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Summary. An accurate method of solution is developed for steady incompressible laminar boundary 
layers whose main-stream velocity U(x) is expressible as an odd polynomial in distance x measured along the 
wall, 

0 0 

The velocity distribution within the boundary layer is expanded in a similar series, 

co 

u = u 1 ~ F2n+l'(~?) ~:~"+1, 
0 ,  

the coefficients of the first six terms being given as sums of multiples of known universal functions. The 
• relatively small contribution of the subsequent terms is estimated by using an idea of Howarth, whereby the 

cdefficients of the seventh and subsequent terms are assumed to have the same dependence upon the distance 
normal to the wall as does the sixth term. With this approximation the equation for the non-dimensional 
skin-friction is reduced to a very simple first-order non-linear ordinary differential equation. 

Details are worked out for the case of a main-stream velocity U = U0( ~ - ~a), boundary layer separation 
being estimated to occur at ~: = 0.6551. The boundary-layer thicknesses and the skin-friction distribution 
are tabulated. 

Consideration is also given to main-stream velocities U = U0(~: - ~a + ~:s) for two values of c~ for which 
the analysis takes a particularly simple form. Similar results are given for these two cases. Separation is predicted 
at ~ = 0.664~ when a = 0.0789, and at ~ = 0.6245 when c~ = - 0.1210. 

1. Introduction. I t  is often necessary to predict  the development  of the laminar  boundary  layer 

on a two-dimensional  body. In  particular one needs to predict  whether  or not boundary- layer  

separation will occur for a given pressure distribution. Accordingly, a large number  of approximate  

methods have been devised for dealing with this problem,  and these vary in speed, simplicity and 

accuracy, and in the amount  of information obtained. Most  of the best approximate  methods  are 
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empirical in that they make use  of the available exact solutions of the laminar-boundary-layer 
equations ; exact in this context means that the solution has an accuracy of 1 per cent or thereabouts, 
that is sufficient for empirical fitting in an approximate method. 

At the time of writing there ar e probably only six such solutions of the laminar-boundary-layer 
equations ~ : 

(i) Falkner and Skan 1 (1930) have given exact solutions for the family of similarity solutions 
corresponding to an exterm'/1 velocity 

U = U0~ "~, (1.1) 

where ~: will everywhere equal x /c ,  a non-dimensional distance. 

(ii) Howarth 2 (1938) considers the case 

U = Uo(1 - ~ ) .  (1.2) 

This solution was obtained by expanding the stream function ¢ in a power series in ¢, the 

coefficients being given by solution of ordinary differential equations. A few of the relevant 

functions were obtained, and the series converged well when ~ < 0" 1. A specially devised 

method was used to continue the solution accurately to higher values of ~:, and separation 

was found at {: = 0. 120, a value which has since been verified by other workers. 

(iii) Tani s (1949) considered the three cases 

V = U0(1 - ~) ,  n = 2, 4, 8 .  (1.3) 

His solutions were obtained by evaluating a few terms of a series in powers of ~:~, and then 
using Howarth's  procedure to continue the solution beyond the range of ~: for which the 

convergence is rapid enough. He finds separation at ~ = 0.271, 0-462 and 0.640 

respectively. 

(iv) Hartree ~ (1939) has used a differential analyser to obtain a precise numerical solution for 

Schubauer's experimentally observed pressure distribution. 

These solutions, valuable though they are, do not cover exhaustively the situations which arise 
in practice. For  example, Thwaites 5 (1949) has pointed out that the similarity solutions are not 

necessarily a significant criterion for the accuracy of a one-parameter approximate method. Equally, 
the solutions obtained by Howarth and Tani  are all for boundary layers where there is a sharp 

leading edge and the flow is everywhere retarded. The only exact solution for a flow with a forward 

stagnation point and a separating boundary layer is that for Schubauer's ellipse, in which the 

velocity is given numerically. Although in some ways this is not a serious drawback, there is 

nevertheless real need of an exact solution for an analytically defined flow in which there is both a 

stagnation point and boundary-layer separation. It is this need which has led to the work described 

in this paper. 

