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Abstract. Recently there has been substantial interest in least-squares finite element methods for velocity-vorticity-

pressure formulations of the incompressible Navier-Stokes equations. The main cause for this interest is the fact that

algorithms for the resulting discrete equations can be devised which require the soluiton of only symmetric, positive

definite systems of algebraic equations. On the other hand, it is well-documented that methods using the vorticity as

a primary variable often yield very poor approximations. Thus, here we study the accuracy of these methods through

a series of computational experiments, and also comment on theoretical error estimates. It is found, despite the failure

of standard methods for deriving error estimates, that computational evidence suggests that these methods are, at the

least, nearly optimally accurate. Thus, in addition to the desirable matrix properties yielded by least-squares methods,

one also obtains accurate approximations.

1. INTRODUCTION

The approximate solution of the Navier-Stokes equations of incompressible flow has received

tremendous attention from engineers and mathematicians; see, e.g., [9], [10], or [11]. Among the

more recent developments has been the use of least-squares ideas; see, e.g., [7] for a recent survey

of one such approach. Also, truly least-squares methods have been developed and applied; see, e.g.,

[3]-[5], [13]-[17], [20], and [22].

Here, a finite element method based on a least-squares variational principle is examined for the

approximate solution of the stationary, incompressible Navier-Stokes equations. These equations are

cast into a first-order system of partial differential equations involving the velocity, vorticity, and

pressure as dependent variables. In three-dimensions one has seven unknown scalar fields. However,

the application of a least-squares principle along with, for example, a Newton linearization, results in

symmetric, positive definite linear systems, at least in a neighborhood of the solution. The influence

of the Reynolds number on the positive definiteness of these linear systems is felt only through the

size of the neighborhood. Thus, if properly implemented continuation (with

number) methods are used, one can expect to only encounter symmetric,

systems in the solution procedure. A further advantage of this method is

polynomial finite element space may be used for all test and trial functions,

respect to the Reynolds

positive definite linear

that a single piecewise

i.e., one may use equal
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order interpolationwith respectto a singlegrid for alldependent variablesand testfunctions.A

finaladvantage resultingfrom the use ofa least-squaresprincipleisthat,unlikesome other methods

involving the vorticity, no artificial numerical boundary conditions for the-vortieity need be devised.

The method discussed here is similar to the ones of [3]-[5] and [13]-[17]; however, there are

certain differences as well, especially in the order in which the least-squares, the diseretization, and

the linearizations steps are taken. Furthermore, the analyses found in some of these papers are

incorrect, leaving open the question of the accuracy of approximations.

In §2, we define the least-squares finite element method. In §3, we discuss some practical and

theoretical issues connected with the method described in §2. Then, in §4, we give the results of

a computational study of the accuracy of the algorithm. Finally, in §5 we give some concluding

remarks.

2. THE LEAST-SQUARES FINITE ELEMENT METHOD

2.1 - The veloeity-vorticity-pressure equations

Let the bounded set f_ C IR a denote the flow domain and let r denote its boundary. The

dimensionless equations governing the steady incompressible flow of a viscous fluid may be written

in the form

(2.1) divu = 0 inft,

(2.2) curl u - w = 0 in it,

(2.3) Pcurlw + w x u + gradp = f in it,

and

(2.4) divw = 0 in it,

where u, p, and ca denote the velocity, pressure, and vorticity fields, respectively, u the inverse of the

Reynolds number, and f a given body force. The first-order system of partial differential equations

(2.1)-(2.4) constitutes the velocity-vorticity-pressure form of the equations of steady, incompressible

flow. Note that the terminology "pressure" is a little misleading since the variable p is actually the

llul2total head, i.e., p = fi + _ _ , where 15denotes the pressure.

In view of (2.2), it seeems that (2.4) is redundant. However, it is crucial to the stability of the

least-squares algorithm to explicitly require (2.4); see, e.g., [3] and [15].

The system_ (2.1)-(2.4) should be supplemented with boundary conditions. Here we examine

two such boundary conditions. The first is to impose the velocity on the boundary, i.e.,

(2.5) U -----U 1 on F,



where U1 denotes a given function defined along F. Note that (2.5) implies that the normal com-

ponent of the vorticity is also known, i.e.,

(2.6) _. n = n. curIUt on r,

where n denotes the unit outer normal tof/.To see this,one merely needs to observe that n- curlu

involvesonly tangentialderivativesof the tangentialcomponents of u and these may be deduced

from (2.5).To these one must add a conditionto fixthe pressure;we choose to fixthe pressure at

a singlepoint xo in ft,i.e.,

(2.7) p(xo)=Po,

where P0 is a given number.

