Slide 1 / 208

New Jersey Center for Teaching and Learning Progressive Mathematics Initiative®

This material is made freely available at *www.njctl.org* and is intended for the non-commercial use of students and teachers.

These materials may not be used for any commercial purposes without the written permission of the owners. NJCTL maintains its website for the convenience of teachers who wish to make their work available to other teachers, participate in virtual professional learning community, and/or provide access to course materials to parents, students and others.

We, at the New Jersey Education Association (NJEA) are proud founders and supporters of NJCTL, an independent non-profit organization. NJEA embraces NJCTL's mission of empowering teachers to lead school improvement for the benefit of all students.

Click to go to website: www.njctl.org

Slide 3 / 208

Table of Contents: Acids and Bases

Click on the topic to go to that section

- Properties of Acids and Bases
- Conjugate Acid and Base Pairs
- Amphoteric Substances
- Strong Acids and Bases
- · Auto-Ionization of Water
- · pH
- Weak Acids and Bases
- · Polyprotic acids
- $\cdot~$ The Relationship Between K_a and K_b
- Acid-Base Properties of Salt Solutions
- Factors Affecting Acid Strength

Slide 5 / 208

Properties of Acids

What is an Acid?

Acids release hydrogen ions into solutions

Acids neutralize bases in a neutralization reaction.

Acids corrode active metals.

Acids turn blue litmus to red.

Acids taste sour.

Acids and Bases

Slide 4 / 208

Properties of Acids and Bases

Return to the Table of contents

Slide 6 / 208

Properties of Bases

Bases release hydroxide ions into a water solution.

Bases neutralize acids in a neutralization reaction.

Bases denature protein.

Bases turn red litmus to blue.

Bases taste bitter.

Arrhenius Acids and Bases

Arrhenius's definition of acids and bases dates back to the 1800's. It is now considered obsolete since it only relates to reactions in water - aqueous solutions.

Arrhenius defined acids and bases this way:

An **acid** is a substance that, when dissolved in water, increases the concentration of**hydrogen ions**.

HCI + H₂O → H₃O⁺ + CI⁻

 H_3O^+ is called a hydrated proton or a hydronium ion.

A **base** is a substance that, when dissolved in water, increases the concentration of**hydroxide ions**.

NH₃ + H₂O → NH₄⁺ + OH⁻

Slide 9 / 208

Brønsted-Lowry Acids and Bases

A Brønsted-Lowry acid:

must have a removable (acidic) proton or

must transfer a proton to another substance

NH₃ + HCI →NH₄⁺ + CI⁻

A Brønsted-Lowry base:

or

must have a pair of nonbonding electrons

must accept a proton

H – N H + **HCI →** NH₄⁺ + CI⁻ H

Slide 11 / 208

Lewis Acids

Brønsted-Lowry acids replaced Arrhenius acids because the former were more general: Arrhenius acids could only bedefined in aqueous (water) solutions. Brønsted-Lowry acids don't have that limitation.

Arrehenius acids - only substances dissolved in H₂O

Similarly, Brønsted-Lowry acids are limited to substances that gain or lose hydrogen.

Brønsted-Lowry acids - only substances that gain or lose H*

The most general approach is that of Lewis acids; whichdo not require an aqueous environment or an exchange ofhydrogen.

Brønsted-Lowry Acids and Bases

The Brønsted-Lowry definition dates back to the early 1900's and is considered the modern definition of acids and bases.

This definition is more general and it works for all reactions; not just in those in water

An **acid** is a proton, H⁺, donor.

A base is a proton, H⁺, acceptor.

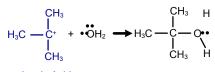
NH₃ + **HCI** → NH₄⁺ + Cl⁻

Slide 10 / 208

Brønsted-Lowry Acids and Bases

 $HCI + H_2O \longrightarrow CI^+ + H_3O^+$

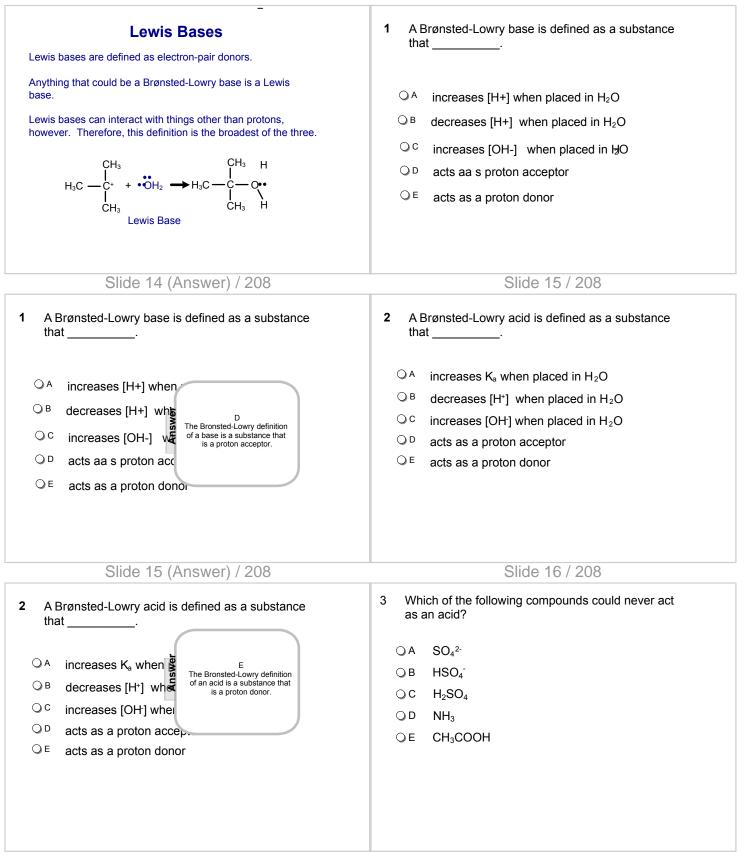
HCI donates the proton and acts as a Brønsted-Lowry acid.

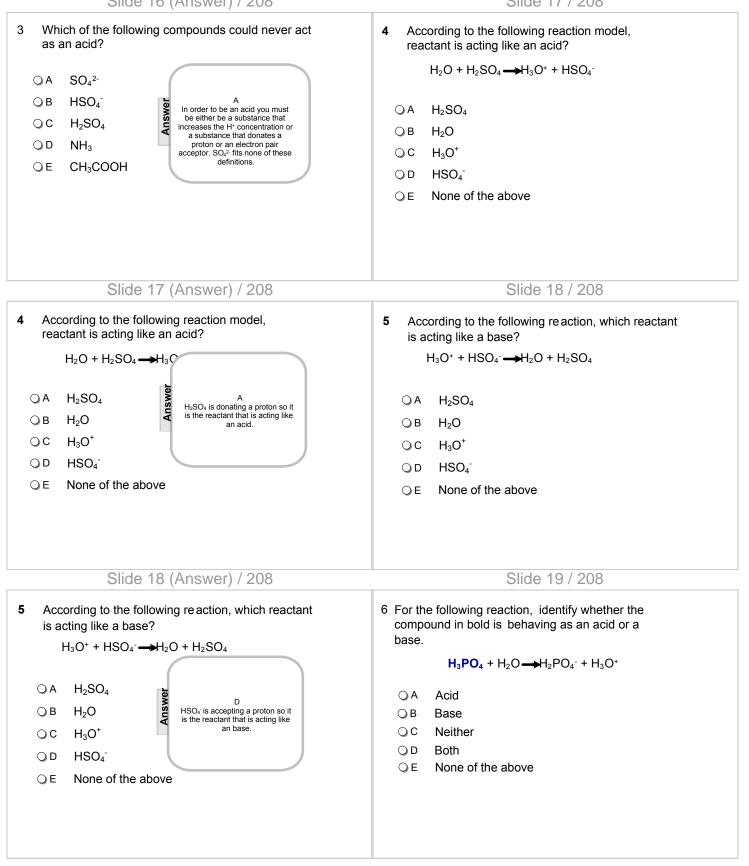

 H_2O accepts the proton and acts as a Brønsted-Lowry base.

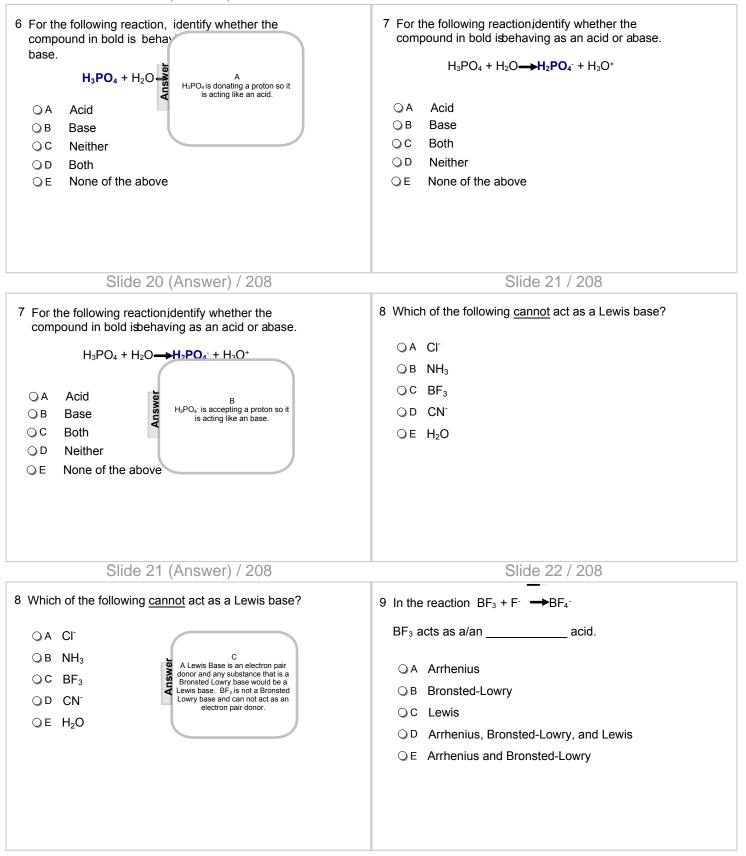
Slide 12 / 208

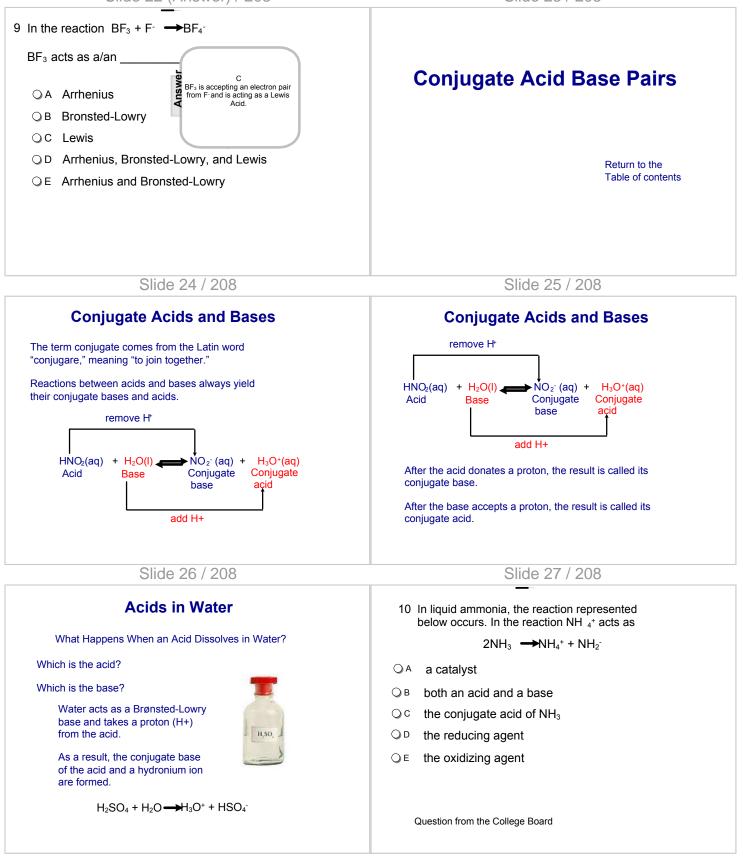
Lewis Acids

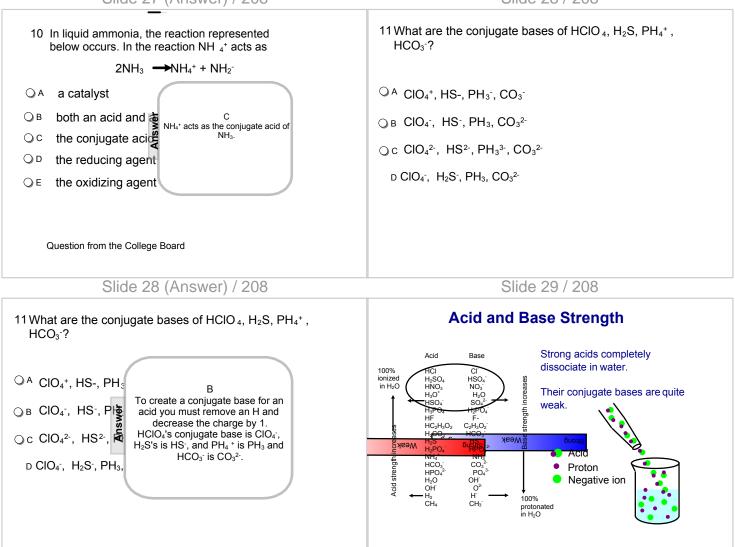
Lewis acids are defined as electron-pair acceptors.