Since writing this paper a further solution has been obtained by R. M. TerrilP ~ (1960) on the Manchester 
University computer for the case U = U 0 sin {:. In attempting to calculate the solution for this case by the 
present method, for purposes of comparison, the author met considerable numerical difficulties, mainly 
because the constant h in equation (1.4) was large, being 232. A numerical and analytical investigation of these 
difficulties is being made by P. G. Williams la (1960). 



The general theory is developed in Section 2 for cases where the main-stream velocity may be 
expressed as an odd polynomial in the distance x measured from the forward stagnation point. 
In such a boundary-layer flow the stream function may also be expressed as an odd polynomial 
in ~, the coefficients being functions of the distance z normal to the wall. These functions have been 

expressed as linear multiples of certain universal functions (Howarth G (1934)), which have been 

calculated by various workers. The most accurate calculations are those due to Tiffor& (1954) who 

used a modern high-speed computing machine, and as a result of his work the coefficients of all 

terms up to and including ~11 are known with sufficient accuracy. The basic idea of the present work, 

which must be examined in each individual case, is that the small contribution of subsequent terms 

may be evaluated by assuming that their dependence upon z is similar to that of the coefficient 

of ~1~. This will often be a reasonable approximation, one imagines, for Howarth ~, in considering 

the case (1.2) found that the coefficients of ~'~ were remarkably similar in shape when n = 5, 6, 7, 8. 

Subject to this approximation an equation for the non-dimensional skin-friction T, defined later, 
may be reduced to the simple form 

- h f l  Td . (1.4) 

Here Q(~) is a known polynomial and k is a known constant, which are easily obtained from a 

knowledge of the main-stream velocity. The equation is easily integrated by a numerical procedure, 

having the same accuracy as Simpson's integration formula. Accurate results are accordingly 
obtained quite quickly. 

The method is applied in Section 3 to the case of an external velocity 

u = u0(  - (1.5) 

The basic approximation, that the coefficient of ~2~+1 in the power series for the stream function 
tends to a uniform shape as n increases, is examined and appears to be reasonable. The momentum 

and displacement thicknesses are evaluated, and are shown in Table 2, along with the non-dimensional 
skin-friction. 

In Section 4 results are derived for two cases with an external velocity of the form 

U =  Uo(~-  ~3 + ~5). (1.6) 

The parameter c~ is chosen so that the constant k in (1.4) becomes zero, with a considerable 
simplification of the resulting analysis. Again the basic approximation appears to be reasonable. 

2. General Theory. It is well known that, when the external velocity is given as a power series 

in ~:, a formal solution of the boundary-layer equations may be obtained by expanding the stream 

function as a power series whose coefficients are functions of the distance normal to the wall. Thus 
for a main stream 

co 

U = N" ,, ~2~+1 (2.1) 
0 

the stream function ¢ may be written as 

¢ = (u1 c)1 2  2,+1 (v) .  (2.2) 
0 

where 

( ul ] l/Zz (2.3) ~7 = \vc/  " 

(78648) A 2 



Howarth 6 (1934) showed that the functions F2n+l may be expressed as linear combinations of a 
sequence of universal functions, which can be tabulated once and for all. Thus 

F1 = f l  

F3 = 4 ~ f a  

F5 = 61~g5 + 

tU7 
= 8t7g  + 

F 9 = 10 

U~ h5 

(2.4) 
2 u us. I + 7~-~h,a + ~k9 + 7~-,J9 + ~q9 ~ g 9 uau7 u~ 

t Ull gtau9 u 5 u  7 - u~z t  7 . u a u ~  
F n = 12 t~-gn  + 7 h , 1  + 7 k n  + 7 . / 1 1  + 7 q n  + 

uaUSm u~ } + n+ nll • 

Several of these universal functions were calculated to a reasonable accuracy by Howarth, and his 
calculations were later improved and extended by FrSssling s (1940) and Ulrich 9 (1949). Quite recently 
Tifford 7 (1954), using modern high-speed computing machinery, has evaluated all the universal 
functions in (2.4) to much greater accuracy, so that even the least reliable of the results, namely, 

those for the function nn, may be correct to 3 figures and almost certainly are correct to 2 figures. 
From (2.2) it follows by differentiation that the velocity u in the boundary layer is 

