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Abstract—This paper discusses an efficient numerical approx-
imation technique, called the differential quadrature method
(DQM), which has been adapted to model lossy uniform and
nonuniform transmission lines. The DQM can quickly compute
the derivative of a function at any point within its bounded domain
by estimating a weighted linear sum of values of the function at a
small set of points belonging to the domain. Using the DQM, the
frequency-domain Telegrapher’s partial differential equations for
transmission lines can be discretized into a set of easily solvable
algebraic equations. DQM reduces interconnects into multiport
models whose port voltages and currents are related by rational
formulas in the frequency domain. Although the rationalization
process in DQM is comparable with the Padé approximation of
asymptotic waveform evaluation (AWE) applied to transmission
lines, the derivation mechanisms in these two disparate methods
are significantly different. Unlike AWE, which employs a complex
moment-matching process to obtain rational approximation, the
DQM requires no approximation of transcendental functions,
thereby avoiding the process of moment generation and mo-
ment matching. Due to global sampling of points in the DQM
approximation, it requires far fewer grid points in order to build
accurate discrete models than other numerical methods do. The
DQM-based time-domain model can be readily integrated in a
circuit simulator like SPICE. Unlike the commercial simulators,
which cannot directly handle nonuniform transmission lines, the
DQMs model nonuniform transmission lines by using the same
procedure as model uniform lines at the same computational cost.
Numerical experiments show that DQM-based modeling leads
to high accuracy, as well as high efficiency. For both uniform
and nonuniform multiconductor transmission lines, the proposed
DQM technique is thrice faster than a commercial HSPICE
simulator.

Index Terms—Differential quadrature method, interconnect
modeling, nonuniform transmission line, transient simulation.

I. INTRODUCTION

DUE TO continuing very large scale integration (VLSI)
feature size shrinking in CMOS and GaAs technolo-

gies, integrated circuits and systems such as multichip modules
(MCMs) and system-on-a-chip (SOC) are becoming both larger
in chip area and faster in operation. On-chip interconnects are
experiencing increased sheet resistance and wiring inductance
due to progressive interconnect scaling [1]. The interconnect
scaling effect thus poses serious challenges to circuit simulators
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that employ simpleRC transmission modeling for interconnect
delay estimation. As the length of on-chip global interconnects
increases to a few centimeters or, as in ultrafast circuits, the
signal rise/fall time becomes comparable to the time of flight
across the wire, the inductance values of interconnects play
a dominant role in determining signal waveforms and propa-
gation delay. In order to estimate signal integrity and circuit
speed, the delay modeling algorithms in circuit simulators must
represent these interconnects as distributedRLC transmission
lines. In addition, the substrate effect and nonideal dielectric
media require that the shunt conductance between the signal
line and ground plane or bulk should be nonzero, and widths
of interconnects are also shaped appropriately to match the
impedances at corners and branching points. Therefore, at
high speed and in large integrated systems like MCMs and
SOCs, the metal interconnects should be treated as lossy and/or
nonuniform transmission lines.

Transmission-line characteristics are usually represented by
transcendental functions involving frequency and line length.
As transmission lines are generally characterized in the fre-
quency domain and are usually terminated with nonlinear loads,
the time-domain models of transmission lines are needed so that
the transient response can be calculated by applying convolution
operation [2]. A considerable amount of research has been done
in the literature to convert the frequency-domain solutions to
time-domain responses. The first useful tool was the fast Fourier
transform (FFT), which can be employed in most cases. When
the inverse Fourier transform is directly used to find the time
model, the computation complexity becomes proportional to the
square of the simulation time, thus significantly slowing down
the circuit simulators. Moreover, the FFT method has the in-
trinsic aliasing error problem.

Reduced-order macromodels have been popularly used.
Asymptotic waveform evaluation (AWE) is the most
well-known method to approximate general linear net-
works [3], [4]. In AWE, the Laplace-domain moments of the
port characteristics are found to obtain a rational function via
Padé approximation. The poles and residues of the rational
function are used to describe the reduced-order macromodel.
However, higher order moments lead to undesirable conditions
when increasing the order of moments does not guarantee a
better approximation. Furthermore, AWE may give a reduced
macromodel, which includes unstable poles, although the
original network is stable. In order to overcome these problems,
another method, i.e., complex frequency hopping (CFH), has
been developed as an extension to AWE [5], [6]. CFH performs
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the Taylor series expansion of the characteristic function at
multipole points on the imaginary axis. Unlike traditional
AWE, the frequency-hopping technique tries to preserve the
poles rather than the moments. The residues of the poles are de-
termined using a selected set of low-order moments generated
at the various expansion points, which are referred to as hops.
CFH preserves the poles of the transfer function rather than the
moments, and it circumvents the ill conditions encountered in
AWE. However, each hop of CFH requires its own expensive
processing time and complex mathematical manipulations,
while AWE only requires one. Two other methods, starting
from the Telegrapher’s equation and employing two-pole [7]
or multipoint moment-matching techniques [8] can obtain
reduced-order macromodels, which are extensions of CFH.

