

Name (Formula)	Lewis Structure*	Ka
Chlorous acid (HClO ₂)	н—ё—ёі=ё	1.12×10^{-2}
Nitrous acid (HNO ₂)	H—Ö—N=Ö	7.1×10 ⁻²
Hydrofluoric acid (HF)	H—Ë:	6.8×10 ⁻²
Formic acid (HCOOH)	н—с—ö—н п—с	1.8×10 ⁻²
Acetic acid (CH ₃ COOH)	н :0: Н -С-С-Ö-Н Н :0:	1.8×10 ⁻⁵
Propanoic acid (CH ₃ CH ₂ COOH)	н н:0: н—с—с—с—ё—н н н	1.3×10 ⁻⁵
Hypochlorous acid (HClO)	H—Ö—Ö:	2.9×10^{-3}

Write the equilibrium expression nitrous acid (HNO_2) and explain its acidity in terms of a) the Arrhenius definition, and b) the Brønsted-Lowry acid base theory, c) identify the acid base conjugate pairs.

n whi	ch direct	tion will	these	reactio	ns procee	d?	\mathbf{k}	In whi
H ₂ SC	D₄(aq) + N	NH ₃ (aq)	 NH	₄ +(aq) +	- HSO₄⁻(aq) .	1	H₂SC
нсо	₃ -(aq) + S	O ₄ ²-(aq)	, _− HS	O ₄ ⁻(aq)	+ CO ₃ ²-(aq)		HCO
	Name	Formula	Κ.	Κ.	K .			
	Tunte	Tormula	n _{a1}	R _{d2}	Ras			Name
	Ascorbic	H ₂ C ₆ H ₆ O ₆	8.0 × 10 ⁻⁵	1.6×10^{-12}	K _{a3}			Name
	Ascorbic Carbonic	H ₂ C ₆ H ₆ O ₆ H ₂ CO ₃	R_{a1} 8.0 × 10 ⁻⁵ 4.3 × 10 ⁻⁷	1.6×10^{-12} 5.6×10^{-11}	K _{d3}			Ascorbic
	Ascorbic Carbonic Citric	H ₂ C ₆ H ₆ O ₆ H ₂ CO ₃ H ₃ C ₆ H ₅ O ₇	R_{a1} 8.0×10^{-5} 4.3×10^{-7} 7.4×10^{-4}	$\begin{array}{r} 1.6 \times 10^{-12} \\ 5.6 \times 10^{-11} \\ 1.7 \times 10^{-5} \end{array}$	4.0 × 10 ⁻⁷			Name Ascorbic Carbonic
	Ascorbic Carbonic Citric Oxalic	H ₂ C ₆ H ₆ O ₆ H ₂ CO ₃ H ₃ C ₆ H ₅ O ₇ H ₂ C ₂ O ₄	$\begin{array}{c} 8.0 \times 10^{-5} \\ 4.3 \times 10^{-7} \\ 7.4 \times 10^{-4} \\ 5.9 \times 10^{-2} \end{array}$	$\begin{array}{c} 1.6 \times 10^{-12} \\ 5.6 \times 10^{-11} \\ 1.7 \times 10^{-5} \\ 6.4 \times 10^{-5} \end{array}$	4.0×10^{-7}			Name Ascorbic Carbonic Citric
	Ascorbic Carbonic Citric Oxalic Phosphoric	H ₂ C ₆ H ₆ O ₆ H ₂ CO ₃ H ₃ C ₆ H ₅ O ₇ H ₂ C ₂ O ₄ H ₃ PO ₄	$8.0 \times 10^{-5} \\ 4.3 \times 10^{-7} \\ 7.4 \times 10^{-4} \\ 5.9 \times 10^{-2} \\ 7.5 \times 10^{-3} \\ \end{array}$	$\begin{array}{c} 1.6 \times 10^{-12} \\ 5.6 \times 10^{-11} \\ 1.7 \times 10^{-5} \\ 6.4 \times 10^{-5} \\ 6.2 \times 10^{-8} \end{array}$	4.0×10^{-7} 4.2×10^{-13}			Name Ascorbic Carbonic Citric Oxalic
