Acids and Bases

Chapter 18

The effects of acid rain on a statue of George Washington taken in 1935 (left) and 2001 (right) marble.
$\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq})==\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{CaCl}_{2}(\mathrm{aq})$

Stuff

I need the Exam 1 in my box by Friday. Those who don't turn it in will use the Make-Up Exam for Exam 1.

March 10 Exam 3 (Chapter 18/19)
March 17 Make-Up Exam (Comprehensive + 20)
Final Exam (Comprehensive)
March 24
7:30-9:30AM

Acid-Base Equilibria

18.1 Acids and Bases in Water

18.2 Autoionization of Water and the pH Scale
18.3 Proton Transfer and the Brønsted-Lowry Acid-Base Definition
18.4 Solving Problems Involving Weak-Acid Equilibria
18.5 Weak Bases and Their Relations to Weak Acids
18.6 Molecular Properties and Acid Strength
18.7 Acid-Base Properties of Salt Solutions
18.8 Generalizing the Brønsted-Lowry Concept: The Leveling Effect
18.9 Electron-Pair Donation and the Lewis Acid-Base Definition

Acids and bases have distinct properties.

Acids:

- Acrid sour taste
- React with metals (Group I,II) to yield H_{2} gas
- Changes plant dye litmus from blue to red
- React with carbonates and bicarbonates to produce CO_{2} gas 200 Million MT $\mathrm{H}_{2} \mathrm{SO}_{4}$

Bases:

- Bitter taste

50 Million MT NaOH/yr

- Slippery feel 3 million containers
- Changes plant dye litmus from red to blue
- React and neutralizes the effects of acids

Acids and bases are everywhere.

Common Acids

Acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$ Citric acid, $\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$ Phosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$ Boric acid, $\mathrm{H}_{3} \mathrm{BO}_{3}$ Aluminum salts, $\mathrm{NaAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$
Hydrochloric acid (muriatic acid), HCl

Common Bases

Sodium hydroxide (lye), NaOH
Ammonia, NH_{3}
Sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$
Sodium hydrogen carbonate, NaHCO_{3}

Sodium phosphate, $\mathrm{Na}_{3} \mathrm{PO}_{4}$

Flavoring, preservative Flavoring
Rust remover, soft drinks Mild antiseptic, insecticide Most anti-perspirants, water treatment plants, paper Brick and ceramic tile cleaner

Oven cleaner, unblocking plumbing
Household cleaner
Water softener, grease remover Fire extinguisher, rising agent in cake mixes (baking soda), mild antacid
Cleaner for surfaces before painting or wallpapering

Chemistry uses three definitions of acids and bases: 1) Arrehenius 2) Bronsted-Lowry 3) Lewis

Name	Acid Definition	Base Definition
Arrhenius	Substance that increases H^{+}	Substances that increase OH^{-}
Brønsted- Lowry	Substances that donate H^{+}	Substances that accept H^{+}
Lewis	Electron-pair acceptor	Electron-pair donar

H^{+}has never been isolated in the lab, but chemists use it symbolically anyway. H^{+}reacts with water to form the hydronium ion, $\mathrm{H}_{3} \mathrm{O}^{+}$

H^{+}and $\mathrm{H}_{3} \mathrm{O}^{+}$are equivalent in chemistry.

An equilibrium constant called "Acid-Dissociation Constant, K_{a} quantifies the extent of acid dissociation (i.e. acid strength).

$$
\mathrm{HA}(\mathrm{~g}) \stackrel{\mathrm{H}_{2} \mathrm{O}}{<==>} \mathrm{H}^{+}+\mathrm{A}^{-} \quad \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

$\mathrm{HA}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})<==>\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$
stronger acid => higher $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=>$large K_{a}
weaker acid => lower $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=>$small K_{a}

Arrhenius Acid/Base definitions arise from the reaction

 with water.Acid: a substance that has a covalent H atom in its formula, and releases a proton H^{+}when dissolved in water.

```
\(\mathrm{HCl}(\mathrm{g}), \mathrm{HBr}(\mathrm{g}), \mathrm{HI}(\mathrm{g}), \mathrm{HNO}_{3}(\mathrm{I}), \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{I}), \mathrm{HClO}_{4}(\mathrm{I})\)
\(\mathrm{HCl}(\mathrm{aq}), \mathrm{HBr}(\mathrm{aq}), \mathrm{HI}(\mathrm{aq}), \mathrm{HNO}_{3}(\mathrm{aq}), \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}), \mathrm{HClO}_{4}(\mathrm{aq})\)
```

$$
\mathrm{HA}(\mathrm{~g}) \stackrel{\mathrm{H}_{2} \mathrm{O}}{<==>} \mathrm{H}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})
$$

Base: a substance that contains OH in its formula, and releases hydroxide ions $\left(\mathrm{OH}^{-}\right)$when dissolved in water.

```
NaOH(s), KOH (s), LiOH (s), Mg(OH)2(s), Ca(OH)2(s)
NaOH(aq), KOH (aq), LiOH (aq), Mg(OH)2(aq), Ca(OH)2(aq)
MOH(s)}\stackrel{\mp@subsup{\textrm{H}}{2}{\primeO}}{<=>}\mp@subsup{\textrm{OH}}{}{-}+\mp@subsup{M}{}{+
```

Acid and base formation is represented symbolically in two ways semi-confusing ways. Learn both \& don't let it distract you.

1. $\mathrm{HA}(\mathrm{g}) \stackrel{\mathrm{H}_{2} \mathrm{O}}{<=>} \mathrm{H}^{+}+\mathrm{A}^{-} \quad$| The lazy but |
| :--- |
| convenient way. $\mathrm{H}_{2} \mathrm{O}$ |
| written over arrow |
| with H^{+}as the acid. |
2. $\mathrm{HA}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})<==>\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})$

Reacting with $\mathrm{H}_{2} \mathrm{O}$ in the equation with $\mathrm{H}_{3} \mathrm{O}$ as acid.

Strong acids and strong bases completely

 dissociate or completely ionize in water: $K_{a} \gg 1$. product-favored \longrightarrow

Weak acids and weak bases dissociate only to a slight extent in water $K_{a} \ll 1$.

Because of complete dissociation, strong acids and strong bases conduct electricity and are strong electrolytes.

Uni-directional arrow used to heavily product-favored		
$\mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$	Strong Acids	Strong Bases
$\mathrm{HNO}_{3}(\mathrm{aq}) \longrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})$	(H)Cl HBr	$\begin{aligned} & \mathrm{LOH} \\ & \mathrm{NaOH} \end{aligned}$
	HI	KOH
$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \longrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HSO}_{4}^{-}(\mathrm{aq})$	$\begin{gathered} \mathrm{HClO}_{4} \\ \mathrm{HNO}_{3} \end{gathered}$	$\begin{aligned} & \mathrm{RbOH} \\ & \mathrm{CsOH} \end{aligned}$
$\mathrm{NaOH}(\mathrm{aq}) \longrightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$	$\mathrm{H}_{2} \mathrm{SO}_{4}{ }^{\text {a }}$	$\mathrm{Mg}(\mathrm{OH})_{2}$ $\mathrm{Ca}(\mathrm{OH})_{2}$
$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \longrightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{a}$		$\mathrm{Sr}(\mathrm{OH})_{2}$ $\mathrm{Ba}(\mathrm{OH})_{2}$

Weak acids and weak bases do not dissociate or ionize to a large extent in solution, and so are weak electrolytes (small value of $\mathbf{K}_{\mathbf{a}}$).

$$
K_{a}=\frac{[\mathrm{A}-]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{[\mathrm{HA}]}=\ll 1 \quad \text { All not strong is weak! }
$$

Weak Acids	
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	acetic acid
HNO_{2}	nitrous acid
$\mathrm{H}_{2} \mathrm{SO}_{3}$	sulfurous acid
HOCl^{2}	hypochlorous acid
$\mathrm{H}_{2} \mathrm{CO}_{3}$	carbonic acid
$\mathrm{H}_{3} \mathrm{PO}_{4}$	phosphoric acid
HF	hydrofluoric acid

$\frac{\text { Weak Bases }}{\mathrm{NH}_{3}(\mathrm{aq}) \quad \text { ammonia }}$

K_{a} Values For A Few Monoprotic Acids at 25C

Name (Formula)	Lewis Structure*	K_{a}
Chlorous acid (HClO_{2})	$\mathrm{H}-\ddot{O}-\underline{\mathrm{CO}}=\underline{O}$	1.12×10^{-2}
Nitrous acid (HNO_{2})	$\mathrm{H}-\ddot{\mathrm{O}}-\ddot{\mathrm{N}}=\ddot{O}$	7.1×10^{-4}
Hydrofluoric acid (HF)	H-ت̈:	6.8×10^{-4}
Formic acid (HCOOH)		1.8×10^{-4}
Acetic acid ($\left.\mathrm{CH}_{3} \mathrm{COOH}\right)$		1.8×10^{-5}
Propanoic acid ($\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right)$		1.3×10^{-5}
Hypochlorous acid (HClO)	$\mathrm{H}-\ddot{O}-\mathrm{CO} \mathrm{O}$:	2.9×10^{-8}

Classify each of the following compounds as a strong acid, weak acid, strong base, or weak base.
(a) $\mathrm{H}_{2} \mathrm{SeO}_{4}$
(b) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOH}$
(c) KOH
(d) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHNH}_{2}$

Pay attention to the text definitions of acids and bases. Look at O for acids as well as the -COOH group; watch for amine groups and cations in bases.

Classify each of the following compounds as a strong acid, weak acid, strong base, or weak base.
(a) $\mathrm{H}_{2} \mathrm{SeO}_{4}$
(b) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOH}$
(c) KOH
(d) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHNH}_{2}$

Pay attention to the text definitions of acids and bases. Look at O for acids as well as the -COOH group; watch for amine groups and cations in bases.
(a) Strong acid - $\mathrm{H}_{2} \mathrm{SeO}_{4}$ - the number of O atoms exceeds the number of ionizable protons by 2.
(b) Weak acid - $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOH}$ is an organic acid having a -COOH group.
(c) Strong base -KOH is a Group $1 \mathrm{~A}(1)$ hydroxide.
(d) Weak base - $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHNH}_{2}$ has a lone pair of electrons on the N and is an amine.