On the other hand, direct applications of Padé approximation
to the transmission-line problem have been performed [9], [10].
Using Padé approximation, the characteristic impedance and ex-
ponential propagation functions of the transmission line, which
take the form of transcendental functions in the frequency do-
main, are converted into rational functions, so they can be ana-
lytically transformed into the time domain. This method gives
the device models of transmission lines, just like the companion
models of capacitance and inductance. However, the transient
simulation of lossy transmission lines in the time domain re-
quires computationally expensive convolution integrals, which
become increasingly more expensive as the simulated time in-
terval increases. In order to overcome this inefficiency, Lin and
Kuh developed a recursive convolution with linear time effi-
ciency using exponential functions [10]. Also, in [11], Chang
and Kang developed a method called the piecewise recursive
convolution, which is more efficient. The above methods ex-
tract the transmission-line delay separately, which are accurate
for the time-delay evaluation. Another well-known technique,
called the method of characteristics (MC) is efficient for solving
Telegrapher’s equations. It is well known that the MC can per-
fectly deal with lossless transmission line [12]. With generalized
MC [12], a single transmission line can be modeled as a two-port
network, which consists of two characteristic impedances and
two voltage sources. Transmission-line models obtained by the
above methods can be implemented into the existing circuit sim-
ulators such as SPICE. However, all these methods are based on
the single-conductor transmission line having uniform width.
It will be very complex to apply these methods to the coupled
and/or nonuniform transmission lines.

Despite feasibility of dealing with a distributed transmission
line, traditional circuit simulators can hardly handle practical
VLSI systems. Besides functionality devices, large systems gen-
erally include a large number of state variables associated with
the distributed interconnections and lumpedRLCelements that
result from the modeling of the distribution network. Therefore,
the direct use of a time-domain simulator like SPICE is pro-
hibitively inefficient for realistic integrated systems and, thus,
is limited only to the analysis of small systems. In order to
overcome this difficulty, model reduction has been employed.
A large system is first partitioned into nonlinear systems and
linear systems and then the algorithms of model reduction are
performed to linear parts. Krylov subspace techniques such as
Lanczos and Arnoldi approaches are known for model reduc-

tion. In Krylov-subspace-based methods, a set of orthonormal
vectors is used to span the moment vector space and then the
circuit matrix is projected into this vector space. Such a manip-
ulation leads to multieigenvectors, while AWE converges only
to the eigenvector corresponding to the eigenvalue with largest
modulus. The use of orthonormal vectors helps obtain more than
one eigenvalue, which is different from AWE. Both Padé via
Lancoz (PVL) [13] and its multiport version matrix Padé via
Lanczos (MPVL) [14] fall into this class of methods. A new
direction for a passive reduced-order model, shown in [15], is
based on congruence transformations, which analyzes the poles
instead of matching the moments or eigenvalues. Nevertheless,
an extended technique based on Arnoldi’s method with con-
gruence transformations is presented in the literature [16], in
which the passive reduced-order interconnect macromodeling
algorithm (PRIMA) was demonstrated as an effective approach
to develop passive reduced-order models.

Although the algorithms of model reduction are well devel-
oped, it can only handle the finite systems in the forms of state
variables. Specifically, the original system to be reduced should
be described in the form of . Transmission lines,
however, are represented by nonlinear partial differential equa-
tions (PDEs), which are infinite systems. Hence, it is inevitable
to discretize the lines into discrete models in order to stamp them
into the stencil of prior to reduction process. As
PDEs have been long approximately solved by finite-difference
(FD) or finite-element (FE) methods [2], the discretization of
transmission lines is far from a novel topic. A low-order finite
method to model transmission lines gives a very understand-
able physical explanation of discretization schemes [17]. Such
a popular approach for discrete modeling directly segments the
line into sections, which is chosen to be a small fraction of the
wavelength. From a mathematical viewpoint, this approach has
low-order accuracy. Despite its simplicity, it has the disadvan-
tage that the number of grid points depends on the minimum
wavelength of interest, as well as the electrical length of the in-
terconnect. Consequently, such an approach results in very large
numbers of lumped elements for accurate modeling and, thus,
sharply increases the number of state variables. A compact dif-
ference method is employed in the literature [18], which has
fourth-order accuracy. Though this discretization is still a lower
order finite method, the number of unknowns per wavelength
required for highly accurate modeling is smaller and its depen-
dence on the electrical length of the line is weaker.