The second combination of boundary conditions we consider is the pressure and the normal

component of the velocity, i.e.,

(2.8) p=P onr

and

(2.9) u.n=U2 on F,

where P and U2 denote given functions defined along r. The boundary conditions (2.8)-(2.9) are not

all that useful as boundary conditions for the Navier-Stokes equations; we consider them here for

two reasons. First, a complete, rigorous analysis of least-squares finite element approximations of

(2.1)-(2.4) and (2.8)-(2.9) can be given using standard techniques; this is not the case for (2.5)-(2.7).

Furthermore (2.1)-(2.4) and (2.8)-(2.9) can be shown to be related to second order elliptic partial

differential equations; we will discuss these issues in more detail below.

2.2 - The least-squares principle

One can use (2.1)-(2.4) to define the least-squares functional

S(u,_,p) = [ (Icurlu- _I2 + Idivu[2 + Idiv_l_
(2.10) Jf_

+ [ucurl w + w x u + gradp - f[2)

\

d_.

The least-squares principle then requires the minimization of this functional over appropriate func-

tion spaces. Then standard techniques from the calculus of variations may be used to deduce that

minimzers (u,p, w) of ,7 necessarily satisfty

/[(curlu- w) • curly + divu divv

(2.11) JNL

+(vcurlw + gradp + w x u-f). (w x v)J
&Q 0,



(2.12)

and

(2.13)

jfn[divw div{:- (curlu - w)- C

+ (vcurlw + gradp + w × u - f). (vcurl¢ + ¢ x u)] d_ = 0,

(vcurl_ + gradp + w x u - f). grad q d_ = 0.

In (2.11)-(2.13) the test functions (v, q, _) are required to belong to suitable function spaces; we do

not go into detail here since we are primarily interested in finite element discretizations of these

equations.

Clearly any solution (u,_,p) of, say (2.1)-(2.7), satisfies (2.11)-(2.13).

2.3 - The two-dimensional case

For planar flows we have that u -- (ul, _v_, 0) T and ul, u2, and p are functions of xl and x2

only. Then, we have that w -- (0, 0, w) T where w = a_/axl - aul/ax2. In this case, the system

(2.1)-(2.4)simplifiesto

0ul 0u_

(2.14) + = 0 ma,

(2.15) _h_2 aul
axl ax2 w=O inf/,

(2.1s)

and

(2.17)

where f = (fl, f2, O)r.

op
v-- + - u2w = f l inn

Ox_ _xl

op
ina,

The boundary conditions (2.5)-(2.7) reduce to just (2.5) and (2.7) and

the boundary conditions (2.8)-(2.9)remain unchanged. The functional(2.10)and the necessary

conditions(2.11)-(2.13)alsosimplifyinthe obvious manner fortwo-dimensional problems.

2.4 - Finite element methods

Starting with the weak formulation (2.11)-(2.13), a conforming finite element method can be

defined in a completely standard manner. We choose a finite element space S h parametrized by

h. For example, for a given positive integer r, S h could consist of continuous (over f/) piecewise

polynomials of degree less than or equal to r with respect to a subdivision of f_ into finite elements.

In this case the parameter h may be related to the size of the grid. We then define the spaces

S h = {vlvi • S h, i = 1,2,3},

v0 },



Zoh ={¢eS h l¢.n=Oonr },

and

Q_={qES _ I q(xo)=0}.

For the boundary conditions (2.5)-(2.7), the discrete problem is defined as follows:

Wh E S h, and ph E S h such that u h = U h and w h • n -- W h on F, ph(xo) = Po,

(2.1s) ' divv 
+(vcurlw h + gradp h +w h × u h - f). (w h × Vh)] d_ = 0

seek u h E S h,

Y v h E V_,

(2.19)
_ [div w h div _ h - (curl u h - wh).

