

Arrhenius Acids and Bases

Arrhenius's definition of acids and bases dates back to the1800's. It is now considered obsolete since it only relates to reactions in water - aqueous solutions.

Arrhenius defined acids and bases this way:
An acid is a substance that, when dissolved in water, increases the concentration ofhydrogen ions.

$$
\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}
$$

$\mathrm{H}_{3} \mathrm{O}^{+}$is called a hydrated proton or a hydronium ion.
A base is a substance that, when dissolved in water, increases the concentration ofhydroxide ions.
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$

Brønsted-Lowry Acids and Bases

The Brønsted-Lowry definition dates back to the early 1900's and is considered the modern definition of acids and bases.

This definition is more general and it works for all reactions; not just in those in water

An acid is a proton, H^{+}, donor.
A base is a proton, H^{+}, acceptor.

$$
\mathrm{NH}_{3}+\mathrm{HCl} \longrightarrow \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}
$$

Slide 9 / 208

Brønsted-Lowry Acids and Bases

A Brønsted-Lowry acid:
must have a removable (acidic) proton or
must transfer a proton to another substance

A Brønsted-Lowry base:
must have a pair of nonbonding electrons
or
must accept a proton
$\mathrm{H}-\ddot{\mathrm{N}} \mathrm{H}+\mathrm{HCl} \longrightarrow \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}$
H

Slide 10 / 208

Brønsted-Lowry Acids and Bases

$$
\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Cl}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

HCl donates the proton and acts as a Brønsted-Lowry acid.
$\mathrm{H}_{2} \mathrm{O}$ accepts the proton and acts as a Brønsted-Lowry base.

Slide 11 / 208
 Slide 12 / 208

Lewis Acids

Brønsted-Lowry acids replaced Arrhenius acids becausethe former were more general: Arrhenius acids could only bedefined in aqueous (water) solutions. Brønsted-Lowry acids don't have that limitation.

Arrehenius acids - only substances dissolved in $\mathrm{H}_{2} \mathrm{O}$

Similarly, Brønsted-Lowry acids are limited to substances that gain or lose hydrogen.

Brønsted-Lowry acids - only substances that gain or lose \mathbf{H}^{+}
The most general approach is that of Lewis acids; whichdo not require an aqueous environment or an exchange ofhydrogen.

Lewis Acids

Lewis acids are defined as electron-pair acceptors.
Atoms with an empty valence orbital can be Lewis acids.

Lewis Acid

Lewis Bases

Lewis bases are defined as electron-pair donors.
Anything that could be a Brønsted-Lowry base is a Lewis base.

Lewis bases can interact with things other than protons, however. Therefore, this definition is the broadest of the three.

Slide 14 (Answer) / 208

1 A Brønsted-Lowry base is defined as a substance that \qquad -.

Slide 15 (Answer) / 208

2 A Brønsted-Lowry acid is defined as a substance

1 A Brønsted-Lowry base is defined as a substance that \qquad _.

O A increases $[\mathrm{H}+]$ when placed in $\mathrm{H}_{2} \mathrm{O}$
$O B$ decreases $\left[\mathrm{H}^{+}\right]$when placed in $\mathrm{H}_{2} \mathrm{O}$
Oc increases [$\mathrm{OH}-$] when placed in $\mathrm{H}_{2} \mathrm{O}$
OD acts aa s proton acceptor
OE acts as a proton donor

OA increases K_{a} when placed in $\mathrm{H}_{2} \mathrm{O}$
$O B$ decreases $\left[\mathrm{H}^{+}\right]$when placed in $\mathrm{H}_{2} \mathrm{O}$
Oc increases [OH] when placed in $\mathrm{H}_{2} \mathrm{O}$
OD acts as a proton acceptor
O E acts as a proton donor

2 A Brønsted-Lowry acid is defined as a substance that \qquad -. -

Slide 15 / 208

that \qquad -.

Slide 16 / 208

3 Which of the following compounds could never act as an acid?

OA $\mathrm{SO}_{4}{ }^{2-}$
OB HSO_{4}^{-}
OC $\mathrm{H}_{2} \mathrm{SO}_{4}$
OD NH_{3}
OE $\quad \mathrm{CH}_{3} \mathrm{COOH}$

3 Which of the following compounds could never act as an acid?
$O A \quad \mathrm{SO}_{4}{ }^{2-}$
$\mathrm{OB} \quad \mathrm{HSO}_{4}^{-}$
OC $\quad \mathrm{H}_{2} \mathrm{SO}_{4}$
OD NH_{3}
OE $\quad \mathrm{CH}_{3} \mathrm{COOH}$

Slide 17 (Answer) / 208

4 According to the following reaction model, reactant is acting like an acid?

OE None of the above

4 According to the following reaction model, reactant is acting like an acid?

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HSO}_{4}^{-}
$$

$\mathrm{H}_{2} \mathrm{SO}_{4}$
OB $\mathrm{H}_{2} \mathrm{O}$
OC $\mathrm{H}_{3} \mathrm{O}^{+}$
OD HSO_{4}^{-}
OE None of the above

Slide 18 (Answer) / 208

5 According to the following reaction, which reactant is acting like a base?

$$
\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HSO}_{4}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{SO}_{4}
$$

OA $\quad \mathrm{H}_{2} \mathrm{SO}_{4}$
OB $\quad \mathrm{H}_{2} \mathrm{O}$
OC
$\mathrm{H}_{3} \mathrm{O}^{+}$
OD HSO_{4}^{-}
OE None of the above

Slide 19 / 208

6 For the following reaction, identify whether the compound in bold is behaving as an acid or a base.

$$
\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

OA	Acid
OB	Base
OC	Neither
OD	Both
OE	None of the above

9 In the reaction $\mathrm{BF}_{3}+\mathrm{F}^{-} \rightarrow \mathrm{BF}_{4}{ }^{-}$
BF_{3} acts as a/an \qquad

OA Arrhenius
OB Bronsted-Lowry
OC Lewis
OD Arrhenius, Bronsted-Lowry, and Lewis
OE Arrhenius and Bronsted-Lowry

Conjugate Acid Base Pairs

Return to the
Table of contents

Slide 24 / 208

Conjugate Acids and Bases

The term conjugate comes from the Latin word
"conjugare," meaning "to join together."
Reactions between acids and bases always yield their conjugate bases and acids.

Slide 26 / 208

Acids in Water

What Happens When an Acid Dissolves in Water?
Which is the acid?
Which is the base?
Water acts as a Brønsted-Lowry base and takes a proton $(\mathrm{H}+)$ from the acid.

As a result, the conjugate base of the acid and a hydronium ion are formed.

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HSO}_{4}^{-}
$$

Conjugate Acids and Bases

After the acid donates a proton, the result is called its conjugate base.

After the base accepts a proton, the result is called its conjugate acid.

10 In liquid ammonia, the reaction represented below occurs. In the reaction $\mathrm{NH}_{4}{ }^{+}$acts as

$$
2 \mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{NH}_{2}^{-}
$$

O a catalyst
O b both an acid and a base
○ C the conjugate acid of NH_{3}
$O D$ the reducing agent
O E the oxidizing agent

11 What are the conjugate bases of $\mathrm{HClO}_{4}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{PH}_{4}{ }^{+}$, HCO_{3} ?
$\mathrm{OA} \mathrm{ClO}_{4}{ }^{+}$, $\mathrm{HS}-, \mathrm{PH}_{3}{ }^{-}, \mathrm{CO}_{3}{ }^{-}$
$\mathrm{OB} \mathrm{ClO}_{4}{ }^{-}, \mathrm{HS}^{-}, \mathrm{PH}_{3}, \mathrm{CO}_{3}{ }^{2-}$
$\mathrm{OC} \mathrm{ClO}_{4}{ }^{2-}, \mathrm{HS}^{2-}, \mathrm{PH}_{3}{ }^{3-}, \mathrm{CO}_{3}{ }^{2-}$
D $\mathrm{ClO}_{4}^{-}, \mathrm{H}_{2} \mathrm{~S}^{-}, \mathrm{PH}_{3}, \mathrm{CO}_{3}{ }^{2-}$

Question from the College Board

Slide 28 (Answer) / 208

Slide 29 / 208

11 What are the conjugate bases of $\mathrm{HClO}_{4}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{PH}_{4}{ }^{+}$, $\mathrm{HCO}_{3}-$?

OA $\mathrm{ClO}_{4}{ }^{+}, \mathrm{HS}-, \mathrm{PH}_{3}$
$\mathrm{Ob} \mathrm{ClO}_{4}^{-}, \mathrm{HS}^{-}, \mathrm{Pl}{ }^{\circ}$
$\mathrm{Oc} \mathrm{ClO}_{4}{ }^{2-}, \mathrm{HS}^{2-}, \frac{\mathrm{C}}{4}$ D $\mathrm{ClO}_{4}{ }^{-}, \mathrm{H}_{2} \mathrm{~S}^{-}, \mathrm{PH}_{3}$,

B
To create a conjugate base for an acid you must remove an H and decrease the charge by 1. HClO_{4} 's conjugate base is ClO_{4}^{-}, $\mathrm{H}_{2} \mathrm{~S}^{\prime}$ s is HS^{-}, and $\mathrm{PH}_{4}{ }^{+}$is PH_{3} and $\mathrm{HCO}_{3}{ }^{-}$is $\mathrm{CO}_{3}{ }^{2-}$.

Slide 30 / 208

Slide 31 / 208

Acid and Base Strength

Slide 30 / 208	Slide 31 / 208
Acid and Base Strength	Acid and Base Strength
 Weak acids only partially dissociate in water. Their conjugate bases are weak bases.	

Acid and Base Strength

In any acid-base reaction, equilibriumwill favor the reaction in which the proton moves toward the strongerbase.
In other words, a stronger base will "hold onto" its proton whereas a strong acid easily releases its proton(s).

$$
\begin{aligned}
& \mathrm{HCl}(\mathrm{aq})+\underset{\text { base }}{\mathrm{H}} \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\
& \text { acid }
\end{aligned} \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \text { acid } \text { conj. base }
$$

An alternative way to consider equilibrium ishat it will favor the reaction AWAY from the stronger acid.

