Justice Department). A court may be authorized to audit one or more wiretaps
(for example, the wiretaps it previously issued), but cannot learn any information about the wiretaps for
which the Wiretap Authority has not granted it access. Court audits may be appropriate, for example, to
ensure (via the Integrity and Completeness properties) that all wiretap events were correctly captured by a
LEA. Such audits are also useful to detect target-initiated DoS attacks against CALEA (see Section 2.2).

174 A. Bates et al. / Accountable wiretapping — or — I know they can hear you now

In an accounting audit, an accountant gathers statistics from the LOG regarding the total number of
pen/trap and content wiretaps (see Fig. 2, right). The accountants are restricted to coarse-grained data:
they should not learn any information regarding individual wiretap events during an accounting audit.
However, the accountants can compile statistics over all the wiretaps stored at the LOG.

Note that both the court auditor and the accountant are trusted. In the former case, the court auditor
is the judicial authority; if malicious, such an authority does not need to circumvent the wiretap audit
in order to corrupt the judicial process. Similarly, since accountants are already tasked with compiling
and reporting wiretap figures, they can simply provide false results. That is, the justice system already
implicitly trusts the court to behave honestly and wiretap tabulators to report accurate statistics; our
architecture assigns similar trust. As we describe next, we must still be able to detect any malicious
behavior by the untrusted LOG.

3.3. Threat model

The overarching goals of our accountable wiretapping infrastructure are tamper-evidence, compliance
with reporting requirements, and privacy: Modifications, insertions, or omissions of wiretap records by
the LOG should be detectable, and no auditor should have access to either coarse- or fine-grained wiretap
information to which the Wiretap Authority has not explicitly granted it access.

We model three adversaries:

o Wiretap target: The target of the wiretap may attempt to cause denial-of-service against the wiretap
by overwhelming the call metadata channel between the Delivery Function (DF) and the LEA. The
target can generate a high frequency of wiretap events (potentially using different devices), causing
the resultant LAESP messages to consume the channel’s bandwidth [44]. A goal of our architecture
is to maintain a complete (Completeness) and accurate (Integrity) record of wiretap events, enabling
court auditors to discover the resulting gaps in the transcripts collected by LEAs.

o Unauthorized wiretappers: We provide some protection against attackers who provision unautho-
rized CALEA wiretaps. Such attackers may include rogue employees of the service provider or
overzealous law enforcement officials. As discussed above, we do not protect against all forms of
data exfiltration; unencrypted data flows throughout the phone system, and e2e solutions that protect
against interception along these points would require a costly reengineering of the existing commu-
nications infrastructure. Instead, we focus on attackers who use the DF’s built-in functionality to
conduct unauthorized wiretaps. We assume that all wiretap events are captured by the ENCRYPTOR.
An accountable wiretap system that achieves the Reporting property ensures that such unauthorized
wiretapping will be detected during accounting audits, since audit results can be reconciled with
records maintained by the Wiretap Authority.

e Dishonest Log: As described above, the LOG receives encrypted wiretap records from the

ENCRYPTOR. A dishonest LOG may attempt to corrupt court or accounting audits by modifying
or deleting these records or by inserting false records. Additionally, the LOG may attempt to cir-
cumvent the privacy properties of our proposed architecture by either learning the plaintext of the
encrypted wiretap records or by discovering timing information about wiretap events.
Our architecture is designed to provide both confidentiality (the LOG cannot decipher encrypted
records) and unlinkability (the LOG cannot determine that two encrypted records belong to the
same wiretap). The former ensures the privacy of wiretap events, while the latter aggravates timing
analysis.

A. Bates et al. / Accountable wiretapping — or — I know they can hear you now 175

Additional network and trust assumptions. As discussed above, we assume that court and accountant
auditors are correct and obey our protocols. (We do, however, prevent a court auditor from learning
any information about wiretaps to which the Wiretap Authority has not granted it access.) We further
assume that the service provider is honest. In particular, the DF generates actual wiretap events (either
legally authorized or not) and the ENCRYPTOR behaves correctly and does not release key material. The
ENCRYPTOR captures all wiretap events output by the DF. Ideally (but not necessarily), the connection
between the ENCRYPTOR and the LOG should be adequately provisioned to prevent loss. As discussed
in Section 4.3, our architecture detects such losses, but cannot distinguish between transmission loss
and the LOG’s purposeful omission of wiretap records. Finally, we assume that the ENCRYPTOR has an
accurate clock.

4. Protocol

To protect the confidentiality of wiretap records, the ENCRYPTOR encrypts records with a symmetric
key known only to itself and a court auditor (recall that the accountant is not authorized to access indi-
vidual wiretap records). Additionally, to enable the court auditor to detect inserted or modified records,
the ENCRYPTOR digitally signs each message before it is sent to the LOG. Handling omissions in a court
audit is slightly less straightforward, and relies on the ENCRYPTOR’s inclusion of encrypted sequence
numbers as well as periodic heartbeat messages. A court auditor, who can decrypt the sequence numbers,
can detect omissions between reported wiretap events by locating gaps in the sequence numbers. The
use of regularly scheduled heartbeat messages bounds the LOG’s ability to omit records at either end of
the audit — that is, messages can be deleted, but the omission of the heartbeat indicates tampering, as do
gaps that occur before or after the heartbeats.

To support accounting audits, the ENCRYPTOR encrypts counters along with each record using an
additive homomorphic encryption scheme. Here, counters capture the number of new and expiring wire-
taps, enabling the Reporting property. During an accounting audit, the LOG computes the sum over the
counter ciphertexts and sends the result to the accountant. The accountant, who possesses the private
key, can then decipher the result. The use of digital signatures and nonce summations (explained in
Section 4.3) enables the auditor to verify the LOG’s results.

4.1. Keying

The Wiretap Authority (“Authority”) authorizes the service provider to conduct a wiretap, and is
responsible for generating and disseminating cryptographic keys. To ensure authenticity, integrity, and
non-repudiation of wiretap events, the Authority generates an authenticity keypair A = (AT, A™) and
securely shares the signing key A~ with the ENCRYPTOR. For each wiretap, the Authority provides
the ENCRYPTOR with a single symmetric key r (the record key) used to encrypt wiretap events. The
Authority also designates a validity period Ty sop Over which the wiretap is authorized, and shares
Tiartstop With the ENCRYPTOR. Finally, the Authority creates an aggregation keypair G = (G, G™) and
gives G to the ENCRYPTOR. The use of the aggregation keypair is explained in Section 4.2.

During the course of a court audit, the Wiretap Authority shares r with the court auditor. For ac-
counting audits, the Authority shares G~ with the accountant. The public key A™ used for verifying the
ENCRYPTOR’s signatures is public, and we assume all auditors have knowledge of this public key (e.g.,
through a certificate signed by the Authority). Note that the LOG does not know any of 7, G* or G~
A summary of the keys used by our protocol is presented in Table 1.

176 A. Bates et al. / Accountable wiretapping — or — I know they can hear you now

Table 1
Summary of keys
Key Description Assignment Knowledge
r Record key. Encrypts wiretap records (either call metadata or Per wiretap ENCRYPTOR, Court Auditor
content).
AT Public authenticity key. Enables authenticity and integrity Per ENCRYPTOR All parties/Public
checking of wiretap records.
A~ Private authenticity key. Enables authenticity and integrity Per ENCRYPTOR ENCRYPTOR
checking of wiretap records.
G™ Public aggregation key. Encrypts wiretap statistics. Per ENCRYPTOR ENCRYPTOR
G~ Private aggregation key. Decrypts encrypted wiretap statistics. Per ENCRYPTOR Accountant

Notes: The Assignment column indicates whether the key varies between wiretaps (“per wiretap”) or is common to all wiretaps
protected by the ENCRYPTOR (“per ENCRYPTOR”). The Knowledge column indicates the parties who possess the key. We
denote symmetric and asymmetric keys respectively in lowercase and uppercase.

4.2. Event logging

The ENCRYPTOR collects events from the Delivery Function (DF), encrypts them, and transmits the
ciphertexts to the LOG. The ENCRYPTOR maintains minimal state, storing only the record key and the
private authenticity and aggregation keys, as well as a per-wiretap event counter.

In this section, we describe our protocol for ensuring confidentiality and unlinkability (the LOG cannot
discover the plaintext records, nor can it enumerate wiretaps or link records as belonging to the same
wiretap). The correctness of audit results (i.e., Integrity, Completeness, Date Compliance and Reporting)
are argued in Section 5.

Let 71,7, ... be a continuous stream of wiretap events produced by the DF. Note that the stream may
include events pertaining to multiple wiretaps. We let 7; be the ¢th event of this sequence, and define t;
to be the time that the ENCRYPTOR received 7; from the DF. Without loss of generality, we denote the
wiretap that produced 7; as w and the ENCRYPTOR’’s event counter for w to be I,,. The event counter [,
is incremented by one whenever the ENCRYPTOR transmits an event belonging to wiretap w.