The drawback of low-order finite methods can be removed by
using the high-order finite methods or pseudospectral methods
[19], [20]. The mathematical fundamental of FD schemes is
the Taylor-series expansion. The scheme of a low-order finite
method is determined by a low-order Taylor series, while the
scheme of a high-order finite method is determined by a high-
order Taylor series. In general, the high-order schemes have a
high order of truncation error. Thus, to achieve the same order
of accuracy, the mesh size used by the high-order schemes can
be much less than that used by low-order schemes. As a result,
the high-order schemes can obtain accurate numerical solutions
using very few mesh points. Chebyshev polynomial representa-
tion has been used to model the transmission line in the literature
[21], which serves as an example of high-order finite methods.
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In this paper, the differential quadrature method (DQM) is
employed to model transmission lines. A numerical technique
coming from the spectral method, the DQM was originally
developed by mathematicians to approximately solve nonlinear
PDEs [22]. As an alternative to FD and FE methods, the DQM
gained use in solving differential equations in fluid mechanics,
structural mechanics, and other engineering areas. The idea of
the DQM is to quickly compute the derivative of a function at
any point within its bounded domain by estimating a weighted
linear sum of values of thefunction at a small set of points
belonging to the domain. This paper applies the DQM to model
interconnects in the following steps. At first, beginning from
a Telegrapher’s equation in the frequency domain, the DQM
discretizes the differential equations as algebraic equations,
which give the discrete model of the transmission line. Due
to the super efficiency of the DQM, high accuracy can be ob-
tained using moderate lower order approximation. Therefore,
unlike other discrete models necessarily being reduced from
high-order approximation to lower order one, the algebraic
equations obtained by the DQM are then instead directly
transformed into compact formation featuring rational approxi-
mations. The transmission line is thus modeled as a multiport
device, and its time-domain model is obtained by applying
inverse Laplace transform. By means of recursive convolution,
the model takes the form of a companion model, whose
computation complexity is linear with respect to the simulation
time. Although the rational approximations in this method
appear like the Padé approximations of AWE, it completely
avoids the moment-matching process of AWE. There has been
theoretical proof showing that the original DQM by Bellman
is equivalent to the highest order FD method [23]. Due to this
intrinsic feature of the DQM, the DQM-based modeling leads
to higher computational efficiency than conventional finite
methods do. Nevertheless, the afterwards ideas of developing
the DQM offer much improvement in both applicability and
accuracy of the DQM-based modeling of transmission lines.

The organization of this paper is as follows. In Section II, the
mechanism of the DQM and several approaches to determine
differential quadrature (DQ) coefficients are outlined. The dis-
cretization of Telegrapher’s equations and compact modeling
are discussed in Section III. Section IV gives a heuristic rule for
determining the DQM’s order and accuracy. In Section V, sev-
eral numerical examples are presented and the results of various
DQM algorithms have been compared with the results obtained
using HSPICE.

II. DQM

Classical numerical techniques such as FD and FE methods
have been fully developed in the literature and are widely used
to numerically solve differential equations. Despite their wide
popularity and uses, they require computationally prohibitive
time to solve large problems. Consequently, such direct numer-
ical methods have been rather sparingly used in modeling mul-
ticonductor lossy transmission lines. Although the DQM is a
numerical approximation, it can quickly calculate the derivative
of a function by sampling the exact values of the function at a

small set of grid points. Therefore, it involves far fewer com-
puting quantities than the FD and FE methods, nevertheless re-
taining the simple features of the direct numerical techniques.

A. Approximation of Derivative in Terms of Function Values

The integral quadrature method is used to approximate the
definite integral of the following form:

(1)

where and ,
. Equation (1) is called the th-order integral

quadrature application. Following the concept of integral
quadrature, the DQM can be employed to approximate the
derivative of the distributed voltages and currents along trans-
mission lines [24] given by

(2)

for first-order derivative and

(3)

for higher order derivative, where ,
, and . represent

the distributed voltage or current , and
.

As the application in this paper only concerns the first-order
derivatives of distributed voltages and currents along trans-
mission lines, we need only to study (2), which is called the

th-order DQ approximation.
In both the integral quadrature and DQ, the quadrature coeffi-

cient or can be determined by using interpolating polyno-
mials. Integral quadratures with a variety of interpolating poly-
nomials are fully developed in the literature, while the DQs are
still in the developmental stage. The DQM has obvious appli-
cations in the numerical solution of ordinary and PDEs with
known boundary conditions. In general, the interpolation for-
mulas are expressed in two ways, i.e., either in terms of dif-
ferences of the function or in terms of values of the function.
The derivatives of a function can also be expressed in the same
manner in both cases. The first case, i.e., the approximation of
derivatives with differences, provides the basis of many methods
for solving differential equations. Well-known methods such
as Euler, Gear, etc. are examples of the low-order FD and FE
methods. Although these methods lead to high accuracy given
enough grid points, they suffer from large computation time and
their stable conditions are extremely strict. On the contrary, the
second case, i.e., the approximation of derivatives with func-
tion values, gives moderately accurate results at a lower cost by
using fewer grid points; thus, taking less computation time and
having easy stable conditions.
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The key procedure to this technique is to determine the
weighting coefficients . Following the concept of the
weighting residual method, a suggested way by Bellman is to
let (2) be exact for test functions

(4)

By substituting every item in the function set into (2), the fol-
lowing Vandermonde matrix equations are obtained:

...
...