Acids can have one, two or three acidic protons depending on their structure (and $\mathrm{K}_{\mathrm{a} 1} \mathrm{~K}_{\mathrm{a} 2} \mathrm{~K}_{\mathrm{a} 3}$).

Monoprotic acids--only one H^{+}available

$\mathrm{HCl} \longrightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}$	Strong electrolyte, strong acid $\mathrm{HNO}_{3} \longrightarrow \mathrm{H}^{+}+\mathrm{NO}_{3}^{-}$
$\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COO}$	Strong electrolyte, strong acid
Weak electrolyte, weak acid	

Diprotic acids--two acidic H^{+}available for reaction

$$
\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{H}^{+}+\mathrm{HSO}_{4}^{-} \quad \text { Strong electrolyte, strong acid }
$$ $\mathrm{HSO}_{4}{ }^{-} \rightleftarrows \mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{2-} \quad$ Weak electrolyte, weak acid

Triprotic acids--three acidic H^{+}

```
H3}\mp@subsup{\textrm{PO}}{4}{}\leftrightarrows\mp@subsup{\textrm{H}}{}{+}+\mp@subsup{\textrm{H}}{2}{}\mp@subsup{\textrm{PO}}{4}{-
H2}\mp@subsup{\textrm{PO}}{4}{}\leftrightarrows\mp@subsup{\textrm{H}}{}{+}+\mp@subsup{\textrm{HPO}}{4}{2-}\quad\mathrm{ Weak electrolyte, weak acid
HPO}\mp@subsup{4}{}{2}\leftrightarrows\mp@subsup{\textrm{H}}{}{+}+\mp@subsup{\textrm{PO}}{4}{3-
```


The Arrhenius acid-base definition fails to cover all cases..so chemists invented the BronstedLowry definition.

How Arrhenius Defintion Fails

1. NH_{3} or amines (like $\mathrm{R}-\mathrm{NH}_{2}$) don't have OH group but are bases.
2. Many transition metals Cr ,
$\mathrm{Al}, \mathrm{Fe}, \mathrm{Cu}$ are acidic but have no \mathbf{H}^{+}.
3. Arrhenius definition requires water...yet some acid base reactions occur without water as solvent.

The Bronsted-Lowry concept views acids as proton donars and bases as proton acceptors.