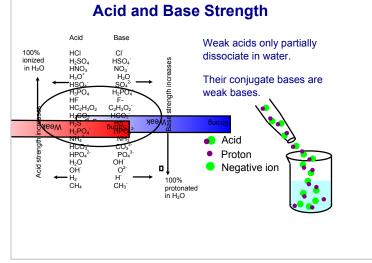

Atoms with an empty valence orbital can be Lewis acids.

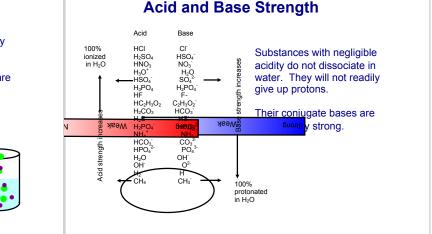



Slide 13 / 208




Slide 19 (Answer) / 208


Slide 22 (Answer) / 208


Slide 27 (Answer) / 208

Slide 30 / 208

Slide 31 / 208

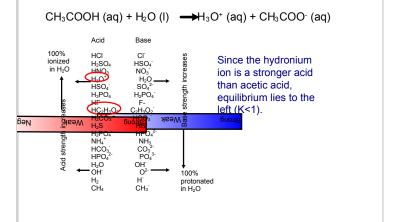
Slide 32 / 208

Acid and Base Strength Acid and Base Strength HCl (aq) + H₂O (l) \longrightarrow H₃O⁺ (aq) + Cl⁻ (aq) In any acid-base reaction, equilibriumwill favor the reaction in acid base conj. acid conj. base which the proton moves toward the stronger base. Acid Base In other words, a stronger base will "hold onto" its proton whereas 100% HCI CI. a strong acid easily releases its proton(s). In this example, H₂O is a H₂SO HNO₃ ionized much stronger base than in H₂O increase H₃O Cl^{-,} so the proton moves HSO₄ HCl (aq) + H₂O (l) \rightarrow H₃O⁺ (aq) + Cl⁻ (aq) H3O4 H₃PO₄ HF HC₂H₃O₂ from HCl to H₂O H₂PO Jgth F-C₂H₃O₂ acid conj. acid conj. base base Conversely, HCl is a much H₂C stronger acid than alge 16 an Weak Weakg An alternative way to consider equilibrium ishat it will favor the hydronium ion, so reaction AWAY from the stronger acid. HCO3¹ HPO4² H₂O OH¹ Acid strength CO₃² PO₄ equilibrium lies very far to OH the right 0²⁻ H CH₃ H₂ CH₄ K >>1 100% protonated in H₂O

Slide 34 / 208

Acid and Base Strength

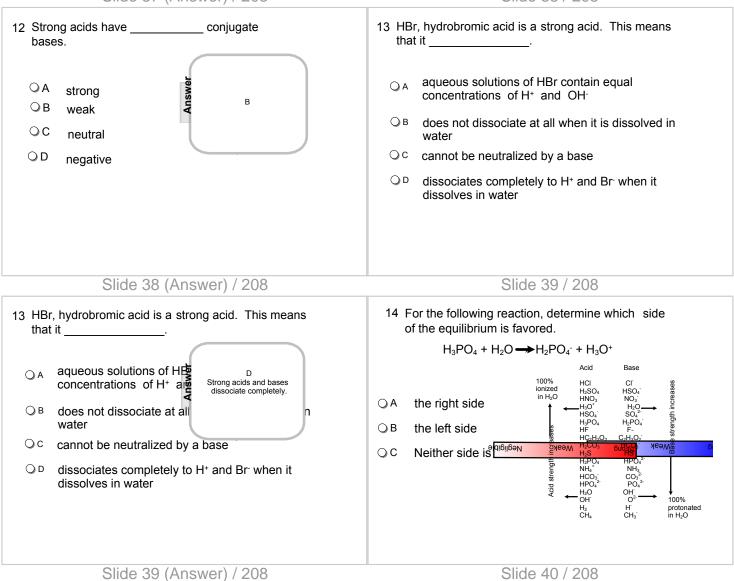
Consider this equilibrium between acetic acid and acetate ion:

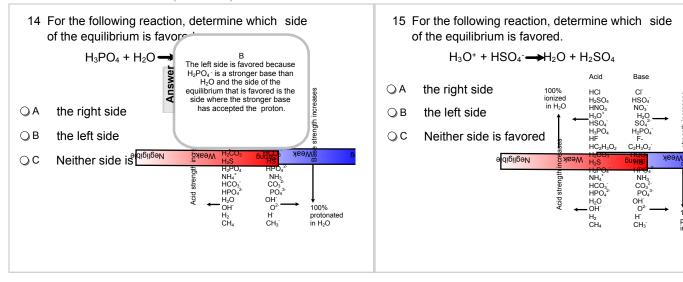

 $CH_3COOH (aq) + H_2O (I) \longrightarrow H_3O^+ (aq) + CH_3COO^- (aq)$

Does equilibrium lie to the left (K<1) or to the right (K>1)?

If you look for the stronger acid:	If you look for the stronger base:	
Equilib lies away from the stronger acid.	Equilib favors this base accepting a proton.	

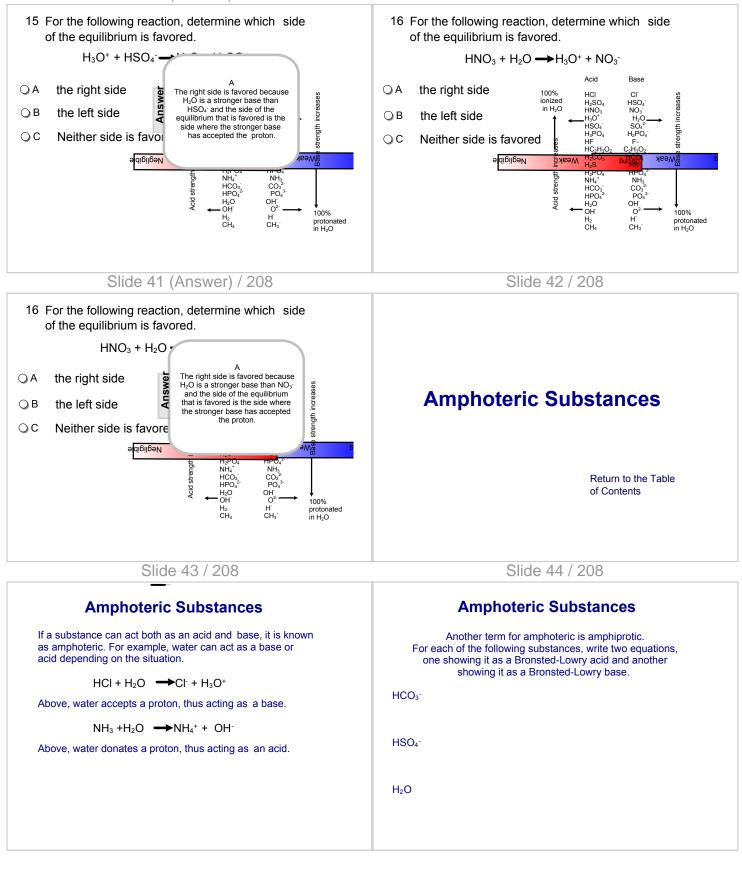
Acid and Base Strength

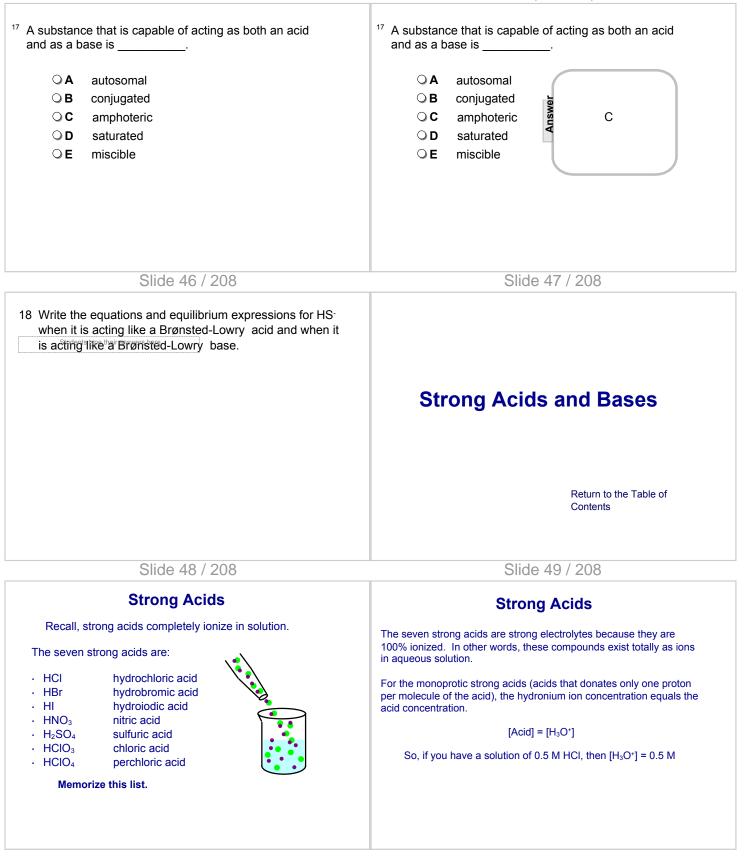

Slide 36 / 208	Slide 37 / 208	
Acid and Base Strength Acetic acid is a weak acid. This means that only a small percent of the acid will dissociate.	12 Strong acids have conjugate bases.	
The double headed arrow is used only in weak acid or weak base dissociation equations.	O A strong O B weak	
$CH_3COOH (aq) + H_2O (I) \longrightarrow H_3O^+ (aq) + CH_3COO^- (aq)$	⊖ C neutral	
A single arrow is used for strong acid or strong bases which dissociate completely.	○ D negative	
NaOH → Na⁺ (aq) + OH⁻ (aq)		