~ ~2,~+1F u = ul 2.+1' (7) (2 . s )  
0 

and that the skin-friction at the wall is derived from 

az/w \717 ~ ~2,,+1F2,+ ,,(0). (2.6) 
o 

' In the series expansions (2.2), (2.5) and (2.6), the first six terms are known. To determine the 
influence of the subsequent terms use will be made of an idea of Howarth = (1938). In the series 
expansion for the case U = Uo(1 - ~), Howarth noted that the coefficients of ~= were of similar 
shape when n = 5, 6, 7, 8, and reasoned that, as the differential equations to be satisfied by these 
functions were of similar form, it would be plausible to assume that the similarity in shape would 
persist to higher values of n. Accordingly, two related basic ideas will be used in what follows. 
(i) It will be assumed that the convergence of the series is such that the seventh and subsequent 
terms may be treated as a relatively small correction to the first six. The validity of this approxima- 
tion must be examined a posteriori, of course, but in the examples considered in this paper the series 
appear to converge reasonably almost all the way to separation. (ii) It is further assumed that the 

contribution of the seventh and subsequent terms may be adequately estimated by assuming that 

the F2~+1 (~7), ~7 ~> 6, are similar in shape to Fn(~?). Again, nothing general can be said about the 
validity of this assump}don. By examining FT, F 9 and Fn, one can get some idea as to whether there 

is a tendency towards a universal shape, and in many cases the approximation will be a good one, 

particularly as it is being used only to obtain a relatively small correction term. 
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On the basis of these approximations we may write the velocity as 

and the skin-friction as 

u 
= ~ _ ~ 2 n + l F 2 n + l t ( ~ )  + A ( ~ ) F l l ' ( ~ ) ,  ( 2 . 7 )  

Ul o 

"1-'£ (0U) Z <2n+i F2n_l_l n (0) -Jr- A ( < ) F l 1 " ( 0  ) V: / \ 
(2.8) 

u~f ~ = o 

where A(~) is to be determined. Howarth suggested two possible methods, which would yield 

identical results if (2.7) were exactly true. One is to choose A(~) so that (2.7) satisfies the momentum 
integral equation, whilst the other is to satisfy a boundary condition at the wall. Now the first 

condition at the wall which is not identically satisfied by (2.7) is obtained by differentiating the 

momentum equation twice with respect to z, and is (Howarth 2, 1938) 

w = v ~ . (2.9) 

Provided the basic approximations above are reasonable, ekher of these methods should lead to a 

satisfactory prediction of A(~). Accordingly, we shall use (2.9), since the subsequent  analysis can 

be reduced to a particularly simple form. 
From (2.7), by four-fold differentiation with respect to ~/, we find 

. ?  ~ 1 ~  = ~  ~2'~+~E v . (2.10) ~.+~ (o) + A ( ~ ) F I ( ( 0 )  
. 0 

By eliminating A(~) between (2.8) and (2.10) we obtain the simple result 

where 

v 

b2n+l 

From (2.9) and (2.11) we have 

= g i  il b2n+ 1 + 
,,c ~ ~ \u131 \~Zlw 

FllV(0) ,, 
= G'~+xV(°) F,"(0) G,~+I (0). 

/'/13 b2n+ 1 ~2n+ l  _}_ 
= ,,~- Fil"(O) \.13! ,o 

(2.11) 

(2.12) 

(2.13) 

an equation for the skin-friction. If  we write T as the non-dimensional skin-friction, 

and 

then (2.13) becomes 

T = \u? !  ~z w' 

4 
P = E ]' ~2n+i . u2~q-lb , 

0 

aT F.~(O) T ~ =  P + ~ T ,  

(2.14) 

(2.18) 

(2.16) 



which may be integrated to give 

2F~(0)  f~  
T~ = Q + & " ( 0 )  o 

where 

T d~:, . (2.17) 

Q : 2  fro m P d ~ :  ~ b2n+l ~ 2 n + 2 o  K • (2.18) 

A convenient and simple solution of (2.17) may easily be derived by a procedure due to Thwaites a° 
(1949), in which J'~0 T d~ is replaced by its Simpson's rule equivalent. Hence if T(~:) and T({: + h) 
are known, the value of T(~ + 2h) may be determined by solution of a quadratic equation. 