[^0]```
Hole Col
```

```
Hole Col
```

$\qquad$

An Bronsted acid is a substance that "donates" or a proton to a Bronsted base. A Bronsted base is a substance that "accepts" a proton from another a Bronsted acid.



Acid
Base
Conjugate Acid Conjugate Base

- For a molecule or ion to be a Bronsted base, it must have at least one unshared pair of electrons for accepting a proton.


## All of these <br> have a <br> lone-pair <br> of $e^{-}$and <br> are bases!

The Lone pairs are there if you draw the Lewis structure!

$\cdot \mathrm{OH}^{-}$

- $\mathrm{H}_{2} \mathrm{O}$
-HF
- HCl
- $\mathrm{HNO}_{3}$
- HBr
- $\mathrm{HClO}_{4}$


## Amphoteric substances can act an Bronsted acid

 (proton donar) or a base (a proton acceptor).
$\mathrm{H}_{2} \mathrm{O}$ as an acid
$\mathrm{H}_{2} \mathrm{O}$ as a base
proton donor
proton acceptor

Identifying the following conjugate acid-base pairs ( $\mathrm{H}^{+}$donars and $\mathrm{H}^{+}$acceptors).
conjugate take away $\mathrm{H}^{+}$

| reaction 1 | $\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{F}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$ |
| :--- | :--- | :--- |
| reaction 2 | $\mathrm{HCOOH}+\mathrm{CN}^{-} \rightleftharpoons \mathrm{HCOO}+\mathrm{HCN}$ |
| reaction 3 | $\mathrm{NH}_{4}{ }^{+}+\mathrm{CO}_{3}{ }^{2-} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{HCO}_{3}{ }^{-}$ |
| reaction 4 | $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}$ |
| reaction 5 | $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{N}_{2} \mathrm{H}_{5}{ }^{+} \rightleftharpoons \mathrm{HSO}_{4}{ }^{-}+\mathrm{N}_{2} \mathrm{H}_{6}{ }^{2+}$ |
| reaction 6 | $\mathrm{HPO}_{4}{ }^{2-}+\mathrm{SO}_{3}{ }^{2-} \rightleftharpoons \mathrm{PO}_{4}{ }^{3-}+{ }^{-}+\mathrm{HSO}_{3}{ }^{-}$ |

Write the equilibrium expression nitrous acid $\left(\mathrm{HNO}_{2}\right)$ and explain its acidity in terms of a) the Arrhenius definition, and b) the Brønsted-Lowry acid base theory, c) identify the acid base conjugate pairs.
a) $\mathrm{HNO}_{2}$ is an Arrhenius acid because it dissociate in water to produce $\mathrm{H}^{+}$ions:

$$
\mathrm{HNO}_{2}(a q)<===>\mathrm{H}^{+}(a q)+\mathrm{NO}_{2}^{-}(a q)
$$

$\square$ The stronger the acid (base) is, the weaker is its conjugate base (acid).

$\mathrm{NaOH}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})<===>\mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{OH}^{-}$ very weak acid
$\square$ Weak acids (bases) give strong conjugate bases (acids).
$\mathrm{HCOOH}+\mathrm{H}_{2} \mathrm{O}<===\underset{\text { basic in water }}{\mathrm{HCOO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}}$
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{aq})<===\underset{\text { acidic in water }}{\mathrm{NH}_{4}+(\mathrm{aq})}+\mathrm{OH}^{-}(\mathrm{aq})$

- The conjugate base of $\mathrm{HNO}_{2}$ is $\mathrm{NO}_{2}^{-}$, the species that remains after $\mathrm{HNO}_{2}$ has lost a proton

The weaker the acid--the stronger its conjugate base. The stronger the acid--the weaker its conjugate base.
Relative Strengths of Conjugate Acid-Base Pairs


An acid-base reaction will go in that direction that forms the weaker acid-base pair.

Given that $\mathrm{K}_{\mathrm{a}}$ for $\mathrm{HF}=6.8 \times 10^{-4}$ and $\mathrm{K}_{\mathrm{a}}$ for $\mathrm{H}_{2} \mathrm{~S}=9.0 \times 10^{-8}$

In which direction will this reaction proceed?

$$
\mathrm{HS}^{-}(a q)+\mathrm{HF}(a q) \rightleftharpoons \mathrm{F}^{-}(a q)+\mathrm{H}_{2} \mathrm{~S}(a q)
$$

In which direction will these reactions proceed?
$\mathrm{H}_{2} \mathrm{SO}_{4}(a q)+\mathrm{NH}_{3}(a q)=\mathrm{NH}_{4}{ }^{+}(a q)+\mathrm{HSO}_{4}^{-}(a q)$
$\mathrm{HCO}_{3}^{-}(a q)+\mathrm{SO}_{4}{ }^{2-}(a q)=\mathrm{HSO}_{4}^{-}(a q)+\mathrm{CO}_{3}{ }^{2-}(a q)$

| Name | Formula | $\mathrm{K}_{a 1}$ | $\mathrm{~K}_{\mathrm{a2}}$ | $\mathrm{~K}_{a 3}$ |
| :--- | :--- | :--- | :--- | :--- |
| Ascorbic | $\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}$ | $8.0 \times 10^{-5}$ | $1.6 \times 10^{-12}$ |  |
| Carbonic | $\mathrm{H}_{2} \mathrm{CO}_{3}$ | $4.3 \times 10^{-7}$ | $5.6 \times 10^{-11}$ |  |
| Citric | $\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$ | $7.4 \times 10^{-4}$ | $1.7 \times 10^{-5}$ | $4.0 \times 10^{-7}$ |
| Oxalic | $\mathrm{H}_{2} \mathrm{C}_{3} \mathrm{O}_{4}$ | $5.9 \times 10^{-2}$ | $6.4 \times 10^{-5}$ |  |
| Phosphoric | $\mathrm{H}_{3} \mathrm{O}_{4}$ | $7.5 \times 10^{-3}$ | $6.2 \times 10^{-8}$ | $4.2 \times 10^{-13}$ |
| Sulfurous | $\mathrm{H}_{2} \mathrm{O}_{3}$ | $1.7 \times 10^{-2}$ | $6.4 \times 10^{-8}$ |  |
| Sulfuric | $\mathrm{H}_{2} \mathrm{O}_{4}$ | Large | $1.2 \times 10^{-2}$ |  |
| Tartaric | $\mathrm{H}_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}$ | $1.0 \times 10^{-3}$ | $4.6 \times 10^{-5}$ |  |

In which direction will these reactions proceed?

| $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{HSO}_{4}^{-}(\mathrm{aq})$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{HCO}_{3}{ }^{-}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \rightleftharpoons \mathrm{HSO}_{4}^{-}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})$ |  |  |  |  |
| Name | Formula | $K_{a 1}$ | $K_{n 2}$ | $K_{a 3}$ |
| Ascorbic | $\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}$ | $8.0 \times 10^{-5}$ | $1.6 \times 10^{-12}$ |  |
| Carbonic | $\mathrm{H}_{2} \mathrm{CO}_{3}$ | $4.3 \times 10^{-7}$ | $5.6 \times 10^{-11}$ |  |
| Citric | $\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{O}_{7}$ | $7.4 \times 10^{-4}$ | $1.7 \times 10^{-5}$ | $4.0 \times 10^{-7}$ |
| Oxalic | $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ | $5.9 \times 10^{-2}$ | $6.4 \times 10^{-5}$ |  |
| Phosphoric | $\mathrm{H}_{3} \mathrm{PO}_{4}$ | $7.5 \times 10^{-3}$ | $6.2 \times 10^{-8}$ | $4.2 \times 10^{-13}$ |
| Sulfurous | $\mathrm{H}_{2} \mathrm{SO}_{3}$ | $1.7 \times 10^{-2}$ | $6.4 \times 10^{-8}$ |  |
| Sulfuric | $\mathrm{H}_{2} \mathrm{SO}_{4}$ | Large | $1.2 \times 10^{-2}$ |  |
| Tartaric | $\mathrm{H}_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}$ | $1.0 \times 10^{-3}$ | $4.6 \times 10^{-5}$ |  |

In which direction will these reactions proceed?
$\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{NH}_{4}^{+}$are acids, $\mathrm{NH}_{3}$ and $\mathrm{HSO}_{4}^{-}$are bases. $\mathrm{H}_{2} \mathrm{SO}_{4}$ stronger acid than $\mathrm{NH}_{4}{ }^{+}$, and $\mathrm{NH}_{3}$ stronger base than $\mathrm{HSO}_{4}{ }^{-}$, therefore $\mathrm{NH}_{3}$ gets the proton

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{SO}_{4}(a q)+\mathrm{NH}_{3}(a q) \quad \rightarrow \quad \mathrm{NH}_{4}{ }^{+}(a q)+\mathrm{HSO}_{4}^{-}(a q) \\
& \text { stronger acid stronger base weaker acid weaker base }
\end{aligned}
$$

$\mathrm{HCO}_{3}{ }^{-}$and $\mathrm{HSO}_{4}^{-}$are acids, $\mathrm{SO}_{4}{ }^{2-}$ and $\mathrm{CO}_{3}{ }^{2-}$ are bases.
$\mathrm{HSO}_{4}{ }^{-}$is the stronger acid, and $\mathrm{CO}_{3}{ }^{2-}$ is the stronger base.
Therefore, $\mathrm{CO}_{3}{ }^{2-}$ gets the proton
$\mathrm{HCO}_{3}^{-}-(a q)+\mathrm{SO}_{4}{ }^{2-}(a q) \quad \leftarrow$
weaker acid weaker base
$\mathrm{HSO}_{4}^{-}-(a q)+\mathrm{CO}_{3}{ }^{2-}(a q)$ stronger acid stronger bas

Water is usually a "reactive-solvent" with all acids and bases.


Water's reaction can be viewed as acid-base reaction.


Net Ionic Equation: $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})=>\mathrm{H}_{2} \mathrm{O}(\mathrm{aq})$

The hydronium ion, $\mathrm{H}_{3} \mathrm{O}^{+}$, and the $\mathrm{OH}^{-}$are the strongest acid and base that can exist in the presence of water.

|  | We can not distinguish $\mathrm{H}_{3} \mathrm{O}^{+}$ in these cases. All proton acceptors give $\mathrm{OH}^{-}$in aqueous solutions. |
| :---: | :---: |
| $\begin{aligned} & \left.\mathrm{O}_{2}^{-}-\mathrm{l}\right)+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})<==>2 \mathrm{OH}^{-} \\ & \mathrm{NH}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})<==>\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{OH}^{-} \end{aligned}$ | We can not distinguish $\mathrm{OH}^{-}$in these cases. All proton acceptors give $\mathrm{OH}^{-}$in aqueous solutions. |

Acid Strength Is Summarized in Tables of $\mathrm{K}_{\mathrm{a}}$ and $\mathrm{pK} \mathrm{K}_{\mathrm{a}}$

| Acid | Ionization Equilibrium | Ka | pKa |
| :---: | :---: | :---: | :---: |
| Hydroiodic Acid | $\mathrm{HI}+\mathrm{H}_{2} \mathrm{O}<==>\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{I}^{-}$ | $3 \times 10^{9}$ | -9 |
| Hydrochloric Acid | $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O}<==>\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$ | $1.3 \times 10^{6}$ | -6 |
| Sulfuric Acid | $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}<==>\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HSO}_{4}^{-}$ | 1000 | -3 |
| Hydronium Ion | $\mathrm{H}_{3} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}<==>\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{IO}_{3}^{-}$ | 55 | -1.7 |