Acid and Base Strength

$\underset{\text { acid }}{\mathrm{HCl}(\mathrm{aq})}+\underset{\text { base }}{\mathrm{H}_{2} \mathrm{O}(\mathrm{I})} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$

In this example, $\mathrm{H}_{2} \mathrm{O}$ is a much stronger base than Cl^{-}so the proton moves from HCl to $\mathrm{H}_{2} \mathrm{O}$
Conversely, HCl is a much stronger acid than hydronium ion, so equilibrium lies very far to the right

K >>1

Slide 34 / 208

Acid and Base Strength

Consider this equilibrium between acetic acid and acetate ion:
$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$
Does equilibrium lie to the left $(\mathrm{K}<1)$ or to the right $(\mathrm{K}>1)$?

If you look for the stronger acid:	If you look for the stronger base:
Equilib lies away from the stronger acid.	Equilib favors this base accepting a proton.

Slide 36 / 208

Acid and Base Strength

Acetic acid is a weak acid. This means that only a small percent of the acid will dissociate.

The double headed arrow is used only in weak acid or weak base dissociation equations.

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})
$$

A single arrow is used for strong acid or strong bases which dissociate completely.

$$
\mathrm{NaOH} \longrightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

Slide 37 / 208
12 Strong acids have \qquad conjugate
bases. bases.

Acid and Base Strength

$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$

OA strong
OB weak
OC neutral
OD negative

15 For the following reaction, determine which side of the equilibrium is favored.				
	$\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HSO}_{4}^{-}$ the right side the left side Neither side is favol	The right side A $\mathrm{H}_{2} \mathrm{O}$ is a stronger b $\mathrm{HSO}_{4}{ }^{-}$and the sid equilibrium that is fav side where the stron has accepted the		
				$\varliminf_{\substack{\text { 100\% } \\ \text { portonated } \\ \text { in } \mathrm{H}_{2} \mathrm{O}}}$

16 For the following reaction, determine which side of the equilibrium is favored.

Slide 41 (Answer) / 208

16 For the following reaction, determine which side of the equilibrium is favored.

Amphoteric Substances

Return to the Table of Contents

Slide 43 / 208

Amphoteric Substances

If a substance can act both as an acid and base, it is known as amphoteric. For example, water can act as a base or acid depending on the situation.

$$
\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Cl}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

Above, water accepts a proton, thus acting as a base.

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

Above, water donates a proton, thus acting as an acid.

Amphoteric Substances

Another term for amphoteric is amphiprotic. For each of the following substances, write two equations, one showing it as a Bronsted-Lowry acid and another showing it as a Bronsted-Lowry base.
$\mathrm{HCO}_{3}-$
HSO_{4}^{-}
$\mathrm{H}_{2} \mathrm{O}$
${ }^{17}$ A substance that is capable of acting as both an acid and as a base is \qquad -.

OA autosomal
OB conjugated
OC amphoteric
OD saturated
OE miscible
${ }^{17}$ A substance that is capable of acting as both an acid and as a base is \qquad -
autosomal
O B conjugated
OC amphoteric
OD saturated
OE miscible

18 Write the equations and equilibrium expressions for HS^{-} when it is acting like a Brønsted-Lowry acid and when it is actifig'slike thair Breristed-Lowry base.

Strong Acids and Bases

Return to the Table of Contents

Slide 49 / 208

Strong Acids

Recall, strong acids completely ionize in solution.
The seven strong acids are:

- HCl hydrochloric acid
- HBr hydrobromic acid
- HI hydroiodic acid
- HNO_{3} nitric acid
- $\mathrm{H}_{2} \mathrm{SO}_{4}$ sulfuric acid
- HClO_{3} chloric acid
- HClO_{4} perchloric acid

Memorize this list.

Strong Acids

The seven strong acids are strong electrolytes because they are 100% ionized. In other words, these compounds exist totally as ions in aqueous solution.

For the monoprotic strong acids (acids that donates only one proton per molecule of the acid), the hydronium ion concentration equals the acid concentration.

$$
[\text { Acid }]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

So, if you have a solution of 0.5 M HCl , then $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.5 \mathrm{M}$

Strong Bases

All strong bases are group of compounds called "metal hydroxides."
All alkali metals in Group I form hydroxides that are strong bases: $\mathrm{LiOH}, \mathrm{NaOH}, \mathrm{KOH}$, etc.

Only the heavier alkaline earth metals in Group II formstrong bases: $\mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{Sr}(\mathrm{OH})_{2}$, and $\mathrm{Ba}(\mathrm{OH})_{2}$.

Again, these substances dissociate completely in aqueous solution. In other words, NaOH exists entirelyas Na^{+}ions and OH^{-} ions in water.

19 What is the hydroxide ion concentration of a 0.22 M calcium hydroxide solution?

○A 0.11
OB 0.22
OC 0.44
OD 0.88
OE Not enough information.

Slide 51 (Answer) / 208

19 What is the hydroxide ion concentration of a 0.22 M calcium hydroxide solution?

Slide 52 (Answer) / 208

20 What is the concentration of H^{+}in a 25 ml solution of 0.05 M HCl wir 100 ml ?

21 What is the $\left[\mathrm{H}^{+}\right]$ion concentration of a 50 ml solution of $0.025 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$, when diluted with 150 ml of water?

Ion-Product Constant

$$
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \times\left[\mathrm{OH}^{-}\right]
$$

This special equilibrium constant, K_{w} is referred to as the ion-product constant for water.

At $25^{\circ} \mathrm{C}, K_{w}=1.0 \times 10^{-14}$. Since this is such a small number, we conclude that pure water contains relatively very few ions.

23 The magnitude of K_{w} indicates that \qquad .

OA water ionizes to a very small extent
$O B$ the autoionization of water is exothermic
Oc water ionizes very quickly
OD water ionizes very slowly

Slide 60 (Answer) / 208

23 The magnitude of K_{w} indicates that \qquad .

Slide 61 (Answer) / 208

Slide 62 / 208

24 The ion-product constant for water, K_{w} is represented by

24 The ion-product constant for water, K_{w} is represented by

OA $\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}$
OB $\quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \times[\mathrm{OH}]$
OC $\quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+\left[\mathrm{OH}^{-}\right]$
OD $\quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]-\left[\mathrm{OH}^{-}\right]$

Slide 61 / 208

25 What is the $\left[\mathrm{H}^{+}\right]$ion concentration of a solution with an $\left[\mathrm{OH}^{-}\right]$ion concentration of 1×10^{-9} ?

Try to solve without a calculator!
OA 1×10^{-14}
OB 1×10^{5}
OC 1×10^{-5}

OD 1.23×10^{-5}
OE 1×10^{-7}

pH

It is a measure of hydrogen ion concentration, $\left[\mathrm{H}^{+}\right]$in a solution, where the concentration is measured in moles H^{+}per liter, or molarity.

The pH scale ranges from 0-14.
pH is defined as the negative base-10 logarithm ofthe concentration of hydronium ion.

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

Slide 68 / 208

pH

pH is defined as the negative base-10 logarithm of the concentration of hydronium ion.

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

Hydrogen ion concentration, $[\mathrm{H}+\mathrm{]}$ in moles/Liter	pH
1.0×10^{-1}	1
1.0×10^{-2}	2
1.0×10^{-10}	10

Is the relationship between $\left[\mathrm{H}^{+}\right]$and pH a direct or an inverse one?

pH

Because of the base-10 logarithm, each 1.0-point value on the pH scale differs by a value of ten.

A solution with $\mathrm{pH}=9$ has a hydrogen ion concentration, $\left[\mathrm{H}^{+}\right]$, that is ten times more than a $\mathrm{pH}=10$ solution.

A solution with $\mathrm{pH}=8$ has a hydrogen ion concentration, $\left[\mathrm{H}^{+}\right]$ that is 10^{2} or 100 times more than a $\mathrm{pH}=10$ solution.

A solution with $\mathrm{pH}=7$ has a hydrogen ion concentration, $\left[\mathrm{H}^{+}\right]$, that is 10^{3} or 1000 times more than a $\mathrm{pH}=10$ solution.

Slide 70 / 208

Slide 70 (Answer) / 208

28 The molar concentration of hydronium ion, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$, in pure water at $25^{\circ} \mathrm{C}$ is \qquad -.

A 0

- B 1

OC 7
OD 10^{-7}
OE 10^{-14}

Slide 69 / 208

pH
Because of the base-10 logarithm, each 1.0 -point value
on the pH scale differs by a value of ten.
A solution with $\mathrm{pH}=9$ has a hydrogen ion concentration, $\left[\mathrm{H}^{+}\right]$,
that is ten times $\underline{\text { more than a } \mathrm{pH}=10 \text { solution. }}$
A solution with $\mathrm{pH}=8$ has a hydrogen ion concentration, $\left[\mathrm{H}^{+}\right]$,
that is 10^{2} or 100 times more than a $\mathrm{pH}=10$ solution.
A solution with $\mathrm{pH}=7$ has a hydrogen ion concentration, $\left[\mathrm{H}^{+}\right]$,
that is 10^{3} or 1000 times more than a $\mathrm{pH}=10$ solution.

28 The molar concentration of hydronium ion, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$, in pure water at $25^{\circ} \mathrm{C}$ is \qquad -.

29 A solution with $\mathrm{pH}=3$ has a hydrogen ion concentration that is \qquad than a solution with $\mathrm{pH}=5$.

OA 2x more
Oв $2 x$ less
Oc 100x more
OD 100x less

29 A solution with $\mathrm{pH}=3$ has a hydrogen ion concentration that is \qquad than a solution with $\mathrm{pH}=5$.

OA 2x more
O в $2 x$ less
Oc 100x more
Od 100x less

Slide 72 (Answer) / 208

30 A solution with $\mathrm{pH}=14$ has a hydrogen ion concentration that is solution with $\mathrm{pH}=11$.

A $3 x$ more
OB 3x less
OC 1000xmore
OD 1000x less
\qquad

Slide 72 / 208

1.