+ (Vcurlwh + gradph + Wh × U h _ f). (vcurl _h + _h × Uh)] d.Q = 0 v¢

and

(2.20) vcurlwh +gradph +Wh X Uh --f)-gradqh&'2 = 0 V qh E Q_o

are satisfied. Here U h and W h are approximations of the data UI and curl UI • n, respectively. For

example, we could define the former pair to be boundary interpolants of the latter pair.

Note that all of the discrete variables, i.e., qh and the components of u h and _h, are approxi-

mated by the same degree continuous pieceurise polynomials defined with respect to a single grid.

The discrete problem for the boundary conditions (2.8)-(2.9) is also given by (2.18)-(2.20) except

that now we have that u h • n = Uh and ph = ph on F and the test functions spaces in (2.18)-(2.20)

must be suitably redefined to account for the boundary conditions v h • n = 0 and qh = 0 on F.

Again, U2h and ph are approximations to U2 and P, respectively.

3. PRACTICAL AND THEORETICAL ISSUES

3.1 - Newton's method

The discrete equations (2.18)-(2.20) are a nonlinear system of algebraic equations that must

be solved in an iterative manner. There are many methods that one might use for such a purpose;

here we only consider Newton's method. However, we do remark that if a quasi-Newton method is

used, it should be chosen so that it preserves symmetry and positive definiteness of the approximate

Hessian matrices.

Newton's method for the solution of (2.18)-(2.20) is defined as follows. Given initial guesses u (°),

_(o), and p(0) for u h, w h, and ph, respectively, the sequence of Newton iterates { u (k), _(k), p(k) }k>o



isgenerated recursivelyby solving,fork = 1,2,...,the system

(3.1)

A [(curlu(k)- w(_)) -curlvh + divu (k)divvh

+ (ucurlw(_)+ gradp (k)+ w (k)x u(k-i)+ w (k-i)× u(k))•(w(k-i)× vh)

+ (ucurlw(k-l)+ gradp (k-l)%w (k-l)x u(_-I)- f). (w(k)x vh)] d_

= _(ucurlw (k-l)+ gradp (_-i)+ 2w (k-i)x u(k-l))•(w(_-i)x v h)dr/ V v h E V_,

(3.2)

fn [(divw(_)div _ - (curlu (k)- w(_))•(_

+ (ucurlw(k)+ gradp(k)+ w (#)x u(_-I)+ _(k-_) x u(k))•(_curl_)

+ (ucurlw(k)+ gradp (k)+ w (k)x u(k-l)+ w(k-i) × uCk)).((.hx U(k-z))

+ (ucurlw(k-i)÷ gradp(k-i) ÷ w(k-i) x u (_-i)--f). (_ × u(k))]d.Q

=/, [v(f + _(k-1) x uCk-1)) • curl_ h

+ (r,curlw (_-l) + gradp (e-i) + 2w (_-1) x u(*-l)) • (¢.h x u(k-1))] d.Ft V ¢ • Zoh ,

and

(3.3)

n(_,curlw(k) + gradp (k) + w (k) x u (k-i) + w (k-i) x u(k)) • gradqhdfl

= j/a(f+t_(_-l) x u (_'l)) • gradqh d._ Vq h E Qoh .

The system of linear algebraic equations (3.1)-(3.3) that is used to determine the k-th Newton

iterate from the (k - 1)-st looks rather formidable. However, it also has some very good features.

First, it is easy to see that this system is symmetric. Moreover, in a neighborhood of a minimizer,

the Hessian matrix for the functional of (2.10) is necessarily positive definite; but this Hessian matrix

is exactly the coefficient matrix of (3.1)-(3.3). Thus, in a neighborhood of a solution of (2.18)-(2.20),

the system (3.1)-(3.3) is symmetric and positive definite. This feature is independent of the value of

9, i.e., of the value of the Reynolds number. These observations, along with the guaranteed local

and quadratic convergence of Newton's method, are potentially very advantageous.

3.2- Continuation methods

At this point one may well ask what goes wrong with the method as the Reynolds number

increases? Surely one difficulty is that the attraction bali for Newton's method, or for any other

iterative method for solving the nonlinear equations, decreases in size with increasing Reynolds

number. This is known to be true for other discretizations of the Navier-Stokes equations. A

related observation is that the positive definiteness of the Hessian matrix is guaranteed only in a



neighborhood of a minimizer; again the size of this neighborhood surely decreases with increasing

Reynolds number. As a result, for an arbitrary initial guess we may have that Newton's method

doesn't converge and/or that the coefficient matrix in (3.1)-(3.3) is not positive definite. The former

is, of course, unacceptable, while the latter occurance would preclude the use of simple iterative

methods for solving the linear systems (3.1)-(3.3) that define the Newton iterates.