| Nitric Acid | $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O}<==>\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{3}^{-}$ | 28 | -1.4 |
| lodic acid | $\mathrm{HIO}_{3}+\mathrm{H}_{2} \mathrm{O}<==>\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{IO}_{3}^{-}$ | $1.61 \times 10^{-1}$ | 0.80 |
| Chlorous Acid | $\mathrm{HClO}_{2}+\mathrm{H}_{2} \mathrm{O}<==>\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{ClO}_{2}^{-}$ | $1.1 \times 10^{-2}$ | 1.96 |
| Phosphoric Acid | $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O}<==>\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$ | $7.6 \times 10^{-3}$ | 2.12 |
| Nitrous Acid | $\mathrm{HNO}_{2}+\mathrm{H}_{2} \mathrm{O}<==>\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{2}^{-}$ | $7.2 \times 10^{-4}$ | 3.14 |
| Hydrofluoric Acid | $\mathrm{HF}+\mathrm{H}_{2} \mathrm{O}<==>\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{F}^{-}$ | $6.61 \times 10^{-4}$ | 3.18 |
| Formic Acid | $\mathrm{HCOOH}+\mathrm{H}_{2} \mathrm{O}<==>\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HCO}_{2}^{-}$ | $1.8 \times 10^{-4}$ | 3.74 |
| Acetic Acid | $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{H}_{2} \mathrm{O}<==>\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$ | $1.8 \times 10^{-5}$ | 4.74 |
| Hydrosulfuric Acid | $\mathrm{H}_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{O}<==>\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HS}^{-}$ | $1.32 \times 10^{-7}$ | 6.88 |
| Hypochlorous Acid | $\mathrm{HClO}+\mathrm{H}_{2} \mathrm{O}<==>\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{ClO}^{-}$ | $2.88 \times 10^{-8}$ | 7.54 |
| Hydrocyanic Acid | $\mathrm{HCN}+\mathrm{H}_{2} \mathrm{O}<==>\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CN}^{-}$ | $6.2 \times 10^{-10}$ | 9.21 |

## $K_{w}$ is the equilibrium constant that describes the auto or self-ionization of water.

$\mathrm{H}_{2} \mathrm{O}(I) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q) \quad \mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
$\mathrm{H}_{2} \mathrm{O}(I)+\mathrm{H}_{2} \mathrm{O}(I) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{OH}^{-}(a q) \quad \mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$
Base Acid Acid Base


This equilibrium constant for water is called the "Ion-Product of Water". Memorize the value.

The product of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14}$ a constant. Once we know one. ..we know the other!

| $\left[\mathrm{H}_{3} \mathbf{O}^{+}\right]$ | $\left[\mathrm{OH}^{-}\right]$ | $\mathbf{K}_{\mathbf{w}}$ |
| :---: | :---: | :---: |
| $1 \times 10^{-14}$ | $1 \times 10^{-0}$ | $1 \times 10^{-14}$ |
| $1 \times 10^{-13}$ | $1 \times 10^{-1}$ | $1 \times 10^{-14}$ |
| $1 \times 10^{-12}$ | $1 \times 10^{-2}$ | $1 \times 10^{-14}$ |
| $1 \times 10^{-11}$ | $1 \times 10^{-3}$ | $1 \times 10^{-14}$ |
| $1 \times 10^{-10}$ | $1 \times 10^{-4}$ | $1 \times 10^{-14}$ |
| $1 \times 10^{-9}$ | $1 \times 10^{-5}$ | $1 \times 10^{-14}$ |
| $1 \times 10^{-8}$ | $1 \times 10^{-6}$ | $1 \times 10^{-14}$ |
| $1 \times 10^{-7}$ | $1 \times 10^{-7}$ | $1 \times 10^{-14}$ |
| $1 \times 10^{-6}$ | $1 \times 10^{-8}$ | $1 \times 10^{-14}$ |
| $1 \times 10^{-5}$ | $1 \times 10^{-9}$ | $1 \times 10^{-14}$ |
| $1 \times 10^{-4}$ | $1 \times 10^{-10}$ | $1 \times 10^{-14}$ |

[ $\mathrm{OH}^{-}$] and $\left[\mathrm{H}^{+}\right]$can vary over 14 orders of magnitude

pH is a defined logarithmic scale for measuring acidity. It is directly related to $\left[\mathrm{H}^{+}\right]$ concentration in solution.

$$
\begin{aligned}
& \mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \text {logarithmic form } \\
& \uparrow \\
& \mathbf{p}=-\log _{10}
\end{aligned}
$$

$$
\left[\mathrm{H}^{+}\right]=10-\mathrm{pH}
$$

exponential form

1 pH unit represents a power of 10 X in concentration (or an order of magnitude as it is called).

We can compress all 14 orders of magnitude using a logarithmic scale--called the pH scale!


Acidic, basic and neutral solutions are identified by their pH values


The ion-product of water is a constant!


A solution with a pH of 4 is 10 X lower in $\left[\mathrm{H}^{+}\right.$] than one with $\mathrm{pH}=3$, 100X lower than $\mathrm{pH}=2$ and 1000X lower than $\mathrm{pH}=1$.

| $\left[\mathrm{H}^{+}\right]$ | $-\log \left[\mathrm{H}^{+}\right]=\mathrm{pH}$ |
| :---: | :---: |
| 0.5 M | 0.301 |
| 0.05 M | 1.301 |
| 0.005 M | 2.301 |
| 0.0005 M | 3.301 |

When concentration changes by factor of $\mathbf{1 0}, \mathrm{pH}$ changes by +/- 1

The amounts of $\mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{OH}^{-}$in aqueous solution determines whether a solution is acidic, neutral or basic.

WHEN


## A Logarithm of a number is an Exponent

Let y be any number. Let b also be a number and let's call it "the base", b. Lastly let's call the power we raise the base to an "exponent" and label it as "x". In equation form:

$$
\begin{array}{rlrl}
y & =b^{x} & b=b a s e, x=\text { exponent } \text { and } y=a \text { number } \\
100 & =10^{x} & b=10 \text { and } y=100 \text { and } x=\text { exponent }
\end{array}
$$

The logarithm of $100=\log (100)$ is the value of the exponent, $x$, needed to raise 10 to in order to obtain 100.

The logarithm of 100 is the value of the exponent in the equation: $10^{x}=100$

## Logs are easy if you see the riff.

What is the $\log _{10}$ of the following numbers?
$1000,100,10,1,0,0.1,0.01,0.001$

$$
\begin{array}{ll}
\log _{10} 1000=\log 1000=\mathrm{x} \\
\log _{10} 100=\log 100=\mathrm{x} \xrightarrow[\text { means }]{\text { means }} & 10^{\mathrm{x}}=1000 \\
\log 10=\mathrm{x} & 10^{\mathrm{x}}=100 \\
\log 1=\mathrm{x} \\
\log 0=\mathrm{x}
\end{array} \xrightarrow{10^{\mathrm{x}}=10} \begin{aligned}
& 10^{\mathrm{x}}=1 \\
& \log 0.1=\mathrm{x} \\
& \log 0.01=\mathrm{x}
\end{aligned} \quad \begin{aligned}
& 10^{\mathrm{x}}=0 \\
& 10^{\mathrm{x}}=0.1 \\
& 10^{\mathrm{x}}=0.01
\end{aligned}
$$

Two very common logarithm functions are log to the base 10 and the natural log base e (2.7183).

$$
\begin{array}{cl}
\log =\log _{10} & \text { "log to the base } 10 " \\
\log _{e}=\log _{2.7183}=\ln \quad \text { the "natural } \log ^{\prime \prime}
\end{array}
$$

Just as there are distributive, associative properties with equations there are "properties of logs that should be memorized.

## Properties of Logs

$$
\begin{aligned}
& \log (A \times B)=\log A+\log B \\
& \log \left(\frac{A}{B}\right)=\log A-\log B \\
& \log A^{n}=n \log A \\
& \text { antilog }(\log x)=10^{\log x}=x
\end{aligned}
$$

## Antilog of a number means use the

 number as an exponent.Sometimes we know the base and the exponent, but we need to compute the number. We can write it like this:

$$
\log (?)=2
$$

In words we would say: "The $\log _{10}$ of what number is equal to 2 "?
Finding this number is called taking the "antilogarithm"

$$
\begin{aligned}
\text { Antilog }[\log (?)] & =\operatorname{Antilog}(2) \\
? & =10^{2}=100
\end{aligned}
$$

The antilog ${ }_{10}$ is the same as the base 10 operator!

Knowing the math can help you go fast

## Logarithmic Form

$$
\begin{array}{ll}
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] & 10^{-\mathrm{pH}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] & 10^{-\mathrm{pOH}}=\left[\mathrm{OH}^{-}\right] \\
\mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}} & 10^{-\mathrm{pKa}}=\mathrm{pK}_{\mathrm{a}}
\end{array}
$$

Exponential Form

When $\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{OH}^{-}, \mathrm{K}_{\mathrm{a}}$ are large values----the $\mathrm{pK}^{\prime}$ 's are small values. Strong acids have large $\mathrm{H}_{3} \mathrm{O}$ and $\mathrm{K}_{\mathrm{a}}$ therefore small pH and small $\mathrm{pK}_{\mathrm{a}}$

## $\mathrm{K}_{\mathrm{w}}$ is related to pH via logarithm.

$K_{\mathrm{W}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$
take -log of both sides
$-\log \mathrm{K}_{\mathrm{w}}=-\log \left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]\right)=-\log \left(1.0 \mathrm{X} \mathrm{10} 0^{-14}\right)$
$-\log K_{\mathrm{W}}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+-\log \left[\mathrm{OH}^{-}\right]=-\log \left(10^{-14}\right)$
$\mathrm{p} K_{\mathrm{W}}=\mathrm{pH}+\mathrm{pOH}=-(-14)$

$$
\mathrm{p} K_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}=14
$$

$$
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}
$$

pH is measured with dyed paper or with a commercial instrument.

pH (indicator) paper
pH meter

(b)


What is the concentration of $\mathrm{OH}^{-}$ions in a HCl solution whose hydrogen ion concentration is 1.3 M ?

What is the concentration of $\mathrm{OH}^{-}$ions in a HCl solution whose hydrogen ion concentration is 1.3 M ?

Key: Strong acids dissociate completely-stoichiometry dictates $\left[\mathrm{H}^{+}\right]$. Memorize all strong acids $\left(\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}, \mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HClO}_{4}\right)$

$$
\begin{gathered}
{\left[\mathrm{H}^{+}\right]=1.3 \mathrm{M}} \\