_than a \square

en s

	31 For a basic solution, the hydrogen ion concentration is \qquad than the hydroxide ion concentration. A greater than B less than C equal to D Not enough information.
Slide 76 (Answer) / 208	Slide 77 / 208
31 For a basic solution, the hydrogen ion concentration is \qquad than the hydroxide ion concentration. A greater than B less than C equal to D Not enough informa	32 For an acidic solution, the hydroxide ion concentration is \qquad than the hydrogen ion concentration. A greater than B less than C equal to D Not enough information.
Slide 77 (Answer) / 208	Slide 78 / 208
32 For an acidic solution, the hydroxide ion concentration is \qquad than the hydrogen ion concentratior A greater than B less than C equal to D Not enough informatiu \qquad	33 Which solution below has the highest concentration of hydroxide ions? A $\mathrm{pH}=3.21$ B $\mathrm{pH}=7.00$ C $\mathrm{pH}=8.93$ D $\mathrm{pH}=12.6$

Slide 79 (Answer) / 208

34 Which solution below has the lowest concentration of hydrogen ions?

Slide 80 (Answer) / 208

Slide 81 / 208
35 For a 1.0-M solution of a weak base, a reasonable

OA 2
OB 6
○C 7
OD 9
OE 13

34 Which solution below has the lowest concentration of hydrogen ions?

OA
$\mathrm{pH}=1.98$
OB $\mathrm{pH}=8.53$
OC $\quad \mathrm{pH}=5.91$
OD $\quad \mathrm{pH}=11.4$

Slide 80 / 208

35 For a 1.0-M solution of a weak base, a reasonable pH would be \qquad —.

OA 2

- B 6

OC 7
OD 9
OE 13
pH would be \qquad -

36 For a $1.0-\mathrm{M}$ solution of a strong acid, a reasonable pH would be \qquad _.

○A 2
OB 6
OC 7
OD 9
OE 13

37 The pH of a solution with a concentration of 0.01 M hydrochloric acid isA 10^{-2}B 12C 2D 10^{-12}
A 10^{-2}
 2

Slide 82 (Answer) / 208

Slide 83 / 208

37 The pH of a solution with a concentration of 0.01 M hydrochloric acid isA 10^{-2}B 12C 2D 10^{-12}

38 A solution with the pH of 5.0

OA is basic
$O B$ has a hydrogen ion concentration of 5.0 M
$O C$ is neutral
OD has a hydroxide-ion concentration of 1×10^{-9}

Slide 83 (Answer) / 208
 Slide 84 / 208

38 A solution with the pH of 5.0

OA is basic
$O B$ has a hydrogen;
$O C$ is neutral
OD has a hydroxi萨

D

How Do We Measure pH?

For less accurate measurements, one can use Litmus paper
"Red" litmus paper turns blue above $\sim \mathrm{pH}=8$
"Blue" litmus paper turns red below $\sim \mathrm{pH}=5$
Or an indicator (usually an organic dye) such as one of the following: pH range for color change

40 What is the pH of a solution with a hydroxide ion concentration of $1 \times 10^{-12} \mathrm{M}$?
OA 1×10^{-2}

OB 12
OC 2
OD -12

41 What is the pH of an aqueous solution at $25.0^{\circ} \mathrm{C}$ in which $\left[\mathrm{H}^{+}\right]$is 0.0025 M ?

OA 3.4
OB 2.6
OC - 2.6
OD -3.4
OE 2.25

Slide 90 (Answer) / 208

41 What is the pH of an aqueous solution at $25.0^{\circ} \mathrm{C}$ in which $\left[\mathrm{H}^{+}\right]$is 0.0025 M ?

OA 3.4
OB 2.6
OC -2.6
OD -3.4
OE 2.25

Additional pH Calculations

If you are given the pH and asked to find the $\left[\mathrm{H}^{+}\right]$ (or $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$) in a solution, use the inverse log.

$$
\text { Since } \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \text {, then }\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}
$$

What is the hydrogen ion concentration (M) in a solution of Milk of Magnesia whose $\mathrm{pH}=9.8$?

$$
\left[\mathrm{H}^{+}\right]=10^{-9.8}
$$

$\left[\mathrm{H}^{+}\right]=1.58 \times 10^{-10} \mathrm{M}$ or mol/Liter

Slide 92 / 208

Slide 92 (Answer) / 208

42 What is the pH of a solution whose hydronium ion concentration is $7.14 \times 10^{-3} \mathrm{M}$?

42 What is the pH of a solution whose hydronium ion concentration is $7.14 \times 10^{-3} \mathrm{M}$?

43 What is the pH of a solution whose hydronium ion concentration is $1.92 \times 10^{-9} \mathrm{M}$?

43 What is the pH of a solution whose hydronium ion concentration is $1.92 \times 10^{-9} \mathrm{M}$?

Slide 94 (Answer) / 208

44 What is the hydronium ion concentration in a solution whose $\mathrm{pH}=4.29$?

Slide 95 (Answer) / 208

45 What is the hydroxide ion concentration in a solution whose r

$$
\left[\mathrm{H}^{+}\right]=10-\mathrm{pH}
$$

$\left[\mathrm{H}^{+}\right]=10^{-4.29}$
$\left[\mathrm{H}^{+}\right]=5.13 \times 10^{-5} \mathrm{M}$
$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
[$\mathrm{OH} \cdot \mathrm{H}=\mathrm{K}_{w} /\left[\mathrm{H}^{+}\right]$
$[\mathrm{OH}]=1 \times 10^{-14 /} / 5.13 \times 10^{-5} \mathrm{M}$
$[\mathrm{OH}]=1.95 \times 10^{-10}$

48 An aqueous solution of an acid has pH of 4.11 what is the [$\mathrm{OH}-]$ concentration of this solution?

OA 4.55×10^{11}
OB $\quad 5.78 \times 10^{11}$
OC 4.25×10^{8}
OD $\quad 1.29 \times 10^{-10}$
OE 4.03×10^{7}

48 An aqueous solution of an acid has pH of 4.11 what is the [$\mathrm{OH}-]$ concentration of this solution?

Slide 101 / 208

49 An aqueous solution of an base has pOH of 3.33 what is the $\left[\mathrm{H}^{+}\right]$concentration of this solution?

OA 4.68×10^{4}
OB $\quad 2.14 \times 10^{11}$
OC 5.67×10^{8}
OD 9.07×10^{9}
OE 4.88×10^{7}

Slide 101 (Answer) / 208

49 An aqueous solution of an base has pOH of 3.33 what is the $\left[\mathrm{H}^{+}\right]$concentration of this colution?

OA 4.68×10^{4}
OB 2.14×10^{-11}
OC 5.67×10^{8}
OD 9.07×10^{9}
OE 4.88×10^{7}

Slide 102 / 208

Weak Acids and Bases

Return to the Table of contents

Slide 103 / 208

Acid Dissociation Constants, K_{a}

$$
\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{A}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

For a generalized acid dissociation, the equilibrium expression is

$$
\mathrm{K}_{\mathrm{c}}, \operatorname{AKA~K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

This equilibrium constant is called the acid-dissociation constant, Ka.

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{A}]}{[\mathrm{HA}]}
$$

Acid Dissociation Constants, K_{a}

The greater the value of K_{a}, the stronger is the acid.

| Acid | Proton Transfer | Ka Value |
| :--- | :--- | :--- | :--- |
| Hydrochloric acid | $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$ | Large |
| Sulfuric acd | $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HSO}_{4}^{-}$ | Large |
| Nitric acid | $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}$ | About 20 |
| Hydrofluoric acid | $\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{F}^{-}$ | 1.2×10^{-4} |
| Carbonic acid | $\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HCO}_{3}^{-}$ | 4.3×10^{-7} |
| Hydrogen cyanide | $\mathrm{HCN}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CN}^{-}$ | 4.9×10^{-16} |

50 The acid dissociation constant $\left(\mathrm{K}_{\mathrm{a}}\right)$ of HF is 6.7×10^{-4}. Which of the following is true of a 0.1 M solution of HF?

O A $[\mathrm{HF}]$ is greater than $\left[\mathrm{H}^{+}\right]\left[\mathrm{F}^{-}\right]$
$O B \quad[\mathrm{HF}]$ is less than $\left[\mathrm{H}^{+}\right]\left[\mathrm{F}^{-}\right]$
OC $[\mathrm{HF}]$ is equal to $\left[\mathrm{H}^{+}\right]\left[\mathrm{F}^{-}\right]$
$O D \quad[H F]$ is equal to $\left[\mathrm{H}^{-}\right]\left[\mathrm{F}^{+}\right]$

Slide 105 (Answer) / 208

50 The acid dissociation constant $\left(\mathrm{K}_{\mathrm{a}}\right)$ of HF is 6.7×10^{-4}. Which of the following is true of a 0.1 M solution of HF?A $[\mathrm{HF}]$ is greater than
$O B \quad[H F]$ is less than $[H$
OC [HF] is equal to $\left[\mathrm{H}^{+}\right]$
OD [HF] is equal to $\left[\mathrm{H}^{-}\right][$
Because the K_{a} value is so small it
means that the amount of reactants is much greater than the
amount of products therefore $[\mathrm{HF}]$ amount of products therefore $[\mathrm{HF}]$ is greater than $\left[\mathrm{H}^{+}\right][\mathrm{F}]$

Calculating K_{a} from the $\mathbf{p H}$

The pH of a 0.10 M solution of formic acid, HCOOH , at $25^{\circ} \mathrm{C}$ is 2.38 . Calculate K_{a} for formic acid at this temperature.

The dissociation equation for formic acid may be written as a reaction with water

$$
\mathrm{HCOOH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HCOO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

or, without water

$$
\mathrm{HCOOH} \rightarrow \mathrm{HCOO}^{-}+\mathrm{H}^{+}
$$

Slide 107 / 208 Slide 108 / 208

Calculating K_{a} from the $\mathbf{p H}$

The pH of a 0.10 M solution of formic acid, HCOOH , at $25^{\circ} \mathrm{C}$ is 2.38. Calculate K_{a} for formic acid at this temperature.

$$
\mathrm{HCOOH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HCOO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

From this dissociation equation, write the K_{a} expression:

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{HCOO}]}{[\mathrm{HCOOH}]}
$$

To calculate K_{a}, we need the equilibrium concentrations of all three species.