In order to determine an initial guess that is within the attraction ball of Newton's method,

and also is such that the coefficient matrix in (3.1)-(3.3) with k = 1 is positive definite, one can use

continuation or homotopy methods, among others. Here we describe a simple continuation method;

see, e.g., [18], [19], or [21]. Let us symbolically express the system (2.18)-(2.20) in the form

F (uh,_h,ph; Re) =0.

Here Re = 1/_, denotes the target Reynolds number, i.e., the value of the Reynolds number at which

we want a solution. Now, suppose we have a sequence of increasing Reynolds numbers {Re,_)M=I

with ReM = Re. We denote the solution of (2.18)-(2.20) for u,,, = 1/Re_ by (u,_,a3,_,p,_). For

any value of m, we obtain (u_,wm,p,_) by Newton's method, i.e., we solve the sequence of linear

systems

(3.4)

Here, F' denotes the Jacobian of F with respect to (u h, a_, ph). We need to specify the initial guesses

(u_), ,(0) _(0)-.rn ,_.,_ j to be used to start, for each m, the iteration with respect to k in (3.4). Assume

that Re1 is sufficiently small so that the iteration (3.4) converges if l. (0) .(0) ._(0)_ is chosen to
kUl _Wl _F1 !

be the solution of a discrete linear Stokes problem. For example, we could choose Re; = 1 and

take for " (o) (o) (o),_.ul ,t#l ,Pl ] the solution of (2.18)-(2.20) with all cross product terms deleted and with

u = 1. The latter problem involves a symmetric, positive definite linear algebraic system. The

remaining initial guesses {(u_ ), ,(0) ._(0)_IM--m ,k._n JJrn=2 are determined by "continuing along the tangent",

i.e., by solving the linear algebraic system

(3.5)

Here, (Urn--l,Wm--l,Pm--1) denotes the converged iterates determined from (3.4) at the (m - 1)-st

stage and FRe denotes the Frechet derivative of F with respect to the parameter Re. Note that the

coefficient matrix of the linear system (3.5) may be chosen to be the same as the coefficient matrix

for the last iteration of (3.4) at the (m - 1)-st stage.

The combined Newton-continuation method is now completely defined. If (Rem- Rein-l) is

sufficiently small, the use of (3.5) should yield initial guesses that are within the attraction ball of

7



Newton'smethodandsuchthat the coefficient matrices in (3.4) with k = 1 are positive defmite.

(Tiley are always symmetric, of course.) In fact, since Newton's method is guaranteed to be locally

convergent, i.e., its attraction ball is nontrivial, and since the neighboorhood of a minimizer for which

the Hessian matrix is positive definite is also nontrivial, by choosing (Re,n-Re__l) sufficiently small,

one can guarantee that the combined Newton-continuation method should only deal with symmetric,

positive definite matrices.

The method can be made self-correcting. For example, suppose that the linear systems in (3.4)

are solved by an iterative method, e.g., the conjugate gradient method, that works, or works well,

only for symmetric positive definite matrices. Then, if we have chosen an increment (Re_ -Re,__l)

that is too large, then either the Newton iteration or the conjugate gradient iteration will fail. In

either case, one can restart the m-th stage by choosing a smaller value of Re_ in (3.4) and (3.5).

We note that often the even simpler "continuation along a constant" method

(3.6)

for generating initial guesses has been found to work well in viscous flow calculations; see [12]. The

disadvantage of (3.6) it that it breaks down in the vicinity of bifurcation or turning points, while

(3.5) can be ammended so that it can handle such singular points; see [18], [19], and [21].

We also note that there are modifications possible to Newton's method that circumvent the

difficulty of not having positive definite Hessian matrices. For example, one simple such modification

is to add to the diagonal entries of the coefficient matrix in (3.1)-(3.3) a multiple of the magnitude of

the residual of the previous Newton iterate. In the notation of (3.4), we would replace the Jacobian

matrix F' on the left-hand side with

(3.7)

where ]]. ]] denotes the Euclidean length. By choosing the constant 7 sufficietnly large we can make

sure that the matrix represented by (3.7) is positive definite. However, as we approach the solution

of the problem, the term multiplying _/ approaches zero so that we recover the local convergence

properties of Newton's method in the neighborhood of the solution.