K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \\
{\left[\mathrm{OH}^{-}\right]=\frac{K_{w}}{\left[\mathrm{H}^{+}\right]}=\frac{1 \times 10^{-14}}{1.3}=7.7 \times 10^{-15} \mathrm{M}}
\end{gathered}
$$

A research chemist adds a measured amount of HCl gas to pure water at $25^{\circ} \mathrm{C}$ and obtains a solution with $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=3.0 \times 10^{-4} \mathrm{M}$. Calculate $\left[\mathrm{OH}^{-}\right]$. Is the solution neutral, acidic or basic?

A research chemist adds a measured amount of HCl gas to pure water at $25^{\circ} \mathrm{C}$ and obtains a solution with $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=3.0 \times 10^{-4} \mathrm{M}$. Calculate $\left[\mathrm{OH}^{-}\right]$. Is the solution neutral, acidic or basic?

Again, strong acids dissociate completely-stoichiometry dictates $\left[\mathrm{H}^{+}\right]$

SOLUTION: $K_{\mathrm{w}}=1.0 \times 10^{-14}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$
$\left[\mathrm{OH}^{-}\right]=K_{\mathrm{w}} /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-14} / 3.0 \times 10^{-4}=3.3 \times 10^{-11} \mathrm{M}$ $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]$; the solution is acidic.

## Significant figures in logarithm calculations follow different rules than we are used to.

1. When taking the log of a measured number, retain in the mantissa (the numbers to the right of the decimal point in the answer) the same number of significant figures as there are in the number whose logarithm you are taking.

$$
\begin{aligned}
& \log \left(3.000 \times 10^{4}\right)=?=4.4771 \\
& 4 \mathrm{SF}^{\prime} \mathrm{s} \\
& 4 \mathrm{SF} \text { 's after decimal pt } \\
& \log \left(3 . \times 10^{4}\right)=?=4.5
\end{aligned}
$$

1 SF's $\quad 1$ SF's after decimal pt
2. When taking an antilog, the number of SF's in the answer is the same as the number of digits after the decimal point.
$\operatorname{antilog}(4.4711)=10^{4.4711}=3.000 \times 10^{4}$
4 SF's after decimal pt
4 SF's

The pH of rainwater collected in a certain region of the northeastern United States on a particular day was 4.82. What is the $\mathrm{H}^{+}$ion concentration of the rainwater?

The $\mathrm{OH}^{-}$ion concentration of a blood sample is $2.5 \times 10^{-7} \mathrm{M}$. What is the pH of the blood?

The pH of rainwater collected in a certain region of the
northeastern United States on a particular day was 4.82. What is the $\mathrm{H}^{+}$ion concentration of the rainwater?

$$
\begin{aligned}
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right] \\
\text {antilog }(-\mathrm{pH}) & =\text { antilog }\left(\log \left[\mathrm{H}^{+}\right]\right)
\end{aligned}
$$

$$
\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=10^{-4.82}=1.5 \times 10^{-5} \mathrm{M}
$$

The $\mathrm{OH}^{-}$ion concentration of a blood sample is $2.5 \times 10^{-7} \mathrm{M}$. What is the pH of the blood?

$$
\begin{gathered}
\mathrm{pH}+\mathrm{pOH}=14.00 \\
\mathrm{pOH}=-\log [\mathrm{OH}]=-\log \left(2.5 \times 10^{-7}\right)=6.60 \\
\mathrm{pH}=14.00-\mathrm{pOH}=14.00-6.60=7.40
\end{gathered}
$$

## Problem: Calculating $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right], \mathrm{pH},\left[\mathrm{OH}^{-}\right]$, and pOH

In a restoration project, a conservator prepares copper-plate etching solutions by diluting
 concentrated nitric acid, $\mathrm{HNO}_{3}$, to $2.0 \mathrm{M}, 0.30 \mathrm{M}$, and $0.0063 \mathrm{M} \mathrm{HNO}_{3}$. Calculate $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right], \mathrm{pH},\left[\mathrm{OH}^{-}\right]$, and pOH of the three solutions at $25^{\circ} \mathrm{C}$.

PLAN: $\quad \mathrm{HNO}_{3}$ is a strong acid so $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{HNO}_{3}\right]$. Use $K_{\mathrm{w}}$ to find the $\left[\mathrm{OH}^{-}\right]$and then convert to pH and pOH .

## Problem: Calculating $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right], \mathrm{pH},\left[\mathrm{OH}^{-}\right]$, and pOH

In a restoration project, a conservator prepares copper-plate etching solutions by diluting concentrated nitric acid, $\mathrm{HNO}_{3}$, to $2.0 \mathrm{M}, 0.30 \mathrm{M}$, and $0.0063 \mathrm{M} \mathrm{HNO}_{3}$. Calculate $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right], \mathrm{pH}$, [ $\mathrm{OH}^{-}$], and pOH of the three solutions at $25^{\circ} \mathrm{C}$.
For 2.0 M
$\mathrm{HNO}_{3},\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.0 \mathrm{M}$, and $\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-0.30=\mathrm{pH}$
$\left[\mathrm{OH}^{-}\right]=K_{\mathrm{w}} /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-14} / 2.0=5.0 \times 10^{-15} \mathrm{M} ; \mathrm{pOH}=14.30$
For $0.3 \mathrm{M} \mathrm{HNO}_{3}$,
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.30 \mathrm{M}$ and $-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.52=\mathrm{pH}$
$\left[\mathrm{OH}^{-}\right]=K_{\mathrm{w}} /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-14} / 0.30=3.3 \times 10^{-14} \mathrm{M} ; \mathrm{pOH}=$ 13.48

For $0.0063 \mathrm{M} \mathrm{HNO}_{3}$,
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.0063 \mathrm{M}$ and $-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.20=\mathrm{pH}$
$\left[\mathrm{OH}^{-}\right]=K_{\mathrm{w}} /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-14} / 6.3 \times 10^{-3}=1.6 \times 10^{-12} \mathrm{M} ; \mathrm{pOH}=11.80$


Strong acids and bases dissociate completely while weak acids (bases) are equilibrium dependent.


Know all strong acids and bases and you will recognize be able to recognize all weak acids/bases.

|  | Acids | Bases |  |
| :---: | :--- | :--- | :--- |
| hydrohalic <br> acids | HCl | LiOH |  |
|  | HBr | NaOH | Group I <br> hydroxides |
| perchloric | HI | HClO | KOH |
| nitric | $\mathrm{HNO}_{3}$ | RbOH |  |
| sulfuric | $\mathrm{H}_{2} \mathrm{SO}_{4}{ }^{\text {a }}$ | CsOH |  |
|  |  | $\mathrm{Mg}(\mathrm{OH})_{2}$ |  |
|  |  | $\mathrm{Ca}(\mathrm{OH})_{2}$ | Group II |
|  |  | $\mathrm{Sr}(\mathrm{OH})_{2}$ |  |
|  |  | $\mathrm{Ba}(\mathrm{OH})_{2}$ |  |
|  |  |  |  |

SWhat is the pH of a $1.8 \times 10^{-2} \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ solution? $\mathrm{Ba}(\mathrm{OH})_{2}$ is a strong base $-100 \%$ dissociation. $1 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}=2 \mathrm{~mol} \mathrm{OH}^{-}$

|  | $\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{~s})$ | $\longrightarrow \mathrm{Ba}^{2+}{ }_{(a q)}+$ | $2 \mathrm{OH}^{-}(\mathrm{aq})$ |
| :--- | :---: | :---: | :---: |
| Initial | 0.018 M | 0.0 M | 0.0 M |
| Change | -0.018 M | 0.018 M | 0.036 M |
| Equilibrium | 0.0 M | 0.018 M | 0.036 M |

$$
\begin{aligned}
& \mathrm{pK}_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}=14.00 \\
& \mathrm{pH}=14.00-\mathrm{pOH} \\
& \mathrm{pH}=14.00-(-\log (0.036))=12.56
\end{aligned}
$$

## \% ionization of an acid is the ratio of $\left[\mathrm{H}^{+}\right]$at equilibrium to $[H A]_{\text {initial }} X 100$.

\% ionization $=\frac{\left[\mathrm{H}^{+}\right]_{\text {equibrrium }}}{[\mathrm{HA}]_{\text {nital }}} \times 100 \%$
$\%$ ionization $_{b}=\frac{[\mathrm{OH}-]_{\text {equilibrium }}}{[\mathrm{OH}]]_{\text {inital }}} \times 100 \%$

As the concentration of a weak acid (base) decreases, the \% ionization of the acid (base) increases!


$$
\begin{aligned}
& \text { Rationale: larger } \\
& \text { solution volume } \\
& \text { accommodates more } \\
& \text { ions } \\
& \text { (analogous to } \\
& \text { pressure effects on } \\
& \text { gas equilibria when } \\
& \Delta n_{\text {gas }} \text { is non-zero) } \\
& K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
& K_{\mathrm{a}}=\frac{n_{\mathrm{H}_{3} \mathrm{O}^{+}} n_{\mathrm{A}}}{n_{\mathrm{HA}}} \frac{1}{V}
\end{aligned}
$$

## Strong Acid Equilibrium Sample Problem

What is the pH of a $2.00 \times 10^{-3} \mathrm{M} \mathrm{HNO}_{3}$ solution?

1. What does the problem ask--write it down make a picture?
2. Is the acid or base--strong or weak?
3. Can we make an ICE table?

| What is the pH of a $2 \times 10^{-3} \mathrm{MHNO}_{3}$ solution? $\mathrm{HNO}_{3}$ is a strong acid it is $100 \%$ dissociated.$\mathrm{HNO}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(I) \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{NO}_{3}^{-}(a q)$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Initial | 0.002 M | 0.0 M | 0.0 M |
| Change | -0.002 M | +0.002 M | 0.002 M |
| Equilibrium | 0.0 M | +0.002 M | +0.002 M |
| $\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log (0.002)=2.7$ |  |  |  |

## Find the $K_{\mathrm{a}}$ of a weak acid from the pH of its solution

Phenylacetic acid $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COOH}\right.$, denoted as HPAc) builds up in the blood of people afflicted with phenylketonuria, an inherited genetic disorder that, if left untreated, causes mental retardation and death. A study of the acid shows that the pH of a 0.12 M solution of HPAc is 2.60 . What is the $K_{\mathrm{a}}$ of phenylacetic acid?