increase

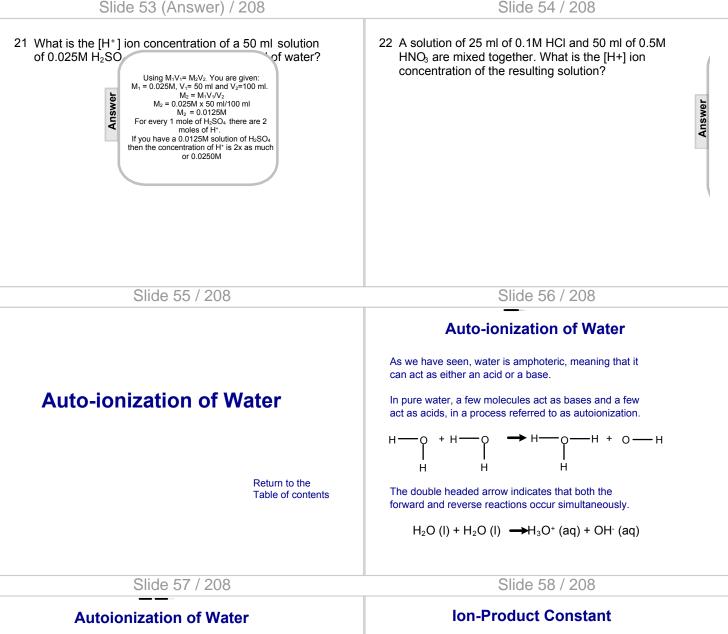
strength

100%


protonated in H₂O



Slide 40 (Answer) / 208


Slide 41 / 208

Slide 50 / 208

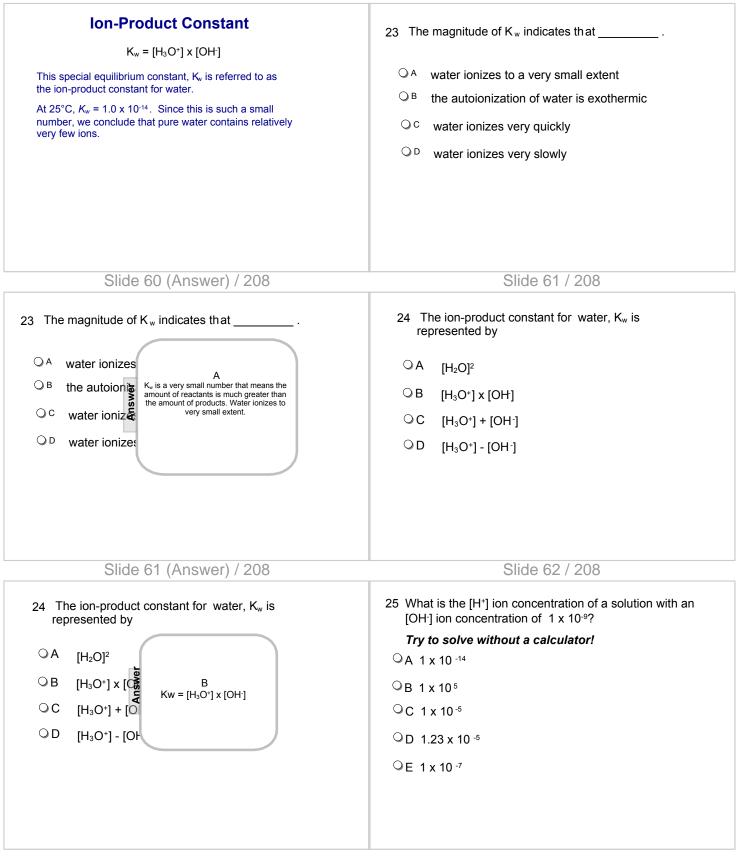
Strong Bases All strong bases are group of compounds called "metal hydroxides." All alkali metals in Group I form hydroxides that are strong bases: LiOH, NaOH, KOH, etc. Only the heavier alkaline earth metals in Group II formstrong bases: Ca(OH) ₂ , Sr(OH) ₂ , and Ba(OH) ₂ . Again, these substances dissociate completely in aqueous solution. In other words, NaOH exists entirelyas Na ⁺ ions and OH-ions in water.	 19 What is the hydroxide ion concentration of a 0.22 M calcium hydroxide solution? A 0.11 B 0.22 C 0.44 D 0.88 E Not enough information.
Slide 51 (Answer) / 208	Slide 52 / 208
 19 What is the hydroxide ion concentration of a 0.22 M calcium hydroxide solution? A 0.11 B 0.22 C 0.44 D 0.88 E Not enough C 0.44M. 	20 What is the concentration of H⁺ in a 25ml solution of 0.05M HCl when diluted to final volume of 100ml?
Slide 52 (Answer) / 208	Slide 53 / 208
20 What is the concentration of H ⁺ in a 25ml solution of 0.05M HCl wt solution of 0.05M HCl wt solution the new concentration you can use the formula $M_1V_1=M_2V_2$ $M_1 = .05M$, $V_1 = 25$ ml and $V_2 = 100$ ml $M_2 = M_1V_1/V_2$ $M_2 = .05M \times 25$ ml /100 ml $M_2 = 0.0125M$ HCl The concentration of H ⁺ equals the concentration of the HCl solution and therefore equals 0.0125M.	21 What is the [H ⁺] ion concentration of a 50 ml solution of 0.025M H_2SO_4 , when diluted with 150 ml of water?

 $H_2O(I) + H_2O(I) \longrightarrow H_3O^+(aq) + OH^-(aq)$

When there is an equilibrium state, the ratio of products to reactants yields a constant.

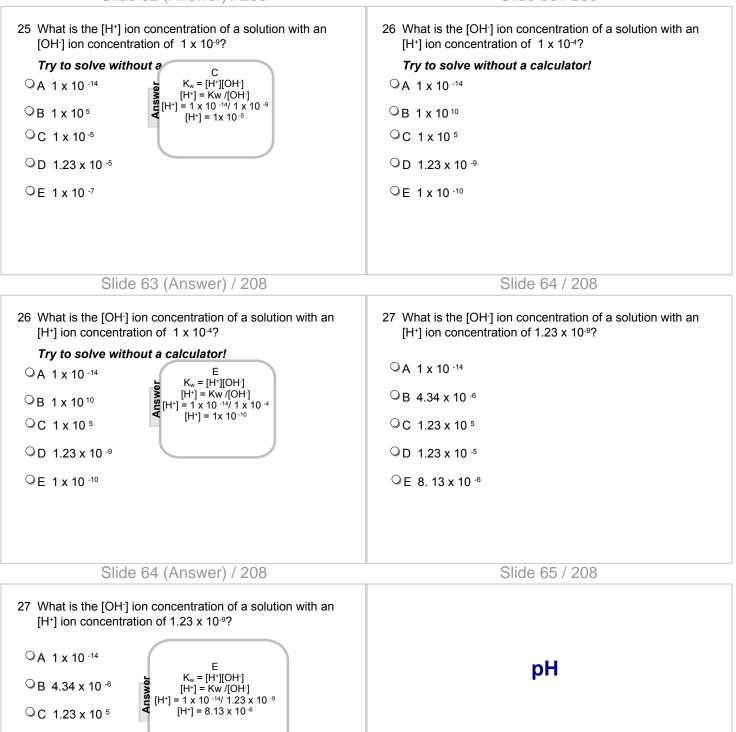
This value is known as the equilibrium constant, Kand will be discussed in more depth later in this unit.

All concentrations are in M, molarity, asdesignated by brackets, [].


K = H₂O (I) + H₂O (I) → H₃O⁺ (aq) + OH⁻ (aq)
K =
$$\frac{[H_3O^+] \times [OH^-]}{[H_2O] \times [H_2O]}$$

In most dilute acid and base solutions, the concentration of undissociated water, remains more or less a constant. We can thus disregard the denominator in the equilibrium expression.

$$K = \frac{[H_3O^+] \times [OH^-]}{[H_2O] \times [H_2O]} \quad \text{becomes } K_w = [H_3O^+] \times [OH^-]$$


Slide 59 / 208

Slide 60 / 208

OD 1.23 x 10 -5

○E 8. 13 x 10 -6

Return to the Table of contents

Slide 66 / 208

Slide 67 / 208

рΗ

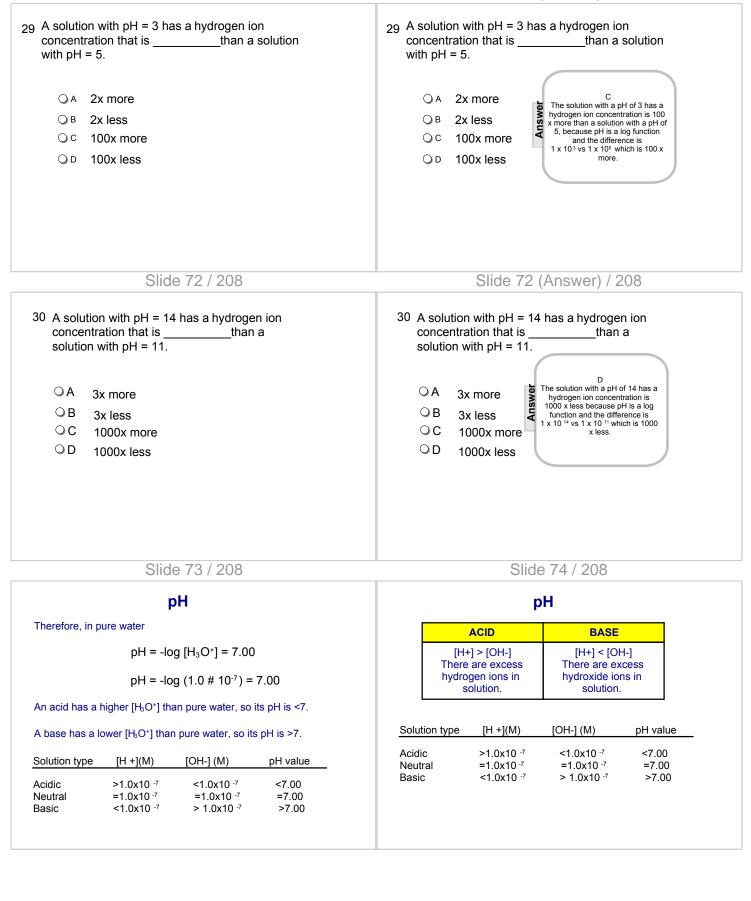
It is a measure of hydrogen ion concentration, $[H^+]$ in a solution, where the concentration is measured in moles H^+ per liter, or molarity.

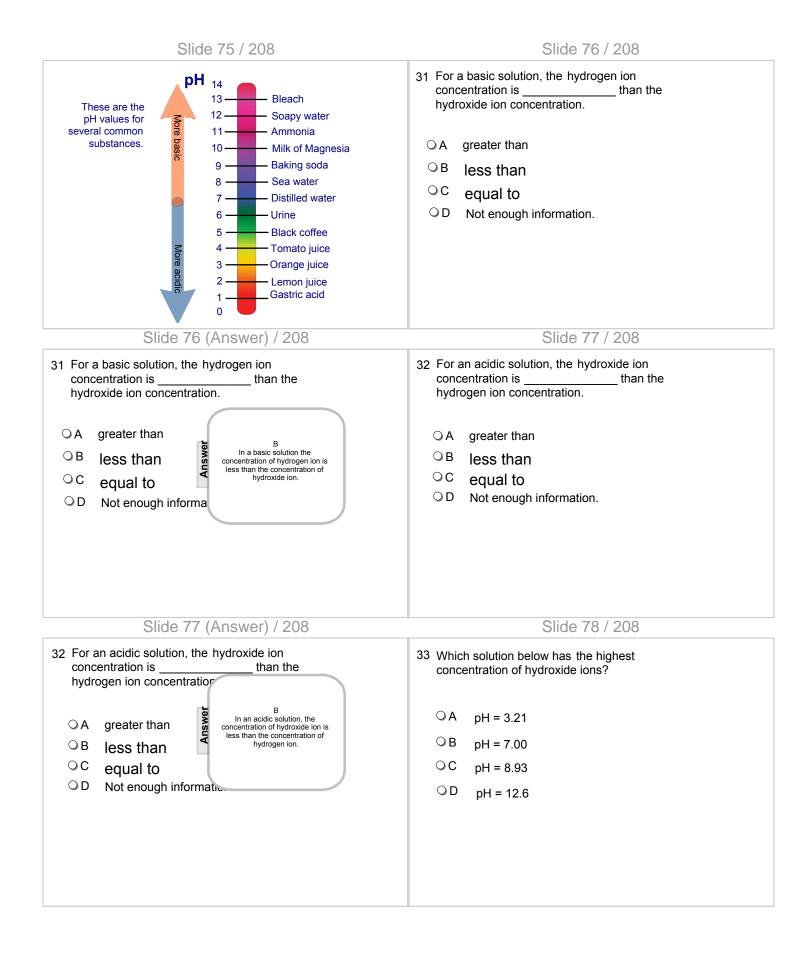
The pH scale ranges from 0-14.

pH is defined as the negative base-10 logarithm of the concentration of hydronium ion.