Accordingly, the procedure to be adopted in the general case is as follows. The main-stream 
velocity being known, the constants zt~+ 1 in (2,1) are known, and hence the F2,+1 are known by 
(2.4). By examination of the numerical values of these functions one can see whether say F7, F 9 and 
Fll are similar in shape, and if so, reasonably hope that the subsequent functions may not be too 
different in shape from F n. The skin-friction T is then obtained by solving (2.17) in the manner 
described above, the starting conditions being determined from the series (2.6). It is necessary to 

know the values of F2~41~(0), which may be deduced in terms of the second derivatives at the wall 
by examination of the equations satisfied by the universal functions. The second derivatives, given 

by Tifford, are reproduced here in Table 1 together with the fifth derivatives which have been 
deduced from them. Having obtained T, the relevant value of A(x/c) is deduced from (2.8) by 

subtracting the first five terms, and the velocity profile is then given by (2.7). An a posteriori check 
on the accuracy can be made by using the momentum integral equation. 

It is perhaps worth noting that in certain cases, if great accuracy is not required, it may be possible 

to integrate (2.17) directly. It is an essential requirement of the method that the series expansion 

(2.6) for T should converge reasonably, so that the first six terms give some indication of the flow 

right up to separation. It follows that upon term by term integration of this series, the result 

0 

should converge even more rapidly. If  it converges rapidly enough to terminate at the sixth term, 
then upon combining with the series for Q (2.17) yields 

2,~+~ (0) ~:2,~-~ (2.20) 
o n + l  

T 2 

It is of course rigorously true that 

T2= F~+I~(0) 
Z ~'~+~ (2.21) o n ~ - ~  

so (2.20) seems to indicate that the series (2.21) may often converge much more rapidly than the 
associated series (2.6) for T. This is certainly borne out by calculations for the case (1.5). The first 
six terms of the series for T ~ indicate separation at ~ = 0.647, whereas the first six terms of the 
series for T indicate separation at ~ = 0. 684. The accurate integration of (2.17), which is described 
in Section 3, predicts separation at ~ = 0. 655, so the series for T 2 leads to an error less than 30 per 
cent of that obtained by the series for T. 

Whether the first six terms of the T 2 series will give an accurate enough prediction of separation 
depends purely on the accuracy desired. In what follows the equation (2.17) will be integrated by 
the accurate procedure described earlier in this Section. 
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It  is possible also to obtain a simple general formula for the displacement thickness. W e  have, by 

definition, 

u 3 1 =  f :  ( v  - u) & , (2.22) 

and b~/(2.3) and (2.7) this yields 

U81 
= (vc] 1/~ 

,,,1/ f o (U - u) d '  

= lim (vctt/~l ~ - I -+~ \ ' f i /  U~7 - z ' l  o ~" '~+'  F 2 ' ~ + 1  ( ~ )  - uld(~) fu(~)  ' 
so that 

(ulvc)ll 2 81 = lim - - . ~->oo ~ 7  0 ~'~+1F~,~+1(~) A(~)FllO? ) (2.23) 

The re  is not a simple general expression for 32, as far as the author can determine. 

3. Solution for the Main-stream Velocity U = Uo(~ - ~3). As this example will be considered 

in some detail, it will be useful to know roughly where separation occurs, before the full analysis 

is attempted. Solutions to this problem had earlier been obtained (Curle and Skan 11 (1957)) by the 

approximate methods of GSrtler, Stratford and Thwaites, the predicted positions of separation 

being respectively ~ = 0-685, 0.659, 0.648. Bearing in mind that typical errors for Stratford's 

and Thwaites '  method are 1 per cent and 3 per cent respectively, and that G6rtler 's  method usually 

overestimates the distance to separation by up to 5 per cent, it appears that the t-rue separation 

position may well be ~ = 0 .66 to two figures. 