We know the concentration of HCOOH , how do we determine the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$?

Calculating K_{a} from the $\mathbf{p H}$

$$
\begin{aligned}
\mathrm{pH} & =-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
2.38 & =-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
-2.38 & =\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
10^{-2.38} & =10^{\log }\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
4.2 \times 10^{-3} \mathrm{M} & =\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=[\mathrm{HCOO}]
\end{aligned}
$$

Note that this is a monoprotic acid, so [acid] = [conjugate base]

Calculating K_{a} from the pH

The pH of a 0.10 M solution of formic acid, HCOOH , at $25^{\circ} \mathrm{C}$ is 2.38. Calculate K_{a} for formic acid at this temperature.
$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}[\mathrm{HCOO}]\right.}{[\mathrm{HCOOH}]}$

	$[\mathrm{HCOOH}], M$	$[\mathrm{HCOO}], M$	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right], M$
Initially	0.10	0	0
Change	-4.2×10^{-3}	$+4.2 \times 10^{-3}$	$+4.2 \times 10^{-3}$
At Equilibrium	$0.10-$ 4.2×10^{-3} 0.10	4.2×10^{-3}	4.2×10^{-3}

Slide 111 / 208

Calculating K_{a} from the $\mathbf{p H}$

Now, we substitute values into the Ka expression and solve:

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{HCOO}]}{[\mathrm{HCOOH}]} \\
& K_{a}=\frac{\left[4.2 \# 10^{-3}\right]\left[4.2 \# 10^{-3}\right]}{[0.10]} \\
& K_{a}= \\
& 1.8 \# 10^{-4}
\end{aligned}
$$

Calculating K_{a} from the pH

The pH of a 0.10 M solution of formic acid, HCOOH , at $25^{\circ} \mathrm{C}$ is 2.38 . Calculate K_{a} for formic acid at this temperature.

Important note:

In the case of weak acids and bases, we assume little ionization and therefore we ignore the amount of ionization and write 0.10 and not $0.10-\mathrm{x}$.

If you find that the \% ionization is greater than 5% you can't ignore the x term and you must use the quadriatic equation to solve.

Slide 112 / 208

Calculating Percent Ionization

One way to compare the strength of two acids is by the extent to which each one ionizes.

This is done by calculating percent ionization, or the ratio of $\left[\mathrm{H}^{+}\right]$ ions that are produced, compared to the original acid concentration.

$$
\text { Percent lonization }=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\mathrm{eq}}}{[\mathrm{HA}]_{\text {nitial }}} \# 100 \%
$$

Slide 113 / 208

Calculating Percent Ionization

$$
\begin{aligned}
& \text { Percent lonization }=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {eq }}}{[\mathrm{HA}]_{\text {nitial }}} \# 100 \% \\
& \text { In this example } \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {eq }} }=4.2 \# 10^{-3} \mathrm{M} \\
& {[\mathrm{HCOOH}]_{\text {initial }} }=0.10 \mathrm{M} \\
& \text { Percent lonization }=\frac{4.2 \times 10^{-3}}{0.10} \# 100 \% \\
&=4.2 \%
\end{aligned}
$$

Slide 114 / 208

51 What is the K_{a} of a 0.125 M solution of hypobromous acid (HBrO) that has a pH of 4.74 .$2.42 \times 10^{-4}$$2.65 \times 10^{-9}$$3.71 \times 10^{-10}$$2.13 \times 10^{-5}$$6.78 \times 10^{-12}$

51 What is the K_{a} of a 0.125 M solution of hypobromous acid (HBrO) that has a pH of 4.74 .$2.42 \times 10^{-4}$$2.65 \times 10^{-9}$$3.71 \times 10^{-10}$$2.13 \times 10^{-5}$$6.78 \times 10^{-12}$

52 What is \% ionization of a 0.125 M solution of hypobromous acid (HBrO) that has a pH of 4.74 .1.45\%68.89\%.0145\%.00145\%.6889\%

Slide 115 (Answer) / 208

52 What is \% ionization of a 0.125 M solution of hypobromous acid (HBrO) that has a pH of 4.74 .

Slide 116 (Answer) / 208

53 What is the K_{a} of a 0.20 M solution of nitrous acid $\left(\mathrm{HNO}_{2}\right)$ that has a pH of 2.02?$1.3 \times 10^{-5}$$9.9 \times 10^{-2}$$1.2 \times 10^{-8}$$4.2 \times 10^{-7}$
4.6×10^{-4}

Slide 116 / 208

53 What is the K_{a} of a 0.20 M solution of nitrous acid $\left(\mathrm{HNO}_{2}\right)$ that has a pH of 2.02 ?$1.3 \times 10^{-5}$$9.9 \times 10^{-2}$$1.2 \times 10^{-8}$$4.2 \times 10^{-7}$$4.6 \times 10^{-4}$

Slide 117 / 208

54 What is \% ionization of a 0.20 M solution of nitrous acid $\left(\mathrm{HNO}_{2}\right)$ that has a pH of 2.02?.04774.77\%5.99\%.0599\%.6889\%

Calculating pH from K_{a}

Calculate the pH of a 0.30 M solution of acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, at $25^{\circ} \mathrm{C}$. K_{a} for acetic acid at $25^{\circ} \mathrm{C}$ is 1.8×10^{-5}.

From the dissociation equation, we obtainthe equilibrium constant expression:

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}
$$

Calculating pH from K_{a}

Calculate the pH of a 0.30 M solution of acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, at $25^{\circ} \mathrm{C}$. K_{a} for acetic acid at $25^{\circ} \mathrm{C}$ is 1.8×10^{-5}.

We next set up an ICE chart...

$\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right], \mathrm{M}$	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right], \mathrm{M}$	$[\mathrm{C} 2 \mathrm{H} 3 \mathrm{O} 2-], \mathrm{M}$	
Initial	$\mathbf{0 . 3 0} \mathbf{M}$	$\mathbf{0}$	$\mathbf{0}$
Change	$\boldsymbol{-} \boldsymbol{x}$	$\boldsymbol{+ x}$	$\boldsymbol{+} \boldsymbol{x}$
Equilibrium	about $0.30 \mathbf{M}$	\boldsymbol{x}	\boldsymbol{x}

We are assuming that x will be very small compared to 0.30 and can, therefore, be ignored.

Slide 123 / 208

Calculating pH from K_{a}

Calculate the pH of a 0.30 M solution of acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, at $25^{\circ} \mathrm{C}$. K_{a} for acetic acid at $25^{\circ} \mathrm{C}$ is 1.8×10^{-5}.

Now, substituting values from the ICE chart into the K_{a} expression yields

$$
1.8 \# 10^{-5}=\frac{(x)^{2}}{(0.30)}
$$

$\left(1.8 \# 10^{-5}\right)(0.30)=x^{2}$
$5.4 \times 10^{-6}=x^{2}$
$2.3 \times 10^{-3}=x$

Remember what your "x" is! In this case, it's [$\mathrm{H}_{3} \mathrm{O}^{+}$], but other times it's [OH].

Slide 125 / 208

Slide 126 / 208

57 What is the hydrogen ion concentration of a weak acid that has a dissociation constant is 1×10^{-6} and a concentration of 0.01 M ?

OA 1×10^{-6}
OB 1×10^{-5}
OC 1×10^{-4}
OD 1×10^{-3}

Calculating pH from K_{a}

Calculate the pH of a 0.30 M solution of acetic acid,
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, at $25^{\circ} \mathrm{C}$. K_{a} for acetic acid at $25^{\circ} \mathrm{C}$ is 1.8×10^{-5}.

$$
\begin{aligned}
& \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& \mathrm{pH}=-\log \left(2.3 \times 10^{-3}\right) \\
& \mathrm{pH}=2.64
\end{aligned}
$$

Significant figure rules for pH on the AP exam:

- The calculated pH value should have as many DECIMAL places as the $\left[\mathrm{H}^{+}\right]$has sig figs.
- So if the $\left[\mathrm{H}^{+}\right]$has 2 sig figs, report the pH to the 0.01 place value. If the $\left[H^{+}\right]$has 3 sig figs, report the pH to the 0.001 place value.
- 1×10^{-3}

58 What is the pH of an acid that has an acid dissociation constant K_{a} of 3.2×10^{-4} and the acid concentration is 0.122M?
OA
2.002.20

OC
2.50

○D 2.17

Weak Bases

$$
\mathrm{B}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HB}+\mathrm{OH}^{-}
$$

The equilibrium constant expression for this reaction is

$$
\mathrm{K}_{\mathrm{b}}=\frac{[\mathrm{HB}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{B}^{-}\right]}
$$

where K_{b} is the base-dissociation constant.
Just as for K_{a}, the stronger a base is, it will have a higher K_{b} value. In fact, since the strong bases dissociate 100\%, their K_{b} values are referred to as "very large".
K_{b} can be used to find $\left[\mathrm{OH}^{-}\right]$and, ultimately, pH .

Slide 131 (Answer) / 208

61 Which base has the smallest base dissociation constant, K_{b} ?A potassium hB sodium hycC calcium hD ammonia
Ammonia is the only weak base so its K_{b} is very small.

Slide 132 / 208

62 A base has a dissociation constant, $\mathrm{K}_{\mathrm{b}}=2.5 \times 10^{-11}$. Which of the following statements is true?

A This is a concentrated base.
B This base ionizes slightly in aqueous solution.
C This is a strong base.
OD An aqueous solution of this would be acidic.

Slide 132 (Answer) / 208

Slide 133 / 208

Calculating K_{b} from pH

62 A base has a dissociation constant, $\mathrm{K}_{\mathrm{b}}=2.5 \times 10^{-11}$. Which of the following statemonte in trien?