The ENCRYPTOR prepares the message

M; = {t; || Er (7 || Lo || (i || T) || Bs)

where || denotes concatenation, F is an IND-CPA cipher, E,.(Q) is the encryption of () using symmetric
key r, h(-) is a cryptographic checksum over its input, and B; is an aggregation block which is described
below. The ENCRYPTOR sends

ENCRYPTOR — Log: (M; || 04~ (M;))

to the LOG, where o - (Q) is a digital signature over message () using key K ~. Upon receipt, the LOG
stores the (M;, 04— (M;)) message.

Aggregation block. The aggregation block B is an encrypted set of counters that are used in accounting
audits. Let £+ (Q) be an additive homomorphic encryption of message @ using public key K ; that is,
Er-Er+ Q) D E+(Q2)) = Q1 ® @, where K~ is the private key and & is modular addition.

We perform multiple simultaneous homomorphic additions using a single ciphertext by partitioning
the plaintext message () into p elements g, ..., gp; that is, sizeof(Q) = Zi:l sizeof(q;), where

A. Bates et al. / Accountable wiretapping — or — I know they can hear you now 177

sizeof(D) is the number of bits in D. Hence,

Ex-Ex+@ll - e @Ex+(all - I1g) =(@m@a)ll - || (g &) (1)

where the values of ¢; ® ¢ through ¢, ® q,, are obtained by accessing the relevant “partition” of the
result. Similarly, decryption of the above ciphertext gives the right-hand side of Eq. (1), which can then
be deconstructed into the fixed size partitions, revealing the sums (q; @ ¢}), . .., (gp & q]’g).

Importantly, Eq. (1) holds only if no summation ¢; ®¢, overflows into the next higher ordered partition.
In our implementation, we use the additive Paillier homomorphic encryption scheme [32] with a 1024-
bit or 2048-bit modulus (i.e., 1024 and 2048-bit plaintexts). As described in Section 6.2, we partition
this plaintext in a manner that allows us to store approximately 10 million entries before overflow can
occur.

Given the above construction, we define the aggregation block I5; of wiretap event ¢ (i > 1) as:

Eq+ (|| R || Ri—1 || newP; || newC; || expireP; || expireC,),

where R; is a large nonce and newP;, newC;, expireP;, and expireC, are 1 Iff wiretap event % respec-
tively corresponds to a new pen/trap wiretap, a new content wiretap, an expiring pen/trap wiretap, or an
expiring content wiretap. Otherwise, the value of the counter is 0. When ¢ = 1, we define R;_; to be 0.
Conceptually, the newP;, newC;, expireP;, and expireC, counters allow an accountant to determine the
number of new and expiring wiretap events within a specified date range. (Recall that the LOG performs
the additions over the ciphertexts and returns the result to the accountant.) The inclusion of the nonces
and the 1 constants enable the accountant to perform Completeness checks between two timestamps
Ts and T,, where the two nonces R; and R;_; provide an efficient arithmetic check to ensure that no
intermediate events were omitted by a malicious log; this is explained in greater detail in Section 5.

Special message types. 'The Wiretap Authority authorizes a wiretap for a given validity period Tiar stop-
At the start of this period, the ENCRYPTOR generates a wiretap event where the content 7; is the string
“start”. Similarly, at the end of the period, the ENCRYPTOR produces an event with the contents
“stop”. Both events are transmitted using the standard message format. (Note that in the former case,
either newP; or newC; will be 1, and in the latter case, either expireP, or expireC; will be 1.)

Heartbeat messages. The ENCRYPTOR periodically transmits a special heartbeat message for each
wiretap. Injected according to a Poisson process, the heartbeats obscure the timing between con-
secutive events in a wiretap, and hence aggravate the LOG’s ability to link (encrypted) events as
belonging to the same wiretap. Additionally, the heartbeat message bounds the LOG’s ability to
omit entries for court and accounting audits. A heartbeat message H,, for a wiretap w is of the
form (t; || Er(heartbeat || I, || h(heartbeat || I,)) || B;), where the newP;, newC;, expireP; and
expireC; counters in B; are all 0. Each heartbeat message uses a different wiretap’s record key (r),
selected in a round-robin fashion.

4.3. Audits

Our audit protocol serves three goals: to retrieve wiretap information from storage, to calculate aggre-
gate statistics over the stored information, and to verify the authenticity, integrity, and accuracy of the
results obtained from the LOG. Below, we describe the audit protocols for achieving the first two goals.
We defer a security analysis of the audit protocols to Section 5.

178 A. Bates et al. / Accountable wiretapping — or — I know they can hear you now

Court audits. A court audit retrieves all records for a specific wiretap from the LOG. To perform a
court audit, the court auditor sends the LOG a request for all records between timestamps 7 and T:

Court Auditor — Log: CourtAudit, Ty, T,.
A correct LOG then returns all records M; where T < t; < T, and ¢; is the timestamp belonging to M;:
Log — Court Auditor : (M;, 04— (M;), Mj11,04-(Mj41), ..., Mg, 04— (My)). (2)

Given messages M;, My, ..., My, the court auditor attempts to decrypt each M; using the wiretap
key r. Messages whose signature verification fails are ignored. Messages that cannot be decrypted (as
indicated by a failure in matching the cryptographic checksum) are assumed to belong to a different
wiretap (either as legitimate messages or inserted noise) and are discarded. The remaining records belong
to the wiretap of interest, and gaps in sequence numbers ([,,) indicate missed messages. We note that
this scheme establishes the identity message creator (an ENCRYPTOR), but not of the individual wiretap
order to which the message belongs. Because the ENCRYPTOR is a trusted component, a wiretap record
is sufficiently authenticated after the ENCRYPTOR signature is verified, which means that from message
decryption failure we can infer that a message belongs to another wiretap order.

Accounting audits. An accounting audit should reveal the number of new and expiring wiretaps that
occurred over a specified time period. To conduct an audit, the accountant transmits a request to the
LoG:

Accountant — Log: AccountingAudit, T, Tg.
The LOG will then determine the wiretap event indices a and 2z (a < z) such the times corresponding
to messages M, and M, (i.e., t, and t,) are the respective minimum and maximum times bound by
[Ts, Te]

To calculate the statistics of interest, the LOG computes Ba: = Zz:a B;.. From the definition of B
and Eq. (1), we have

Ba: =Eqr <z —a

z z z z z z
+1 H Z Ry, H ZRk—l H Zneka H Zneka H ZexpirePk H ZexpireCk>. 3)
k=a k=a k=a k=a k=a k=a
The LOG then returns the response:
Log — Accountant : M, 04— (M,), M., 04— (M), By..
The accountant can then decrypt B, to obtain the total number of new pen/trap and content wiretaps
as well as the number of expiring pen/trap and content wiretaps in [T, T.]. Although the size of B,,

may be large due to the homomorphic additions, we note this cost is ephemeral — the LOG does not store
B, and communication costs only occur during the (infrequent) audits.

A. Bates et al. / Accountable wiretapping — or — I know they can hear you now 179
5. Security analysis

Given the importance of wiretap information to the evidence and investigative intelligence gathering
processes, we argue that there is a significant need to accurately assess the integrity and completeness of
the collected information. In this section, we describe the trustworthiness of our accountable wiretapping
infrastructure in the presence of adversaries who wish to either thwart the reliable collection of wiretap
data, or conduct unauthorized interception.

5.1. Detecting target-initiated DoS attacks

In the standard CALEA wiretap architecture, the target of the wiretap may cause LAESP messages to
be lost in transit to the LEA by generating a flood of signaling information. Because each signal must
be translated into a LAESP message, the under-provisioned connection between the DF and the LEA
drops packets [44]. Since LAESP messages do not include sequence numbers [46], their loss may be
undetected.

Our architecture supports the detection of lost LAESP messages through redundant storage and se-
quence numbering. During a court audit, wiretap records stored in the LOG may be reconciled with
transcripts maintained by the LEAs to detect missed LAESP messages. LEAs can fill-in the missing
pieces of their wiretap transcripts using data stored at the LOG. (Recall that since LOG messages are
signed by the trusted ENCRYPTOR, such records are guaranteed to be authentic.)

Although the connection between the ENCRYPTOR and the LOG should be adequately provisioned,
message loss may of course still occur. However, the use of sequence numbers enables the trivial detec-
tion and count of lost messages, achieving our Completeness goal.

5.2. Detecting unauthorized wiretaps

Our architecture detects the presence of certain unauthorized wiretaps. Notably, our solution does
not protect against adversaries who can bypass the ENCRYPTOR. For example, a rogue employee of
the service provider who can wiretap at various points throughout the telephone network can likely
avoid detection. To mitigate such attacks, a more general data leakage prevention solution is required.
In this paper, however, our focus is on reliable wiretap audits, and we briefly note that we can detect
unauthorized wiretaps in the cases in which the intercepted data flows through an ENCRYPTOR. Such
cases may occur, for instance, if an attacker is able to compromise a DF, but physically secured links
require all outgoing communication from the DF to flow through the ENCRYPTOR.