3.3- Enhancing mass conservation

In many instances one is especially interested in conserving mass, i.e., satisfying the continuity

equation (2.1) as well as possible. The method discussed here is not exactly mass conserving, /_e.,

div u h _ 0 exactly. In fact, one can easily show that at best div u h _-. Ch" whenever the finite

element space, restricted to any element, contains all polynomials of degree less than or equal to r.

We can reduce the size of the constant C by introducing a weight into the functional (2.10). Indeed,

if we replace the ]divul 2 term in (2.10) by a[divul 2, where a > 0 is a constant, then the constant

C can be shown to be proportional to 1/v_. Thus, by choosing a large value of a, one can make

div u h small. This is another potential advantage of the least-squares method. However, one must



keepin mindthat thelargerthevalueofa, the worse one satisfies the momentum equation relative

to the continuity equation.

3.4 - Theoretical observations concerning accuracy

Error estimates for the least-squares finite dement approximations are derived through the

following process. First, using the theory of [2] (see also [6] and [9]), one can show that the error

estimates for the nonlinear Navier-Stokes equations are essentially the same as those for the linear

Stokes problem, at least away from singular points. Now for the Stokes problem

(3.8) div u = 0 in f_,

(3.9) curl u - w = 0 in f_,

(3.10) pcurlw + gradp = f in fl,

and

(3.11) divw = 0 in _2

standard techniques for estimating the error of least-squares finite element approximations require

that this system be elliptic and that the boundary conditions satisfy the complementing condition

of [1]; see, e.g., [4], [5], and [23]. Moreover, in order to use finite element functions that are merely

continuous across element boundaries, one must be able to bound the L2-norm of the derivatives

of solutions of (3.8)-(3.11) in terms of the data of the problem. For the boundary conditions (2.5)-

(2.7) this program cannot be carried out, i.e., the system (3.8)-(3.11) and (2.5)-(2.7) does not

satisfy the complementing conditions of [1] when one requires that the derivatives of u, w, and p be

merely square integrable. Thus, standard error estimation techniques for least-squares finite element

discretizations of (2.1)-(2.7) cannot be used.

On the other hand, one can easily show that the system (3.8)-(3.11) and (2.8)-(2.9) does satisfy

all the requisite conditions of the theory of [1] and therefore one may conclude that in that case one

may obtain optimal error estimates. For example, if continuous piecewise polynomials of degree < r

are used with respect to a triangulation of fl, then one can ultimately conclude that for sufficiently

smooth solutions

(3.12) ]u- Uh[1 + IW -whll + [p-phil _<Ch"

and, under mild restrictions on the domain,

(3.13) Ilu- uhllo÷ ll" -- hllo + lip-- philo< Ch ,



where h denotes a measure of the grid size and where [[. I[0 and ]-[1 denote the L2(f_)-norm and the

L2(f_)-norm of the first derivatives, respectively.

Nothing we have said necessarily means that least-squares finite element approximations of

(2.1)'(2.7) do not satisfy (3.12)-(3.13) as well. All we have concluded so far is that we cannot,

using standard estimation techniques, derive these estimates. Indeed, this is the motivation for the

computational study of _4.

3.5 - Connection of (2.8)-(2.9) with second-order elliptic problems

Consider the problem

(3.14) Ap= g in _,

where A denotes the Laplacian operator, and

(3.15) p=P onF.

Now, let

(3.16) u = gradp in f/.

Then we have that

(3.17) divu = g in f/.

Thus (3.16)-(3.17) is a first-order system equivalent to (3.14). However, it can be shown that this

first-order system is not elliptic and that in general least-squares finite element methods for (3.16)-

(3.17) are not stable; see [8]. However, if one considers the system (3.17),

(3.18) curlw+gradp=u, curlu=0 and divw=0 inf/,

then it can be shown that this sytem is elliptic. Clearly, ifp is a solution of (3.17)-(3.18) and (3.15),

then p is also a solution of (3.14)-(3.15). Note that the principal part of (3.17)-(3.18), i.e., the

differentiated terms, are identical to those of (2.1)-(2.4), and that the boundary condition (3.15) is

the same as (2.8). We can then infer the optimal accuracy of least-squares finite element methods

for appropriately defined first-order systems arising from second-order ellliptic equations.