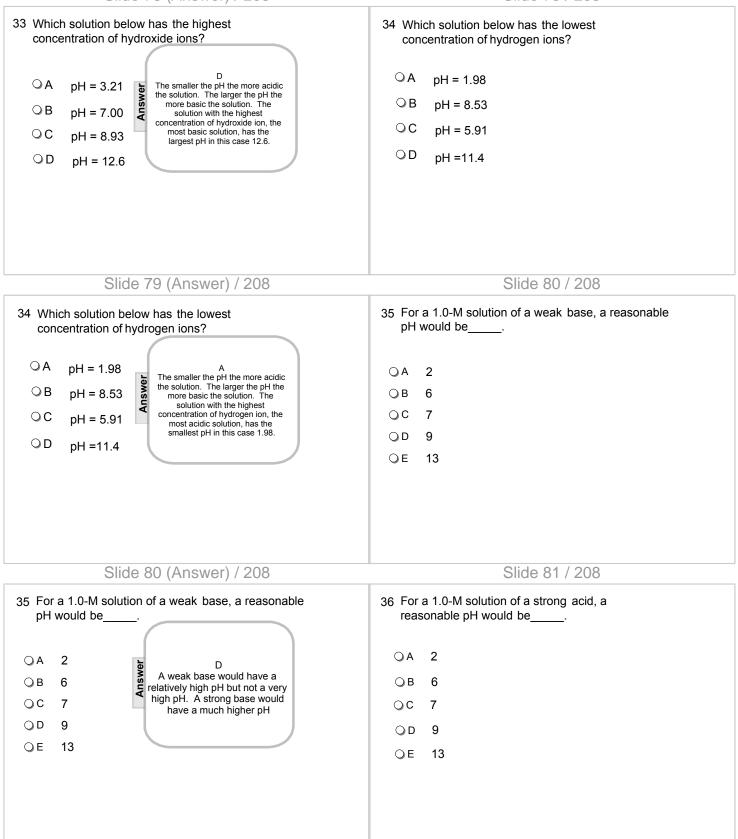
 $pH = -log [H_3O^+]$

рΗ

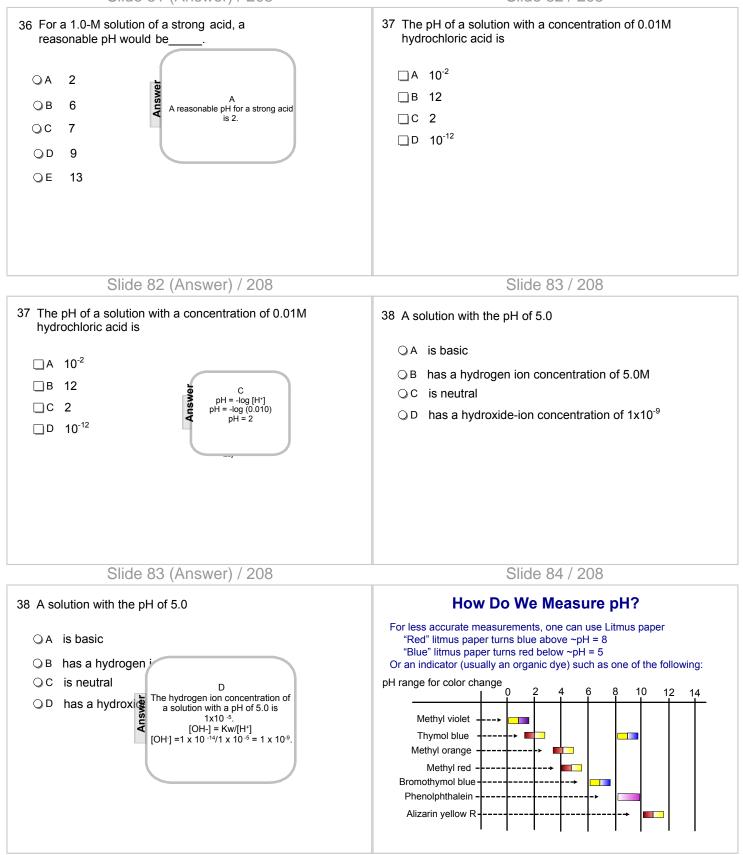

pH is defined as the negative base-10 logarithm of the concentration of hydronium ion.


 $pH = -log [H_3O^+]$

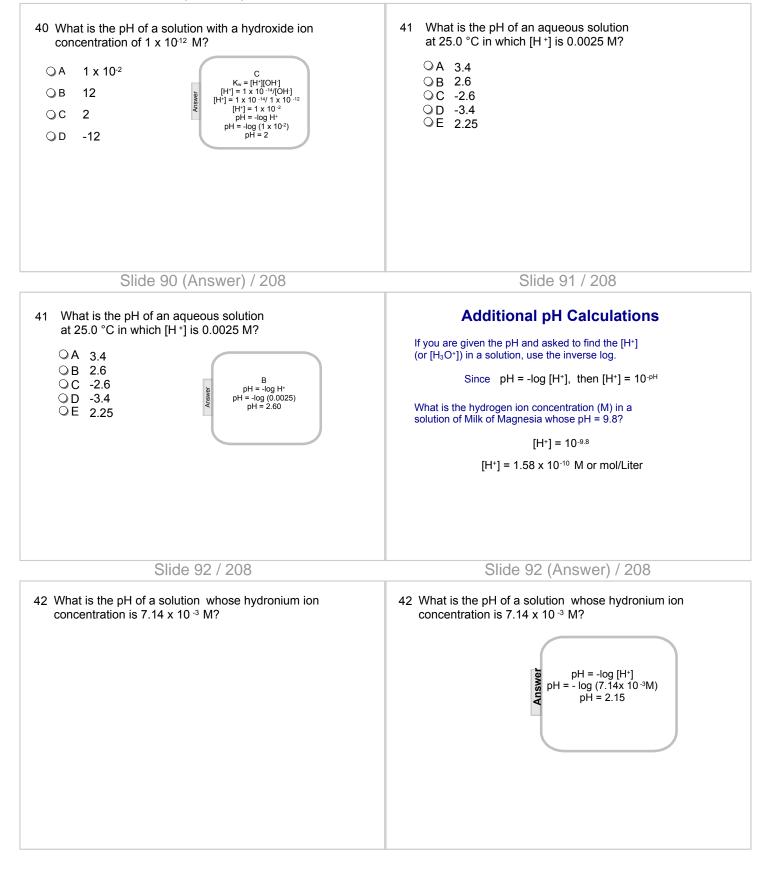
Hydrogen ion concentration, [H+] in moles/Liter	рН
1.0 x 10 ⁻¹	1
1.0 x 10 ⁻²	2
1.0 x 10 ⁻¹⁰	10

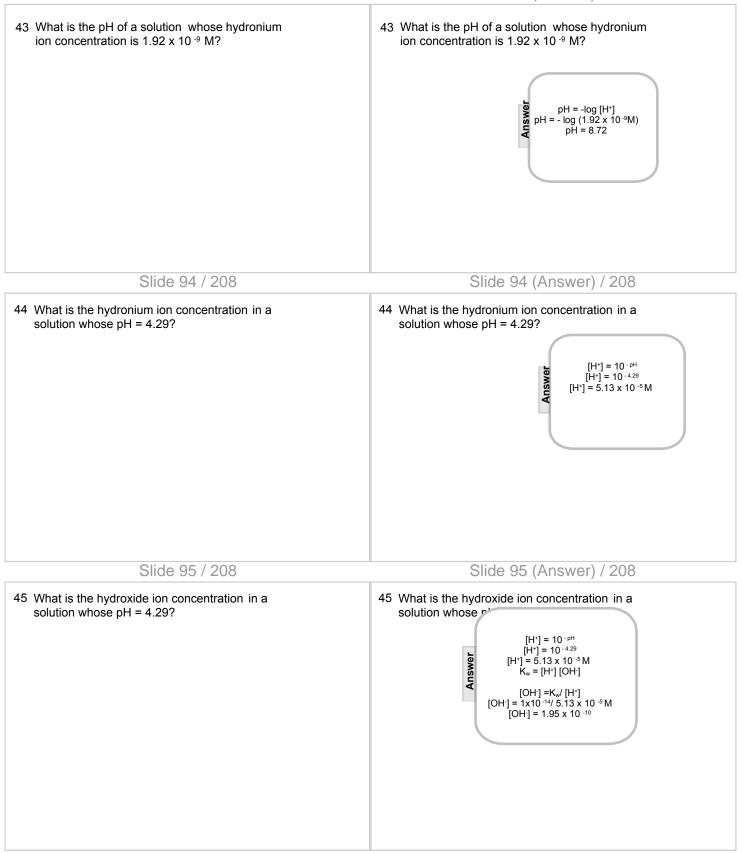

Is the relationship between [H $^{\scriptscriptstyle +}$] and pH a direct or an inverse one?

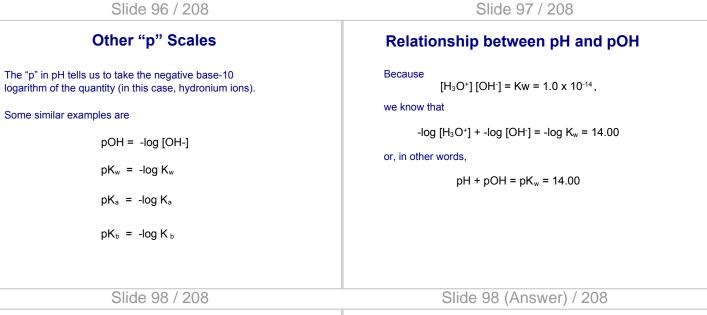
Slide 68 / 208	Slide 69 / 208	
pH Because of the base-10 logarithm, each 1.0-point value on the pH scale differs by a value of ten. A solution with pH = 9 has a hydrogen ion concentration, [H*], that is ten times <u>more</u> than a pH = 10 solution. A solution with pH = 8 has a hydrogen ion concentration, [H*], that is 10 ² or 100 times more than a pH = 10 solution. A solution with pH = 7 has a hydrogen ion concentration, [H*], that is 10 ³ or 1000 times more than a pH = 10 solution.		
Slide 70 / 208	Slide 70 (Answer) / 208	
28 The molar concentration of hydronium ion, [H ₃ O ⁺], in pure water at 25 °C is	28 The molar concentration of hydronium ion, $[H_3O^+]$, in pure water at 25 °C is	
$ \begin{array}{c} \bigcirc A & 0 \\ \bigcirc B & 1 \\ \bigcirc C & 7 \\ \bigcirc D & 10^{-7} \\ \bigcirc E & 10^{-14} \end{array} $	$ \begin{array}{c c} A & 0 \\ \hline B & 1 \\ \hline C & 7 \\ \hline D & 10^{-7} \\ \hline E & 10^{-14} \end{array} $	