Assuming that the unauthorized wiretap’s data are relayed through the ENCRYPTOR, then the wire-
tap’s presence will be revealed during accounting audits. That is, the accounting records will not recon-
cile with those of the Wiretap Authority, indicating the presence of the illegal wiretap. The Reporting
property of our wiretap architecture allows an accountant to “hone in” on the time at which the illegal
wiretap was provisioned; i.e., by conducting a binary search using multiple queries.

5.3. Protecting against a malicious 1LOG
A LOG is an outsourced storage provider that receives wiretap information from potentially many DFs.

Given the sensitivity of wiretap data, the LOG should not be trusted to have access to either individual
wiretap records, nor should it be able to reliably discern coarse-grain data about past or ongoing wiretaps.

180 A. Bates et al. / Accountable wiretapping — or — I know they can hear you now

5.3.1. Confidentiality and privacy

The confidentiality of wiretap records is protected through the straightforward use of encryption: The
LoG does not have access to any private keys, and cannot decrypt wiretap events or aggregation blocks.

The LOG knows the time that each incoming message arrives, and can use this information to reason
about the number of wiretaps and the potential association between any two encrypted wiretap events
(for instance, that they belong to the same wiretap). However, heartbeat messages, which are inserted
according to a random Poisson process, significantly hinder the LOG’s ability to perform timing anal-
ysis. The level of privacy provided by heartbeat messages is parameterizable based on the A\ value of
the Poisson process; however, finding an optimal) is a deployment-specific challenge, and should be
made with consideration with the expected event rate as well as security and performance constraints.
However, as we show in Section 6, our accountable wiretapping architecture is highly scalable, and can
easily handle a high rate of heartbeat messages, further diminishing the LOG’s ability to infer linkage
between encrypted events.

5.3.2. Court audits

In a court audit, the court auditor verifies the Integrity, Completeness and Date Compliance of the
records returned by the LOG. Integrity is guaranteed through the use of digital signatures.

The court auditor verifies Completeness by searching for gaps in the wiretap records’ sequence num-
bers (I;). If the sequence numbers contains gaps, then the returned results are clearly incomplete. In
the case that there are no gaps in the sequence numbers, M,, is a start message, and Mg is a stop
message, then the returned records must be complete, since the start and stop messages “bookend”
the wiretap, and the authenticity of all messages are verified via the ENCRYPTOR’s digital signature.
However, in all other cases, a corrupt LOG may omit records at the beginning or end of the queried time
interval. Hence, sequence numbers by themselves are not sufficient to verify Completeness.

The use of heartbeat messages serves to detect such omissions. Let M,,, ..., Mg be the non-discarded
(non-heartbeat) messages returned by the LOG, sorted in increasing order by the messages’ timestamps
(t;). Additionally, let [T, T¢] be the time interval specified by the court auditor, and ¢, and ¢z be the
timestamps associated with M, and Mg, respectively. Finally, let A be the mean number of heartbeat
messages per minute produced by the Poisson process for the wiretap of interest. From the definition of

a Poisson process, it follows that the probability that there is at least one heartbeat message between 7’
A-(ta— Ts>)° MaTTH | e Ata=TY) cand 1 — e MTe

and £, is 1 — ~t8) for the time between ¢4 and
Te. Thus, the LOG’s ab1hty to omit records is constralned by A. In summary, the court auditor can detect
gaps by searching for noncontiguous sequence numbers, and can conclude with measurable confidence
whether records were omitted at the endpoints by noting the presence or absence of heartbeats.

Finally, given the Completeness property, the court auditor can verify Date Compliance by issuing
queries over various time intervals (in particular, [—o0, c0]) and reconciling the results with the wiretap
creation and expiration dates specified by the Wiretap Authority.

5.3.3. Accounting audits

Following the notation of Section 4.3, let M, and M, be the records returned by the LOG in an ac-
counting audit. Additionally, let B be the purported summation of the aggregation blocks returned by the
LoG. (Hence, if the LOG is honest and has captured all messages M, My 1, ..., M, from ENCRYPTOR,
then B = B.) In an accounting audit, the LOG must prove to the accountant that B =B

The authenticity and integrity of M, and M, can be easily checked by verifying their accompanying
digital signatures. Using the argument described above, the use of the heartbeat message “bounds” omis-
sions, and hence the ability of the LOG to omit many records before (resp. after) M, (resp. M) is limited.

A. Bates et al. / Accountable wiretapping — or — I know they can hear you now 181

We define R/, to be the second decrypted partition of B (the first nonce partition), and similarly,

set R/ to be the third decrypted partition of B (the second nonce partition). If B = B, then R/, =
Y 7—q Ri (by the definition of our protocol), and similarly, R’y = > ;_, Ri— (also by definition).
Consequently, R)y — Rl; = R, — R,—1.

The accountant can compute R;‘ — Rjg (from E/) and R, — R, (from messages M, and M, that
are also included in the LOG’s response and whose digital signatures have previously been verified). If
the LOG is honest and has captured all messages between ¢, and ¢, then R4 — Rp = R, — Rq—1.

An incorrect LOG or a LOG that has missed messages sent by the ENCRYPTOR can return a false result
(ie., B =+ B). However, since the accountant knows R, and R,_; (from messages M, and M), then to
avoid detection, the LOG must return a B’ such that R;x — 'B = R, — R,—1. The LOG however does
not have knowledge of R,_; or R, or R, — R,_; (recall that the values are homomorphically encrypted
and the LOG does not possess the decryption key).

The incorrect LOG may return a valid summation over an arbitrary subset of recorded messages —
while not adhering to the time interval [T, T.]. (In all other cases, the dispersion property of the cryp-
tosystem ensures that the decryption of B appear random, since the LOG does not have the encryption
key. Thus, the probability that B decrypts to the value of R, — R,_ is negligible.) Since each nonce
is chosen uniformly at random from a large space, the probability that the summations of random (and
unknown) nonces R’ and R’y have the property R’y — R’y = R, — R, is also negligible.

Aggregate block forgery. In the accounting audit protocol as described thus far, a malicious LOG with
public aggregation key G and knowledge of aggregate block internal structure B could produce false
results by encrypting and aggregating additional records. If the LOG introduces a forged record B
where Ri = RE. the injected record will not impact the final value R, — R,_1, and thus the act would
go undetected. Our solution to this problem is as follows. In the Paillier scheme, the public key G is
comprised of (n, g), where n is the product of two large prime numbers and g is a random integer € Z,.
A message m’s encryption is given by Eg+(m) = ¢"" - " mod n. The homomorphic addition of two
encrypted messages Eq+(my) and Eq+(my) is obtained by taking Eq+ (M) - Eg+ (M) mod n. Critically,
the full public key (g, n) is needed for encryption, but only the component n is required for homomorphic
addition. We prevent aggregate forgery by sharing the full public key (g, n) with the ENCRYPTOR, but
only the component n with the LOG. Because g is a random integer € Z;,, we believe that the LOG
cannot recover g given knowledge of m. Likewise, the LOG cannot recover g from a ciphertext o+ (m);
among other reasons, g’s relation to the ciphertext is masked by the introduction of the random noise 7.

In designing the accounting audit protocol, we considered many methods of secretly conveying wire-
tap statistics to the accountant, including those that did not rely on a costly homomorphic addition step
and were thus more efficient. The simplest example of this would be to replace our aggregate block
B with a block that contained the fotal active wiretap statistics for a given ENCRYPTOR. To audit, the
accountant could then request the two records associated with T and T, decrypt the blocks, and take
the difference of the counters in order to obtain the statistics for that time range. Because the LOG is
only responsible for storage and retrieval in this scenario, it would not require any knowledge of the
accountant’s public key G, thus fully mitigating the threat of aggregate forgery. Unfortunately, this
design violates the constraint that wiretap components in a central office should maintain minimal state
[9,10]; as mentioned in Section 3, maintaining logs at a central office increases the risk that a rogue
technician could enumerate past and present wiretaps. In order to minimize both the statefullness of the
ENCRYPTOR and the work required by the accountant, we adopted a scheme that allowed the LOG to
perform aggregation through additive homomorphism.

182 A. Bates et al. / Accountable wiretapping — or — I know they can hear you now
5.4. Operational aspects

A limitation of our architecture is that it may be difficult to determine the cause(s) of a missed event. In
particular, a missed message may be due to network loss, equipment failure, or the purposeful omission
of a wiretap record. Court audits can reveal the scope of the omissions, which in turn may provide useful
insights for statistical analysis (for example, to gauge the reliability of the network). However, in a lossy
network, it is impossible to differentiate between messages that fail to reach their intended receivers
due to network loss and those that are purposefully deleted in transit. Analyzing the network to detect
potential causes of network loss (e.g., underprovisioning) and more closely scrutinizing the maintainer
of the LOG are manual processes that will need to be undertaken by the courts. We note, however,
that the courts currently lack any ability to detect gaps, regardless of their causes. This was publicly
highlighted in the trial of ex-Governor Rod Blagojevich, in which the defense argued that intercepted
audio recordings were not admissible as evidence due to inconsistent and improper gaps [45]. The ability
to detect missed events is a significant advancement, as it enables the court to assert with very high
confidence whether or not a wiretap transcript is complete.