...
...

...

(5)

for . Due to the property of the Vandermonde
matrix equation, the coefficient are uniquely
determined by solving the above equations.

Since the accuracy of the DQM depends on the estimation
of coefficients, in (2), an error term in the

th-order DQ is added to approximate a first-order derivative
as follows:

It has been established in the literature [22] that if all the fol-
lowing conditions are satisfied:

• the first, second, , and th derivative ,
, , are continuous;

• ;
then the error can be evaluated by

where , . The above
equation shows that the DQM approximation has an accuracy
of th order.

B. Determination of DQ Coefficients

Though the DQ coefficients can be obtained by solving (5),
it has been theoretically proven that the method using power
functions cannot give higher accuracy when the order of the
DQM is too large. When is large , the matrix is
ill conditioned and its inversion is numerically difficult [22].
As a developed version of the original DQM, the generalized
differential quadrature (GDQ) [25] and generalized collocation
method [26] are presented. In the practical application of a dis-
tributed transmission line, the voltage or current

can be approximated by means of interpola-
tion as follows:

(6)

where and is an interpolation function
determined by and interpolating formulation. As a result, the
coefficients in (2) can be determined by

(7)

1) Polynomial Differential Quadrature (PDQ):If
in (6) is given as Lagrange polynomials by the following
expression:

(8)

then calculations from (7) provide the following result:

(9)

This process shows that the DQ method is closely related to
the collocation or pseudospectral method [19]. Its principal ad-
vantages over the latter, however, lies in its simplicity of using
grid spacing without any restriction. The grid points in the orig-
inal DQ method are supposed to be equispaced collocations,
while those of GDQ methods can be chosen arbitrarily.

If the grid points are the zeros of anth-order Chebyshev
polynomial, the following very simple formulas can be obtained
for computing the DQ weighting coefficients:

(10)

where and are, respectively, first,th, th, and
th zeros of an th-order Chebyshev polynomial. This re-

sult is agreeable with that derived by using the presentation
of Chebyshev polynomials in [21]. No matter if the test func-
tions are power series, Lagrange polynomials, or Chebyshev
polynomials, it is easy to show that the high-degree polyno-
mial in every case constitutes an-dimensional linear vector
space with respect to the operation of addition and multi-
plication. According to the properties of a linear vector space of
polynomials, function set (4) spans an-dimension subspace of
a complete orthogonal base in this linear space, therefore, any
other th-order polynomial in can be uniquely expressed
as a linear combination of (4). Furthermore, if all the base poly-
nomials of (4) satisfies a linear relationship [see (2)] so does
any th-order polynomial in the linear space. In the-dimen-
sion linear vector subspace, there may exist several-dimen-
sion subsets of orthogonal base polynomials. Each subset of
base polynomials can be uniquely expressed by another subset,
and each different subset lead to a set of unique DQ coefficients.
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TABLE I
MEAN SQUARED ERROR: DQM VERSUSFD (N : THE NUMBER OF GRID POINTS)

In this sense, the approaches shown as (5), (9), and (10) can be
called the PDQ.

2) Harmonic Differential Quadrature (HDQ):For elec-
tronic circuits and systems, the Fourier series may be a better
approximation of the true solution than polynomial expansion.
An th-order Fourier expansion is a linear combination in
an -dimension linear subspace, which is spanned by the
following orthogonal base:

(11)

where is the number of grid points that is normally an odd
number. In order to determine the weighting coefficients using
sine and cosine functions, let (2) be exact when test functions
take the set in (11), then the weighting coefficients are deter-
mined by

Further study shows that in this case is approximated
by interpolation

(12)
where

(13)

and the coefficients of the HDQ can be calculated by

(14)

whose explicit computational formulas are

(15)

C. Properties of DQ Operators

Once the positions of selected points are fixed, each of the
aforementioned approaches gives constant DQ coefficients, no
matter in what applications the differential equations appear.
In general, the set of points are selected carefully so that they
are symmetric with respect to the center of the domain; alterna-
tively, they can be equally spacing points over the domain. At
each point , the derivative can be calculated as

(16)

where . Therefore, all the th-order DQ coef-
ficients constitute a matrix , which is called the th-order DQ
coefficient matrix. Hence, a continuous derivative in the domain

is discretized to a linear operator

(17)

where . For instance, the equally
spacing fifth-order DQ coefficient matrix determined by (4) is
as follows:

The above matrix has the property of inverse symmetry with
respect to the central point. In fact, every DQ coefficient matrix
has such a property, which reduces the computation time for
finding the coefficients by 50%. The following lemmas formally
describe the properties of DQM operators:

Lemma 1: A DQM operator is inverse symmetric with re-
spect to the central point of the matrix.