4. A COMPUTATIONAL STUDY OF ACCURACY

The accuracy of least-squares finite element approximations for the Navier-Stokes equations are

essentially the same as that for the linear Stokes equations. Moreover, the accuracy is independent

of dimension. Thus, here we restrict attention to the Stokes equations in two-dimensions. We also

10



take forour domain the unitsquare f/= { 0 _<x _<i, 0 < y <_1). Thus, we considerthe generalized

Stokes equations

au Or

(4.1) 0"-_+ _ = gl in f_,

Or bu

(4.2) ax 0V w-- g2 in ft,

(4.3)

and

_+ --fl in_,

Ow Op
(4.4) - + = f2 in

where gl, g2, fl, and f2 are given functions. We consider the two sets of boundary conditions

(BC1) u=U and v=V onr and p(0,0)--Po

and

(BC2) p = P and Unl -{-vn2 = W on r,

where U, V, P, and W are given functions defined on F, Po is a given number, and nl, n2 denote

the components of the unit outer normal. We will define the various data functions by choosing an

exact solution (u, v, w,p) and then substituting into the above equations.

We will measure the differences

(L 2 error)

and

[[_--_h][o = Iffl(_--_h)2 d_) l/2

(HI error) ]_--_h]l= (Ill [(_X(_--_h))2-_-(-'_(_--_h))2 ] d_)1/2 _

where _ could be any of u, v, w, or p.

Throughout we use piecewise quadratic finite element spaces; thus, for sufficiently smooth solu-

tions and for the domain f_ = { 0 < x < 1,0 < y _ 1 ), we expect that for the boundary conditions

(BC2) we have that

(4.5) ][_ --_h]] 0 = O(h 3) and [_ --_hll = O(h2),

11



where again _ could be any of u, v, w, or p. This is confirmed by the computations that follow.

Of special interest to us here is the computationally determined rates of converge for the boundary

conditions (BC1).

The first example we present has the smooth exact solution

u = - cos _rx sin Try + 1 - y3 v = sin _rx cos _ry + 1 - z s ,

(4.5) 0% cgu
w= and p = s_nycosx + xy 2 .

Ox Oy'

Figures 1 and 2 give log-log plots of the L 2 and H 1 errors vs. the number of grid intervals in

each direction for a uniform grid spacing. (Similar results have been obtained for nonuniform grid

spacings.) From these figures one can confirm that for the boundary conditions (BC2) one does

indeed obtain the best approximation convergence rates of (4.5). (As is usually the case, computed

L 2 rates are usually less reliable than their H 1 counterparts.) In fact, the asymptotic slopes of

each of the dotted curves of Figure 1 are approximately 3 while those of Figure 2 are approximately

2. Surprisingly, the slopes of the solid curves are asymptotically the same as those of the dotted

curves; thus, for the boundary conditions (BC1) we seemingly obtain the best approximation rates

of convergence of (4.5). Experiments with other smooth solutions yield similar results.
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Fig. 1. L2 errors vs. number of grid intervals in each direction for example (4.5).
Solid line ff for BC1; dotted curve is for BC2.
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Fig. 2. H 1 errors vs. number of grid intervals in each direction for example (4.5).
Solid line if for BCI; dotted curve is for BC2.

The next set of examples uses the exact solution

(4.6) u = v = w = p = ((x - a) 2 + (y - b)2) */2

We use a = b = 0.1234. The exponent s may be chosen to adjust the smoothness of the exact

solution, and thus the rates of convergence of the best approximations out of the finite element

space used. Thus, except for some exceptional integer values, we have that

(4.7) H_-_hllo=O(h '+1) and ]_--_hml=O(h_), wheret=min(s,2),

and where again _ denotes any of u, v, w, or p, and _h denotes the corresponding best approximation.

Figures 3-10 give log-log plots of L 2 and H 1 errors vs. the number of grid intervals in each

direction for a uniform grid spacing and for different values of s. According to (4.7), the best

approximation for the cases s = 2.5 and s = 2.001 have L 2 and H 1 errors of O(h 3) and O(h2),

respectively. Figures 3-6 show that the least-squares finite element solutions for both boundary

conditions (BC1) and (BC2) also seem to converge at approximately this rate for these values of s.