6. Evaluation

In this section, we describe our implementation of the ENCRYPTOR device and demonstrate its per-
formance under realistic operating configurations and workloads.

6.1. Implementation

Given the lack of public information regarding existing CALEA wiretap implementations and the
difficulty of procuring them, we chose to integrate our system with an Asterisk softswitch. Asterisk is
an open source telephony program capable of bridging calls between the standard telephone network
(PSTN) and voice-over-IP (VoIP) networks, including proprietary services such as Skype. Asterisk is
capable of scripting telephony-related events, and in addition to a native scripting language, it allows
event flows to be passed off to other scripts and processes. One such service is the FastAGI server,
which is generally used to allow a single switch to accommodate additional load by outsourcing the
call handling responsibilities to additional machines. We run our FastAGI server locally to mark the
barrier between a SWITCH (where the Delivery Function is implemented) and the ENCRYPTOR. We
implemented the ENCRYPTOR as a Java process that checks calls against a list of wiretap orders provided
by an Authority. Figure 3 provides an overview of our implementation, showing the flow of collected
call data from the call handling script processed by Asterisk to the ENCRYPTOR and discrete events
entered into the LOG, which can be accessed by auditors.

Wiretap event generation. All incoming Asterisk calls pass through the control of the ENCRYPTOR,
which examines the call metadata to see if either communicant is subject to an Authority-issued wiretap.
If this is the case, it begins to send encrypted call records to a remote LOG. Each record contains the
message M; that includes timestamp ¢;, encrypted call data E.,.(7; || I,,), SHA1 checksum h(7; || I,,), and
aggregation block B;; it also includes the signature o 4 (M;).

The aggregation block B; is encrypted using the Paillier public-key cryptosystem [32]. Paillier pos-
sesses the additive homomorphic property that (E(m;) - E(m,)) mod n?> = (m; ® ms) mod n, which
we use to perform ciphertext addition in our accounting audit. The Paillier keys are generated to support

A. Bates et al. / Accountable wiretapping — or — I know they can hear you now 183

Softswitch (Asterisk)

Noise/
Heartbeat
Generator

2

PSTN ~
Call

""" __|Handling
siP (Fast AGI

______ script) :
IAX- ENCRYPTOR Remote

Audit Log

Skype ~"TTT7T

Fig. 3. Our proof-of-concept ENCRYPTOR implementation. Within the Telco facilities, the Asterisk softswitch handles call
events and forwards them to the to the ENCRYPTOR, which communicates securely with a remote audit log. (Colors are visible
in the online version of the article; http://dx.doi.org/10.3233/JCS-140515.)

a 1024-bit modulus and 1 — 2~ prime certainty. This creates a field of 308 digits with which to encode
aggregate information.

To protect the switch from traffic analysis, the ENCRYPTOR creates a stream of cover traffic events.
These events are generated according to a Poisson distribution using a secure PRNG. The frequency of
the cover traffic pattern is scaled such that legitimate events are effectively obscured. Once encrypted,
these events are seemingly identical to legitimate wiretap records. Because all records are signed with
the private authenticity key A~, the LOG cannot distinguish between cover and legitimate events upon
their arrival. This helps obfuscate the timing information that would otherwise leak information to a
dishonest maintainer. Additionally, the cover traffic events serve as our heartbeat messages to the LOG.

Auditing. Our test implementation supports the two forms of audits described in Section 4.3. For court
audits, a court auditor is able to issue a request for all records in the interval [T}, T,]. The LOG returns
these encrypted events to the auditor. The auditor can then attempt to decrypt the returned records using
its known record keys (7). Since an auditor may have access to only a subset of keys r, the (in)ability to
decrypt serves as an avenue for enforcing finer-grained access control on log events. While full audits
would require the attempted decryption of all events for record keys r, this is an offline and infrequent
cost that can be parallelized across many cores.

For the accounting audit, the accountant issues a set of three commands. The first request is that the
aggregate blocks of records My, ..., M; be summed. The next two requests are for the records My and
M;. The auditor can then audit the L.OG for the given range (as described in Section 4.3) with guaranteed
correctness up to the most recent heartbeat record.

6.2. Performance

In order to evaluate the throughput of our implementation, we first performed microbenchmarking
tests on the different steps of creating an individual event. These tests were performed on an Intel Xeon
2.67 GHz quadcore processor; the machine had 8 GB memory and was running Linux 2.6.35. We mi-
crobenchmarked the following steps: call data hashing, aggregate block encryption (using the Paillier
public-key cryptosystem), symmetric encryption of actual call data (AES used in CBC mode), signing
(1024-bit DSA signatures), and transmission over an open TCP socket, with the benchmarks executed
within a single-threaded process. The results of these benchmarks are displayed in Table 2.

Performance degrades as the size of the aggregate block increases. Because of the overhead of encryp-
tion with the additive homomorphic property, this parameter has a significant impact on the ENCRYP-
TOR’s throughput. Using a 1024-bit modulus, the aggregate block encryption step represents 96.4%

184 A. Bates et al. / Accountable wiretapping — or — I know they can hear you now

Table 2

Microbenchmarks of call record event generation with aggregate blocks using 1024 and 2048 bit moduli
Operation 1024 bit agg. block 2048 bit agg. block
Hash call data 10.57 ps [10.54,10.59] 8.13 us [8.12,8.15]
Encrypt aggregate block 31,676 ps [31,619,31,733] 199,310 ps [198,951,199,668]
Encrypt call data 10.17 ps [10.15,10.19] 9.1 us [9.08,9.12]
Sign call record 1193 ps [1191,1195] 1073 ps [1071, 1075]
Transmission 1.8 us [1.79,1.81] 0.57 ps [0.57,0.57]
Total process 32,756 us [32,697,32,815] 200,700 ps Text [200,338,201,061]

Note: Averages and 95% confidence intervals, shown in brackets, are based on 1000 runs.

of the cost of record generation. Event signing consumes 3.5% of generation, and the remaining steps
(record initialization, symmetric encryption, transmission) contribute less than 1%. As benchmarked,
our 1024-bit ENCRYPTOR implementation can generate 30.53 events per second.

For our proof-of-concept implementation, each record contains two 64-bit nonce sequence numbers
which serve as unique identifiers for the record and its predecessor. Setting a large nonce size can all but
eliminate the possibility of predicting the sequence number. The aggregate block size also imposes an
upper bound on the maximum size of the log. Each field in the aggregate block can only accommodate
the addition of a fixed number of events before the sum bleeds into the next field of the block. Prior to
this occurring, the log must be rotated. In our implementation, we designed the 1024 bit aggregate block
to accommodate 2'%® events before rotation was required.

At the remote LOG, events may be entered into it at roughly 39,000 events per second. The system
throughput is therefore entirely dependent on the speed of the ENCRYPTOR. In a realistic scenario,
many delivery functions at different central offices are sending traffic to a single location. Even with
our unoptimized implementation, it is clear that our LOG is prepared to accommodate this one-to-many
relationship.

Having determined our system throughput, we sought to test our implementation in real world condi-
tions. To do this, we obtained an anonymized profile of all outgoing and incoming call data from a major
university for a 24-hour period. No activity of any individual was exposed. The profile of this traffic is
pictured in Fig. 4. In our experiment, we initiated a SIP telephone call and generated a Call Start wiretap
event for every call for the busiest call windows of the day. As the peak call count per 10 minute window
was only 571 calls, our ENCRYPTOR implementation was able to easily handle this traffic. With similar
ease, we could have logged Call End wiretap events along with other assorted CALEA event types. Over
the course of the simulation, our ENCRYPTOR operated at less than 3.2% of its maximum throughput.

These results can also be extrapolated to national telephony traffic. In 2003, AT&T reported that it
handled 3472 calls per second on average [17]. By our benchmark numbers using the 1024-bit aggregate
block, we could generate Call Start events for 0.87% of this traffic. Our actual, Asterisk-attached imple-
mentation is already multithreaded, so it is not unreasonable to imagine that we would be able to log
wiretap events for 10% of national call traffic on a single multicore machine. We believe that these num-
bers far exceed the actual number of wiretap events (based on the evidence below), demonstrating that
our system contains significant capacity to record attacks such as those presented by Sherr et al. [44].