Lemma 2: An th-order DQM operator has a rank of
.
Lemma 3: The sum of a row of a DQM operator matrix is

zero.
It is observed that the DQ method is an extension of the

well-known difference method, which can also lead to a ma-
trix (FD operator). However, the sparse difference operator
consists of tridiagonal matrices, while the coefficient matrix of
the DQ method is not sparse. The difference method usesneigh-
boring points to numerically compute the derivative at a point,
while the DQ method employs the mesh points in thewholedo-
main. In that sense, the former can be considered aslocal ap-
proximation, while the latter leads to theglobal approximation.
Consequently, DQ coefficients areglobal coefficientsand they
yield highly accurate numerical solutions by using much fewer
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grid points. Table I shows the mean squared error for a signal
at time , , , corresponding to the
DQM and FD (backward Euler method). The comparison be-
tween FD and quadrature results shows that the DQ method pro-
duces the same accuracy with much larger mesh size (about ten
times larger) and the speed of the DQM is, hence, much faster
than the FD methods.

III. D ISCRETEMODELING BY DQMS

Assume that a multiconductor transmission line stretches
from 0 to along the -axis of a Cartesian coordinate system,
where is the length of the line. Let and be,
respectively, the Laplace-domain voltage and current vectors at
point , and let the distributed per-unit-length (PUL) parameter
matrices of the line be denoted by , , , and ,
representing resistance, inductance, conductance, and capaci-
tance, respectively. Use a linear transformation to normalize the
line stretch to by setting . The normalized
Telegrapher’s equations can be written as

(18)

(19)

where , , , and are the normalized PUL
parameters, which are obtained by multiplying , , ,
and , respectively, by the length of the transmission line.

In order to concisely express some of the manipulations re-
quired in a matrix, the following terminologies are first defined
here.

Definition 1: A discretization operator discretizes a func-
tion into a diagonal matrix whose entries are function
values at the grid points

(20)

Definition 2: Let be an matrix. A colon notation
denotes that the specific rows and columns of a matrix are se-
lected to define a submatrix. Thus, is the
submatrix (between theth and th rows) of .

A. Single Transmission Line

At first, we will derive the discretized DQM model for a
standalone single transmission line. Assume that the distributed
voltage and current in (18) and (19) be interpolated and approx-
imated by

(21)

(22)

where is the function like (8) or (13) and
, .

By using (17), the frequency-domain Telegrapher’s equations
of a single lossy (RLCG) line are transformed into

(23)

where

and the other matrices are defined by using (20) as follows:

with the boundary points given by and .
Thus, the Telegrapher’s equations of a single transmis-

sion line are discretized to (23). However, as no excitations
(boundary conditions) are involved in (23), it thereby has
no nontrivial solutions, which is theoretically resulted from
the properties of DQ operators (Lemmas 1–3). As in the
cases with the FD method, here also, we can analogously
replace the equations at an appropriate point within the range

by those at the boundary conditions. An
alternative is to enforce (23), holding at each interior grid points

, , and to force the boundary conditions
holding at the end points and . The discretized Telegra-
pher’s equations with boundary conditions can be written as
follows:

(24)

B. Multiconductor Transmission Lines

The above technique for a single transmission line can be now
extended to model multiconductor transmission lines, where the
conductors are closely spaced to include coupling effects be-
tween them. Assuming that the transmission lines are comprised
of -coupled interconnects that have a common reference, the
Telegrapher’s equations for an individual line in this case trans-
form into (25) and (26) as follows:

(25)

(26)
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In order to apply a DQM operator to every derivative, the
distributed voltage and current along the line are, respectively,
discretized as

and the distributed parameters are discretized as

each of which is an matrix.
In a similar way to the single conductor, enforcing the

boundary conditions at the end points and , we can
obtain the discretized Telegrapher’s equations with boundary
conditions for multiconductor transmission lines

(27)

where

...
...

...

...
. . .

...

...
. . .

...

...
. . .

...

...
. . .

...

Inverse Laplace transforms of (24) and (27) lead to first-order
ordinary differential equations, which represent the time-do-
main models of interconnects. The time-domain responses at
the ends of transmission lines can be obtained by solving ordi-
nary differential equations.

On the other hand, DQM modeling supplies general discrete
models ready for the circuit reduction. In order to apply Krylov
subspace techniques for the model order reduction, the coef-
ficient matrices of the voltage and current variables must be
first-degree polynomials in [21]. The first order with respect
to in (24) and (27) allows to reduce a large subnetwork con-
taining distributed transmission lines to a small macromodel.