OA This is a concentrates
B
OB This base ionizes sli
verys small which means the
OC This is a strong base amount of reactants is greater than

OD An aqueous solution the amount of the products.
$\mathrm{H}_{2} \mathrm{NNH}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(I) \rightarrow \mathrm{OH}^{-}(a q)+\mathrm{H}_{2} \mathrm{NNH}_{3}{ }^{+}(a q)$

From the dissociation equation, we obtain the equilibrium constant expression:

$$
\mathrm{K}_{\mathrm{b}}=\frac{[\mathrm{OH}-]\left[\mathrm{H}_{2} \mathrm{NNH}_{3}{ }^{+}\right]}{\left[\mathrm{H}_{2} \mathrm{NNH}_{2}\right]}
$$

Calculating K_{b} from the pH

$$
\begin{aligned}
\mathrm{pOH} & =14-\mathrm{pH} \\
\mathrm{pOH} & =14-10.9 \\
\mathrm{pOH} & =3.1 \\
3.1 & =-\log \left[\mathrm{OH}^{-}\right] \\
-3.1 & =\log \left[\mathrm{OH}^{-}\right] \\
10^{-3.1} & =10^{\log \left[\mathrm{OH}_{-}\right]}=\left[\mathrm{OH}^{-}\right] \\
7.94 \times 10^{-4} & =\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}_{2} \mathrm{NNH}_{3}^{+}\right]
\end{aligned}
$$

Slide 136 / 208

Calculating K_{b} from the pH

What is the K_{b} of a 0.20 M solution of hydrazine $\mathrm{H}_{2} \mathrm{NNH}_{2}$ at $25^{\circ} \mathrm{C}$ that has a pH of $10.9 ?$
ubstitute values into the K_{b} expression and solve:
Now, we substitute values into the K_{b} expression and solve:

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{b}}=\frac{[\mathrm{OH}]\left[\mathrm{H}_{2} \mathrm{NNH}_{3}{ }^{+}\right]}{\left[\mathrm{H}_{2} \mathrm{NNH}_{2}\right]} \\
& K_{b}=\frac{\left[7.94 \times 10^{-4}\right]\left[7.94 \times 10^{-4}\right]}{[0.20]} \\
& K_{b}=3.15 \times 10^{-6}
\end{aligned}
$$

Calculating K_{b} from the pH

What is the K_{b} of a 0.20 M solution of hydrazine $\mathrm{H}_{2} \mathrm{NNH}_{2}$ at $25^{\circ} \mathrm{C}$ that has a pH of 10.9 ?

$$
\mathrm{H}_{2} \mathrm{NNH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(I) \rightarrow \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{NNH}_{3}{ }^{+}(\mathrm{aq})
$$

	$\left[\mathrm{H}_{2} \mathrm{NNH}_{2}\right], M$	$\left[\mathrm{OH}^{-}\right], M$	$\left[\mathrm{H}_{2} \mathrm{NNH}_{3}{ }^{+}\right], M$
Initially	0.20	0	0
Change	-7.94×10^{-4}	$+7.94 \times 10^{-4}$	$+7.94 \times 10^{-4}$
At Equilibrium	$0.20-7.94 \times 10^{-4} \approx$ 0.20	7.94×10^{-4}	7.94×10^{-4}

Slide 138 / 208

Slide 138 (Answer) / 208

63 Calculate the K_{b} of a 0.450 M solution of weak base
solution with a pOH of 4.98 .

A 3.22×10^{-7}
O 2.11×10^{-5}
OC 2.03×10^{-18}
OD 2.33×10^{-5}
OE $2.44 \times 10-10$

Calculating Percent lonization

$$
\begin{aligned}
& \begin{array}{l}
\text { What would be the analogous formula to } \\
\text { calculate percent ionization for a base? }
\end{array} \\
& \text { Percent lonization }=\frac{[\mathrm{OH}-]_{\text {eq }}}{[\text { Base }]_{\text {nitial }}} \# 100 \%
\end{aligned}
$$

Slide 137 / 208

63 Calculate the K_{b} of a 0.450 M solution of weak base solution with a pOH of 4.98 .

A 3.22×10^{-7}
O 2.11×10^{-5}
OC 2.03×10^{-18}
OD 2.33×10^{-5}
OE 2.44×10^{-10}

64 Calculate the K_{b} of a 0.724 M solution of hypobromite ion (BrO^{-}) that has a pH of 11.23 .$4.80 \times 10^{-23}$$4.00 \times 10^{-6}$$2.35 \times 10^{-3}$$1.22 \times 10^{-4}$$6.10 \times 10^{-5}$

Slide 140 / 208

65 What is the K_{b} of 0.125 M solution of a weak base that is 1.25% ionized?

Students type their answers here
 (BrO^{-}) that has a pr$4.80 \times 10^{-23}$$4.00 \times 10^{-6}$$2.35 \times 10^{-3}$ B
$\left[\mathrm{H}^{+}\right]=10$ - pH
$\left[\mathrm{H}^{+}\right]=10^{-11.23}$
$\left[\mathrm{H}^{+}\right]=5.89 \times 10^{-12}$
$\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14} /\left[\mathrm{H}^{+}\right]$
$[\mathrm{OH}]=1 \times 10^{-14} / 5.89 \times 10^{-12}$ $\left[\mathrm{OH}^{-}\right]=1.70 \times 10^{-3}$
$\mathrm{K}_{\mathrm{b}}=\left(1.70 \times 10^{-3}\right)^{2} \times 0.724$
$\mathrm{K}_{\mathrm{b}}=4.00 \times 10^{-6}$$1.22 \times 10^{-4}$
$\square .10 \times 10^{-5}$

Slide 141 / 208

Calculating pH from the K_{b}

The same process we followed to determine K_{a} from the pH we can use to determine K_{b} from the pH .

What is the pH of a 0.15 M solution of NH_{3} ?

$$
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

First write the equilibrium expression for the dissociation equation. Obtain the K_{b} value from an earlier page.

$$
\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}=1.8 \times 10^{-5}
$$

Slide 142 / 208

Calculating pH from the K_{b}

What is the pH of a 0.15 M solution of NH_{3} ?
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

	$\left[\mathrm{NH}_{3}\right], M$	$\left[\mathrm{NH}_{4}{ }^{+}\right], M$	$\left[\mathrm{OH}^{-}\right], M$
Initially	0.15	0	0
Change	-x	+x	+x
At Equilibrium	$015-\mathrm{x} \approx$ 0.15	x	x

Slide 143 / 208

Calculating pH from the K_{b}

$$
\begin{aligned}
1.8^{\prime} 10^{-5} & =\frac{(x)^{2}}{(0.15)} \\
\left(1.8 \# 10^{-5}\right)(0.15) & =x^{2} \\
2.7 \times 10^{-6} & =x^{2} \\
1.6 \times 10^{-3} & =x
\end{aligned}
$$

Again, remember what your " x " is!

Calculating pH from the K_{b}

In this case, " x " is [OH^{-}].
Therefore,
$\left[\mathrm{OH}^{-}\right]=1.6 \times 10^{-3} \mathrm{M}$
$\mathrm{pOH}=-\log \left(1.6 \times 10^{-3}\right)$ $\mathrm{pOH}=2.80$

So, now solving for pH :

$$
\begin{aligned}
& \mathrm{pH}=14.00-2.80 \\
& \mathrm{pH}=11.20
\end{aligned}
$$

66 What is the OH^{-}concentration of a 0.550 M solution of the weak base aniline, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$? $\left(\mathrm{K}_{\mathrm{b}}=4.3 \times 10^{-10}\right)$
$\square 2.37 \times 10^{-11}$$1.54 \times 10^{-5}$$7.69 \times 10^{-10}$$1.30 \times 10^{-11}$

Slide 145 (Answer) / 208

66 What is the OH^{-}concentration of a 0.550 M solution of the weak base aniline, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$? $\left(\mathrm{K}_{\mathrm{b}}=4.3 \times 10^{-10}\right)$$2.37 \times 10^{-11}$$1.54 \times 10^{-5}$$7.69 \times 10^{-10}$$1.30 \times 10^{-11}$

Slide 146 (Answer) / 208

67 What is the pH of a 0.550 M solution of the weak base aniline, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$? $\left(\mathrm{K}_{\mathrm{b}}=4.3 \times 10^{-10}\right)$$2.37 \times 10^{-11}$$1.54 \times 10^{-5}$$7.69 \times 10^{-10}$$1.30 \times 10^{-11}$

Slide 146 / 208

67 What is the pH of a 0.550 M solution of the weak base aniline, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$? $\left(\mathrm{K}_{\mathrm{b}}=4.3 \times 10{ }^{-10}\right)$$2.37 \times 10^{-11}$$1.54 \times 10^{-5}$$7.69 \times 10^{-10}$$1.30 \times 10^{-11}$

Slide 147 / 208

68 What is the pH of a 0.135 M solution of trimethylamine,
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N} ?\left(\mathrm{~K}_{\mathrm{b}}=6.4 \times 10^{-5}\right)$

OA 8.94

OB 11.47
OC 2.53
OD 5.06
OE 3.45

Polyprotic Acids

Polyprotic acids have a K_{a} value for each proton that can be removed. For example, consider carbonic acid, $\mathrm{H}_{2} \mathrm{CO}_{3}$

The first ionization equatir
$\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}$
Write the Ka expression for this eq ${ }^{2}$

Polyprotic Acids

Now, we examine both dissociation constants.
The second ionization equation for carbonic acid is

$$
\mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}_{3}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

Write the Ka expression for this equation. This is referred to as $\mathrm{K}_{\mathrm{a} 2}$.

Slide 152 (Answer) / 208

Polyprotic Acids

Now, we examine both dissociation constants.

The second ionization equation for carbonic acid is

Write the Ka expression for this eq

Slide 153 / 208

Polyprotic Acids

Notice that the bicarbonate ion, $\mathrm{HCO}_{3}{ }^{-}$, appears in each expression; in the numerator for $\mathrm{K}_{\mathrm{a} 1}$ and in the denominator for $\mathrm{K}_{\mathrm{a} 2}$.
$\mathrm{K}_{\mathrm{a} 1} \times \mathrm{K}_{\mathrm{a} 2}=\frac{\left[\mathrm{HCO}_{3}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]\left[\mathrm{HCO}_{3}\right]}$
$\mathrm{K}_{\mathrm{a} 1} \times \mathrm{K}_{\mathrm{a} 2}=\frac{\left[\mathrm{HCQ}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right] \quad\left[\mathrm{HQQ}_{3}\right]}$

Slide 154 / 208

Polyprotic Acids
The equation for the complete ionization of carbonic acid is

$$
\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}_{3}^{2-}+2 \mathrm{H}_{3} \mathrm{O}^{+}
$$

and the K_{a} expression for this reaction is

$$
\begin{aligned}
\mathrm{K} & =\frac{\left[\mathrm{CO}_{3}^{2}-\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]} \\
\mathrm{K}_{\mathrm{a} 1} \times \mathrm{K}_{\mathrm{a} 2} & =\frac{\left[\mathrm{HCQ}_{2}-\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CO}_{3}^{2-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right] \quad\left[\mathrm{FQQ}_{3}^{-}\right]} \\
\mathrm{K}_{\mathrm{a} 1} \times \mathrm{K}_{\mathrm{a} 2} & =\text { overall } \mathrm{K}
\end{aligned}
$$

So, the product of $K_{a 1} \times K_{a 2}$ for a diprotic acid yields the overall K for complete dissociation.