Yet another method of evaluating our implementation is to compare it to published wiretap statistics.
In 2008, there were 20,899 pen register orders and 386 full content intercept orders [13]. Because our
current implementation does not support content interception, we will consider only the pen registers. We
requested the specific call rates of the university’s most called number (i.e., the main campus exchange),

Dan Wallach
Text

A. Bates et al. / Accountable wiretapping — or — I know they can hear you now 185

600

‘ Calf Starts
Call Ends
3 i I
o | ‘:\
T ol " / }u’ \ t 4
Q My V\J / \ W
2 (A |
| |

(= | | 5
= 400 A Wl .
E f |
o | !
= |
S
@ 300 \| §
o V |
@ | \
= i |
O 200} | 1
— |
o | |
— | A
8 r \m
S 100 / W 1
=} 1\ ™M A
zZ ‘ ”/ \ / TV

\J ANV Mo

0 w L P /I 1 1 1 1 1 1 L 1
00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

Time of Day

Fig. 4. Profile of traffic of a major university from April 4th, 2011. Call count is grouped by ten minute increments. (Colors are
visible in the online version of the article; http://dx.doi.org/10.3233/JCS-140515.)

with 120 outgoing and 280 received calls in a single day. Let us assume that each wiretap target will
initiate and receive this extremely high number of calls every day, for a total of 400 Call Start and Call
End events. Conservatively assume that in 2008 there were 20,899 simultaneous pen registers on a given
day. We would then expect roughly eight million events over the course of that day. At 30.53 events
per second, our implementation can generate nearly three million events per day, and could therefore
accommodate all of the 2008 pen registers using only three machines.

6.3. Discussion

Our accountable wiretapping architecture is not intended to be a panacea for providing more robust
telecommunication. Auditing is inherently a reactive security mechanism, capturing incorrect behavior
only after it occurs. Insiders with physical access to service providers’ equipment can exfiltrate informa-
tion, and likely do so while evading our auditing infrastructure. In general, preventing unauthorized data
exfiltration is a difficult and open problem — one which our techniques are not intended to solve. Rather,
we present a wiretapping audit process and associated protocols that provide a first step towards an ar-
chitecture that is more robust against manipulation and privacy violations. Although we do not prevent
all plausible attacks against wiretap systems, we do ensure that wiretap data can be authenticated and
that omissions in wiretap transcripts are detectable.

7. Microauditing

In previous sections we have operated under the assumption that audits occur infrequently, and that
their performance costs were therefore irrelevant. As current law mandates wiretap usage be reported
annually, this is not likely to be a major limitation to our proposal in regards to existing CALEA de-
ployments [52]. However, future wiretap systems may require real time reporting features, or frequent
integrity and completeness challenges to ensure correct operation. In this section, we introduce a series

186 A. Bates et al. / Accountable wiretapping — or — I know they can hear you now

of optimizations to the auditing procedures described in Section 4.3 that allow for sublinear perfor-
mance with respect to the size of the LOG. Using a specialized Merkle hash tree construction [12] for
L oG storage, we present microaudit protocols that challenge LOG correctness and integrity at each event
insertion.

7.1. History trees

Following the event logging protocol described in Section 4.2, the LOG stores transmitted ciphertexts
in a history tree [12]. History trees are a form of Merkle trees [30] that can be used to authenticate
static data. In such trees, data are stored at the leaves, and the interior nodes and root contain hashes that
form tamper-evident summaries of the described contents. We refer to these tamper-evident summaries
as commitments of the data. As the path length from root to leaf is logarithmic with respect to the size of
the data, history trees support efficient random access. History trees extend Merkle trees by performing
versioned computations of hashes over the Merkle tree. This gives history trees the ability to efficiently
represent snapshots of the log from different points in time as distinct Merkle trees. Log snapshots can
be compared in order to prove that they make consistent claims about the past.

Our use of the history tree is as follows. Our LOG from Section 4.2 is a binary history tree of depth
d that can store up to 2¢ wiretap events on the leaves. Interior nodes, A; ., are identified by their index
¢ and depth r and contain an aggregate description of the descendant wiretap events. Each leaf node
A; o, at depth 0, stores wiretap event 7;. Each interior node A;, has a left child A;,_; and a right child
A, or—1,_1. This numbering scheme is demonstrated in Figs 5-8. All nodes in the history tree, including
the leaves, are labeled with cryptographic hashes that fix the contents of the subtree rooted at that node.
For leaf nodes, the label is simply the hash of the contained wiretap event. For interior nodes, the label
is the hash of the concatenation of the labels of its descendants.

Our audits leverage the history tree’s ability to efficiently reconstruct old versions of itself by ignoring
newer events and recomputing the hashes of the interior nodes and the root. Consider the example

/
/14 0,3
/
o \D
/ /
0,1 A'gq

/

/ !
To0 T1 TQE

Fig. 5. A version 2 history with commitment C% = A{, ;. Subtrees containing no events are represented by (.

ANO,B
" / \ "
A% A 4,2
" / \// " / \//
Ao A9 ATy A1
N /\ J\ /
T 0 T 1 T 2 T3 T 4 T 5 T 6 U

Fig. 6. A version 6 history with commitment C’(’)/ = A& 3

A. Bates et al. / Accountable wiretapping — or — I know they can hear you now 187

(0.1 42 Asa
Fig. 7. An incremental proof P between a version 2 and a version 6 commitment. Hashes for the circled nodes are included in

the proof. Other hashes can be derived from their children. The circled nodes must be shown to be equal to the equivalent nodes
in Figs 5 and 6.

A(A(ra,73), A(A(74,75),76))

}TQ,Tg) A(A(74,75),T6)

\ 4
] A ’(/72 {3) @) / X]
Fig. 8. An accounting audit based on the membership proof in Fig. 7. Interior node content is generated by the aggregation
function A(7z, Ty) that returns (H(7z, Ty), Bz B By).

depicted in Figs 5 and 6. Assuming that Aj, and 7, are equal to Aj, and 7;’ respectively, the tree in
Fig. 6 can reconstruct the tree in Fig. 5. Using this method, the LOG can generate an incremental proof
for an auditor possessing commitments C% and C¢. The LOG returns a pruned tree P to the auditor that
includes just enough of the full history to compute the commitments C, and Cy, replacing unnecessary
tree paths with stubs. The auditor uses P, shown in Fig. 7, to calculate C, and Cg, thereby confirming
that the tree committed by C¢’ is consistent with the tree committed by C%.

7.2. ENCRYPTOR microaudits

We next describe how the above history tree construction can be used to perform incremental proofs
of commitment and historical membership proofs.

7.2.1. Incremental proofs of commitment

Under our previous design, auditors were able to confirm the completeness and integrity of LOG
records through performing a court audit for a particular wiretap order. Described in Section 4.3, this
audit involved transmitting and decrypting all events between two timestamps 7 and 7. As this process
is costly and requires the involvement of the supervising court, it is desirable to confirm correct LOG
function with greater regularity.

Incorporating incremental proofs, we modify our event logging protocol such that the ENCRYPTOR
challenges the LOG after each transmission. Shown in Fig. 9, the LOG acknowledges the ENCRYPTOR’s
transmission of wiretap event ¢; by sending a full incremental proof of correctness between ¢; and ¢;_.

188 A. Bates et al. / Accountable wiretapping — or — I know they can hear you now

1. ENCRYPTOR — LOG:SendEvent,T;

2. LOG — ENCRYPTOR : PrunedTree,T;_1,T;

Fig. 9. Modified event logging commitment protocol.

1. ENCRYPTOR — LOG:MembershipProof,Ts, T,

2. LOG — ENCRYPTOR : PrunedTree, Ty, T»

Fig. 10. Historical membership proof protocol. 7, and 7> bound the timespan (Ts, T¢).

The proof is a pruned tree F; that contains a root commitment C; and thus establishes consistency
between commitments C; and C;_;.

7.2.2. Historical membership proofs

For scenarios in which multiple ENCRYPTORs commit to the same LOG, incremental proofs are not
sufficient for each ENCRYPTOR to confirm that past events have not been dropped. This is because C;_;
may not correspond to an event transmitted by that particular ENCRYPTOR. It is therefore necessary for
ENCRYPTORS to issue periodic challenges for past commitments. To accomplish this, the ENCRYPTOR
maintains limited local state for each transmitted event, recording the tuple (H (;), T;, C;) where H(T;) is
a cryptographic hash of the event, 7; is the timestamp, and C; is the root commitment of the incremental
proof returned by the LOG. Periodically, the ENCRYPTOR requests an additional membership proof
between two randomly selected records, checking the LOG’s reply by referencing the locally stored
tuple. This procedure is shown in Fig. 10.

7.3. Accounting microaudits

With minor modification, we can extend the history tree to facilitate the accounting audit described in
Section 4.3. Rather than simply using a cryptographic hash function H (7, 7)) to commit wiretap events,
we create an aggregation function A(7,, 7,) that returns the tuple (H(7y, 1), Bz @ By). Here, @ is the
additive homomorphic operation and 3, and 3, are the aggregation blocks contained within 7, and 7,
respectively.