For  this particular problem the coefficients in the series (2.1) are 

u l  = U0,  u3 = - U0 ,  u5  = u7 = u ~  . . . . . .  0 .  ( 3 . 1 )  

Thus,  from (2.4), the relevant functions are 

-~1 = A,  ~?3 = --4f~, F5 = 6h5' / . (3.2) 

F 7 = - 8 k 7 ,  F9 = 10q9 , F l l  = - 1 2 n l l  J 
Accordingly the series expansion (2.6) for the skin-friction yields 

Uo3] ~ = T = fl"(0)~ - 4f3"(0)~ 3 + 6h5"(0)~ 5 - 8k7"(0)~' + 

+ 10q9"(0)~ 9 - 12nn"(0)~ u . . . .  , (3.3) 

and upon substitution for these second derivatives (Table 1) we have 

T = 1.232588~ - 2.89779~ ~ + 0.71509~ 5 - 0"06111~ 7 - 0"3079~ 9 - 0"6187~ 11 . . . .  (3.4) 

The  accuracy to which the various coefficients are known is such that they should be correct at 

least to one figure less than those quoted, except that the coefficient of ~" may only be correct to 

two figures. To  examine the rate of convergence of the series we note the following examples. 

When  ~: = 0.35 the series becomes 

T =  0 . 4 3 1 4 0 6 -  0.124243 + 0 - 0 0 3 7 5 6 -  0 . 0 0 0 0 3 9 -  0 . 0 0 0 0 2 4 -  0 . 0 0 0 0 0 6 . . . ,  (3.5) 

so the first six terms appear to give the series to 5 decimal places. At the pressure minimum, 

= 1/~/3, the series becomes 

T = 0.7116 - 0.5577 + 0.0459 - 0.0013 - 0.0022 - 0.0015 . . . .  (3.6) 
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the convergence being insufficient to yield T to 3 decimal places. When s e = 0.66, in the vicinity 
of separation, the series is 

T = 0.8135 - 0.8331 + 0.0896 - 0.0033 - 0.0073 - 0 . 0 0 6 4 . . . ,  (3.7) 

so that the six terms cannot give an accurate estimation of the separation position. However,  since 

the 4th to 6th terms are of order 10 .3 times the first three, presumably the series will give some 

idea as the flow near to separation, and it is therefore reasonable to regard the subsequent terms 
as a correction to the first six. 

We now examine the functions F2,~+l'(.q)/F2,,+l(oo), n = 3, 4, 5, to test whether there is any 

indication of similarity in the shapes of coefficients of higher powers of ~:. By (3.2) these three 

functions are simply hT'(~)/k7(oo), qg'(~)/qg(oo), n~l'(.q)/n~l(oo). Fig. 1 shows that they have the same 

general shape, and that the latter two are much closer to each other than the first is to either of them. 

It  seems possible, therefore, that the shapes of the subsequent functions might well differ from that 

of nll by even less than q9 does. Accordingly, the use of the approximation (2.7) seems to be most 

reasonable, particularly when it is remembered that it is being used only to obtain a relatively small 
correction term. 

We therefore solve the equation (2.17) for T. Th e  relevant coefficients are easily obtained from 
(2.12), (2.4) and (3.2), and when this is done (2.17) becomes 

r 2 = Q - 3.328 r d ~ ,  (3.8) 
0 

Q = 3 .570193~  - 9.554395~4 + 10.55662~6 _ 4.3204~s + 0.0041~10 (3.9) 

the coefficients again being at least correct to one figure less than the number  quoted. This  equation 

was integrated by the step-by-step procedure outlined in Section 2. Th e  series expansion (3.4) 
yields 

T(0.275) = 0.338962 - 0.060265 + 0.001125 - 0.000007 - 0.000003 - 

- 0.000000 = 0.279812 ) 
T(0"300) = 0.369776 - 0.078240 + 0-001738 - 0.000013 - 0-000006 - ~ " (3.10) 

- 0.000001 = 0.293254 ) 
With these starting values the equation was integrated in steps of A ~: = 0- 025. A second integration, 

using the starting values at ~: = 0.25 and 0.30, was also used, Richardson's h 2 extrapolation then 

being applied to obtain improved values. Smaller steps were used as separation was approached, 

and separation was predicted at ~: = 0. 655~. Th e  values of T being known, it was a simple matter to 
subtract the first five terms of the series expansion, and then use (2.8) to Obtain A(~:). 