Slide 155 / 208

Polyprotic Acids

Generally, the pH of polyprotic acids depends only on the removal of the first proton.

This holds true when the difference between the $\mathrm{K}_{\mathrm{a} 1}$ and $\mathrm{K}_{\mathrm{a} 2}$ values is at least 10^{3}.

70 The K_{a} of carbonic acid is 4.3×10^{-7} $\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{H}^{+}+\mathrm{HCO}_{3}$

This means that $\mathrm{H}_{2} \mathrm{CO}_{3}$ is a \qquad .

OA good hydrogen-ion acceptor
OB good hydrogen-ion donor
OC poor hydrogen-ion acceptor
OD poor hydrogen-ion donor

70 The K_{a} of carbonic acid is 4.3×10^{-7} $\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{H}^{+}+\mathrm{HCO}_{3}{ }^{-}$

This means that $\mathrm{H}_{2} \mathrm{CO}_{3}$ is a \qquad .

OA good hydrogen-ion
OB good hydrogen-ion
OC poor hydrogen-ion a
OD poor hydrogen-ion d

Carbonic acid is a weak acid so it poorly donates the hydrogen ion

Slide 157 (Answer) / 208

71 A diprotic acid, $\mathrm{H}_{2} \mathrm{X}$, has the following dissociation constant
$\mathrm{K}_{\mathrm{a} 1}=2.0 \times 10^{-4}$
$\mathrm{K}_{\mathrm{a} 2}=3.0 \times 10^{-6}$
What is the overale $\frac{e_{4}^{5}}{8} \mathrm{~K}=2.0 \times 10^{-4} \times 3.0 \times 10^{-6}$
OA 5.0×10
OB 6.0×10
OC 5.0×10^{-24}
OD 6.0×10^{-24}
OE 6.0×10^{24}

Slide 158 / 208

72 A diprotic acid, $\mathrm{H}_{2} \mathrm{X}$, has the following dissociation constants:
$\mathrm{K}_{\mathrm{a} 1}=2.0 \times 10^{-4}$
$\mathrm{K}_{\mathrm{a} 2}=3.0 \times 10^{-6}$
What is the pH of a 0.10 M solution of $\mathrm{H}_{2} \mathrm{X}$?
OA 5.11
OB 6.11
OC 10.22
OD 2.11
OE 5.21

72 A diprotic acid, $\mathrm{H}_{2} \mathrm{X}$, has the following dissociation constants:

73 Absorbic acid, $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{6}$ has the following dissociation constants:
$\mathrm{K}_{\mathrm{a} 1}=8.0 \times 10^{-5}$
$\mathrm{K}_{\mathrm{a} 2}=1.6 \times 10^{-12}$
What is the pH of a 0.20 M solution of Absorbic acid?

OA 2.40
OB 8.30
OC 3.00
OD 4.20
OE 11.2

73 Absorbic acid, $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{6}$ has the following dissociation conc
$\mathrm{K}_{\mathrm{a} 1}=8.0 \times 10$
$\mathrm{K}_{\mathrm{a} 2}=1.6 \times 10$
What is the acid?

OA
OB 8.

A
Because the difference between
$\mathrm{K}_{\mathrm{a} 1}$ and $\mathrm{K}_{\mathrm{a} 2}$ is more than 10^{3}, only $\mathrm{K}_{\mathrm{a} 1}$ is relevant.
$\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]^{2} /[\mathrm{HA}]$
$\left[\mathrm{H}^{+}\right]=\sqrt{ } \mathrm{K}_{\mathrm{a}} \mathrm{x}[\mathrm{HA}]$
$=\sqrt{ } 8.0 \times 10^{-5} \times .20$
$=4 \times 10^{-3}$
$\mathrm{pH}=-\log \left(4 \times 10^{-3}\right)$
$=2.40$

OC 3.
OD 4.20
OE 11.2

Slide 160 / 208

The Relationship Between K_{a} and K_{b}

Slide 161 / 208

K_{a} and K_{b}

For a conjugate acid-base pair, K_{a} and K_{b} are relatedin a special way.

Write the ionization equations for the following:

1) reaction of ammonia $\left(\mathrm{NH}_{3}\right)$ and water
2) reaction of ammonium ion $\left(\mathrm{NH}_{4}{ }^{+}\right)$and water
Return to the Table
of Contents

Slide 163 / 208

K_{a} and K_{b}

$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \quad \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$
$\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{NH}_{4}{ }^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}$
$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}$

What do these expressions have in common?
K_{a} and K_{b}
$\mathrm{~K}_{\mathrm{b}} \times \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left.\left[\mathrm{NH}_{3}\right] \mathrm{NH} 4_{4}^{+}\right]}$
$\mathrm{K}_{\mathrm{b}} \times \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{N}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]\left[\mathrm{NH}_{2}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}$
$\mathrm{K}_{\mathrm{b}} \times \mathrm{K}_{\mathrm{a}}=\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{K}_{\mathrm{w}}$

So, the product of $K_{a} \times K_{b}$ for any conjugate acid-base pair yields the ion-product constant, K_{w}.

K_{a} and K_{b}

For a specific conjugate acid-base pair, K_{a} and K_{b} are related in this way:

$$
K_{a} \times K_{b}=K_{w}
$$

Therefore, if you know the value of one of them, you can calculate the other.

Slide 166 / 208

74 For the acid HCN , what is the equation on which the K_{a} expression is based?

OA $\mathrm{HCN}<-->\mathrm{OH}^{-}+\mathrm{HCN}$
O $\mathrm{HCN}<-->\mathrm{OH}^{-}+\mathrm{CN}^{-}$
OC $\mathrm{HCN}+\mathrm{H}_{2} \mathrm{O}<-->\mathrm{CN}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
OD $\mathrm{HCN}+\mathrm{H}_{2} \mathrm{O}<-->\mathrm{OH}^{-}+\mathrm{CN}^{-}$

Slide 166 (Answer) / 208

74 For the acid HCN, what is the equation on which the K_{a} expression is based?

Slide 167 / 208

75 The K_{a} for an acid, HX , is 2.0×10^{-4}. What is the K_{b} for its conjugate base, X -? No calculator.

OA 5.0×10^{-11}
OB 2.0×10^{-10}
OC 5.0×10^{-10}
OD 8.0×10^{-10}
OE 2.0×10^{-4}

Slide 167 (Answer) / 208

75 The K_{a} for an acid, HX , is 2.0×10^{-4}. What is the K_{b} for its conjugate base, X-? No calculator.

OA 5.0×10^{-11}
OB 2.0×10^{-10}
OC 5.0×10^{-10}
OD 8.0×10^{-10}
OE 2.0×10^{-4}

76 The K_{b} for NH_{3} is 1.8×10^{-5}. What is the K_{a} for the ammoninum ion, $\mathrm{NH}_{4}{ }^{+}$?

OA 2.5×10^{-3}
OB $\quad 2.5 \times 10^{-4}$
OC 2.5×10^{-5}
OD 4.3×10^{-4}
OE $5.6 \times 10-11$

76 The K_{b} for NH_{3} is 1.8×10^{-5}. What is the K_{a} for the ammoninum ion, $\mathrm{NH}_{4}{ }^{+}$?

OA 2.5×10^{-3}
OB $\quad 2.5 \times 10^{-4}$
OC 2.5×10^{-5}
OD 4.3×10^{-4}
OE 5.6×10^{-11}

Slide 169 / 208

77 Which of the substances below is the strongest acid?

OA HClO
OB HCO^{3-}
OC
$\mathrm{H}_{2} \mathrm{~S}$
OD $\mathrm{NH}_{2} \mathrm{CH}_{3}{ }^{+}$
OE $\mathrm{H}_{2} \mathrm{~S}$ and HClO

Slide 169 (Answer) / 208

77 Which of the substances below is the strongest acid?

OA HClO
OB HCO^{3}
OC $\mathrm{H}_{2} \mathrm{~S}$
OD $\quad \mathrm{NH}_{2} \mathrm{CH}_{3}{ }^{+}$
OE $\mathrm{H}_{2} \mathrm{~S}$ and HClO
c
The strongest acid would have the weakest conjugate
base. HS is the weakest
base. It has the smallest K_{b} value. Which makes $\mathrm{H}_{2} \mathrm{~S}$
the strongest acid. Another explanation is that the acid with the highest K_{a} would the strongest acid. $\mathrm{H}_{2} \mathrm{~S}$ has the highest K_{a}.

Neutralization Reactions

Neutralization reactions are a special class of doublereplacement reactions that occur between an acid and a base.

Recall from last year that the general formula for a double-replacement reaction is:

$$
A B+C D \Longrightarrow A D+C B
$$

Double-replacement reactions are also known as ionexchange or precipitation reactions.

Neutralization Reactions

The general formula for any acid-base neutralization reaction is:

$$
\text { acid + base } \rightarrow \text { salt + water }
$$

Note that the term "salt" refers to any ionic compound that does not include H^{+}or OH .

Acid-Base Properties of Salt Solutions

$$
\text { acid + base } \rightarrow \text { salt + water }
$$

When an acid and base react together, the resulting solution is not always neutral. The pH of the resulting mixture depends on the relative strengths of the acid and of the base.

The pH of a salt solution depends on the ability of the salt ions to hydrolyze.