	Ascorbic Carbonic Citric Oxalic Phosphoric Sulfurous	$\begin{array}{c} H_2C_6H_6O_6\\ H_2CO_3\\ H_3C_6H_5O_7\\ H_2C_2O_4\\ H_3PO_4\\ H_2SO_3\end{array}$	$8.0 \times 10^{-5} \\ 4.3 \times 10^{-7} \\ 7.4 \times 10^{-4} \\ 5.9 \times 10^{-2} \\ 7.5 \times 10^{-3} \\ 1.7 \times 10^{-2} \\ \end{cases}$	$\begin{array}{c} 1.6 \times 10^{-12} \\ 5.6 \times 10^{-11} \\ 1.7 \times 10^{-5} \\ 6.4 \times 10^{-5} \\ 6.2 \times 10^{-8} \\ 6.4 \times 10^{-8} \end{array}$	4.0×10^{-7} 4.2×10^{-13}			Name Ascorbic Carbonic Citric Oxalic Phosphoric
	Ascorbic Carbonic Citric Oxalic Phosphoric Sulfurous Sulfuric	$\begin{array}{c} H_2C_6H_6O_6\\ H_2CO_3\\ H_3C_6H_5O_7\\ H_2C_2O_4\\ H_3PO_4\\ H_2SO_3\\ H_2SO_4\\ H_2SO_4\\ \end{array}$	$\begin{array}{c} 8.0 \times 10^{-5} \\ 4.3 \times 10^{-7} \\ 7.4 \times 10^{-4} \\ 5.9 \times 10^{-2} \\ 7.5 \times 10^{-3} \\ 1.7 \times 10^{-2} \\ Large \end{array}$	$\begin{array}{c} \textbf{K}_{g2} \\ \hline 1.6 \times 10^{-12} \\ 5.6 \times 10^{-11} \\ 1.7 \times 10^{-5} \\ 6.4 \times 10^{-5} \\ 6.2 \times 10^{-8} \\ 6.4 \times 10^{-8} \\ 1.2 \times 10^{-2} \end{array}$	4.0×10^{-7} 4.2×10^{-13}			Name Ascorbic Carbonic Citric Oxalic Phosphoric Sulfurous
	Ascorbic Carbonic Citric Oxalic Phosphoric Sulfurous Sulfuric Tartaric	H ₂ C ₆ H ₆ O ₆ H ₂ CO ₃ H ₃ C ₆ H ₅ O ₇ H ₂ C ₂ O ₄ H ₃ PO ₄ H ₂ SO ₃ H ₂ SO ₄ H ₂ CO ₄ H ₂ CO ₄ H ₂ CO ₄	$\begin{array}{c} \textbf{X}_{a1} \\ \hline \textbf{8.0} \times 10^{-5} \\ \textbf{4.3} \times 10^{-7} \\ \textbf{7.4} \times 10^{-4} \\ \textbf{5.9} \times 10^{-2} \\ \textbf{7.5} \times 10^{-3} \\ \textbf{1.7} \times 10^{-2} \\ \textbf{Large} \\ \textbf{1.0} \times 10^{-3} \end{array}$	$\begin{array}{c} \mathbf{K}_{g2} \\ \hline 1.6 \times 10^{-12} \\ 5.6 \times 10^{-11} \\ 1.7 \times 10^{-5} \\ 6.4 \times 10^{-5} \\ 6.2 \times 10^{-8} \\ 6.4 \times 10^{-8} \\ 1.2 \times 10^{-2} \\ 4.6 \times 10^{-5} \end{array}$	4.0×10^{-7} 4.2×10^{-13}			Name Ascorbic Carbonic Citric Oxalic Phosphoric Sulfurous Sulfurous