The  displacement thickness, (2.23), is easily obtained. Upon substitution from (3.2) we have 

(Uo] ~/2 
~ C  I ~1 = (¢  --  ~3)--1 lim {~(~ - -A )  - ~3(~ _ 4f3) _ 6~Sha + 8~7k7 _ 

*/- -+  eta 

- 10fgq9 + i2Ann} ,  (3.11) 

and upon substitution from Tifford's  Tables this becomes 

Uo ] /2 
~-c/ 31 = (se - ~a)-l{0'647900se + 0"113896~ :3 + 0"44341~ 5 + 

+ 0"79612~ :7 + 1"3967~ 9 + 2 .490A}.  (3.12) 



Similarly, by integration one can obtain 32, and after a considerable amount  of work this yields 

~ c /  32 = U2 d r  
o 

= (~e _ ~:3)-2 {0.292344.6:2 _ 0.266996~4 + 0.10223~6 + 

+ 0.0591~ :s + 0.0684~ a° + 4.163~ e12 - 0.709~14 - 0.765~e16 - 

- 0.628~a8 - 1 .82A 2 + A[2"07~ e - 2.95~:3 - 1.55~eG - 

- 2.56~ 7 - 2.13E9]}. (3.13) 

In both (3.12) and (3.13) the accuracy of the coefficients is such that the last figure quoted is in 

many cases doubtful, if not meaningless. For  small values of ~ this is not important,  but  near 

separation it is a serious drawback, particularly as regards 32. For example, at the predicted separation 

position (3.12) and (3.13) yield 

~-] ~1 = 2"2986 + 0"001,  

(U°]  112 . (3.14) 
I,~c/ 32 = 0"6072 + 0"03 

We note that the proportionate error in 32 is much greater than that in 31. Accordingly more reliable 
values of 32 are obtainable by accepting the values of 31 from (3.12) and T from (3.8), and then 

deriving 32 from the momentum integral equation. Thus,  in the general case, we have 

from which one can derive " 

t u ~ \ W j  = u g  T U0 d~ 1\7C-/ t d~. (3.15) 

This also yields 32 more rapidly, as it is not necessary to determine all the coefficients-of (3.13). 
It must be stressed, however, that the use of the basic approximation, (2.7), cannot be avoided, 
and any errors due to this remain. Use of (3.15) in determining 32 merely ensures that the available 

information is used to the best effect. 
In Table 2 are shown the results for the present case. The momentum thickness 32 has been 

calculated both by (3.13) and (3.15). Those values derived from (3.13) show a physically unrealistic 

decrease in (Uo/vc)l/232 just  prior to separation. This  decrease, however, is of magnitude 0.01, 
which is considerably less than the uncertainty near separation. The  values derived from (3.15), 

on the other hand, agree remarkably well for values of ~ less than or equal to 0.64, the random 
difference in the fourth decimal place being clearly a rounding-off error. When ~ >~ 0- 64, however, 
the value of (Uo/vC)~/232 continues to increase in a reasonable manner. The  fact t.hat the values 
of 32 derived from (3.13) and (3.15) agree so well when ~ ~< 0" 64 confirms the accuracy of the basic 
approximation in this region. When  ~ >~ 0 .64 the discrepancy is nowhere greater than the known 

uncertainty, so one might reasonably hope that (3.15) is quite accurate. 

4. Solutions for  Mainstream Velocities U = Uo(~ - ~3 + c~5). For main-stream velocities of 

this form, with the coefficients in (2.1) becoming 

ul = Uo, u~ = - Uo, u~ = o~ Uo, u7 --  u9 . . . .  0,  ( 4 . 1 )  



the  func t ions  which  appea r  in the  series for  the  s t r e am func t ion  are 

F1 = f l  

F3 = - 4fa 

F~ = 6(ag 5 + hs) 

F7 = - 8(ah7 + kT) (4.2) 

F9 = 10(c~k9 + c~J9 + qg) 

F l l  = _ 1 2 ( ~ q n  + am n + n j l )  

N o w  the  n o n - d i m e n s i o n a l  skin-f r ic t ion T, def ined in (2.14), is, by  (4.1) s imply  