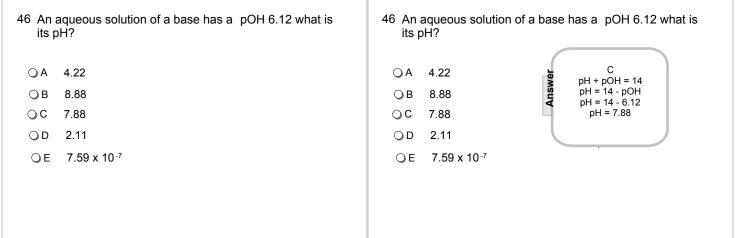


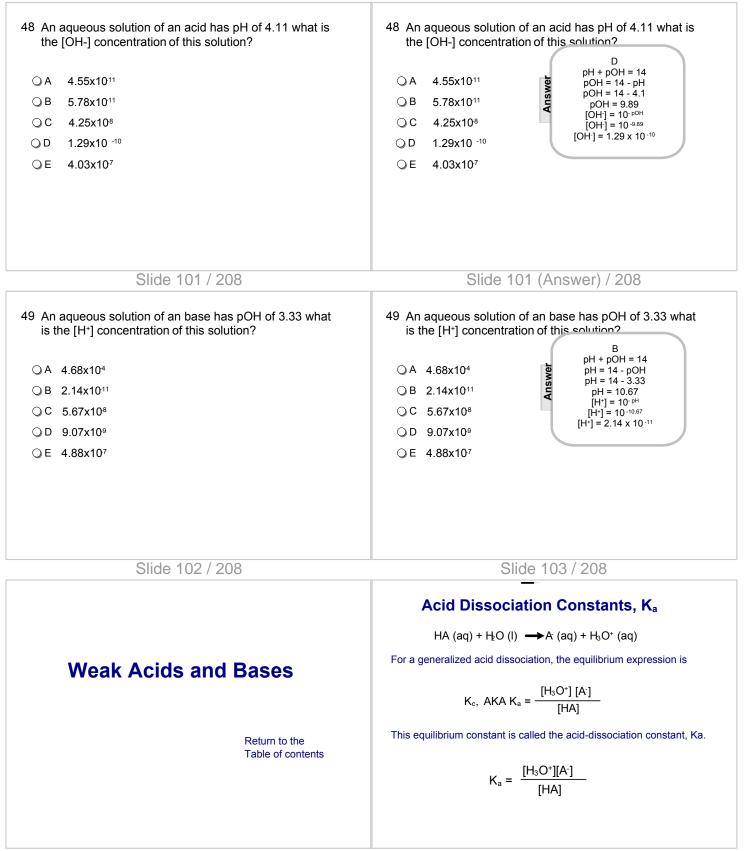
Slide 78 (Answer) / 208




Slide 81 (Answer) / 208


Slide 85 / 208


Silde 85 / 208	Silde 86 / 208	
How Do We Measure pH?	How Do We Calculate pH?	
For more accurate measurements, one uses a pH meter, which measures the voltage in the solution.	Recall that pH is defined as the negative base-10logarithm of the concentration of hydronium ion (or hydrogen ion). $pH = -log [H_3O^+]$ or $pH = -log [H^+]$	
Slide 87 / 208	Slide 88 / 208	
How Do We Calculate pH? What is the pH of the solution with hydrogen ion concentration of 5.67 x 10 * M (molar)? $\mu = -\log [H^*]$ First, take the log of 5.67 x 10 * = -7.246 Now, change the sign from - to + Answer: pH = 7.246 If you take the log of -5.67 x 10 *, you will end up with an incorrect answer. The order of operations: 1. Take the log 2. Switch the sign	 39 What is the pH of a solution with a hydrogen ion concentration of 1 x 10⁵ M? A 1 x 10⁻⁵ B -5 C 5 D 9 	
Slide 88 (Answer) / 208	Slide 89 / 208	
 39 What is the pH of a solution with a hydrogen ion concentration of 1 x 10⁵ M? A 1 x 10⁻⁵ B -5 C 5 D 9 	 40 What is the pH of a solution with a hydroxide ion concentration of 1 x 10¹² M? A 1 x 10⁻² B 12 C 2 D -12 	



Slide 96 / 208

Slide 99 / 208	Slide 99 (Answer) / 208
 47 An aqueous solution of an acid has a hydro concentration of 2.5x10 ⁻⁴. What is the pOH solution? A 10.4 B 6.13 C 8.4 D 7.5 E 9.4 	ogen ion 47 An aqueous solution of an acid bas a hydrogen ion

Acid Dissociation Constants, Ka

The greater the value of K_a , the stronger is the acid.

Acid	Proton Transfer	K _a Value
Hydrochloric acid	HCI + H₂O → H₃O⁺ + CI ⁻	Large
Sulfuric acd	$H_2SO_4 + H_2O \longrightarrow H_3O^+ + HSO_4^-$	Large
Nitric acid	HNO₃ + H₂O → H₃O⁺ + NO	About 20
Hydrofluoric acid	HF + H₂O → H₃O⁺ + F⁻	1.2 x 10⁴
Carbonic acid	H₂CO₃ + H₂O → H₃O⁺ + HCO₃⁻	4.3 x 10 ⁻⁷
Hydrogen cyanide	$HCN + H_2O \longrightarrow H_3O^+ + CN^-$	4.9 x 10 ⁻¹⁶

Slide 105 (Answer) / 208

- 50 The acid dissociation constant (K_a) of HF is 6.7×10^{-4} . Which of the following is true of a 0.1M solution of HF?
- ⊖ A [HF] is greater than
- OB [HF] is less than [HE

OC [HF] is equal to [H⁺]

- A Because the K_a value is so small it means that the amount of reactants is much greater than the amount of products therefore [HF] is greater than [H⁺][F⁻]
- OD [HF] is equal to [H-][

- 50 The acid dissociation constant (K_a) of HF is 6.7×10^{-4} . Which of the following is true of a 0.1M solution of HF?
 - $\bigcirc A$ [HF] is greater than [H⁺][F⁻]
 - \bigcirc B [HF] is less than [H⁺][F⁻]
 - \bigcirc C [HF] is equal to [H⁺][F⁻]
 - \bigcirc D [HF] is equal to [H⁻][F⁺]

Slide 106 / 208

Calculating K_a from the pH

The pH of a 0.10 *M* solution of formic acid, HCOOH, at 25° C is 2.38. Calculate K_a for formic acid at this temperature.

The dissociation equation for formic acid may be written as a reaction with water

HCOOH + $H_2O \rightarrow HCOO^- + H_3O^+$

or, without water

HCOOH →HCOO⁻ + H⁺

Slide 107 / 208

Calculating K_a from the pH

The pH of a 0.10 *M* solution of formic acid, HCOOH, at 25°C is 2.38. Calculate K_a for formic acid at this temperature.

HCOOH + $H_2O \longrightarrow HCOO^- + H_3O^+$

From this dissociation equation, write the K_a expression:

$$K_a = \frac{[H_3O^+][HCOO^-]}{[HCOOH]}$$

To calculate $K_{\text{a}},$ we need the equilibrium concentrations of all three species.

We know the concentration of HCOOH, how do we determine the concentration of H_3O^+ ?

Slide 108 / 208

Calculating K_a from the pH

 $pH = -log [H_3O^+]$

 $2.38 = -\log [H_3O^+]$

-2.38 = log [H₃O⁺]

 $10^{-2.38} = 10^{\log} [H3O+] = [H_3O^+]$

4.2 x 10⁻³ M = [H₃O⁺] = [HCOO⁻]

Note that this is a monoprotic acid, so [acid] = [conjugate base]

Calculating K_a from the pH

The pH of a 0.10 M solution of formic acid, HCOOH, at 25°C is 2.38. Calculate K_a for formic acid at this temperature.

$K_a = \frac{[H_3O^+][HCOO^-]}{[HCOOH]}$				
	[HCOOH], <i>M</i>	[HCOO ⁻], <i>M</i>	[H₃O⁺], <i>M</i>	
Initially	0.10	0	0	
Change	-4.2 x10 -3	+4.2 x10 -3	+4.2 x10 -3	
At Equilibrium 4.2 x 1	0.10 - 4.2 x 10 ⁻³ ≈ 0.10	4.2 x 10 ⁻³	4.2 x 10⁻³	

Slide 111 / 208

Calculating K_a from the pH

Now, we substitute values into the Ka expression and solve:

K₂ =	[H₃O⁺][HCOO ⁻]
N _a –	[HCOOH]
K _a =	[4.2 # 10 ⁻³] [4.2 # 10 ⁻³]
	[0.10]
K _a =	1.8 # 10-4

Calculating K_a from the pH

The pH of a 0.10 M solution of formic acid, HCOOH, at 25°C is 2.38. Calculate K_a for formic acid at this temperature.

Important note:

In the case of weak acids and bases, we assume little ionization and therefore we ignore the amount of ionization and write 0.10 and not 0.10 - x.

If you find that the % ionization is greater than 5% you can't ignore the x term and you must use the quadriatic equation to solve.

Slide 112 / 208

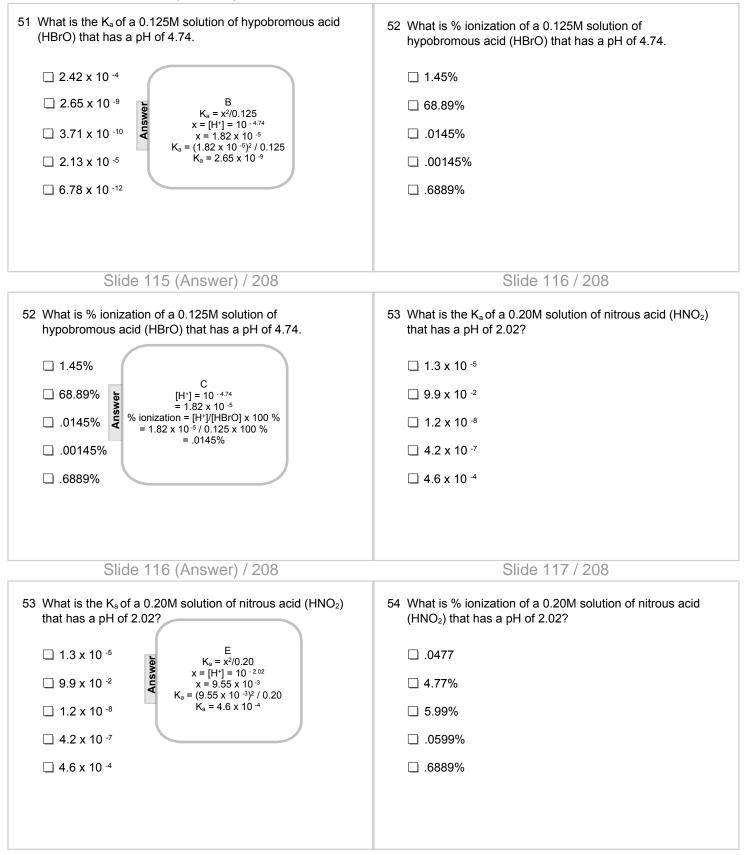
Calculating Percent Ionization

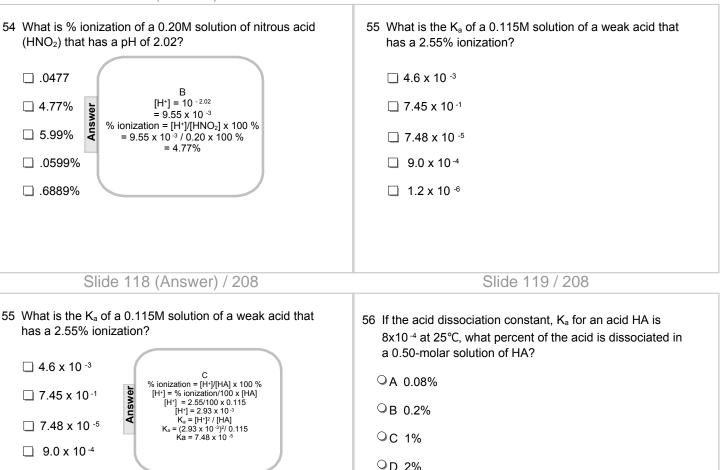
One way to compare the strength of two acids is by the extent to which each one ionizes.