Hydrolyze means to interact with water molecule and dissociate.

Slide 174 / 208

Anion Effect on pH

The pH of a salt solution depends on the ability of the salt ions to hydrolyze.

Each salt contains a positive ion, a cation, and a negative ion, the anion.

Let's consider the anion first which can be denoted, X -
X - is the conjugate base of the acid in the neutralization reaction.
This anion may undergo hydrolysis as shown below:

$$
\mathrm{X}-\mathrm{H}_{2} \mathrm{O} \longrightarrow
$$

Predict the products.
Do you think the resulting solution will be acidic, basic or neutral? Justify your response.

Slide 175 / 208

Anion Effect on pH

The pH of a salt solution depends on the ability of the salt ions to hydrolyze.

The conjugate base $\left(\mathrm{Cl}^{-}\right)$of a strong acid (HCl) will not hydrolyze, it will not react with water because HCl dissociates completely. In fact, none of the anions from the strong seven acids will hydrolyze. In other words, these anions will not affect pH .

List here the conjugate bases of the strong seven acids.

The conjugate bases of strong acids will not undergo hydrolysis and will not affect pH .

Slide 177 / 208

Anion Effect on pH

The pH of a salt solution depends on the ability of the salt ions to hydrolyze.

The conjugate base $\left(\mathrm{NO}_{2}{ }^{-}\right)$of a weak acid $\left(\mathrm{HNO}_{2}\right)$ will hydrolyze, it will react with water because HNO_{2} does not dissociate completely and a dynamic equilibrium exists.

Write the equilibrium expression for the reaction of NO_{2}-and water.

All conjugate bases of weak acids will hydrolyze and the resulting solutions will be basic.

Anion Effect on pH

The pH of a salt solution depends on the ability of the salt ions to hydrolyze.

The conjugate base $\left(\mathrm{HSO}_{3}{ }^{-}\right)$of a weak acid $\left(\mathrm{H}_{2} \mathrm{SO}_{3}\right)$ is a special case because $\mathrm{HSO}_{3}{ }^{-}$is amphoteric. It can behave as either an acid or as a base.

How it behaves is determined by the relative magnitude of K_{a} for its acid and K_{b} for its base. If $K_{a}>K_{b}$ it will behave as an acid if $K_{b}>K_{a}$ then it will behave as a base.

When amphoteric anions hydrolyze they will make acidic solutions if their $K_{a}>K_{b}$ or make basic solutions if their $K_{b}>K_{a}$.

Cation Effect on pH
 The pH of a salt solution depends on the ability of the salt ions to hydrolyze.

The metal cation $\left(\mathrm{K}^{+}\right)$of a strong base (KOH) will not hydrolyze. In fact, none of the cations from the strong bases will hydrolyze. In other words, these metal cations in solution will not affect pH .

List here the metal cations from Groups 1 and 2 that form strong bases.

None of the cations of strong bases will undergo hydrolysis and affect pH .

Slide 180 / 208

Cation Effect on pH

The pH of a salt solution depends on the ability of the salt ions to hydrolyze.

Metal cations other than Group 1 and heavy Group 2 cations can hydrolyze to affect pH .

This effect is greatest for small, highly charged cations
like Fe^{3+} and Al^{3+}
The effect of these cations increases as ionic charge increases.
The K_{a} for Fe^{2+} is 3.2×10^{-10} and for Fe^{3+} is 6.3×10^{-3}
These values are in the range for some weak acids we are familiar with like acetic acid $\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}$.

Cation Effect on pH

The pH of a salt solution depends on the ability of the salt ions to hydrolyze.

The conjugate acid $\left(\mathrm{NH}_{4}{ }^{+}\right)$of a weak base $\left(\mathrm{NH}_{3}\right)$ will hydrolyze and the resulting solution will be acidic.

Write the equilibrium expression for the reaction of $\mathrm{NH}_{4}{ }^{+}$and water.

All cations that are conjugate acids of weak bases will undergo hydrolysis and will affect pH .

Slide 181 / 208

Acid-Base Properties of Salt Solutions

We have observed that metal cations (hydrated in solution) lower the pH of a solution.

Lone pairs on oxygen are attracted to the cation

The shift of electron density in water makes the O-H bond more polar.

Hydrogen atoms become more acidic, and thus more likely to become H^{+}ions in solution.

Shift in electron density away from hydrogen atoms.

Slide 182 / 208

Acid-Base Properties of Salt Solutions

We have observed that metal cations (hydrated in solution) lower the pH of a solution.

Compare the following:
attraction betweena 1^{+}cation and $\mathrm{H}_{\mathrm{O}} \mathrm{O}$ molecule.
attraction betweena 3^{+}cation and $\mathrm{H}_{2} \mathrm{O}$ molecule

The cation with the greater charge will make the solution more acidic.

Slide 183 / 208

Cation Effect on pH

The pH of a salt solution depends on the ability of the salt ions to hydrolyze.

Consider the ability of the aluminum Fe^{3+} to hydrolyze:

$$
\mathrm{Fe}^{3+}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Fe}(\mathrm{OH})_{3}+\mathrm{H}^{+}
$$

The increased H^{+}concentration reduces the pH
Small positively charged cations will hydrolyze and form acidic solution.

Combined Effect of Cation and Anion

If a salt contains an anion that does not react with water like Cl^{-}and a cation that does not react with water like Na^{+}the solution will be neutral and have apH of 7 .

Why do Cl^{-}and Na^{+}not react with water?

Combined Effect of Cation and Anion

If a salt contains an anion that reacts with water to produce hydroxide ions and a cation that does not react with water then the resulting solution will be basic.

Can you give two examples of this type of salt?

Slide 186 / 208

Combined Effect of Cation and Anion

If the salt contains an cation that reacts with water and an anion that does not, the resulting solution will acidic. This results when the cation is the conjugate acid of a weak base or a small metal ion with a $2+$ or greater charge.

Can you give two examples of this type of salt?

Slide 188 / 208

78 The pH of a solution of 0.1 M solution of NaCl will be approximately \qquad .

○A 2
OB 5
OC 7
OD 11
OE 13

Combined Effect of Cation and Anion

If a salt contains a cation that reacts with water and an anion that reacts with water then the solution's pH will be determined by comparing the cation's K_{a} to the anion's K_{b}. If $K_{a}>K_{b}$ then the solution will be acidic if $K_{b}<K_{a}$ then the solution will be basic.

For example, let's consider a salt solution of $\mathrm{Fe}(\mathrm{ClO})_{3}$,
K_{a} for $\mathrm{Fe}^{3+} 6.3 \times 10^{-3}$ is the K_{b} for CIO^{-}is 3.33×10^{-7}
This solution would be acidic because $K_{a}>K_{b}$.

Slide 188 (Answer) / 208

78 The pH of a solution of 0.1 M solution of NaCl will be approximately \qquad .

○ 2
OB 5
OC 7
OD 11
OE 13

C
NaCl contains a cation from a strong base, Na^{+}and the conjugate base of a strong acid, Cl . Neither will hydrolyze and the resulting solution will be neutral
with a pH of 7 .

79 The pH of a solution of 0.1 M solution of $\mathrm{K}_{3} \mathrm{PO}_{4}$ will be approximately \qquad -	79 The pH of a solution of 0.1 M solution of $\mathrm{K}_{3} \mathrm{PO}_{4}$ will be approximately \qquad _.
OA 2	OA 2
OB 5	B 5 E
$\bigcirc \mathrm{C} 7$	$\mathrm{K}_{3} \mathrm{PO}_{4}$ contains the cation of a strong base, K^{+}, that will not react with water and the
OD 11	
OE 13	OE $13 \quad$concentration, making a basic solution of $p \mathrm{p}$ approximately 13.
Slide 190 / 208 Slide 190 (Answer) / 2	
80 The pH of a solution of 0.1 M solution of LiHCO_{3} at $25^{\circ} \mathrm{C}$ will be approximately \qquad .	80 The pH of a solution of 0.1 M solution of LiHCO_{3} at $25^{\circ} \mathrm{C}$ will be approximately \qquad _.
OA 2	OA 2
OB 5	iHCO_{3} contains the cation B 5 not react with water and the amphoteric, conjugate base
$\bigcirc \mathrm{O} 7$	OC $7 \quad \begin{array}{ll}\text { a }\end{array}$
OD 11	
OE 13	OE 13
Slide 191 / 208 Slide 191 (Answer) / 208	
81 A 0.1 M aqueous solution of \qquad will have a pH of 7.0 at $25^{\circ} \mathrm{C}$.	81 A 0.1 M aqueous solution of \qquad will have a pH of 7.0 at $25^{\circ} \mathrm{C}$.
$\bigcirc \mathrm{A} \mathrm{NaOCl}$	$\bigcirc \mathrm{A} \mathrm{NaOCl}$
OB BaBr_{2}	
$\bigcirc \mathrm{C} \mathrm{NH}_{4} \mathrm{Cl}$	$\mathrm{OC} \quad \mathrm{NH}_{4} \mathrm{Cl} \quad \underset{4}{\text { C }}$ base of a atrong acid, Br-. Neither
OD $\mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$	OD $\mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$
OE none of these	OE none of these