To conduct the audit, the accountant now transmits a request to the LOG:

Accountant — Log : MembershipProof, T, T,.

The LOG will then determine the wiretap event indices a and 2z (a < 2) such the times corresponding to
events 7, and 7, (i.e., t, and t,) are the respective minimum and maximum times bound by [T, T¢]. It
will then generated the pruned tree Ps . and return it to the accountant.

In the event that s = 0, the accountant need not perform any additional work; the root of the tree will
contain the result Account ingAudit, 0, T, having incrementally generated this value as events were
committed. If s > 0, the accountant can generate the result AccountingaAudit, T, T, by traversing

A. Bates et al. / Accountable wiretapping — or — I know they can hear you now 189

the path from 7, to the root. During traversal, the accountant replaces subtrees for the events that occurred
prior to T’ with stubs, then recalculates the result A; ;. for the traversed interior nodes. Figure 8 shows the
associated tree of an accounting audit for the timespan bound by events 7, and 7¢. The work performed
by the LOG is identical to the incremental proof depicted in Fig. 7.

7.4. Security analysis

The accountable wiretapping infrastructure remains fundamentally unchanged by these optimizations.
In this section, we revisit the security analysis of Section 5. We find that our infrastructure not only meets
the same security goals, but also offers faster detection of a variety of attacks.

7.4.1. Detecting target-initiated DoS attacks

As discussed previously, a wiretap target may cause LAESP messages to be lost in transit to the
LEA by generating a flood of signaling information. The wiretap event message structure, unchanged
by our optimizations, can still trivially detect lost messages. Moreover, the absence of an incremental
proof following an event transmission will alert the ENCRYPTOR to other losses of service. Under the
proposed optimizations, the added transmission cost of incremental proofs should be considered when
provisioning the connection from the LOG to the ENCRYPTOR.

7.4.2. Detecting unauthorized wiretaps

Our wiretap architecture still possesses the Reporting property, and can therefore detect the presence
of unauthorized wiretaps so long as they are relayed through the ENCRYPTOR. Detection occurs during
the accounting audit, at which point the auditor would not be able to reconcile the LOG report with those
of the Wiretap Authorities. Previously, it would be necessary to perform a series of binary searches
to discover the time at which the illegal wiretap was executed. Under the proposed optimizations, the
accounting audit becomes an inexpensive task. As a result, a supervising authority could perform regular
accounting audits in rapid succession. For example, an accountant could perform minute-by-minute
audits, allowing for the detection of illegal wiretaps in real time.

7.4.3. Protecting against a malicious LOG

Key distribution and data encryption have not changed under the proposed optimizations. The LOG
still does not have access to any private keys, and cannot decrypt wiretap events or aggregation blocks.
In other words, the LOG cannot access individual wiretap records or coarse-grain data about past or
ongoing wiretaps. The LOG’s ability to perform timing analysis attacks is still frustrated by the presence
of noise and heartbeat messages. Moreover, the increased speed of auditing procedures allows for faster
detection of malicious activity at the LOG.

7.4.4. Auditing

In a court audit, the court auditor verifies the Integrity, Completeness and Date Compliance of the
records returned by the LOG. Integrity is guaranteed through the use of digital signatures. This auditing
procedure has not been changed under the proposed optimizations, and therefore exhibits the same prop-
erties. Using our microaudit protocols, the ENCRYPTOR now performs real time verification of Integrity
and Completeness for the subset of wiretap events that it generated. Provided that all active ENCRYP-
TORs are performing microaudits, the court audit need only be performed when access to unencrypted
wiretap transcripts is required.

The accountant’s role in audits remains unchanged; he can perform the same procedure described
in Section 5 to detect messages missed by an incorrect LOG during the audit. The LOG’s work during

190 A. Bates et al. / Accountable wiretapping — or — I know they can hear you now

accounting audits has been partially shifted from the time of the audit to the time of event insertion;
the additive homomorphic operation is performed automatically as commitments are aggregated by the
history tree. At the time of the audit, the LOG needs only to generate a pruned tree for the time interval
[T5,T.]. All incorrect behavior performed by the L.OG is detected by the work of the accountant.

One significant change under the proposed revisions is that, to facilitate microaudits, the ENCRYPTOR
maintains additional state for each event transmitted. These records are used to confirm the validity of
incremental proofs and to launch historical membership proofs. Although the ENCRYPTOR is a trusted
component, up to now we have assumed that wiretap data should not be stored within the Central Office
so as to protect from honest-but-curious Telco employees. Fortunately, such agents will not be able
to learn anything about the active wiretaps from the additional required state. The ENCRYPTOR need
only store the locally generated cryptographic hash of the wiretap event, its timestamp, and the root
commitment returned by the LOG at the time of insertion. The timestamp does not leak meaningful
information due to the generation of noise and heartbeat messages.

7.5. Performance

To evaluate the performance impact of the new microauditing procedures, we repeated the trials from
Section 6.2. The proposed changes effectively shift a portion of the LOG workloads to insertion-time,
thereby improving the LOG’s response speed for audits. Additionally, the need for incremental proofs
(O(log, n) in size with respect to the number of stored events) following each insertion imposes con-
siderable transmission costs. The goal of this evaluation is therefore (1) to determine if event insertion
speed is still acceptable, and (2) to quantify the performance gains enjoyed by the audits.

We ran benchmarking tests on a Dell PowerEdge R610 server (two 4-core Intel Xeon ES606 pro-
cessors, 12 GB RAM) running a Linux 2.6.4 kernel. Both the LOG and ENCRYPTOR were running on
the same server for these tests, and thus the results do not reflect network transmission delays. We se-
lected 5 specific operations to benchmark: Membership Proof generation, Insertion Proof generation,
Accounting Proof generation, Membership Proof Evaluation, and End-to-End Insertion. In contrast with
the microbenchmarks discussed in Section 6.2, the performance of these operations is dependent on the
size of the LOG and the length of the timespan being audited. We reflected these increased costs by
pre-loading the log with an increasing number of records prior to benchmarking. For the Membership
Proof Generation and Accounting Proof Generation trials, a random timespan (1s, I'r) was generated
such that 2 < Tr < size(L0G) and 1 < Tg < Tg. The results of these trials are contained in Table 3.

We next attempted to capture representative benchmarks using the ENCRYPTOR architecture without
the proposed optimizations. As the new audits offer functionality that was not available in our previous
evaluation, we created benchmarked routines that would offer similar assurances to our new proofs. For

Table 3

Benchmarks for proof generation and evaluation using the microauditing optimizations

Operation 2'0 records 2'2 records 2'% records 2! records

Gen. Mem. Proof 203 ps [15.7,25.1] 263 ps [0.01,55.0] 343ps [0.01,115.6] 44.7ps [37.9,51.6]
Gen. Inser. Proof 258 pus [19.0,32.6] 29.1ps [22.4,35.8] 333ps [25.9,40.7] 39.0ps [32.7,45.4]
Gen. Acct. Proof 1276 us [664,1887] 1547 ps [1122,1971] 1831 pus [1411,2251] 2129 ps [1563,2695]
Eval. Mem. Proof 1912 pus [1313,2512] 2334 pus [1767,2899] 2749 pus [1990,3509] 3166 us [1912,4421]
End-to-End Inser. 4132 pus [3876,4389] 4990 us [4100,5878] 5818 us [4939,6695] 6633 us [6587,6679]

Note: Means and 95% confidence intervals are the result of repeatedly querying the LOG for proofs over randomly selected
time intervals.

A. Bates et al. / Accountable wiretapping — or — I know they can hear you now 191

Table 4
Benchmarks for the operations required to reach equivalent assurances without our microauditing optimizations
Operation 210 records 2'2 records 2% records 216 records
Court Audit 546 ms [539,553] 2182ms [2170,2192] 8719 ms [8692,8747] 34,853 ms [34,776,34,931]
Acct. Audit 35ms [34,36] 143 ms [139,147] 574ms [567,580] 2306 ms [2293,2319]

End-to-End Inser. 30.5pus [27.7,33.2] 32.83us [0.01,209] 35.8us [0.01,423] 37.3 us [34.2,40.5]

Note: Means and 95% confidence intervals are the result of repeatedly querying the LOG for proofs over randomly selected
time intervals.

the Membership Proof, this required requesting every record in timespan (7's, Tr) from the LOG and it-
eratively checking the associated signatures. For the Accounting Proof, the LOG performed a linear pass
through the data store and performed the additively homomorphic operation on each associated aggre-
gate block. These routines are an implementation of the Court and Accounting Audits from Section 4.3.
We represented the end-to-end insertion time of the old architecture by measuring the time required to
insert a single record into the LOG. The results of these trials are contained in Table 4. Note that the
benchmarks for the membership and accounting proof generation are in milliseconds.