n whic	h direc	tion wi	ll these	e reactions procee	d? 🍂
H ₂ SO	(aa) + N	lH₂(aq)	 N⊦	₄⁺(aq) + HSO <u>₄⁻(aq)</u>	Ĩ
112004	(<u> </u>	→ (uq) + 11004 (uq)	
	(aa) + S	∩ 2-(aď) HS	$(-(2\pi) + (-1)^{2})$	
1003	(ay) + 3	∪ ₄ - (ay)	, 💶 ПС	$O_4(aq) + OO_3^{-}(aq)$	
		•			
Name	Formula	K_{a1}	K _{a2}	K _{a3}	
Name Ascorbic	Formula H ₂ C ₆ H ₆ O ₆	K_{a1} 8.0 × 10 ⁻⁵	K_{a2} 1.6 × 10 ⁻¹²	K _{a3}	
Name Ascorbic Carbonic	Formula H ₂ C ₆ H ₆ O ₆ H ₂ CO ₃	K_{a1} 8.0×10^{-5} 4.3×10^{-7}	K_{a2} 1.6 × 10 ⁻¹² 5.6 × 10 ⁻¹¹	K _{a3}	
Name Ascorbic Carbonic Citric	Formula H ₂ C ₆ H ₆ O ₆ H ₂ CO ₃ H ₃ C ₆ H ₅ O ₇	K_{a1} 8.0×10^{-5} 4.3×10^{-7} 7.4×10^{-4}	K_{a2} 1.6 × 10 ⁻¹² 5.6 × 10 ⁻¹¹ 1.7 × 10 ⁻⁵	K_{a3} 4.0 × 10 ⁻⁷	
Name Ascorbic Carbonic Citric Oxalic	Formula $H_2C_6H_6O_6$ H_2CO_3 $H_3C_6H_5O_7$ $H_2C_2O_4$	$\begin{array}{c} K_{a1} \\ 8.0 \times 10^{-5} \\ 4.3 \times 10^{-7} \\ 7.4 \times 10^{-4} \\ 5.9 \times 10^{-2} \end{array}$	$\begin{array}{c} K_{a2} \\ 1.6 \times 10^{-12} \\ 5.6 \times 10^{-11} \\ 1.7 \times 10^{-5} \\ 6.4 \times 10^{-5} \end{array}$	K_{63} 4.0 × 10 ⁻⁷	
Name Ascorbic Carbonic Citric Oxalic Phosphoric	Formula $H_2C_6H_6O_6$ H_2CO_3 $H_3C_6H_5O_7$ $H_2C_2O_4$ H_3PO_4	$\begin{array}{c} K_{a1} \\ 8.0 \times 10^{-5} \\ 4.3 \times 10^{-7} \\ 7.4 \times 10^{-4} \\ 5.9 \times 10^{-2} \\ 7.5 \times 10^{-3} \end{array}$	$\begin{array}{c} K_{a2} \\ \hline 1.6 \times 10^{-12} \\ 5.6 \times 10^{-11} \\ 1.7 \times 10^{-5} \\ 6.4 \times 10^{-5} \\ 6.2 \times 10^{-8} \end{array}$	K_{a3} 4.0 × 10 ⁻⁷ 4.2 × 10 ⁻¹³	
Name Ascorbic Carbonic Citric Oxalic Phosphoric Sulfurous	Formula $H_2C_6H_6O_6$ H_2CO_3 $H_3C_6H_5O_7$ $H_2C_2O_4$ H_3PO_4 H_2SO_3	$\begin{array}{c} K_{a1} \\ \hline 8.0 \times 10^{-5} \\ 4.3 \times 10^{-7} \\ 7.4 \times 10^{-4} \\ 5.9 \times 10^{-2} \\ 7.5 \times 10^{-3} \\ 1.7 \times 10^{-2} \end{array}$	$\begin{array}{c} K_{a2} \\ 1.6 \times 10^{-12} \\ 5.6 \times 10^{-11} \\ 1.7 \times 10^{-5} \\ 6.4 \times 10^{-5} \\ 6.2 \times 10^{-8} \\ 6.4 \times 10^{-8} \end{array}$	K_{a3} 4.0 × 10 ⁻⁷ 4.2 × 10 ⁻¹³	
Name Ascorbic Carbonic Citric Oxalic Phosphoric Sulfurous Sulfurous Sulfuric	Formula H ₂ C ₆ H ₆ O ₆ H ₃ C ₆ H ₅ O ₇ H ₂ C ₂ O ₄ H ₃ PO ₄ H ₂ SO ₃ H ₅ SO ₄	$\begin{array}{c} K_{a1} \\ 8.0 \times 10^{-5} \\ 4.3 \times 10^{-7} \\ 7.4 \times 10^{-4} \\ 5.9 \times 10^{-2} \\ 7.5 \times 10^{-3} \\ 1.7 \times 10^{-2} \\ \text{Large} \end{array}$	$\begin{array}{c} K_{a2} \\ \hline 1.6 \times 10^{-12} \\ 5.6 \times 10^{-11} \\ 1.7 \times 10^{-5} \\ 6.4 \times 10^{-5} \\ 6.2 \times 10^{-8} \\ 6.4 \times 10^{-8} \\ 1.2 \times 10^{-2} \end{array}$	K_{43} 4.0 × 10 ⁻⁷ 4.2 × 10 ⁻¹³	