PLAN: Same as last chapter

1. Write a balanced equation for acid in water.
2. Write the equation for $\mathrm{K}_{\mathrm{a}}$.
3. Set-up and fill in the ICE Table
4. Use pH , initial solution concentration and ICE table to find $K_{\mathrm{a}}$.

There are 2 key simplifications that can help us solve equilibrium problems rapidly.

1. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$from the auto-ionization of water is negligible in comparison to $\mathrm{H}^{+}$from an acid, HA in solution.
2. If $100 \times \mathrm{K}_{\mathrm{a}}<[\mathrm{HA}]_{\text {initial }}$ then $[\mathrm{HA}]_{\text {initial }}-x=[\mathrm{HA}]$

Why Does it Work?
Because $K_{a}$ values are known to about $\pm 5 \%$ accuracy.

$$
\text { Check using the } 5 \% \text { Rule } \quad \frac{\left[\mathrm{H}^{+}\right]_{\text {equiibrium }}}{[\mathrm{HA}]_{\text {inital }}} \times 100<5 \%
$$

3. If \#2 fails then you must use the quadratic equation

Find the $K_{\mathrm{a}}$ of a weak acid from the pH of its solution
What is the $K_{\mathrm{a}}$ of phenylacetic acid (HPAc)?

|  | $\mathbf{H P A c}(a q)$ | $+\mathbf{H}_{2} \mathrm{O}(l)$ | $\rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)$ | $+\mathrm{PAc}^{-}(a q)$ |
| :---: | :---: | :---: | :---: | :---: |
| initial | 0.12 | - | $1 \times 10^{-7}$ | 0 |
| change | -x | - | +x | +x |
| equilibrium | $0.12-\mathrm{x}$ | - | $\mathrm{x}+\left(1 \times 10^{-7}\right)$ | x |

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{PAc} \mathrm{c}^{-}\right]}{[\mathrm{HPAc}]}=\frac{\left[\mathrm{x}+\left(10^{-7}\right)\right][\mathrm{x}]}{[0.12-\mathrm{x}]}=\frac{[\mathrm{x}]^{2}}{[0.12-\mathrm{x}]}
$$

Solution $\mathrm{pH}=2.6=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}=10^{-2.6}=2.5 \times 10^{-3} \mathrm{M}$
>> $10^{-7}$ the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ contribution from water)
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \approx\left[\mathrm{PAc}^{-}\right]=x=2.5 \times 10^{-3} \mathrm{M}$
$[\mathrm{HPAc}]_{\mathrm{eq}}=0.12-\mathrm{x}=0.12-2.5 \times 10^{-3} \approx 0.117 \mathrm{M}$

$$
\begin{gathered}
K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{PAc}-]}{[\mathrm{HPAc}]}=\frac{[\mathrm{x}]^{2}}{[0.12-\mathrm{x}]} \\
K_{\mathrm{a}}=\frac{\left(2.5 \times 10^{-3}\right)^{2}}{0.117}=5.2 \times 10^{-5}
\end{gathered}
$$

## Determining concentrations and pH from $K_{\mathrm{a}}$ and initial [HA]

The pH of a solution containing 0.250 M HF solution is 2.036 . What is the value of $K_{a}$ for HF at equilibrium?

## Determining concentrations and pH from $K_{\mathrm{a}}$ and initial [HA]

The pH of a solution originally containing 0.250 M HF solution is 2.036 . What is the value of $K_{a}$ for HF at
 equilibrium?

|  | $\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}$ | $+\quad \mathrm{F}^{-}$ |  |
| :--- | :---: | :---: | :---: |
| Initial | .250 M | $? \mathrm{M}$ | $? \mathrm{M}$ |
| Change | -x M | $+\times \mathrm{M}$ | +x M |
| Equilibrium | $0.250-\mathrm{x}$ | x |  |
|  |  |  |  |
| $\mathrm{pH}=2.036=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ | $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{F}^{-}\right]}{[\mathrm{HF}]}$ |  |  |
| $10^{-\mathrm{pH}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-2.036}=9.20 \times 10^{-3} \mathrm{M}$ |  |  |  |
| $[\mathrm{HF}]=0.25-0.00920=0.241 \mathrm{M}$ |  |  |  |
| $K_{\mathrm{a}}=\left(9.2 \times 10^{-3}\right)^{2 / 0.241=3.52 \times 10^{-4}}$ |  |  |  |

## Determining concentrations from $K_{\mathrm{a}}$ and initial [HA]

Propanoic acid $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right.$, simplified as HPr$)$ is an organic acid whose salts are used to retard mold growth in foods. What is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of a 0.10 M aqueous solution of $\operatorname{HPr}\left(K_{\mathrm{a}}\right.$ of $\left.\mathrm{HPr}=1.3 \times 10^{-5}\right)$ ?

PLAN: 1. Write a balanced equation for acid in water.
2. Write the equation for $\mathrm{K}_{\mathrm{a}}$.
3. Set-up and fill in the ICE Table
4. Use pH , initial solution concentration and ICE table to find $K_{\mathrm{a}}$.

|  | $\mathrm{HPr}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons$ |  | $\mathrm{H}_{3} \mathrm{O}^{+}(a q)+\operatorname{Pr}^{-}(a q)$ |  |
| :--- | :---: | :---: | :---: | :---: |
| initial | 0.10 | - | 0 | 0 |
| change | -x | - | +x | +x |
| equilibrium | $0.10-\mathrm{x}$ | - | x | x |

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{Pr}-]}{[\mathrm{HPr}]}=1.3 \times 10^{-5}=\frac{\mathrm{x}^{2}}{0.10-\mathrm{x}}
$$

$$
\begin{array}{c|l}
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \stackrel{\text { If No }}{\longleftrightarrow} \left\lvert\, \begin{array}{l}
\text { Can We Simplify? } \\
100 \times \mathrm{K}_{\mathrm{a}}<[\mathrm{HA}]_{\text {initial }} \text { then } \\
{[\mathrm{HA}]_{\text {ninitial }}-\mathrm{x}=[\mathrm{HA}]} \\
100 \times 1.3 \times 10^{-5}<[.10] ? \\
\text { Yes, it is: } .10-\mathrm{x}=0.10
\end{array}\right. \\
K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{Pr}-]}{[\mathrm{HPr}]}=1.3 \times 10^{-5}=\frac{\mathrm{x}^{2}}{0.10}
\end{array}
$$

$$
\begin{aligned}
K_{\mathrm{a}}= & \frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{Pr}-]}{[\mathrm{HPr}]}=1.3 \times 10^{-5}=\frac{\mathrm{x}^{2}}{0.10} \\
& \mathrm{x}=\sqrt{(0.10)\left(1.3 \times 10^{-5}\right)} \quad \text { solving for } \mathrm{x} \\
= & 1.1 \times 10^{-3} \mathrm{M}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
\end{aligned}
$$

Checking assumption with $5 \%$ Rule: If $\left[\mathrm{H}^{+}\right]$equilibrium divided by $[H A]_{\text {nitital }}(x 100)$ is $<5 \%$ then assumption is valid.

$$
\begin{gathered}
\%[H P r]_{\text {diss }}=\frac{1.1 \times 10^{-3} M}{0.10 M}=1.1 \% \ll 5 \% \\
\text { our assumption is valid }
\end{gathered}
$$

## Using Molecular Scenes to Determine the Extent of HA Dissociation

A 0.15 M solution of acid HA (blue and green) is $33 \%$ dissociated. Which scene best represents a sample of the solution after it is diluted with water?


Percent dissociation increase as solution is diluted Calculate the percent dissociation of each sample.

$$
\% \text { dissociation }=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{[\mathrm{HA}]+\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]} \times 100 \%
$$

## Using Molecular Scenes to Determine the Extent of HA Dissociation

A 0.15 M solution of acid HA (blue and green) is $33 \%$ dissociated. Which scene best represents a sample of the solution after it is diluted with water?

$\%$ dissociation $=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{[\mathrm{HA}]+\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]} \times 100 \%$

SOLUTION:
Solution 1. \% dissociated $=4 /(5+4) \times 100=44 \%$ Solution 2. \% dissociated $=2 /(7+2) \times 100=22 \%$ Solution 3. \% dissociated $=3 /(6+3) \times 100=33 \%$ Scene 1 represents the diluted solution.


Polyprotic acids are acids that have more than one ionizable $\mathrm{H}^{+}$when reacted with water

Phosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$
$\mathrm{H}_{3} \mathrm{PO}_{4}(a q)+\mathrm{H}_{2} \mathrm{O}(l)=\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q) \quad K_{\mathrm{a} 1}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]}$
$=7.2 \times 10^{-3}$
$\mathrm{H}_{2} \mathrm{PO}_{4}-(a q)+\mathrm{H}_{2} \mathrm{O}(l)=\mathrm{HPO}_{4}{ }^{2-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q) K_{\mathrm{a} 2}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HPO}_{4}{ }^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}\right]}$

$$
=6.3 \times 10^{-8}
$$

$\mathrm{HPO}_{4}{ }^{2-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{PO}_{4}{ }^{3-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q) K_{\mathrm{a} 3}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{PO}_{4}{ }^{3-}\right]}{\left[\mathrm{HPO}_{4}{ }^{2}\right]}$

$$
K_{\mathrm{a} 1}>K_{\mathrm{a} 2}>K_{\mathrm{a} 3}
$$

$\mathrm{K}_{\mathrm{a}}$ quantifies and communicates the degree of acid dissociation $=$ an acids strength
$\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\Lambda) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$
strong acid $=K_{a}$ is large, $\mathrm{pK}_{\mathrm{a}}$ is small
weak acid = $\mathrm{K}_{\mathrm{a}}$ is small, $\mathrm{pK}_{\mathrm{a}}$ is large

$K_{b}$ is the equilbrium constant that quantifies a degree OH dissociation, a base's strength.

$$
\ddot{\mathrm{B}}+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{BH}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \quad \boldsymbol{K}_{\mathrm{b}}=\frac{\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]}
$$

## ---Strong bases dissociate completely

$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})==>\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

$$
\mathrm{NaOH}(\mathrm{~s}) \stackrel{\mathrm{H}_{2} \mathrm{O}}{===>} \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}(\mathrm{aq})
$$