Contrasting Tables 3 and 4, we see that the time required to insert a record has increased by 2 orders of
magnitude. For a LOG with 26 records already included, the number of records that can be inserted is just
150 per second, down from 32,154 records per second under the old architecture. However, reporting
speed has improved dramatically under the microauditing optimizations. Court Audits (Membership
Proofs) on a 2! LOG can be issued and evaluated at rate of 312 per second. Court Audits under the
architecture in Table 4 require 55 seconds to execute. This is a speedup of 99.9%. Accounting Audit
performance also increased by 99.8%, improving to 190 requests per second from 0.3 requests per
second.

To establish with finality that the microaudit-enabled infrastructure is practical in real world condi-
tions, we repeated our trial in which anonymized trace data for an entire university was played through
our system. This call data profile is described in greater detail in Section 6.2. To simulate a more re-
alistic operating environment, the LOG was preloaded with 2! call records. To better demonstrate the
new features of our auditing system, during the trial we had an additional host execute accounting audits
to the LOG once every 15 seconds. In an actual wiretap environment, this accountant auditing schedule
would provide fine-grained detection of illegal wiretap orders. The microaudits, in turn, provided real
time verification of the Integrity and Completeness of the wiretap transcript. Our deployment was once
again able to handle the entirety of the trace data. Based on our event generation rate of 300 per minute,
record insertion rate of 150 per second, and accounting audit response rate of 190 per second, we con-
servatively estimate that the server was operating at just 19.77% of its maximum capacity during this
trial. We note that, under our architecture, the same Integrity, Completeness and Reporting assurances
would not have been possible given the resources available in our deployment.

8. Related work

Telephony systems and their users have long been subject to attack. The majority of such networks
remain susceptible to eavesdropping attacks, due to traffic being unencrypted in the provider network
cores [1] or protected by weak cryptographic algorithms over the air [2,4,5,19,24,34]. Even the contents
of VoIP traffic protected by strong cryptographic algorithms can be exposed by comparing packet size
and interarrival times to language constructs [55,58,59]. Instances of these networks have also proven

192 A. Bates et al. / Accountable wiretapping — or — I know they can hear you now

susceptible to a range of other attacks including the exploitation of in-band signaling [37], fraudulent
billing [36] and overload [47-50].

Legal interception laws mandate that telephony providers must provide law enforcement access to
certain call content and metadata. In the United States, these laws are codified in Title III of the Federal
Wiretap Act [52] and technically specified in documents such as the Communications Assistance for
Law Enforcement (CALEA) Act [11,15,16]. While undetectable by the party or parties being monitored,
wiretap systems are vulnerable to a range of attacks. Sherr et al. [43] demonstrated the ability to prevent
call audio from being recorded by injecting in-band signaling tones into a conversation. Moreover, this
work also demonstrated the ability to confuse dialed-digits logs, making the actual endpoint of a call
difficult to discern for the eavesdropper. Follow-on work by these same authors [44] also demonstrated
the ability to overload wiretapping-enabled switches, causing potentially critical data to be lost before
an action could be logged. Such attacks are the direct inspiration for this work. The first defensive
proposal in the academic literature sought to address these issues called for a bolt-on mechanism (the
ENCRYPTOR) for Delivery Functions that securely transmitted wiretap events to an audit log [3]. The
wiretap records could later be auditing by authenticated parties to ensure CALEA compliance or detect
tampering. In Section 7, we propose new protocols that enable real time assurance of audit goals as
wiretap events are recorded.

Another area of study seeks to address the vulnerabilities and privacy implications of lawful access
through bypassing the intercept mechanisms in telephony provider networks. Wicker calls for a PKI
overlay for phone networks that prevents the contextual information of individual users from being
intercepted [56]. Whisper System’s RedPhone enables identity-based, end-to-end call encryption [29],
thus preventing full intercept of call data in the provider network. For location-based services, there have
been a variety of proposals to enable support for anonymity-preserving techniques through modifications
to handsets and networks [23], or the introduction of trusted third parties [18,20,57]. In contrast, our
system assuages the concerns of both law enforcement and privacy advocates by increasing the reporting
capability of existing CALEA deployments.

Reliable and tamper-evident logging are critical components in a range of other systems. A num-
ber of non-cryptographic schemes rely on the “write-once” nature of their associated storage medium
(e.g., PROMs) [31,33,61]. While effective at preventing overwriting, such records are difficult to audit
remotely. Others have instead suggested software-based solutions relying on a variety of schemes in-
cluding forward-secure signature [22,26,27,40,41,60], distributed timestamping [8,21,28,38] and Bloom
Filters [42]. We make use of history trees in this work, which are a Merkle tree construction. History
trees exhibit tamper-evidence by constructing and comparing historic versioned snapshots in order to
ensure that they make consistent claims about the past [12]. While these schemes provide strong guaran-
tees, they are not sufficient in our application because they typically assume that the event generator and
the auditor are the same party. Moreover, these techniques do not support secure aggregation of records
over user-specified time periods. Because of the increased interest in third party collection and storage
of wiretap records [54], a more robust solution is required.

9. Conclusion
While legal wiretaps can be a central part of a legal investigation, it is important to provide oversight

to help limit abuse and ensure compliance. We have proposed the first distributed auditing system for
existing CALEA-compliant wiretaps. In our system, ENCRYPTORs are added to each CALEA device,

A. Bates et al. / Accountable wiretapping — or — I know they can hear you now 193

and send encrypted audit records to a LOG. The LOG is trusted only to store encrypted records, which
it can provide in a court audit, and to compute homomorphically-encrypted audit statistics, which it can
deliver during an accounting audit. This allows a court to examine all records for a particular wiretap as
needed, and for inexpensive periodic accounting over all wiretaps by other judicial authorities. The LOG
is unable to determine wiretap contents nor even what wiretaps exist, and any log alterations are easily
detected.

We have shown that our system is resistant to target-initiated DoS attacks, can detect illicit wiretaps by
employees of the phone company or wiretaps that exceed their legal lifetime, and will detect a dishonest
LOG that attempts to alter wiretap records. Our implementation results demonstrate that the system will
easily scale to a level sufficient to monitor all known U.S. wiretaps on three commodity machines.

Acknowledgments

We thank the anonymous reviewers for their comments and suggestions. This work is partially sup-
ported by NSF Awards CNS-0916047, CNS-1064986, CNS-1118046, CNS-1204347, CNS-1223825,
CNS-1117943, CNS-0964566, and CAREERs CNS-0952959, CNS-1149832 and CNS-1254198. The
views expressed are those of the authors and do not reflect the official policy or position of the National
Science Foundation or the U.S. Government.

References

[1] 3rd Generation Partnership Project, Technical Specification Group Services and System Aspects; 3G Security; Network
Domain Security; MAP application layer security, Technical Report 3GPP TS 33.200 v7.0.0.

[2] E. Barkhan, E. Biham and N. Keller, Instant ciphertext-only cryptanalysis of GSM encrypted communication, in: Pro-
ceedings of the Annual International Cryptology Conference (CRYPTO), 2003.

[3] A. Bates, K. Butler, M. Sherr, C. Shields, P. Traynor and D. Wallach, Accountable wiretapping — or — I know they can
hear you now, in: Network and Distributed System Security Symposium (NDSS), 2012.

[4] E. Biham and O. Dunkelman, Cryptanalysis of the A5/1 GSM stream cipher, in: Proceedings of INDOCRYPT, 2000.

[5] A. Biryukov, A. Shamir and D. Wagner, Real time cryptanalysis of A5/1 on a PC, in: Proceedings of the Fast Software
Encryption Workshop, 2000.

[6] M. Blaze and S.M. Bellovin, Inside RISKS: Tapping, tapping on my network door, Communications of the ACM 43(10)
(2000), 136.

[7] British Parliament, Regulation of Investigatory Powers Act 2000: Part IV: Scrutiny etc. of investigatory powers and of the
functions of the intelligence services, July 2000.

[8] A. Buldas, P. Laud, H. Lipmaa and J. Willemson, Time-stamping with binary linking schemes, in: Proceedings of
CRYPTO, 1998.

[9] Cisco Systems, Inc., Cisco Voice Switch Services Configuration Guide for MGX Switches and Media Gateways, Release
5.5.10, June 2009.

[10] Cisco Systems, Inc., Cisco BTS 10200 Softswitch Provisioning Guide, Release 5.0.x, May 2010.

[11] Communications Assistance for Law Enforcement Act, Pub. L. No. 103-414, 108 Stat. 4279, 1994 (codified as amended
in sections of 18 U.S.C. and 47 U.S.C. Sections 229, 1001-1010, 1021).

[12] S.A. Crosby and D.S. Wallach, Efficient data structures for tamper-evident logging, in: USENIX Security Symposium
(USENIX), 2009.

[13] Director of the Administrative Office of the United States Courts, Report of the Director of the Administrative Office of the
United States Courts on Applications for Orders Authorizing or Approving the Interception of Wire, Oral, or Electronic
Communications, April 2009, Covers 2008.