[H₃O⁺]	[OH ⁻]	Kw
1 X 10 ⁻¹⁴	1 X 10 ⁻⁰	1 X 10 ⁻¹⁴
1 X 10 ⁻¹³	1 X 10 ⁻¹	1 X 10 ⁻¹⁴
1 X 10 ⁻¹²	1 X 10 ⁻²	1 X 10 ⁻¹⁴
1 X 10 ⁻¹¹	1 X 10 ⁻³	1 X 10 ⁻¹⁴
1 X 10 ⁻¹⁰	1 X 10-4	1 X 10 ⁻¹⁴
1 X 10 ⁻⁹	1 X 10⁻⁵	1 X 10 ⁻¹⁴
1 X 10 ⁻⁸	1 X 10 ⁻⁶	1 X 10 ⁻¹⁴
1 X 10 ⁻⁷	1 X 10 ⁻⁷	1 X 10 ⁻¹⁴
1 X 10 ⁻⁶	1 X 10 ⁻⁸	1 X 10 ⁻¹⁴
1 X 10 ⁻⁵	1 X 10 ⁻⁹	1 X 10 ⁻¹⁴
1 X 10 ⁻⁴	1 X 10 ⁻¹⁰	1 X 10 ⁻¹⁴

The product of $[H_3O^+][OH^-] = 1 \times 10^{-14}$ a constant.

Antilog of a number means use the
number as an exponent.
Sometimes we know the base and the exponent, but we need
to compute the number. We can write it like this:
$$log(?) = 2$$

In words we would say: "The log₁₀ of what number is equal to 2"?
Finding this number is called taking the *"antilogarithm"*
Antilog [log(?)] = Antilog (2)
? = $10^2 = 100$
The antilog₁₀ is the same as the base 10 operator!

When H₃O⁺, OH⁻, K_a are large values----the pK's are small values. Strong acids have large H₃O and K_a therefore small pH and small pK_a

A research chemist adds a measured amount of HCl gas to pure water at 25°C and obtains a solution with $[H_3O^+] = 3.0 \times 10^4 M$. Calculate [OH-]. Is the solution neutral, acidic or basic?	A research chemist adds a measured amount of HCl gas to pure water at 25 °C and obtains a solution with [H ₃ O ⁺] = 3.0 x 10 ⁻⁴ <i>M</i> . Calculate [OH-]. Is the solution neutral, acidic or basic? Again, strong acids dissociate completely stoichiometry dictates [H ⁺]
	SOLUTION: $K_{w} = 1.0 \times 10^{-14} = [H_{3}O^{+}] [OH^{-}]$ $[OH^{-}] = K_{w}/ [H_{3}O^{+}] = 1.0 \times 10^{-14}/3.0 \times 10^{-4} = 3.3 \times 10^{-11} M$ $[H_{3}O^{+}] > [OH^{-}];$ the solution is acidic.