## ---Weak bases dissociate partially

$\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(\ell) \rightleftarrows \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}^{-}(a q) \quad K_{\mathrm{b}}=1.76 \times 10^{-5}$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
$K_{\mathrm{b}}=5.4 \times 10^{-4}$

KEY DOT CONNECTION: The $\mathrm{K}_{\mathrm{a}}$ of an acid and the $\mathrm{K}_{\mathrm{b}}$ of the acid's conjugate base are related through the ion-product constant of water.

$$
\begin{aligned}
\mathrm{HA}(\mathrm{aq}) \rightleftarrows \mathrm{H}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq}) & K_{a}=\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]} \\
\mathrm{A}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(I) \rightleftarrows \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{HA}(\mathrm{aq}) & K_{b}=\frac{\left[O H^{-}\right][H A]}{\left[A^{-}\right]} \\
\hline \mathrm{H}_{2} \mathrm{O}(I) \rightleftarrows \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) & K_{a} K_{b}=\left[O H^{-}\right]\left[H^{+}\right]
\end{aligned}
$$

If you know $\mathrm{K}_{\mathrm{a}}$ for an acid you can determine $\mathrm{K}_{\mathrm{b}}$ for its conjugate base!

$$
\begin{aligned}
K_{w} & =K_{a} K_{b}=10^{-14} \\
p K_{w} & =p K_{a}+p K_{b}=14
\end{aligned}
$$

A table of bases and their conjugate acids, $\mathrm{BH}^{+}$.

$$
\text { Notice! } \mathrm{K}_{\mathrm{b}} \times \mathrm{K}_{\mathrm{a}}=\mathrm{K}_{\mathrm{w}}=1 \times 10^{14}
$$




We solve weak base problems just like weak acid ones, except we solve for [ OH -] instead of $\left[\mathrm{H}^{+}\right]$.
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(I) \rightleftarrows \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) K_{b}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}$
For ammonia, $K_{b}=1.76 \times 10^{-5}$ what is the conjugate acid and what is it's $p K_{a}$ ? How would you write the reaction of $\mathrm{NH}_{4}{ }^{+}$with water?

## Generalized Base Equilibria

$\ddot{\mathrm{A}^{-}}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{AH}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

$$
K_{\mathrm{b}}=\frac{\left[\mathrm{AH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{A}^{-}\right]}
$$

Perhaps the hardest part for students is writing the base reaction in water...just think proton donar and acceptor.

## Determining pH from $K_{\mathrm{b}}$ and initial [B]

Dimethylamine, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$, a key intermediate in detergent manufacture, has a $\mathrm{K}_{\mathrm{b}}=5.9 \times 10^{-4}$. What is the pH of a 1.5 M aqueous solution of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ ?

## Determining $\mathbf{p H}$ from $K_{b}$ and initial [B]

Dimethylamine, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$, a key intermediate in detergent manufacture, has a $\mathrm{K}_{\mathrm{b}}=5.9 \times 10^{-4}$. What is the pH of a 1.5 M aqueous solution of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ ?

| concentration | $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}{ }^{+}(a q)+\mathrm{OH}^{-}(a q)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| initial | 1.50 | - | 0 | 0 |
| change | -x | - | +x | +x |
| equilibrium | $1.50-\mathrm{x}$ | - | x | x |

$K_{\mathrm{b}}=5.9 \times 10^{-4}=\frac{\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}{ }^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}\right]}=\frac{\mathrm{x}^{2}}{1.5-\mathrm{x}}$
Simplify? $\frac{\left[\mathrm{B}_{\text {initial }}\right]}{\mathrm{K}_{\mathrm{b}}}>100 \quad \mathrm{~K}_{\mathrm{b}}=\frac{[1.5]}{5.9 \times 10^{-4}}=2542>100$ $K_{b}=5.9 \times 10^{-4}=\frac{\mathrm{x}^{2}}{1.5} \quad \mathrm{x}=3.0 \times 10^{-2} \mathrm{M}=\left[\mathrm{OH}^{-}\right]$

Check. $\left[3.0 \times 10^{-2} \mathrm{M} / 1.5 \mathrm{M}\right] \times 100=2 \%$ (error is $<5 \%$; assumption: thus, assumption is justified)

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=K_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} / 3.0 \times 10^{-2}=3.3 \times 10^{-13} \mathrm{M}
$$

$$
\mathrm{pH}=-\log \left(3.3 \times 10^{-13}\right)=12.5
$$

## Determining the $\mathbf{p H}$ of a solution of $\mathrm{A}^{-}$

Sodium acetate $\left(\mathrm{CH}_{3} \mathrm{COONa}\right.$, abbreviated NaAc$)$ has applications in photographic development and textile dyeing. What is the pH of a 0.25 M aqueous solution of NaAc ? The $\mathrm{K}_{\mathrm{a}}$ of acetic acid (HAc) (conjugate acid of Ac ) is $1.8 \times 10^{-5}$.

1. Write balanced equation knowing that sodium salts are completely soluble in water and acetate will be basic $\left[\mathrm{Ac}^{-}\right]=0.25$
2. Write the equilibrium expression--looking for pH .
3. Be organized set up ICE table and fill in the unknowns
4. Use $K_{\mathrm{a}}$ to find $K_{\mathrm{b}}$ and recall $\mathrm{pH}+\mathrm{pOH}=14$.

Sodium acetate $\left(\mathrm{CH}_{3} \mathrm{COONa}\right.$, abbreviated NaAc$)$ has applications in photographic development and textile dyeing. What is the pH of a 0.25 M aqueous solution of NaAc? The $\mathrm{K}_{\mathrm{a}}$ of acetic acid (HAc) (conjugate acid of Ac ) is $1.8 \times 10^{-5}$.

$$
\begin{array}{ccccc}
\text { concentration } & \mathrm{Ac}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons & \mathrm{HAc}(a q)+\mathrm{OH}^{-}(a q) \\
\hline \text { initial } & 0.25 & - & 0 & 0 \\
\text { change } & -\mathrm{x} & - & +\mathrm{x} & +\mathrm{x} \\
\hline \text { equilibrium } & 0.25-\mathrm{x} & - & \mathrm{x} & \mathrm{x} \\
\hline
\end{array}
$$

$$
\begin{aligned}
K_{\mathrm{b}} & =\frac{[\mathrm{HAc}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{Ac}^{-}\right]}=\frac{K_{\mathrm{w}}}{K_{\mathrm{a}}} \\
\frac{K_{\mathrm{w}}}{K_{\mathrm{a}}} & =K_{\mathrm{b}}=\frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}}=5.6 \times 10^{-10}
\end{aligned}
$$

$$
\begin{gathered}
{\left[\mathrm{Ac}^{-}\right]=0.25 \mathrm{M}-\mathrm{x} \approx 0.25 \mathrm{M}\left(\text { since } K_{\mathrm{b}} \text { is small }\right)} \\
\text { Check assumption: }\left[\mathrm{Ac}^{-}\right]_{\mathrm{in}} / \mathrm{K}_{\mathrm{b}}>100=.25 / 5.6 \times 10^{-10}>100 \\
K_{\mathrm{b}}=\frac{[\mathrm{HAc}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{Ac}^{-}\right]} \\
5.6 \times 10^{-10} \approx \mathrm{x}^{2} / 0.25 \mathrm{M} \\
{\left[\mathrm{OH}^{-}\right]=\mathrm{x} \approx 1.2 \times 10^{-5} \mathrm{M}} \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=K_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]} \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=K_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} / 1.2 \times 10^{-5}=8.3 \times 10^{-10} \mathrm{M}} \\
\mathrm{pH}=-\log \left(8.3 \times 10^{-10} \mathrm{M}\right)=9.1
\end{gathered}
$$

## The acid strength of non-metal hydrides increase across a period and down a group.

## Electronegativity increases Acid strength increases



Oxo-acids are compounds with one or more acidic hydrogens bonded to oxygen atom which is further bound to another central atom, $Z$.


OXO-ACIDS: The greater electronegativity and number of internal atoms the more acidic the compound.


The acidity of oxo-acids is determined by electronegativity (electron withdrawing effects).


More oxygens, more electron-withdrawing, increase polarity and acidity

Indicate whether each is a strong or weak acid, name each acid and its sodium salt, and predict the relative strengths of the following groups of oxoacids:
a) $\mathrm{HClO}_{2}, \mathrm{HBrO}_{2}$, and $\mathrm{HIO}_{2}$.
b) $\mathrm{HIO}_{\mathrm{HIO}}^{2}, \mathrm{HIO}_{3}$
c) $\mathrm{HNO}_{3}$ and $\mathrm{HNO}_{2}$.
d) $\mathrm{H}_{3} \mathrm{PO}_{3}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$.
e) $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{H}_{2} \mathrm{SO}_{3}$

Indicate whether each is a strong or weak acid, predict the relative strengths of the following groups of oxoacids and the strengths of the conjugate base salts.
a) $\mathrm{HClO}_{2}, \mathrm{HBrO}_{2}$, and $\mathrm{HIO}_{2} . \quad \mathrm{HClO}_{2}>\mathrm{HBrO}_{2},>\mathrm{HIO}_{2}$.
b) $\mathrm{HIO} \mathrm{HIO}_{2}, \mathrm{HIO}_{3}$
$\mathrm{HIO}<\mathrm{HIO}_{2}<\mathrm{HIO}_{3}$
c) $\mathrm{HNO}_{3}$ and $\mathrm{HNO}_{2}$.
$\mathrm{HNO}_{3}>\mathrm{HNO}_{2}$.
d) $\mathrm{H}_{3} \mathrm{PO}_{3}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$.
$\mathrm{H}_{3} \mathrm{PO}_{3}<\mathrm{H}_{3} \mathrm{PO}_{4}$.
e) $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{H}_{2} \mathrm{SO}_{3}$
$\mathrm{H}_{2} \mathrm{SO}_{4}>\mathrm{H}_{2} \mathrm{SO}_{3}$

Transition metal ions ( $\mathrm{Al}^{3+}, \mathrm{Fe}^{3+}, \mathrm{Cr}^{3+}$ ) react with water and are acids in aqueous solution.

$$
\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}(a q) \rightleftarrows \mathrm{Al}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}^{2+}(a q)+\mathrm{H}^{+}(a q)
$$

Acid Hydrolysis of $\mathrm{Al}^{3+}$


Aqueous solutions of many metal ions are acidic because the hydrated metal ions transfers an $\mathrm{H}^{+}$ ion to water.