This is done by calculating percent ionization, or the ratio of $[{\rm H}^*]$ ions that are produced, compared to the original acid concentration.

Percent Ionization =
$$\frac{[H_3O^+]_{eq}}{[HA]_{nitial}}$$
 # 100%

Slide 113 / 208


Calculating Percent Ionization	51 What is the K _a (HBrO) that ha
Percent Ionization = $\frac{[H_3O^+]_{eq}}{[HA]_{initial}}$ # 100%	□ 2.42 x 10 ⁻
In this example	🗌 2.65 x 10
$[H_3O^*]_{eq} = 4.2 \# 10^{-3} M$ $[HCOOH]_{initial} = 0.10 M$	□ 3.71 x 10
Percent Ionization = 4.2×10^{-3} # 100%	🗌 2.13 x 10
0.10	□ 6.78 x 10
= 4.2 %	


Slide 114 / 208

51 What is the K_a of a 0.125M solution of hypobromous acid as a pH of 4.74.

-4

- -9
- -10
- -5
- -12

○E 4%

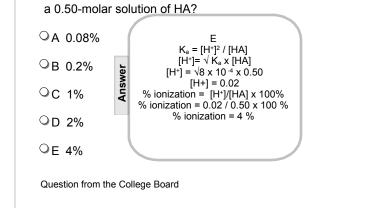
Question from the College Board

Slide 119 (Answer) / 208

8x10⁻⁴ at 25°C, what percent of the acid is dissociated in

56 If the acid dissociation constant, K_a for an acid HA is

□ 1.2 x 10 ⁻⁶


Slide 120 / 208

Calculating pH from K_a

Calculate the pH of a 0.30 M solution of acetic acid, $HC_2H_3O_2$, at 25°C. K_a for acetic acid at 25°C is 1.8 x 10⁻⁵.

First, we write the dissociation equation for acetic acid

 $HC_2H_3O_2(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + C_2H_3O_2^-(aq)$

Calculating pH from K_a

Calculate the pH of a 0.30 M solution of acetic acid, HC₂H₃O₂, at 25°C. K_a for acetic acid at 25°C is 1.8 x 10⁻⁵.

> From the dissociation equation, we obtain the equilibrium constant expression:

$$K_{a} = \frac{[H_{3}O^{+}][C_{2}H_{3}O_{2}^{-}]}{[HC_{2}H_{3}O_{2}]}$$

Calculating pH from K_a

Calculate the pH of a 0.30 M solution of acetic acid, HC₂H₃O₂, at 25°C. K_a for acetic acid at 25°C is 1.8 x 10⁻⁵.

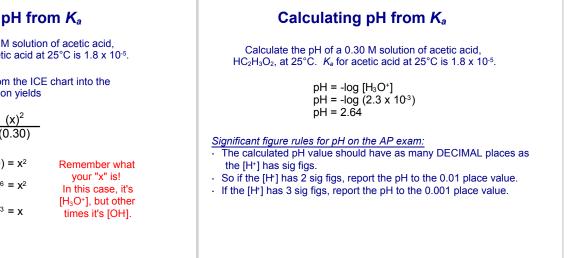
We next set up an ICE chart...

	$[HC_2H_3O_2],\ M$	[H ₃O⁺], M	[C2H3O2-], M
Initial	0.30 M	0	0
Change	- x	+ x	+ x
Equilibrium	about 0.30 M	x	x

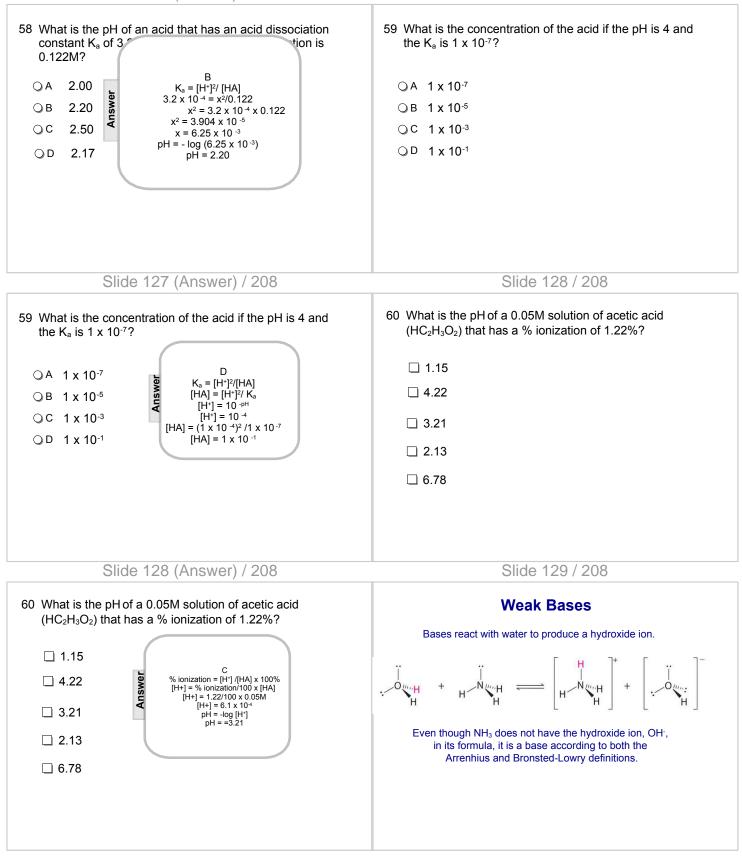
We are assuming that x will be very small compared to 0.30 and can, therefore, be ignored.

Slide 123 / 208

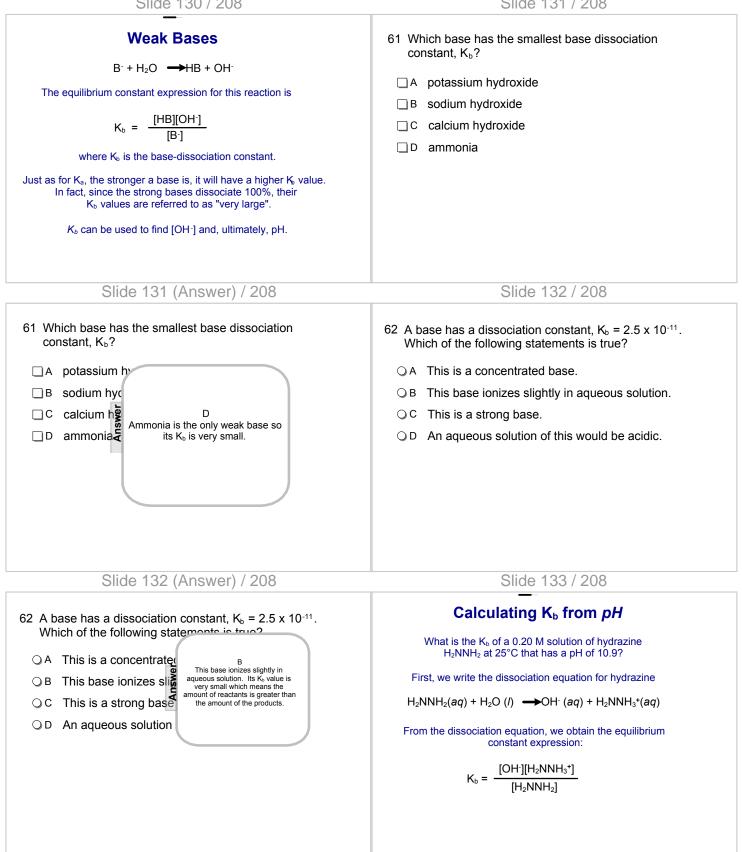
Calculating pH from K_a


Calculate the pH of a 0.30 M solution of acetic acid, HC₂H₃O₂, at 25°C. K_a for acetic acid at 25°C is 1.8 x 10⁻⁵.

Now, substituting values from the ICE chart into the K_a expression yields


$$1.8 \# 10^{-5} = \frac{(x)^2}{(0.30)}$$

$$\begin{array}{ll} (1.8 \ \mbox{\# 10^{-5}}) \ (0.30) = x^2 & \mbox{Remember} \\ 5.4 \ \mbox{x 10^{-6}} = x^2 & \mbox{Junching and } \\ 2.3 \ \mbox{x 10^{-3}} = x & \mbox{Immode the set of t$$


Slide 124 / 208

Slide 125 / 208	Slide 126 / 208
57 What is the hydrogen ion concentration of a weak acid that has a dissociation constant is 1 x 10 ⁻⁶ and a concentration of 0.01M?	58 What is the pH of an acid that has an acid dissociation constant K_a of 3.2 x 10 ⁻⁴ and the acid concentration is 0.122M?
 ○ A 1 x 10⁻⁶ ○ B 1 x 10⁻⁵ ○ C 1 x 10⁻⁴ ○ D 1 x 10⁻³ 	 ○ A 2.00 ○ B 2.20 ○ C 2.50 ○ D 2.17

Slide 134 / 208

Calculating *K*^b from the pH

pOH = 14 - pH pOH = 14 - 10.9 pOH = 3.1 3.1 = -log [OH⁻] -3.1 = log [OH⁻] $10^{-3.1} = 10^{log [OH⁻]} = [OH⁻]$ $7.94 \times 10^{-4} = [OH⁻] = [H_2NNH_3⁺]$

Calculating K_b from the pH

What is the K_b of a 0.20 M solution of hydrazine H_2NNH_2 at 25°C that has a pH of 10.9?

$H_2NNH_2(aq) + H_2O(l) \rightarrow OH^-(aq) + H_2NNH_3^+(aq)$

	[H ₂ NNH ₂], <i>M</i>	[OH ⁻], <i>M</i>	[H₂NNH₃⁺], <i>M</i>
Initially	0.20	0	0
Change	-7.94 x 10⁻⁴	+7.94 x 10 -4	+7.94 x 10 -4
At Equilibrium	0.20 -7.94 x 10 ⁻⁴ ≈ 0.20	7.94 x 10 -4	7.94 x 10 -4

Slide 136 / 208

Calculating *K*^b from the pH

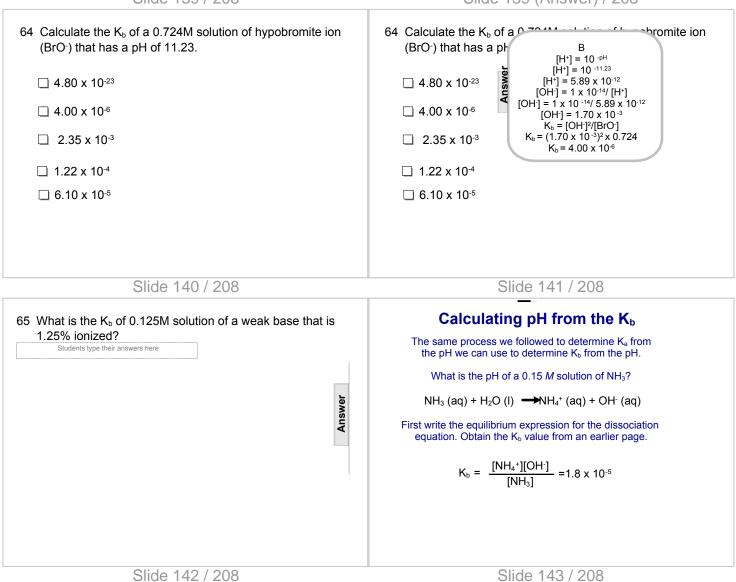
What is the K_b of a 0.20 M solution of hydrazine H_2NNH_2 at 25°C that has a pH of 10.9?

Now, we substitute values into the $K_{\!\scriptscriptstyle b}$ expression and solve:

 $K_{b} = \frac{[OH][H_{2}NNH_{3}^{+}]}{[H_{2}NNH_{2}]}$ $K_{b} = \frac{[7.94 \times 10^{-4}] [7.94 \times 10^{-4}]}{[0.20]}$

 $K_b = 3.15 \times 10^{-6}$

Slide 137 / 208


Calculating Percent Ionization

What would be the analogous formula to calculate percent ionization for a base?