x 10 ⁻³ <i>M</i> HNO ₃ so	olution? ed.	 There are 2 key simplifications that can help us solve equilibrium problems rapidly. 1. [H₃O⁺] from the auto-ionization of water is negliging in comparison to H⁺ from an acid, HA in solution.
	NO ₃ ⁻ (aq) 0.0 <i>M</i> 0.002 <i>M</i>	2. If 100 x K _a < [HA] _{initial} then [HA] _{initial} - x = [HA]
+0.002 <i>M</i>	+0.002 M	Because K_a values are known to about \pm 5% accuracy.
-log(0.002) = <mark>2.7</mark>		Check using the 5% Rule Image: Check using the 5% Rule Image: Check using the 5% Rule Image: Check using the 5% Rule Image: Check using the 5% Rule Image: Check using the 5% Rule Image: Check using the 5% Rule Image: Check using the 5% Rule Image: Check using the 5% Rule Image: Check using the 5% Rule Image: Check using the 5% Rule Image: Check using the 5% Rule Image: Check using the 5% Rule Image: Check using the 5% Rule Image: Check using the 5% Rule Image: Check using the 5% Rule Image: Check using the 5% Rule Image: Check using the 5% Rule Image: Check using the 5% Rule Image: Check using the 5% Rule Image: Check using the 5% Rule Image: Check using the 5% Rule Image: Check using the 5% Rule Image: Check using the 5% Rule Image: Check using the 5% Rule Image: Check using the 5% Rule Image: Check using the 5% Rule Image: Check using the 5% Rule Image: Check using the 5% Rule Image: Check using the 5% Rule Image: Check using the 5% Rule Image: Check using the 5% Rule Image: Check using the 5% Rule Image: Check using the 5% Rule Image: Check using the 5% Rule Image: Check using the 5% Rule Image: Check using the 5
	x 10 ⁻³ <i>M</i> HNO ₃ so t it is100% dissociat <i>h</i>) → H ₃ O ⁺ (<i>aq</i>) + N 0.0 <i>M</i> +0.002 <i>M</i> +0.002 <i>M</i> -log(0.002) = 2.7	x 10 ⁻³ M HNO ₃ solution? d it is100% dissociated. f) \longrightarrow H ₃ O ⁺ (aq) + NO ₃ ⁻ (aq) 0.0 M 0.0 M +0.002 M 0.002 M +0.002 M +0.002 M -log(0.002) = 2.7

$$\mathcal{K}_{a} = \frac{[H_{3}O^{+}][PAc^{-}]}{[HPAc]} = \frac{[x]^{2}}{[0.12 - x]}$$

$$\mathcal{K}_{a} = \frac{(2.5 \times 10^{-3})^{2}}{0.117} = 5.2 \times 10^{-5}$$

Kb is the equilbrium constant that quantifies a
degree OH dissociation, a base's strength.
$$\stackrel{\bullet}{B} + H_2O(l) \implies BH^+(aq) + OH^-(aq)$$
 $K_b = \frac{[BH^+][OH^-]}{[B]}$ ---Strong bases dissociate completely
Ca(OH)_2(s) + H_2O(l) ==> Ca^{2+}(aq) + 2OH^-(aq) + H_2O(l)
 $NaOH(s) ===> Na^+(aq) + CI^-(aq)$ ---Weak bases dissociate partially
NH_3 (aq) + H_2O (l) $\rightleftharpoons NH_4^+(aq) + OH^-(aq)$
 $K_b = 1.76 \times 10^{-5}$
 $(CH_3)_2NH_2 (aq) + H_2O (l) $\rightleftharpoons (CH_3)_2NH^+(aq) + OH^-(aq)$
 $K_b = 5.4 \times 10^{-4}$$

KEY DOT CONNECTION: The K_a of an acid and the K_b of the acid's conjugate base are related through the ion-product constant of water.

$$HA (aq) \longrightarrow H^{+} (aq) + A^{-} (aq) \qquad K_{a} = \frac{[H^{+}][A^{-}]}{[HA]}$$

$$A^{-} (aq) + H_{2}O (I) \longrightarrow OH^{-} (aq) + HA (aq) \qquad K_{b} = \frac{[OH^{-}][HA]}{[A^{-}]}$$

$$H_{2}O (I) \longrightarrow H^{+} (aq) + OH^{-} (aq) \qquad K_{a} K_{b} = [OH^{-}][H^{+}]$$

If you know K_{a} for an acid you can determine K_{b} for its conjugate base!