C. Compact Models Based on Discretization

The admittance matrix model based on the discretized model
can be obtained by calculating and while setting

and . The state equation takes the form

(28)

where the matrices have the following form:

in which and are represented by

(29)

(30)

and is a matrix generated by replacing the first andth row
of matrix with vector and , respec-
tively. Using the definition ofcolon notation, it is represented
by

(31)

The admittance matrix follows:

(32)

Similarly, each of the entries of admittance matrix is approxi-
mated by a rational formula, whose numerator and denominator
have the same highest order, i.e., th.

Likewise, the admittance matrix of a multiconductor trans-
mission line can be calculated. Derived from (27), the state
equation in this case follows:

(33)
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where

in which , , and are defined accordingly [see
(29)–(31)] as follows:

...
...

...

...
. ..

...

...
. . .

...

Therefore, the admittance matrix for multiconductor trans-
mission lines can be calculated by

(34)

D. Companion Models

Circuit reduction can be performed on discrete models of a
transmission line, as is done in much of the literature. Instead
of following this approach, we have directly developed com-
panion models from a discrete model. In order to handle non-
linear and time-varying systems, a time-domain model of each
kind of device is needed. According to the literature [27], in
order to achieve maximum efficiency in a reasonable time, the
line simulation should be based on a device model that does
not require the introduction of current variables. Considering
the modified nodal analysis (MNA) matrix requirement, the ad-
mittance-formed model is preferred. In (32), each item in the
admittance matrix is a rational formula having the order of its
numerator and denominator determined by the
DQ order . By using the technique of recursive convolution
on (32), a companion model can be constituted.

For an example of a single transmission line, the admittance
matrix in (32) can be represented by

(35)

where each of , , , and is a rational ap-
proximation whose numerator and denominator are both

th-order polynomials. Let us consider .
Applying Heaviside’s theorem, it can be decomposed in the
following form:

(36)

The inverse Laplace transform of (36) is

(37)

and the other entries , , and can be simi-
larly formulated. Thus, taking the inverse Laplace transform of
(35), we can obtain the time-domain counterparts

(38)

(39)

where “ ” denotes the convolution operation, and , ,
, and are, respectively, the time-domain counterparts

of , , , and .
As is cast in exponential form, the convolution integra-

tion in (38) and (39) can be calculated by applying the recursive
convolution [10], and the companion model can be developed,
which has linear complexity with respect to the simulation time.
Similarly, the companion model of multiconductor transmission
lines can also be derived.

IV. ORDER AND ACCURACY OFDQM MODELING

A good way to determine the order and accuracy of the DQM
is to apply the Chebyshev pseudospectral expansion [28], [29].
According to [29], the maximum frequency of interest can be
evaluated by

(40)

where is the rise time of the input waveform. The maximum
frequency determines the minimum wavelength within the spec-
tral range of interest. A heuristic rule for satisfying the resolu-
tion requirements of Chebyshev expansions is to use at least four
collocation points per wavelength [29], and a resolution of two
points per wavelength is sufficient for the modified Chebyshev
method [28].

It is significant that the Chebyshev expansion method is,
in fact, equivalent to the DQM in case its coefficients are
determined by Chebyshev polynomials [called Chebyshev
differential quadratures (CDQs)]. Therefore, the criteria for
the selection of collocation points are basically applicable
to CDQ. However, as the order of Chebyshev expansion
increases, the collocation points of the zeros of Chebyshev
polynomials tend to concentrate at two ends of the line. For
the nonuniform transmission line, it leads to an oversampling
of the voltages and currents at the end points of the line and an
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Fig. 1. Frequency responses by DQM and FD modeling.

undersampling at the center segment of the line. The crowded
points at the boundaries and the sparse points at the center will
cause significant loss of accuracy when handling a nonuniform
transmission line.

On the other hand, DQM with coefficients determined by har-
monic functions (called HDQs), overcomes this difficulty. The
grid points of an HDQ need not be equally spaced, and thereby
can be discreetly selected by the user. In this paper, in order
to determine the HDQ coefficients, we select the collection of
points that are equally spaced over the entire length of the trans-
mission line. In this way, the coefficients can be completely de-
termined as fixed constants and can be applied to any problem
in general.

In order to verify the accuracy of the DQ method, a prac-
tical example is discussed below. A part of a GaAs/InP inter-
connect used by the authors and their co-researchers to design
ultrafast circuits [30] is modeled as a single transmission line.
The PUL parameters are extracted by the methods illustrated in
[31] and are set to nH/m, pF/m, /m,
and S/m. The line length is assumed to be 4 cm. By
employing the abovementioned procedure, the transmission line
can be represented as an equivalent two-port model.