Percent Ionization = $\frac{[OH]_{eq}}{[Base]_{initial}} # 100\%$

Slide 138 / 208 Slide 138 (Answer) / 208 63 Calculate the K_b of a 0.450M solution of weak base 63 Calculate the K_b of a 0.450M solution of weak base solution with a pOH of 4.98. solution with a pOH of 4.98. ○A 3.22 x 10⁻⁷ ○A 3.22 x 10⁻⁷ Е $K_{b} = [OH^{-}]^{2}/[B]$ [OH] = 10^{-pOH} Answei OB 2.11 x 10⁻⁵ ^OB 2.11 x 10⁻⁵ [OH] = 10^{-4.98} [OH] = 1.05 x 10⁻⁵ ^OC 2.03 x 10 ⁻¹⁸ $K_b = (1.05 \times 10^{-5})^2 / 0.450$ $K_b = 2.44 \times 10^{-10}$ ^OC 2.03 x 10 ⁻¹⁸ OD 2.33 x 10 -5 OD 2.33 x 10 -5 ○E 2.44 x 10⁻¹⁰ ○E 2.44 x 10⁻¹⁰

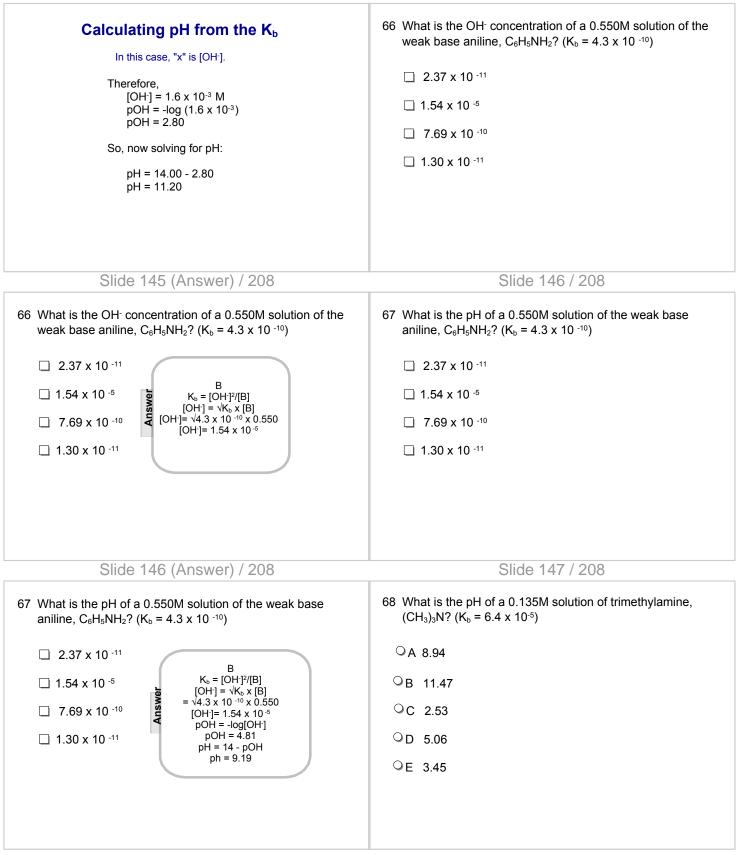
Slide 139 / 208

Calculating *pH* from the K_b

What is the pH of a 0.15 M solution of NH₃?

 NH_3 (aq) + H_2O (I) $\longrightarrow NH_4^+$ (aq) + OH^- (aq)

	[NH₃], <i>M</i>	[NH4 ⁺], <i>M</i>	[OH⁻], <i>M</i>
Initially	0.15	0	0
Change	-X	+x	+x
At Equilibrium	015 - x ≈ 0.15	х	х


Slide 143 / 208

Calculating *pH* from the K_b

 $1.8 \cdot 10^{-5} = \frac{(x)^2}{(0.15)}$ (1.8 # 10⁻⁵) (0.15) = x² 2.7 x 10⁻⁶ = x² $1.6 \times 10^{-3} = x$

Again, remember what your "x" is!

Slide 144 / 208

 $(CH_3)_3N?$ (K_b = 6.4 x 10⁻⁵)

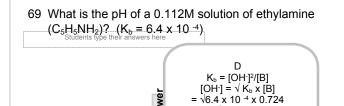
Answe

OA 8.94

OB 11.47

OC 2.53

OD 5.06


OE 3.45

= √8.64 x 10 -6 = 2.94 x 10⁻³ pOH= 2.53 pH = 14 - 2.53

pH = 11.47

= √4.63 x 10 -4 = 2.15 x 10⁻² pOH= 1.67 pH = 14-1.67 pH = 12.33

Answer

Slide 149 / 208

Polyprotic Acids

Return to the Table of contents

Slide 150 / 208

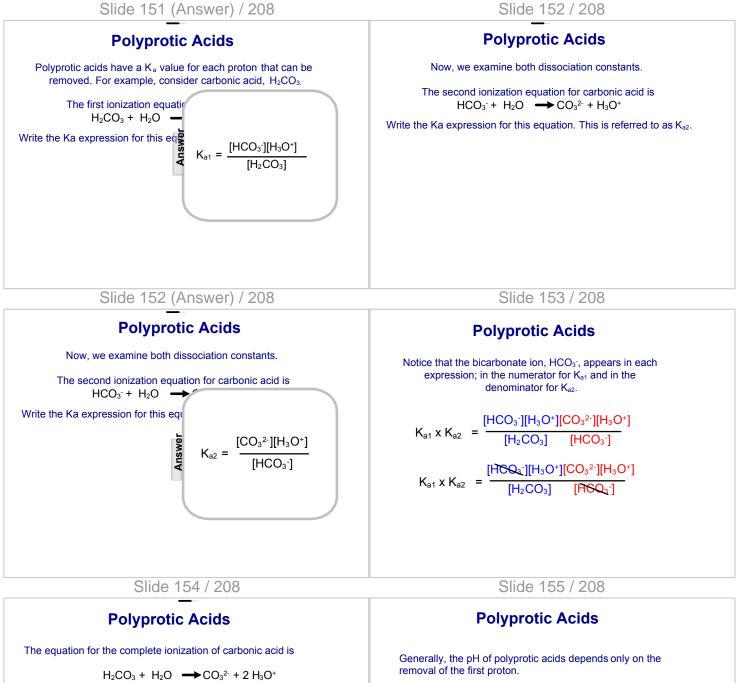
Polyprotic Acids

Polyprotic acids are characterized by having more than one acidic proton.

Here are some examples:

Sulfuric acid	H ₂ SO ₄
Phosphoric acid	H₃PO₄
Carbonic acid	H ₂ CO ₃
Oxalic acid	$H_2C_2O_4$

Slide 151 / 208


Polyprotic Acids

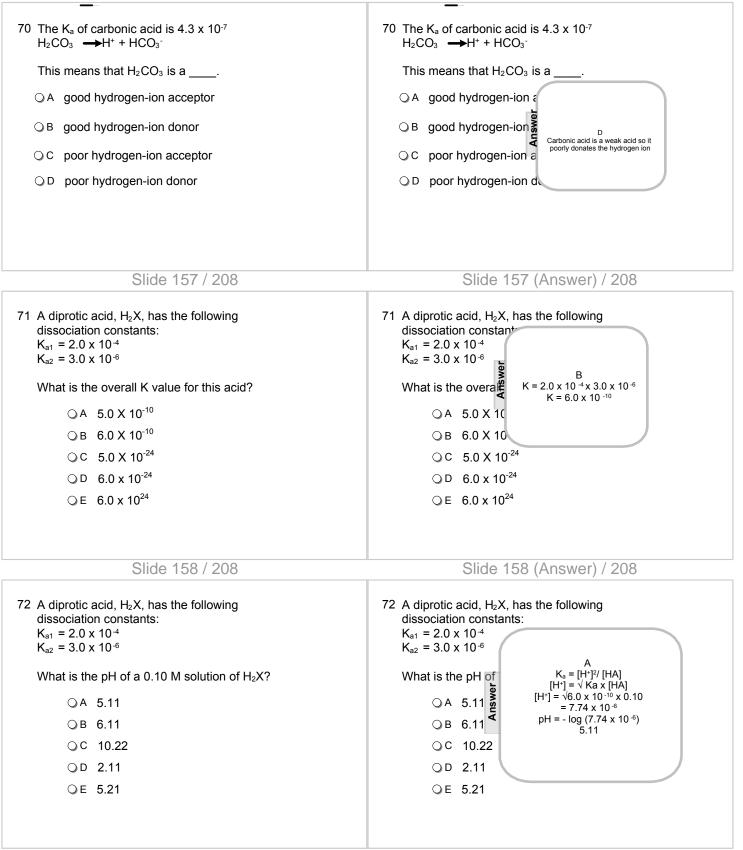
Polyprotic acids have a K_a value for each proton that can be removed. For example, consider carbonic acid, H₂CO_{3.}

> The first ionization equation for carbonic acid is $H_2CO_3 + H_2O \longrightarrow HCO_3 + H_3O^+$

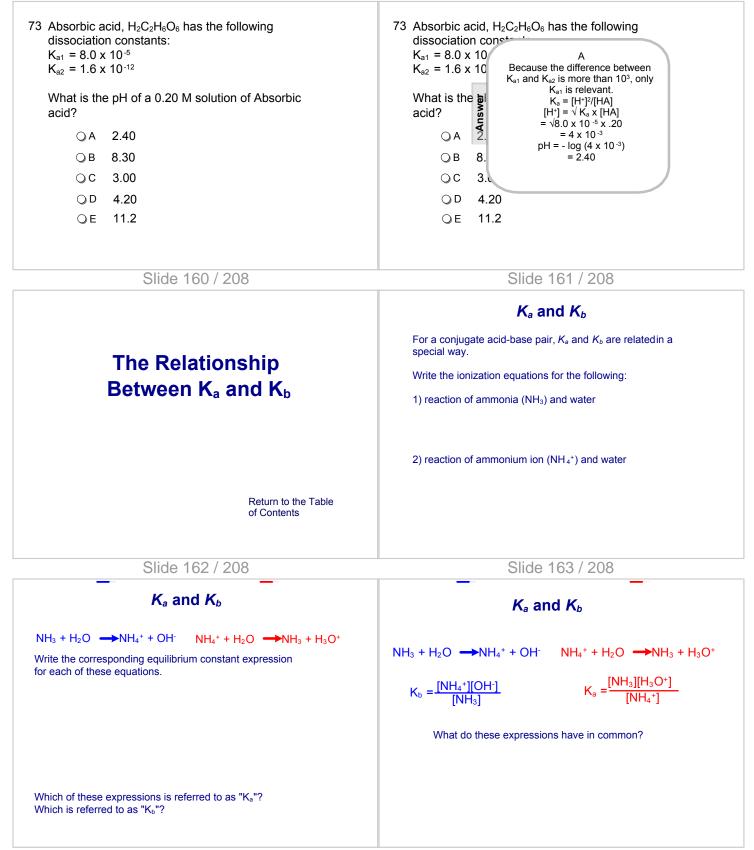
Write the Ka expression for this equation. This is referred to as K_{a1} .