$$K_w = K_a K_b = 10^{-14}$$

 $pK_w = pK_a + pK_b = 14$

Notic	e! K _b x	Ka = Kw	= 1 x 10"	+
TABLE 15.4 K _b fo	Values for Some r Their Conjugate	Weak Bases and Acids	K _a Values	
Base	Formula, B	Kb	Conjugate Acid, BH ⁺	Ka
Ammonia	(NH ₃)	$1.8 imes 10^{-5}$	NH4 ⁺	5.6×10^{-10}
Aniline	C ₆ H ₅ NH ₂	$4.3 imes 10^{-10}$	C ₆ H ₅ NH ₃ ⁺	2.3×10^{-10}
Dimethylamine	(CH ₃) ₂ NH	5.4×10^{-4}	$(CH_3)_2 NH_2^+$	1.9×10^{-1}
Hydrazine	N_2H_4	$8.9 imes 10^{-7}$	$N_{2}H_{5}^{+}$	1.1×10^{-1}
Hydroxylamine	NH ₂ OH	9.1×10^{-9}	NH ₃ OH ⁺	1.1×10^{-1}
Methylamine	CH ₃ NH ₂	3.7×10^{-4}	CH ₃ NH ₃ ⁺	2.7×10^{-1}

Acid	Formula	Ka	Conjugate	Kb
lodic acid	HI	1.61 X 10 ⁻¹	ŀ	6.1 X 10 ⁻¹⁴
Chlorous Acid	HCIO ₂	1.1 X 10 ⁻²	CIO ₂ -	9.1 X 10 ⁻¹³
Phosphoric Acid	H ₃ PO ₄	7.6 X 10 ⁻³	H ₂ PO ₄ -	1.3 X 10 ⁻¹²
Nitrous Acid	HNO ₂	7.2 X 10 ⁻⁴	NO ₂ -	1.4 X 10 ⁻¹¹
Hydrofluoric Acid	HF	6.6 X 10 ⁻⁴	F-	1.5 X 10 ⁻¹¹
Formic Acid	HCOOH	1.8 X 10 ⁻⁴	HCO ₂ -	5.6 X 10 ⁻¹¹
Acetic Acid	CH ₃ CO ₂ H	1.8 X 10 ⁻⁵	CH ₃ CO ₂ -	5.6 X 10 ⁻¹⁰
Hydrosulfuric Acid	H₂S	1.32 X 10 ⁻⁷	HS ⁻	7.6 X 10 ⁻⁸
Hypochlorous Acid	HCIO	3.5 X 10 ⁻⁸	CIO-	2.9 X 10 ⁻⁷
Hydrazine	N_2H_4	1.1 X 10 ⁻⁸	OH-	8.9 X 10 ⁻⁷
Water	H ₂ O	1.0 X 10 ⁻⁷	OH-	1.0 X 10 ⁻⁷
Ammonia	NH3	5.6 X 10 ⁻¹⁰	NH_{4}^{+}	1.8 X 10 ⁻⁵
Hydrocyanic Acid	HCN	4.0 X 10 ⁻¹⁰	CN⁻	2.5 X 10 ⁻⁵
Dimethyl Amine	(CH ₃) ₂ NH	1.9 X 10 ⁻¹¹	(CH ₃) ₂ NH ₂ +	5.4 X 10 ⁻⁴

hoteric?		$Zn(HCOO)_2$, is acidic, basic, or neutral. The K _a for Zn
• KClO2	Basic	$(H_2O)_6^{2+} = 10^{-9}$ and K _a for formic acid is 1.8 x 10 ⁻⁴ .
• CsI	Neutral	Both Zn ²⁺ and HCOO ⁻ come from weak conjugates. In order to find the relatively acidity, write the dissociation reactions and
• NaHSO ₄	Acidic	use the information in Tables 18.2 and 18.7.
• HCO ₂ K	Basic	
• Al(H ₂ O) ₆	Acidic	
• NaNO ₃	Neutral	
• Na ₃ PO ₄	Basic	
• CH ₃ COONH ₄	Depends on Ka vs Kb	
• FeCl ₂	Acidic	