Fig. 1 shows the frequency-domain response of the voltage
transfer function of the two-port model. It is noted that the HDQ
gives higher accuracy than other methods, and the accuracy of
the conventional FD method is the lowest. A heuristic rule for
the resolution of the HDQ is to collect two points per minimum
wavelength in the spectrum

(41)

By this rule, the seventh-order HDQ can guarantee high ac-
curacy within the frequency band from zero to more than 40
Grad/s, as shown in Fig. 1. That means, besides the two end
points, only five inner points along the transmission line are
needed to obtain the accuracy in Fig. 1, while the FD method
cannot guarantee accuracy even if 100 grid points are sampled.
It is also shown that the accuracy of the HDQ is more accurate

Fig. 2. Relative errors of ninth- and fifteenth-order DQM modelings.

than that of any other DQM with the same order. The relative er-
rors of a higher order HDQ, CDQ, and PDQ are shown in Fig. 2.

V. CIRCUIT FORMULATION AND APPLICATIONS

The model presented in the previous sections can be directly
incorporated in formulating circuit models in the frequency do-
main, as well as in the time domain. Consider a linear circuit

that contains linear lumped components and multiconductor
transmission-line systems. Without loss of generality, the time-
domain MNA matrix equations for the circuit with an im-
pulse excitation as its source input can be written as [32]

(42)
where is a vector containing the node voltages,
independent voltage source, and all other additional variables,

, is a vector representing the excitations from
the independent source, and are
constant matrices formed by linear lumped components of,

, which has entries , is a selector
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Fig. 3. Single transmission line.

Fig. 4. Frequency responses by different DQMs.

matrix; it maps , the terminal currents of the line system or
additional variables into the node space of the circuit, and

is the number of subnet.
The DQM models of transmission lines described by (24)

and (27) or their companion models can be incorporated into
(42) as an MNA stamp. We next present several examples. All
the PDQs and HDQs used in these examples employ equally
spaced grid points, and the CDQ employ Chebyshev grid points.
Since the distributions of the grid points have been fixed, all the
DQ coefficient matrix used in these examples are available con-
stants, which have been already obtained by the approaches of
Section II.

The first exampleis a single transmission line, as shown in
Fig. 3. The length of this transmission line is 8 cm, and the PUL
parameters are nH/m, pF/m, /m,
and S/m. The applied input is a step voltage whose
rise time is 0.2 ns.

The propagation velocity along the line is 5/310 m/s, and
by (40), the maximum frequency GHz. By applying
(41), the order of the DQM is calculated as seven. Therefore, we
employ the seventh-order HDQ, CDQ, and PDQ, respectively,
to compute the frequency responses of the transmission line,
as shown in Fig. 4. Obviously, the result of the HDQ is most
agreeable with the exact value.

The transient responses of the transmission line corre-
sponding to HDQ, CDQ, and PDQ modeling are shown in
Fig. 5 along with the response obtained using the commercial
simulator HSPICE. The transient result of the HDQ is more
agreeable with that of HSPICE than the other two types of
DQMs investigated in this paper. HSPICE employs a multiple
lumped-filter section to generate the transient behavior in the
time domain [33]. From these empirical studies, it may be
noted that, compared to other numerical methods, the low-order

Fig. 5. Step response for a single transmission line.

Fig. 6. Circuit of a coupled transmission line.

DQ method can give accurate transient results. In this example,
the DQ method samples only five inner grid points along the
transmission line. If the FD method is employed to solve the
example, at least between 50100 grid points are needed to
achieve the same accuracy.

Thesecond examplewe study in this paper consists of three
coupled transmission lines, as shown in Fig. 6. The length of
each transmission line is 5 cm and its RLGC parameters are
represented in the following matrices:

cm

nH/cm

pF/cm

Since the HDQ yields results closer to HSPICE, in this ex-
ample of three coupled transmission lines, the HSPICE result is
compared with the results of seventh-, ninth-, and eleventh-order
HDQs. These correspond to deriving the harmonic coefficients
by sampling seven, nine, and 11 equally spaced grid points on
the transmission lines. The transient responses of point A are
shown in Fig. 7, those of point B are shown in Fig. 8, and HDQ
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Fig. 7. Transient responses at A of a coupled transmission line.

Fig. 8. Transient responses at B of a coupled transmission line.

results are compared with HSPICE results. It shows that the
ninth-order DQ method gives more accurate results than the sev-
enth-order DQ method. Generally, a higher order DQ method
can give more accurate results. However, a higher order DQ
means sampling of more points within the transmission line and
more computation time for DQ coefficients. In practical applica-
tions, the DQ order can be selected no greater than 11. In our ex-
periments, we found that the selection of a DQ order within the
recommended range yields considerable accuracy while main-
taining high computational efficiency.