Similar conclusions can be drawn from Figures 7 and 8 for which the best approximations and both

finite element solutions have L 2 and H 1 errors close to O(h zs) and O(hlS), respectively. Likewise,

from Figures 9 and 10 we have that finite e!ement solutions have L 2 and H i errors close to O(h 2)

and O(h 1), respectively; these rates are again those of the best approximation for s = 1.001.
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The above conclusions drawn from Figures 1-10 can be quantized by computing the slope of a

least-squares straight line fit to the various curves in the figure. The results are given in the following

table. The first column of the table gives the exact solution used to obtain the remaining columns.

The second column gives the error type,/.e., either H 1 or L 2, to which the entries of the remaining

columns correspond. The third column gives the rate of convergence of the best approximations

to the exact solutions out of the quadratic finite element space. Specifically, that column gives the

value of t for the H i error and t + 1 for the L 2 error as determined from (4.7) The fourth column

gives the exponent/3 in the error formula

-  hll =

where I1"]l denotes either the L 2 norm or the H 1 semi-norm, u the exact x-component of the velocity,

and u h its least-squares finite element approximation. The exponent/3 is determined computationally

from the data that was used to produce the plots for the errors in the approximation to u in Figures

1-10. Specifically, /3 was determined as the slope of the best least-squares straight line fit of the

curves in those figures. The remaining three columns give similar data for v, w, and p.

Exact solution BC type Error type Rates of convergence

b.a. u v w p

(4.5) BC1 H 1 2 1.97 1.96 2.0I 2.09
L 2 3 3.54 3.61 3.44 3.21

BC2 H 1 2 1.98 1.98 1.98 2.00

L _ 3 3.10 3.11 3.04 3.00

(4.6) s = 2.5 BC1 H 1 2 1.93 1.93 1.88 1.89
L 2 3 3.00 2.98 2.88 2.92

BC2 H 1 2 1.93 1.93 1.90 1.94

L 2 3 2.96 2.97 2.89 2.94

(4.6) s = 2.01 BC1 H 1 2 1.98 1.98 1.86 1.85
L 2 3 2.82 2.81 2.70 2.98

BC2 H 1 2 1.98 1.98 1.84 1.76

L 2 3 2.93 2.95 2.71 2.87

(4.6) s = 1.5 BC1 H 1 1.5 1.41 1.41 1.82 1.82
L 2 2.5 2.39 2.42 2.52 2.36

BC2 H 1 1.5 1.39 1.39 1.43 1.41

L 2 2.5 2.39 2.42 2.52 2.36

(4.6) s = 1.001 BC1 H 1 1.001 0.99 0.99 1.34 1.37
L 2 2.001 1.87 1.87 1.98 1.81

BC2 H _ 1.001 0.98 0.98 0.97 0.97

L 2 2.001 1.92 1.94 2.06 1.89

Table 1. Rates of convergence of the HI and L2 errom in the best approximation (b.a.)
and in the least-squares finite element solution (u, v, w, p).

18



Notethat the behavior of the L 2 errors is much more erratic than that of the H 1 errors; this is

usually the case. However, we see that the errors for (BC1) are not all that different from those for

(BC2) and we may conclude that the errors in the former case are, at the least, nearly optimal.

5. CONCLUDING REMARKS

We have studied the accuracy of a least-squares finite element method for the Navier-Stokes

equations based on a velocity-vorticity-pressure formulation. In particular, we have focused on

velocity boundary conditions. In this case standard techniques for error estimation fail so that a

computational study of accuracy is called for. In spite of this failure, the computational experiments

reported on here indicate that the accuracy is, at the least, nearly optimal, i.e., that the rate of

convergence as the grid size is reduced is seemingly the same as that for the best approximations

out of the finite element spaces. When the least-squares finite element discretization algorithm is

coupled with a Newton linearization with continuation, desirable discrete algebraic properties result.

Thus, the overall method seems to provide a good combination of accuracy and efficiency.

There remains substantial issues to study connected with the least-squares finite element method

for incompressible flows. These include practical implementation issues such as the use of iterative

linear solvers and theoretical issues such as the derivation of rigorous error estimates. We will address

these issues in a forthcoming paper.
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