[14] Director of the Administrative Office of the United States Courts, Report of the Director of the Administrative Office of the
United States Courts on Applications for Orders Authorizing or Approving the Interception of Wire, Oral, or Electronic
Communications, June 2011, Covers 2010.

[15] Federal Communications Commission, Communications Assistance for Law Enforcement Act, Third Report and Order
CC Docket No. 97-213, 1999.

194

[16]

[17]

[18]

[19]
[20]

(21]
(22]

(23]

(24]

(25]
(26]

(27]
(28]

(29]
(30]
(31]
(32]
(33]
(34]
(35]
(36]
[37]
[38]

[39]
[40]

[41]
[42]
[43]
[44]
[45]
[46]
[47]

(48]

A. Bates et al. / Accountable wiretapping — or — I know they can hear you now

Federal Communications Commission, Communications Assistance for Law Enforcement Act, Order on Remand, CC
Docket No. 97-213, 2002.

K. Fisher and R.E. Gruber, PADS: Processing Arbitrary Data Streams, in: Proceedings of the Workshop on Management
and Processing of Data Streams (DIMACS), 2003.

G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi and K.-L. Tan, Private queries in location based services: anonymiz-
ers are not necessary, in: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data,
SIGMOD’08, ACM, New York, NY, USA, 2008, pp. 121-132.

J.D. Golic, Cryptanalysis of alleged AS stream cipher, in: Proceedings of EuroCrypt, 1997.

M. Gruteser and D. Grunwald, Anonymous usage of location-based services through spatial and temporal cloaking, in:
Proceedings of the 1st International Conference on Mobile Systems, Applications and Services, MobiSys’03, ACM, New
York, NY, USA, 2003, pp. 31-42.

S. Haber and W.S. Stornetta, How to timestamp a digital document, in: Proceedings of CRYPTO, 1990.

J.E. Holt, Logcrypt: forward security and public verification for secure audit logs, in: Proceedings of the Australasian
Workshops on Grid Computing and E-Research, 2006.

A. Khoshgozaran and C. Shahabi, Blind evaluation of nearest neighbor queries using space transformation to preserve
location privacy, in: Proceedings of the 10th International Conference on Advances in Spatial and Temporal Databases,
SSTD’07, Springer-Verlag, Berlin, Heidelberg, 2007, pp. 239-257.

B. Krebs, Research May Hasten Death of Mobile Privacy Standard, 2008, available at: http://blog.washingtonpost.com/
securityfix/2008/02/research_may_spell_end_of_mobi.html.

S. Landau, Surveillance or Security?: The Risks Posed by New Wiretapping Technologies, MIT Press, 2011.

D. Ma, Practical forward secure sequential aggregate signatures, in: Proceedings of the 2008 ACM Symposium on Infor-
mation, Computer and Communications Security, ASIACCS 08, ACM, New York, NY, USA, 2008, pp. 341-352.

D. Ma and G. Tsudik, A new approach to secure logging, Trans. Storage 5(1) (2009), 2:1-2:21.

P. Maniatis and M. Baker, Secure history preservation through timeline entanglement, in: Proceedings of the USENIX
Security Symposium (SECURITY), 2002.

M. Marlinspike, Whispersystems open: Security, simplified, 2011.

R. Merkle, A digital signature based on a conventional encryption function, in: Advances in Cryptology (CRYPTO), 2006.
S. Mitra, W.W. Hsu and M. Winslett, Trustworthy keyword search for regulatory-compliant records retention, in: Pro-
ceedings of the International Conference on Very Large Data Bases (VLDB), 2006.

P. Paillier, Public-key cryptosystems based on composite degree residuosity classes, in: Annual International Cryptology
Conference (CRYPTO), 1999.

K. Pavlou and R.T. Snodgrass, Forensic analysis of database tampering, in: Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, 2006.

S. Petrovic and A. Fuster-Sabater, An improved cryptanalysis of the A5/2 algorithm for mobile communications, in:
Proceedings of Communication Systems and Networks, 2002.

V. Prevelakis and D. Spinellis, The Athens affair, IEEE Spectrum 44(7) (2007), 18-25.

A. Ramirez, Theft through cellular ‘clone’ calls, The New York Times, April 7, 1992.

R. Rosenbaum, Secrets of the Little Blue Box, Esquire Magazine, October 1971, 117-125 and 222-226.

D. Sandler and D.S. Wallach, Casting votes in the auditorium, in: Proceedings of the USENIX/ACCURATE Electronic
Voting Technology Workshop (EVT), 2007.

C. Savage U. S, Tries to make it easier to wiretap the Internet, The New York Times, September 27, 2010.

B. Schneier and J. Kelsey, Cryptographic support for secure logs on untrusted machines, in: Proceedings of 7th USENIX
Security Symposium, 1998, pp. 53-62.

B. Schneier and J. Kelsey, Secure audit logs to support computer forensics, ACM Transactions on Information and System
Security (TISSEC) 1(3) (1999), 159-176.

K. Shanmugasundaram, H. Bronnimann and N. Memon, Payload attribution via hierarchical Bloom filters, in: Proceedings
of the ACM Conference on Computer and Communications Security (CCS), 2004.

M. Sherr, E. Cronin, S. Clark and M. Blaze, Signaling vulnerabilities in wiretapping systems, /EEE Security & Privacy
3(6) (2005), 13-25.

M. Sherr, G. Shah, E. Cronin, S. Clark and M. Blaze, Can they hear me now?: A security analysis of law enforcement
wiretaps, in: ACM Conference on Computer and Communications Security (CCS), 2009.

M. Tarm, Rod Blagojevich seeks to toss wiretaps, The Christian Science Monitor, February 22, 2011.
Telecommunications Industry Association (TIA), Lawfully Authorized Electronic Surveillance (J-STD-025-B), 2003.

P. Traynor, W. Enck, P. McDaniel and T. La Porta, Exploiting open functionality in SMS-capable cellular networks,
Journal of Computer Security 16(6) (2008), 713-742.

P. Traynor, W. Enck, P. McDaniel and T. La Porta, Mitigating attacks on open functionality in SMS-capable cellular
networks, IEEE/ACM Transactions on Networking (TON) 17(1) (2009), 40-53.

[49]

[50]
[51]
[52]

[53]
[54]

[55]
[56]
[57]
(58]
(591
[60]

[61]

A. Bates et al. / Accountable wiretapping — or — I know they can hear you now 195

P. Traynor, M. Lin, M. Ongtang, V. Rao, T. Jaeger, T. La Porta and P. McDaniel, On cellular botnets: Measuring the impact
of malicious devices on a cellular network core, in: Proceedings of the ACM Conference on Computer and Communica-
tions Security (CCS), 2009.

P. Traynor, P. McDaniel and T. La Porta, On attack causality in internet-connected cellular networks, in: Proceedings of
the USENIX Security Symposium (SECURITY), 2007.

U.S. Justice Department, Report on the use of pen registers and trap and trace devices by the Law Enforcement Agen-
cies/Offices of the Department of Justice for Calendar Year 2008, 2008.

United States Congress, Omnibus Crime Control and Safe Streets Act of 1968: Title III, Pub. L. No. 90-351, 82 Stat. 197,
USA, 1968 (codified as amended in 18 U.S.C. Sections 2510-2522).

United States Congress, Pub. L. No. 106-197 amended USC §2519(2)(b), USA.

Verint, STAR-GATE comprehensive service provider compliance with lawful interception and data retention mandates,
October 2007, available at: http://verint.com/communications_interception/file.cfm?id=51, April 30, 2011.

A.M. White, K. Snow, A. Matthews and F. Monrose, Phonotactic reconstruction of encrypted VoIP conversations: Hookt
on fon-iks, in: IEEE Symposium on Security and Privacy, Oakland, 2011.

S.B. Wicker, Cellular telephony and the question of privacy, Commun. ACM 54(7) (2011), 88-98.

S.B. Wicker, The loss of location privacy in the cellular age, Commun. ACM 55(8) (2012), 60-68.

C. Wright, L. Ballard, S. Coull, F. Monrose and G. Masson, Spot me if you can: Uncovering spoken phrases in encrypted
VoIP conversations, in: Proceedings of IEEE Symposium on Security and Privacy, Oakland, 2008.

C. Wright, L. Ballard, F. Monrose and G. Masson, Language identification of encrypted VoIP traffic: Alejandra y Roberto
or Alice and Bob?, in: Proceedings of the USENIX Security Symposium, 2007.

A.A. Yavuz, P. Ning and M.K. Reiter, BAF and FI-BAF: Efficient and publicly verifiable cryptographic schemes for
secure logging in resource-constrained systems, ACM Trans. Inf. Syst. Secur. 15(2) (2012), 9:1-9:28.

Q. Zhu and W.W. Hsu, Fossilized index: The Linchpin of trustworthy non-alterable electronic records, in: Proceedings of
the ACM SIGMOD International Conference on Management of Data, 2005.