One of the advantages of the proposed DQ method is that
the technique can be applied without any difficulty to solve the
multiconductornonuniformtransmission lines. We next study
the third exampleof three lossy and coupled nonuni-
form transmission lines, as shown in Fig. 9. Since the width of
the lines are assumed to vary across the length of transmission

Fig. 9. Circuit of nonuniform interconnects.

Fig. 10. Nonuniformity of the transmission line.

lines, the PUL parameters of the nonuniform transmission line
can be represented as follows:

where

nH/m

pF/m

m

S/m

The nonuniformity of the transmission line can be shown as
Fig. 10.
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Fig. 11. Transient response at A of nonuniform interconnects.

Fig. 12. Transient response at B of nonuniform interconnects.

The excitation is a 3-ns pulse with rise/fall times of 0.5 ns.
With seventh- and ninth-order harmonic coefficients, the tran-
sient responses of points A and B as computed by the HDQ are
shown in Figs. 11 and 12. In order to verify the accuracy and ef-
ficiency of the DQ method, we apply HSPICE to this example.
Since the nonuniform transmission line cannot be handled by
HSPICE directly, the nonuniform line can only be incorporated
into HSPICE in an indirect and inefficient way. We segment the
lines into eight equal sections, each of which is regarded as a
uniform line. In Figs. 11 and 12, the results of the DQ method
and HSPICE are shown to match well, but the efficiencies of
these two approaches are quite different. Since the time step of
HSPICE is subject to the least flight delay of all the transmission
lines, it cannot be too large to achieve an accurate transient re-
sult. In this example, HSPICE generates the indicated response
in 5.527 s using a time step of 7 ps, while the HDQ method needs
only 1.56 s to yield the similar response. The above computa-
tion times are based on the programs running on s Sun Ultra-1
workstation and do not include the time pertaining to reading
and writing of files.

Fig. 13. Interconnect network.

Fig. 14. Transient response of example 4.

Fig. 15. Transient response of example 5.

The fourth example(see Fig. 13) shows a part of an MCM
circuit containingRLC lumped elements and distributed inter-
connects. For each of the interconnects in Fig. 13, the distributed
resistance is /m and . The input is an impulse
with 3-ns width and 0.1-ns rise/fall time. By using a fifth-order
PDQ model to represent the interconnects, the transient results
are shown in Fig. 14 compared to the results of the FD model
from HSPICE. On a Sun Ultra-1 workstation, the transient time
of the DQM is 0.38 s, while that of HSPICE is 1.44 s.

Thefifth exampleis to further test the efficiency of the DQM.
The circuit is constructed by cascading five identical cells, each
of which is the circuit shown in the dashed frame of Fig. 13.
The transient responses in Fig. 15 are calculated by using a
fifth-order PDQ model, as well as an HSPICE model. On the
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same Sun workstation, the transient time of the DQM is 3.44 s,
compared to the transient time of HSPICE, i.e., 10.84 s.

VI. CONCLUSIONS

In this paper, we have derived new transmission-line models
by employing a powerful numerical computation technique,
called the DQM. Unlike the FD and FE techniques, which
compute functions and their derivatives over a cluster of locally
neighboring points, the DQM discretizes the transmission line
into few grid points across the entire length of the transmission
line and computes the electrical parameters at those points
in order to derive transient response of the transmission line.
Based on the discrete models, compact models can be obtained,
which take the form of rational approximations in the frequency
domain and, thus, the companion model in the time domain
can be obtained by an inverse Laplace transform and recursive
convolution. Although the rational approximations of DQM
models in the frequency domain are like the results of Padé
approximation of AWE, the DQM solution procedure differs
significantly from the AWE algorithm. One notable feature of
the DQM is that it is more stable than AWE since it avoids the
moment generation and moment-matching process altogether.

We have demonstrated how to compute DQ coefficients
using harmonic functions and polynomials. Other techniques
like the shifted Legendre polynomial, spline fitting, etc. can be
studied and compared with the existing methods. In practical
application, all the DQ coefficient matrices are fixed constants,
which have been readily calculated prior to any modeling
process. From our study with three DQ methods, we observe
that the HDQ method, where DQ coefficients are determined
by harmonic functions, yields the most accurate results. An
-domain DQM-based discrete model has matrix representation

whose elements are first degree with respect to, which is com-
patible with Krylov subspace techniques for circuit reduction.
The companion model derived from the discrete model can be
directly incorporated into circuit simulators such as SPICE.
The HDQ has been shown to produce highly accurate delay
models for both single and multiconductor transmission lines,
having both uniform and nonuniform shapes. Unlike com-
mercial simulators, which cannot directly handle nonuniform
transmission lines, DQMs model the nonuniform lines by using
the same procedure as model uniform lines and, therefore, at
the same computational cost. Despite the fact that the DQM is
a direct numerical computation technique, it remains stable and
generates solutions faster than HSPICE (about three times) and
many other well-known techniques.
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