T = \Uoa ] Oz ,o' (4.3) 

and by  the  m e t h o d  of the  p resen t  pape r  mus t  satisfy the equa t ion  

2F1[(0)  f e  T d ~ ,  (4.4) 
T 2 =  Q + Fll"(0)  0 

where  Q is def ined by  (2.12) and  (2.18). N o w  Fn~(0) i s ,  by  (4.2), a quadra t ic  in ~, namely ,  

FllV(0) = _ 12{c~2qllV(0) + amllV(O) + n, lv(0)} 

= 1 .02966 - 4 .58707~  - 107 .422~  z . (4.5) 

I t  is in teres t ing to notice tha t  Fn~(0) is zero for  each of  two real values  of  a, namely ,  

. ~ = 0 .07885 and ~ = - 0 " 1 2 1 5 6 .  (4.6) 

W e  shall here  develop the  solut ion  for  each of  these  values of  a, since (4.4) reduces  to 

T 2 =  Q .  (4.7) 

I n  o ther  words ,  T 2 is k n o w n  wi thou t  any numer ica l  in tegra t ion  be ing  required.  T h e  posi t ions  of  

separat ion,  for  wh ich  T 2 = 0, are easily obta ined,  and  are 

= 0. 6647 w h e n  ~ = 0. 0789 / 
(4.8) 

= 0"6245 w h e n  e~ = - 0.1216 . 

Since T ~, and  hence  T, is known,  it is easy to de t e rmine  A(s  e) f r o m  (2.8), whence  8j follows f rom 

(2.26) and then  83 f r o m  (3.15). T h e  resul ts  are shown  in Tab l e s  3 and  4. 

Finally,  one should  check w h e t h e r  the  basic  a p p r o x i m a t i o n  , (2.7), is reasonable .  Accord ing ly  the  

convergence  of the  series (2.6) for  T, namely ,  

T = ~ F2n+t" (0)~ 2'~+~ , (4.9) 
0 

has been  examined .  Subs t i tu t ing  for  F2n+I"(O ) f rom (4.2) and  T a b l e  1, we find tha t  the  series becomes  

T = 1 .232588~ - 2 .89779~  a + 1 .01537~ 5 - 0 .1765~  7 - 0 .2564~9 - 0 . 4 5 7 ~ n . . .  

when  ~ = 0.0789, (4.10) 

T = 1 .232588~ - 2 .89779~  a + 0 .25217~  5 + 0 .1168~ v - 0.3733~9 - 0.901~11 . . . 

when  ~ = - 0. 121G . (4.11) 

10 



Hence at the predicted separation positions, (4.8), the series become 

T = 0.8193 - 0.8511 + 0.1318 - 0:0101 - 0.0065 - 0.0051 . . .  

when a = 0 .0789,  (4.12) 

T = 0.7697 - 0.7057 + 0.0239 + 0.0043 - 0 .0054 - 0.0051 . . .  

when cz = - 0. 1216 . (4.13) 

Since the fifth and sixth te rms are of order 10 .2 times the largest terms of the series, one would 

conclude that  the series is converging sufficiently rapidly to justify using an approximate  fo rm for  the 

subsequent  terms. Further ,  to justify the form chosen for the seventh and subsequent  terms, the 

functions FT'(~)/F7(oo), Fg'(~)/Fg(oO) and F~l'(~)/Fn(oo) have been examined, and are shown in 

Figs. 2 and 3 for ~ = 0. 0780 and c~ = - 0. 1216 respectively. In  each case it will be noted that the 

curves are similar, and that  Fg'('q)/Fg(oo) and Fn'('q)/Fn(oo ) are particularly alike in the crucial 

region near  to the wall. Accordingly the use of the present  method  seems reasonably justified. 
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T A B L E  1 

Second and Fifth Derivatives of the Universal Functions 

F(v) y"(o) Fv(O) 

A 
f3 
g~ 
h5 
g7 
h7 
k7 
g9 
h9 
k9 
J~ 
q0 
gn 
hll 
kll 
A1 
qal 
mll 
nil 

+ 1-232588 
0.724447 
0.634702 
0.119182 
0.579202 
0-182948 
0.007638 
0.539932 
0.151970 
0.057185 