82 A 0.1 M aqueous solution of \qquad has a pH of less than 7.0 at $25^{\circ} \mathrm{C}$.	82 A 0.1 M aqueous solution of \qquad has a pH of less than 7.0 at $25^{\circ} \mathrm{C}$.
OA $\mathrm{Na}_{2} \mathrm{~S}$	OA $\mathrm{Na}_{2} \mathrm{~S}$
OB KF	OB KF
$\mathrm{OC} \mathrm{NaNO}_{3}$	
OD $\mathrm{NH}_{4} \mathrm{Cl}$	$\bigcirc \mathrm{O} \quad \mathrm{NH}_{4} \mathrm{Cl}$ (${ }^{\text {and }}$
OE NaF	OE NaF
Slide 193 / 208 Slide 193 (Answer) / 20	
83 An aqueous solution of \qquad will produce a basic solution at $25^{\circ} \mathrm{C}$. A $\mathrm{NH}_{4} \mathrm{ClO}_{4}$ B KBr C NaCl D CaCO_{3} E $\mathrm{Fe}\left(\mathrm{ClO}_{3}\right)_{2}$	83 An aqueous solution of \qquad will produce a basic solution at $25^{\circ} \mathrm{C}$. A $\mathrm{NH}_{4} \mathrm{ClO}_{4}$ CaCO_{3} contains the cation of a B KBr strong base, Ca^{2+} and the conjugate base of a weak acid, C NaCl $\mathrm{CO}_{3}{ }^{2-}$. The $\mathrm{CO}_{3}{ }^{2-}$ will hydrolyze with water and produce a basic solution. $\mathrm{NH}_{4} \mathrm{ClO}_{4}$ and $\mathrm{Fe}\left(\mathrm{ClO}_{3}\right)_{2}$ D CaCO_{3} will make acidic solutions. KBr and NaCl will make neutral solutions. E $\mathrm{Fe}\left(\mathrm{ClO}_{3}\right)_{2}$
Slide 194 / 208 Slide 194 (Answer) / 208	
84 A 1-molar solution of which of the following salts has the highest pH ?	84 A 1-molar solution of which of the following salts has the highest pH ?
$\bigcirc \mathrm{Af} \mathrm{NaNO}_{3}$	$\bigcirc \mathrm{O} \mathrm{NaNO} 3$ e
OB $\mathrm{Na}_{2} \mathrm{CO}_{3}$	$\mathrm{OB} \quad \mathrm{Na}_{2} \mathrm{CO}_{3} \quad$ ¢ $\quad \begin{aligned} & \text { result in a basic solution are } \\ & \mathrm{Na}_{2} \mathrm{CO}_{3} \text { and } \mathrm{Na}_{2} \mathrm{SO}_{4} .\end{aligned}$
$\bigcirc \mathrm{C} \quad \mathrm{NH}_{4} \mathrm{Cl}$	$\bigcirc \mathrm{OC} \mathrm{NH}$
OD NaHSO_{4}	$\mathrm{OD} \quad \mathrm{NaHSO}_{4}$ - ${ }^{-13}$. A 1-molar solution of CO_{3}^{2-}
OE $\quad \mathrm{Na}_{2} \mathrm{SO}_{4}$	OE $\mathrm{Na}_{2} \mathrm{SO}_{4} \quad$ would have the highest pH.
Question from the College Board	Question from the College Board

85 An aqueous solution of \qquad will produce a neutral solution.

OA $\mathrm{NH}_{4} \mathrm{ClO}_{4}$
OB AlBr_{3}
$\bigcirc \mathrm{CH} \mathrm{FeCl}_{3}$
OD SrCO_{3}
OE BaCl_{2}

85 An aqueous solution of \qquad will produce a neutral solution.

OA $\mathrm{NH}_{4} \mathrm{ClO}_{4}$
OB AlBr_{3}
$\bigcirc \mathrm{CBECl} 3$
OD SrCO_{3}
OE BaCl 2

Slide 196 / 208

86 Of the following substances, an aqueous solution of
\qquad will form basic solutions.
$\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}, \quad \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{NaF}$
OA $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
$\mathrm{OB} \quad \mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$
$\mathrm{OC} \mathrm{K}_{2} \mathrm{CO}_{3}$ and NaF
OD NaF only
OE $\mathrm{NH}_{4} \mathrm{Cl}$ only

Slide 196 (Answer) / 208

86 Of the following substances, an aqueous solution of
\qquad will form basic solutions.
$\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}, \quad \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{NaF}$
OA $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
OB $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$
OC $\mathrm{K}_{2} \mathrm{CO}_{3}$ and NaF
OD NaF only
OE $\mathrm{NH}_{4} \mathrm{Cl}$ only

Slide 197 / 208

Acid-Base Properties of Salt Solutions

Summary: Anions
The conjugate bases of strong acids will not undergo hydrolysis and not affect pH .
(Examples: $\mathrm{Cl}^{-, \mathrm{l},} \mathrm{NO}_{3}{ }^{-}$)
The conjugate bases of weak acids will hydrolyze and will raise pH by creating excess OH ions.
(Examples: $\mathrm{NO}_{2}{ }^{-}, \mathrm{ClO}, \mathrm{CO}_{3}{ }^{-}$)
Amphoteric anions will either act acidic or basic based on the K_{a} and K_{b} values of the acid and base.
(Examples: $\mathrm{HCO}_{3}{ }^{-}, \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$)

Acid-Base Properties of Salt Solutions

Summary: Cations
Cations from strong bases will not undergo hydrolysis and will not affect pH .
(Examples, $\mathrm{Na}^{+}, \mathrm{Li}^{+}, \mathrm{Ca}^{2+}$)
The conjugate acids of weak bases will hydrolyze and will lower pH by creating excess H^{+}ions.
(Examples: $\mathrm{NH}_{4}{ }^{+}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$)
Small metal cations from weak bases will hydrolyze and lower pH by creating excess H^{+}ions. The higher the charge on the cation the greater the affect on pH .
(Examples $\mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}, \mathrm{Al}^{{ }^{++}}$)

Factors Affecting Acid Strength

Return to the Table of Contents

Factors Affecting Acid Strength

The more polar the $\mathrm{H}-\mathrm{X}$ bond and/or the weakerthe $\mathrm{H}-\mathrm{X}$ bond, the more acidic the compound.

So acidity increases from left to right across a rowand from top to bottom down a group.

Slide 201 / 208

Factors Affecting Acid Strength

In oxyacids, in which an -OH is bonded to another atom, Y , the more electronegative Y is, the more acidic the acid.

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=3.0 \times 10^{-8} \\
& \mathrm{~K}_{\mathrm{a}}=2.3 \times 10^{-11}
\end{aligned}
$$

In HOCl , the electron density will be shifted to the more electronegative Cl atom weakening the $\mathrm{O}-\mathrm{Hb}$ bond.

The strength of the acid will be in the order

$$
\mathrm{HOCl}>\mathrm{HOBr}>\mathrm{HOl}
$$

Slide 202 / 208

Factors Affecting Acid Strength

Among oxyacids, the more oxygen atoms in the molecule, the stronger the acid would be.

The electron density will be more towards the oxygen atoms and the oxidation number increases, the strength of the acid increases.

For a series of oxyacids, acidity increaseswith the number of oxygen atoms.

Slide 203 / 208

Factors Affecting Acid Strength

Resonance in the conjugate bases of carboxylic acids stabilizes the base and makes the conjugate acid more acidic.

Slide 204 / 208

87 Which of the following would be the strongest acid: $\mathrm{HBr}, \mathrm{HCl}$ or HI ?
$\mathrm{OA} \mathrm{HCl}^{\mathrm{A}}$
$\mathrm{OBHBr}^{\mathrm{B}}$
OCHI
OD they would all be equally strong acids

87 Which of the following would be the strongest acid: $\mathrm{HBr}, \mathrm{HCl}$ or HI ?
$\bigcirc \mathrm{AHCl}$
$O_{B} \mathrm{HBr}$
OC HI
OD they would all
HI would be the strongest acid because I is the largest atom. Bond strength decreases as the size of the atom bonded to H increases. Less bond strength makes the substance more readily lose the H^{+}.

Slide 205 (Answer) / 208

$88 \mathrm{H}_{2} \mathrm{~S}$ is a stronger acid than $\mathrm{H}_{2} \mathrm{O}$

OA The strength of the $\mathrm{H}-\mathrm{X}$ bond is greater in $\mathrm{H}_{2} \mathrm{O}$
OB The strength of thavinan in $\mathrm{H}_{2} \mathrm{O}$
 of the atoms increases, as the size of the atoms increases, as the size increases the bond strength
decreases. S is a bigger atom th O and the bond strength is $\mathrm{H}_{2} \mathrm{~S}$ and in $\mathrm{H}_{2} \mathrm{~S}$ would be the stronger acid.
because \qquad -.

Slide 206 / 208
$88 \mathrm{H}_{2} \mathrm{~S}$ is a stronger acid than $\mathrm{H}_{2} \mathrm{O}$ because \qquad .

OA The strength of the $\mathrm{H}-\mathrm{X}$ bond is greater in $\mathrm{H}_{2} \mathrm{O}$
O_{B} The strength of the $\mathrm{H}-\mathrm{X}$ bond is less than in $\mathrm{H}_{2} \mathrm{O}$
OC The $\mathrm{H}-\mathrm{X}$ bond is more polar in $\mathrm{H}_{2} \mathrm{O}$ than in $\mathrm{H}_{2} \mathrm{~S}$
OD The $\mathrm{H}-\mathrm{X}$ bond is more polar in $\mathrm{H}_{2} \mathrm{~S}$ than in $\mathrm{H}_{2} \mathrm{O}$

Slide 205 (Answer) / 208	Slide 206 / 208
$88 \mathrm{H}_{2} \mathrm{~S}$ is a stronger acid than $\mathrm{H}_{2} \mathrm{O}$ because \qquad A The strength of the $\mathrm{H}-\mathrm{X}$ bond is greater in $\mathrm{H}_{2} \mathrm{O}$ C The H-X bon D The H-X bos A As you go down a group the size of the atoms increases, as the size increases the bond strength decreases. S is a bigger atom than O and the bond strength is less in $\mathrm{H}_{2} \mathrm{~S}$ and in $\mathrm{H}_{2} \mathrm{~S}$ would be the stronger acid.	89 Order the following acids from weakest to strongest: $\mathrm{H}_{2} \mathrm{O}, \mathrm{HF}, \mathrm{NH}_{3}$, and CH_{4}. A $\mathrm{HF}<\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{CH}_{4}$ B $\mathrm{HF}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{CH}_{4}$ C $\mathrm{CH}_{4}<\mathrm{HF}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}$ D $\mathrm{NH}_{3}<\mathrm{CH}_{4}<\mathrm{H}_{2} \mathrm{O}<\mathrm{HF}$ E $\mathrm{CH}_{4}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{HF}$
Slide 207 / 208	Slide 207 (Answer) / 208
90 Arrange the following compounds in order of decreasing acid strength: $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{SeO}_{3}, \mathrm{H}_{2} \mathrm{SeO}_{4}$. Justify your resporise.	

Slide 208 / 208