```
M(NO)
``` \(\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{x^{n+}(a q)}+\mathrm{H}_{2} \mathrm{O}(I) \longrightarrow \mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{x}-1} \mathrm{OH}^{(n-1)+}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q)\)
\begin{tabular}{|c|c|c|c|}
\hline Free Ion & Hydrated Ion & \(K_{\text {a }}\) & \\
\hline \(\mathrm{Fe}^{3+}\) & \(\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right){ }_{6}{ }^{3+}(a q)\) & \(6 \times 10^{-3}\) & \\
\hline \(\mathrm{Sn}^{2+}\) & \(\mathrm{Sn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}(\mathrm{aq})\) & \(4 \times 10^{-4}\) & high charge \\
\hline \(\mathrm{Cr}^{3+}\) & \(\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right){ }_{6}{ }^{3+}(a q)\) & \(1 \times 10^{-4}\) & and small size \\
\hline \(\mathrm{Al}^{3+}\) & \(\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right){ }^{3+}{ }^{3+}(\mathrm{aq})\) & \(1 \times 10^{-5}\) & enhance acidity \\
\hline \(\mathrm{Be}^{2+}\) & \(\mathrm{Be}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}{ }^{2+}(a q)\) & \(4 \times 10^{-6}\) & \\
\hline \(\mathrm{Cu}^{2+}\) & \(\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}(\mathrm{aq})\) & \(3 \times 10^{-8}\) & \\
\hline \(\mathrm{Pb}^{2+}\) & \(\mathrm{Pb}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}(a q)\) & \(3 \times 10^{-8}\) & \\
\hline \(\mathrm{Zn}^{2+}\) & \(\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}(a q)\) & \(1 \times 10^{-9} \quad \frac{\overline{0}}{\text { ¢ }}\) & \\
\hline
\end{tabular}

\section*{Hydrolysis of lonic Salts}
lonic Salt + Water ==> ? pH

Acid and bases react with one another in a neutralization reaction.
\[
\begin{array}{cc}
\mathrm{NaOH}(\mathrm{aq}) & +\mathrm{HCl}(\mathrm{aq}) \\
\text { base }+==>\mathrm{H}_{2} \mathrm{O}+\mathrm{Na}^{+}+\mathrm{Cl}^{-} \\
\text {e= }
\end{array}
\]

Most salts can be viewed as coming from a "parent acid and parent base". If the parents are "strong" the cation or anion will not react with water, if the parents are "weak" the ion will react with water in a process called hydrolysis.
\(\mathrm{NaCl}(\mathrm{s})\)
\(\mathrm{Ca}\left(\mathrm{NO}_{3}\right)(\mathrm{s})\)
\(\mathrm{NH}_{4} \mathrm{Br}(\mathrm{s})\)
\(\mathrm{CH}_{3} \mathrm{COOK}(\mathrm{s})\)

Salts are the product of an acid-base reaction. Salts that have either an anion or cation derived from a weak acid (anion) or weak base (cation) will react with water (hydrolysis) in an acid base reaction called hydrolysis.
1. look at the cation and anion and ask is it strong or weak parent acid/base?

\section*{2. If its from a weak parent...it will hydrolyze}

Hydrolysis yields opposite pH as the parent.
\(\mathrm{NH}_{4} \mathrm{Cl}\)
\(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{~K}\)
\(\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}\)

There are 4 acid-base neutralization reactions yielding salts that can react with water.
1. Strong acid + Strong base \(==>\) lonic salt \(+\mathrm{H}_{2} \mathrm{O}\) \(\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq})==>\mathrm{Na}^{+}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \quad\) Neutral salt
2. Strong acid + Weak base \(==>\) lonic salt \(+\mathrm{H}_{2} \mathrm{O}\)
\(\mathrm{HBr}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq})==>\mathrm{NH}_{4}^{+}+\mathrm{Br}^{-}+\mathrm{H}_{2} \mathrm{O} \quad\) Acidic salt
3. Weak acid + Strong base \(==>\) lonic salt \(+\mathbf{H}_{2} \mathrm{O}\)
\(2 \mathrm{HCOOH}(\mathrm{aq})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})==>\mathrm{Ca}^{+2}+2 \mathrm{HCOO}^{-}+2 \mathrm{H}_{2} \mathrm{O}\) Basic Salt
4. Weak acid + Weak base \(==>\) lonic salt \(+\mathrm{H}_{2} \mathrm{O}\)
\(\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq})==>\mathrm{NH}_{4}+\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}\)
Depends on \(\mathrm{pK}_{\mathrm{a}}\) vs \(\mathrm{pk}_{\mathrm{b}}\)
1. Salts formed from a strong acid and a strong base are neutral when dissolved in \(\mathrm{H}_{2} \mathrm{O}\).


Why? The anion of a strong acid \(\left(\mathrm{Cl}^{-}, \mathrm{l}^{-} \mathrm{Br}, \mathrm{NO}_{3}{ }^{-}\right)\)is a much weaker base than water, and the cation of from the strong acid is a much weaker acid than water!
2. Solutions of salts formed from a strong acid and a weak base are acidic when dissolved in \(\mathrm{H}_{2} \mathrm{O}\).
\[
\begin{gathered}
\mathrm{NH}_{4}^{+}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows \mathrm{NH}_{3}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q) \\
\text { hydrolysis gives acidic solution }
\end{gathered}
\]
3. Solutions of salts formed from a weak acid and a strong base are basic when dissolved in \(\mathrm{H}_{2} \mathrm{O}\).
parent acid of the anion is

\(\mathrm{CH}_{3} \mathrm{COO}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}_{(1)} \rightleftarrows \mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathrm{OH}(a q)\)
hydrolysis of salt of weak acid gives a basic solution
\[
\begin{aligned}
\mathrm{NaH}_{2} \mathrm{PO}_{4}(s) & \longrightarrow \mathrm{Na}^{+}(a q)+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(a q) \\
\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) & \rightleftarrows \mathrm{HPO}_{4^{2-}}{ }^{-(a q)}+\mathrm{H}_{3} \mathrm{O}^{+}(a q)
\end{aligned}
\]

\section*{4. Solutions of salts formed from a weak acid and a weak base depend on the \(K_{a}\) and \(K_{b}\) of the salt.}

Both are weak and thus cation and anion will hydrolyze. Which one wins depends on strength \(\left(K_{a}\right.\) vs \(\left.K_{b}\right)\) or the ions.

Example: \(\mathrm{NH}_{4} \mathrm{HS}\)
\[
\begin{aligned}
& \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \\
& \mathrm{HS}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{H}_{2} \mathrm{~S}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
\end{aligned}
\]
\[
K_{\mathrm{a}}\left(\mathrm{NH}_{4}^{+}\right)=5.7 \times 10^{-10} \text { vs } K_{\mathrm{b}}\left(\mathrm{HS}^{-}\right)=1.0 \times 10^{-7}
\]

Since \(K_{\mathrm{b}}>K_{\mathrm{a}}\), the solution is basic.

Predict whether aqueous solutions of the following compounds are acidic, basic, or neutral (write an equation for the reaction of the appropriate ion with water to explain pH effect).
(a) \(\mathrm{KClO}_{4}\)
(b) sodium benzoate, \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}\)
(c) \(\mathrm{CrCl}_{3}\)
(d) \(\mathrm{NaHSO}_{4}\)

PLAN:
Consider the acid-base nature of the anions and cations. Strong acid-strong base combinations produce a neutral solution; strong acid-weak base, acidic; weak acid-strong base, basic.
(a) \(\mathrm{KClO}_{4}\)
(b) sodium benzoate, \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}\)
(c) \(\mathrm{CrCl}_{3}\)
(d) \(\mathrm{NaHSO}_{4}\)
(a) The ions are \(\mathrm{K}^{+}\)and \(\mathrm{ClO}_{4}^{-}\), which come from a strong base \((\mathrm{KOH})\) and a strong acid \(\left(\mathrm{HClO}_{4}\right)\). The solution will be neutral.
(b) \(\mathrm{Na}^{+}\)comes from the strong base NaOH while \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\)is the anion of a weak organic acid. The salt solution will be basic.
(c) \(\mathrm{Cr}^{3+}\) is a small cation with a large + charge, so its hydrated form will react with water to produce \(\mathrm{H}_{3} \mathrm{O}^{+}\). \(\mathrm{Cl}^{-}\) comes from the strong acid HCl . The salt solution will be acidic.
(d) \(\mathrm{Na}^{+}\)comes from a strong base. \(\mathrm{HSO}_{4}^{-}\)can react with water to form \(\mathrm{H}_{3} \mathrm{O}^{+}\). The salt solution will be acidic.

You are given 0.1 M solutions of the following. What is the nature of the solutions acid/base/ neutral or amphoteric?
- \(\mathrm{KClO}_{2}\)
- CsI
- \(\mathrm{NaHSO}_{4}\)
- HCO 2 K
- \(\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\)
- \(\mathrm{NaNO}_{3}\)
- \(\mathrm{Na}_{3} \mathrm{PO}_{4}\)
- \(\mathrm{Na}_{2} \mathrm{HPO}_{4}\)
- \(\mathrm{FeCl}_{3}\)
- \(\mathrm{KClO}_{4}\)
- \(\mathrm{CH}_{3} \mathrm{COONH}_{4}\)

You are given 0.1 M solutions of the following. What is the nature of the solutions acid/ base/ neutral or amphoteric?
\begin{tabular}{|l|l|}
\hline - \(\mathrm{KClO}_{2}\) & Basic \\
\hline - CsI & Neutral \\
\hline - \(\mathrm{NaHSO}_{4}\) & Acidic \\
\hline - \(\mathrm{HCO}_{2} \mathrm{~K}\) & Basic \\
\hline - \(\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\) & Acidic \\
\hline - \(\mathrm{NaNO}_{3}\) & Neutral \\
\hline - \(\mathrm{Na}_{3} \mathrm{PO}_{4}\) & Basic \\
\hline - \(\mathrm{CH}_{3} \mathrm{COONH}_{4}\) & Depends on Ka vs Kb \\
\hline \(\mathrm{FeCl}_{3}\) & Acidic \\
\hline
\end{tabular}

Predicting the relative acidity of weak-weak salt solutions Determine whether an aqueous solution of zinc formate, \(\mathrm{Zn}(\mathrm{HCOO})_{2}\), is acidic, basic, or neutral. The \(\mathrm{Ka}_{\mathrm{a}}\) for Zn \(\left(\mathrm{H}_{2} \mathrm{O}\right)_{6^{2+}}=10^{-9}\) and \(\mathrm{K}_{\mathrm{a}}\) for formic acid is \(1.8 \times 10^{-4}\).

Both \(\mathrm{Zn}^{2+}\) and \(\mathrm{HCOO}^{-}\)come from weak conjugates. In order
to find the relatively acidity, write the dissociation reactions and use the information in Tables 18.2 and 18.7.

Predicting the relative acidity of weak-weak salt solutions Determine whether an aqueous solution of zinc formate, \(\mathrm{Zn}(\mathrm{HCOO})_{2}\), is acidic, basic, or neutral. The \(\mathrm{K}_{\mathrm{a}}\) for Zn \(\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}=10^{-9}\) and \(\mathrm{K}_{\mathrm{a}}\) for formic acid is \(1.8 \times 10^{-4}\).

Both \(\mathrm{Zn}^{2+}\) and \(\mathrm{HCOO}^{-}\)come from weak conjugates. In order to find the relatively acidity, write the dissociation reactions and use the information in Tables 18.2 and 18.7. SOLUTION:
\[
\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{{ }^{+}}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{+}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q)
\]
\[
\mathrm{HCOO}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{HCOOH}(a q)+\mathrm{OH}^{-}(a q)
\]
\(K_{\mathrm{a}} \mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{\mathbf{2 +}}=1 \times 10^{-9}\)
\(K_{\mathrm{a}} \mathrm{HCOOH}=1.8 \times 10^{-4} ; K_{\mathrm{b}}=K_{\mathrm{w}} / K_{\mathrm{a}}=1.0 \times 10^{-14} / 1.8 \times 10^{-4}=5.6 \times 10^{-11}\)
\(K_{\mathrm{a}}\) for \(\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}>\mathrm{K}_{\mathrm{b}} \mathrm{HCOO}^{-}\); the solution is acidic.

A Lewis Acid is any substance that is an electronpair acceptor.


Transition Metal Cations
\(\begin{array}{llll}\mathrm{AlCl}_{3} & \mathrm{TiCl}_{4} & \mathrm{FeCl}_{3} & \mathrm{ZnCl}_{2}\end{array}\)
\(\mathrm{Al}^{3+}, \mathrm{Ti}^{4+}\),
\(\mathrm{Fe}^{3+}, \mathrm{Zn}^{2+}\),

A Lewis Base is any substance that is an electronpair donor (nucleophile).


Neutralization (in the Lewis acid context) occurs when a Lewis acid reacts and forms a covalent bond with a Lewis base. The bond is called a coordinate bond.




The adduct contains a new covalent bond.


Identify the Lewis acids and Lewis bases in the following reactions:
(a) \(\mathrm{H}^{+}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}\)
(b) \(\mathrm{Cl}^{-}+\mathrm{BCl}_{3}=\mathrm{BCl}_{4}^{-}\)
(c) \(\mathrm{K}^{+}+6 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{K}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{+}\)

Identify the Lewis acids and Lewis bases in the following reactions:
(a) \(\mathrm{H}^{+}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}\)
(b) \(\mathrm{Cl}^{-}+\mathrm{BCl}_{3}=\mathrm{BCl}_{4}^{-}\)
(c) \(\mathrm{K}^{+}+6 \mathrm{H}_{2} \mathrm{O}=\mathrm{K}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{+}\)

Look for electron pair acceptors (acids) and donors (bases).
acceptor
donor
(a) \(\mathrm{H}^{+}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}\)
(b) \(\mathrm{Cl}^{-}+\underset{\text { acceptor }}{\mathrm{BCl}_{3} \rightleftharpoons} \mathrm{BCl}_{4}\)
acceptor
(c) \(\begin{gathered}\mathrm{K}^{+}+6 \mathrm{H}_{2} \mathrm{O} \\ \text { donor }\end{gathered}=\mathrm{K}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{+}\)```


[^0]:    20204 Thmomennimotes Cole