+0.060741 
-0-030787 
+0.509986 

0.132290 
0.074200 
0.080554 

+O.116361 
-0-179648 
+0.051561 

+ 1.519273 
3.571779 
4.693956 
5.080001 
5.711339 

12.839387 
2.147501 
6.655137 

15.300401 
7-956095 
7-713064 
0.053268 
7.543231 

17.602794 
18.743288 
8.908709 
8.951840 

+0.382256 
-0-085805 

T A B L E  2 

Values of T, 31 and 32for the Case U = Uo(~ - ~)  

0"00 
0.10 
0-20 
0"30 
0"40 
0"50 
0"55 
0.60 
0"61 
0"62 
0"63 
0"64 
0-65 
O" 652 
O- 654 
0-655 
0" 6551 

T 

0 
0.12037 
0-22356 
0.29325 
0.31468 
0.27476 
0.22739 
0.15691 
0.13911 
0.11953 
0-09761 
0.07206 
0-03854 
0.02926 
0-01690 
0.00580 
0 

0-6479 
0-6556 
0-6804 
0.7279 
0.8119 
0"9688 
1.1064 
1 .3396 
1.4092 
1-4926 
1.5966 
1.7461 
1.9568 
2-0286 
2.1336 
2-2390 
2.2986 

33 \~-c] 

From (3.13) 

0.2923 
0.2956 
0.3058 
0.3251 
0.3579 
0.4149 
0.4597 
0.5243 
0.5406 
0.5583 
0.5773 
0.5998 
0-6153 
0-6174 
0.6168 
0-6120 
0-6072 

"From (3.15) 

0.2923 
0-2956 
0-3059 
0.3251 
0.3580 
0.4149 
0.4596 
0.5238 
0.5401 
0.5580 
0.5776 
0-5993 
0.6235 
0-6286 
0.6340 
0.6367 
0.6371 

A 

0 
0 
0 
0 
0.0001 
0.0009 
0.0033 
0.0121 
0.0160 
0.0214 
0.0292 
0-0432 
0-0653 
0.0741 
0.0878 
0.1026 
0.1115 
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T A B L E  3 

Values of T, 3: and 32for the Case U = Uo(se - s ea + o~se~), a = 0 .0789 

0 
0 .2  
0 .4  
0.5 
0 .54 
0.56 
0.58 
0.60 
0.62 
0.64 
0.66 
0.664 
0- 6647 

T 

0 
0.22366 
0.31759 
0.28349 
0.25134 
0.23081 
0.20696 
0.17929 
0.14675 
0.10663 
0.04509 
0.01755 
0 

i : G j  

0.6479 
0.6803 
0.8081 
0.9546 
1.0492 
1.1103 
1.1852 
1.2802 
1.4079 
1.5997 
2.0090 
2.2547 
2.4352 

Uo] 12 
32 \~c/ 

0.2923 
0.3057 
0.3566 

. 0.4101 
0 . 4 4 1 7  
0-4607 
0.4825 
0.5075 
0.5367 
0.5710 
0.6121 
0.6214 
0.6231 

A 

0 
0 
0.0001 
0.0010 
0,0027 
0.0044 
0.0074 
0.0126 
0.0222 
0.0420 
0.1022 
0.1467 
0.1823 

T A B L E  4 

Values of T, 3: and 32for the Case U = Uo(se - se3 + o@~), a = - O. 1216 

0 
0-2 
0-4 
0-5 
0-54 
0-56 
0.58 
0.60 
0.62 
0.624 
0.624~ 

T 

0 
0 .22342  
0-31019 
0-26112 
0-21795 
0-18989 
0-15615 
0.11372 
0.04722 
0.01517 
0 

0.6479 
0.6807 
0-8180 
0-9936 
1.1213 
1.2124 
1.3370 
1.5288 
1-9556 
2.2396 
2.3947 

Uo ] 1/2 
32 \~c / 

0.2923 
0-3059 
0-3601 
0.4222 
0.4614 
0.4860 
0.5152 
0.5501 
0.5931 
0.6030 
0.6042 

A 

0 
0 
0-0001 
0.0011 
0.0034 
0.0059 
0.0108 
0.0211 
0.0538 
0.0806 
0.0964 
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