Slide 151 (Answer) / 208

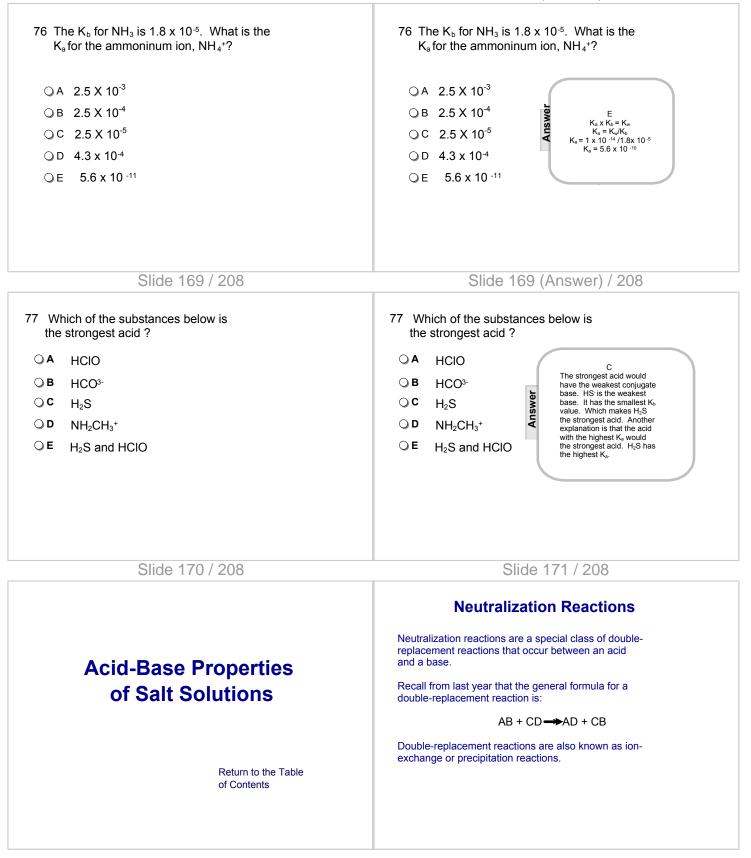
and the K_a expression for this reaction is


$$K = \frac{[CO_3^{2-}][H_3O^+]^2}{[H_2CO_3]}$$

$$K_{a1} \times K_{a2} = \frac{[HOQ_2^-][H_3O^+][CO_3^{2-}][H_3O^+]}{[H_2CO_3]}$$


$$K_{a1} \times K_{a2} = \text{overall } K$$

So, the product of $K_{a1} \ x \ K_{a2}$ for a diprotic acid yields the overall K for complete dissociation.


This holds true when the difference between the K_{a1} and K_{a2} values is at least 10³.

Slide 164 / 208	Slide 165 / 208		
K_a and K_b	K_a and K_b For a <i>specific</i> conjugate acid-base pair, K_a and K_b are related in this way:		
$K_{b} \times K_{a} = \frac{[NH_{4}^{+}][OH^{-}] [NH_{3}][H_{3}O^{+}]}{[NH_{3}] [NH_{4}^{+}]}$			
	$K_a \ge K_b = K_w$		
$K_{b} \times K_{a} = \frac{[NH_{4}^{+}][OH^{-}]}{[NH_{3}]} \frac{[NH_{3}O^{+}]}{[NH_{4}^{+}]}$	Therefore, if you know the value of one of them, you can calculate the other.		
$K_b \times K_a = [OH][H_3O^+] = K_w$			
So, the product of $K_{\!a}$ x $K_{\!b}$ for any conjugate acid-base pair yields the ion-product constant, $K_{\!w}.$			
Slide 166 / 208	Slide 166 (Answer) / 208		
74 For the acid HCN, what is the equation on which the K_a expression is based?	74 For the acid HCN, what is the equation on which the K _a expression is based?		
○ A HCN <> OH ⁻ + HCN	○ A HCN <> OH ⁻ + HCN For the acid dissociation		
○ B HCN <> OH ⁻ + CN ⁻	$\bigcirc B$ HCN <> $\bigcirc H^{-} + CN^{-}$ must be a proton donor.		
○ C HCN + H ₂ O <> CN ⁻ + H ₃ O ⁺	$\bigcirc C HCN + H_2O <> CN^+ + \bigcirc ONU C shows HCN acting as a proton donor. \bigcirc ONU C shows HCN acting actin$		
\bigcirc D HCN + H ₂ O <> OH ⁻ + CN ⁻	○ D HCN + H ₂ O <> OH ⁻ + CN ⁻		
Slide 167 / 208	Slide 167 (Answer) / 208		
75 The K_a for an acid, HX, is 2.0 x 10 ⁻⁴ . What is the K_b for its conjugate base, X-? No calculator.	75 The K _a for an acid, HX, is 2.0 x 10 ⁻⁴ . What is the K _b for its conjugate base, X ⁻ ? No calculator.		
○ A 5.0 X 10 ⁻¹¹	OA 5.0 X 10 ⁻¹¹		
○ B 2.0 X 10 ⁻¹⁰	⊙в 2.0 X 10 ⁻¹⁰ ъ		
○ C 5.0 X 10 ⁻¹⁰	$\bigcirc C 5.0 \times 10^{-10} \qquad \qquad$		
○ D 8.0 x 10 ⁻¹⁰	$\bigcirc D 8.0 \times 10^{-10}$		
○ E 2.0 x 10 ⁻⁴	Q E 2.0 x 10 ⁻⁴		

Neutralization Reactions

The general formula for any acid-base neutralization reaction is:

acid + base--->salt + water

Note that the term "salt" refers to any ionic compound that does not include H^* or OH.

Acid-Base Properties of Salt Solutions

acid + base → salt + water

When an acid and base react together, the resulting solution is not always neutral. The pH of the resulting mixture depends on the relative strengths of the acid and of the base.

The pH of a salt solution depends on the ability of the salt ions to hydrolyze.

Hydrolyze means to interact with water molecule and dissociate.

Slide 174 / 208

Anion Effect on pH

The pH of a salt solution depends on the ability of the salt ions to hydrolyze.

Each salt contains a positive ion, a cation, and a negative ion, the anion.

Let's consider the anion first which can be denoted, X^{\cdot} . X^{\cdot} is the conjugate base of the acid in the neutralization reaction. This anion may undergo hydrolysis as shown below:

 $X^- + H_2O \implies$

Predict the products.

Do you think the resulting solution will be acidic, basic or neutral? Justify your response.

Slide 176 / 208

Anion Effect on pH

The pH of a salt solution depends on the ability of the salt ions to hydrolyze.

The conjugate base (NO_2) of a weak acid (HNO_2) will hydrolyze, it will react with water because HNO_2 does not dissociate completely and a dynamic equilibrium exists.

Write the equilibrium expression for the reaction of NO2 and water.

All conjugate bases of weak acids will hydrolyze and the resulting solutions will be basic.

Slide 175 / 208

Anion Effect on pH

The pH of a salt solution depends on the ability of the salt ions to hydrolyze.

The conjugate base (CI⁻) of a strong acid (HCI) will not hydrolyze, it will not react with water because HCI dissociates completely. In fact, none of the anions from the strong seven acids will hydrolyze. In other words, these anions will not affect pH.

List here the conjugate bases of the strong seven acids.

The conjugate bases of strong acids will not undergo hydrolysis and will not affect pH.

Slide 177 / 208

Anion Effect on pH

The pH of a salt solution depends on the ability of the salt ions to hydrolyze.

The conjugate base (HSO₃⁻) of a weak acid (H₂SO₃) is a special case because HSO₃⁻ is amphoteric. It can behave as either an acid or as a base.

How it behaves is determined by the relative magnitude of K_a for its acid and K_b for its base. If K_a> K_b it will behave as an acid if K_b> K_a then it will behave as a base.

When amphoteric anions hydrolyze they will make acidic solutions if their K_a > K_b or make basic solutions if their K_b > K_a .

Slide 178 / 208

Cation Effect on pH

The pH of a salt solution depends on the ability of the salt ions to hydrolyze.

The metal cation (K^+) of a strong base (KOH) will not hydrolyze. In fact, none of the cations from the strong bases will hydrolyze. In other words, these metal cations in solution will not affect pH.

List here the metal cations from Groups 1 and 2 that form strong bases.

None of the cations of strong bases will undergo hydrolysis and affect pH. Slide 179 / 208

Cation Effect on pH

The pH of a salt solution depends on the ability of the salt ions to hydrolyze.

The conjugate acid $(NH_4^{\,*})$ of a weak base (NH_3) will hydrolyze and the resulting solution will be acidic.

Write the equilibrium expression for the reaction of NH_{4^+} and water.

All cations that are conjugate acids of weak bases will undergo hydrolysis and will affect pH.

Slide 180 / 208

Cation Effect on pH

The pH of a salt solution depends on the ability of the salt ions to hydrolyze.

Metal cations other than Group 1 and heavy Group 2 cations can hydrolyze to affect pH.

This effect is greatest for small, highly charged cations like Fe^{3+} and A^{3+} . The effect of these cations increases as ionic charge increases.

The K_a for Fe²⁺ is 3.2×10^{-10} and for Fe³⁺ is 6.3×10^{-3} . These values are in the range for some weak acids we are familiar with like acetic acid K_a = 1.8×10^{-5} .

Slide 181 / 208

Acid-Base Properties of Salt Solutions

We have observed that metal cations (hydrated in solution) lower the pH of a solution.

Lone pairs on oxygen are attracted to the cation.

The shift of electron density in water makes the O-H bond more polar.

Hydrogen atoms become more acidic, and thus more likely to become $\mathsf{H}^{\scriptscriptstyle +}$ ions in solution.

Shift in electron density away from hydrogen atoms.

Slide 182 / 208

Acid-Base Properties of Salt Solutions

We have observed that metal cations (hydrated in solution) lower the pH of a solution.

Compare the following:

attraction betweena 1⁺ cation and H₂O molecule.

attraction between a 3⁺ cation and H_2O molecule.

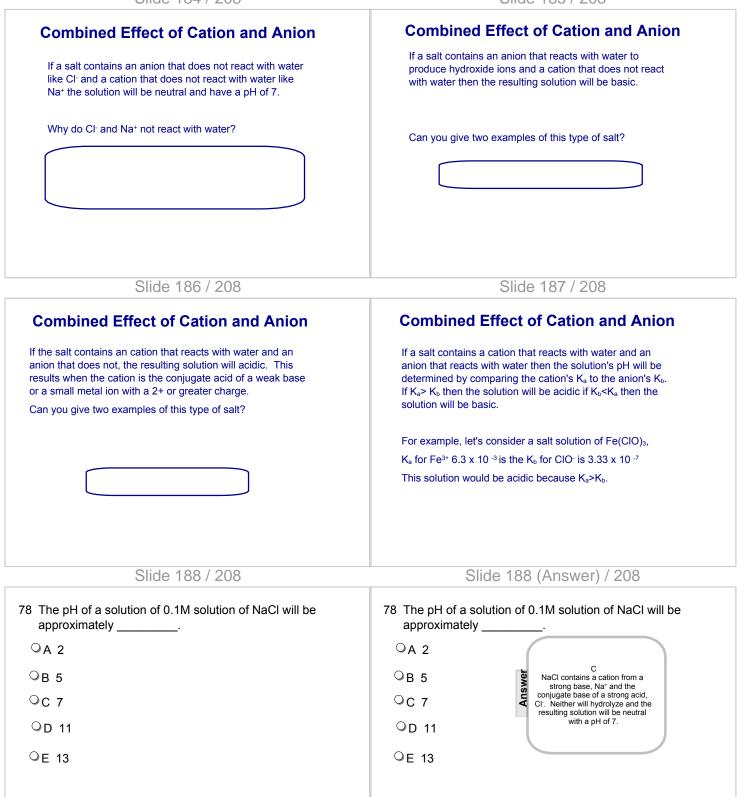
The cation with the greater charge will make the solution more acidic.

Slide 183 / 208

Cation Effect on pH

The pH of a salt solution depends on the ability of the salt ions to hydrolyze.

Consider the ability of the aluminum Fe³⁺ to hydrolyze:


 $Fe^{3+} + H_2O \longrightarrow Fe(OH)_3 + H^+$

The increased H⁺ concentration reduces the pH.

Small positively charged cations will hydrolyze and form acidic solution.

Slide 184 / 208

Slide	185	/	208
-------	-----	---	-----

 79 The pH of a solution of 0.1 M solution of K₃PO₄ will be approximately ○A 2 ○B 5 ○C 7 ○D 11 ○E 13 	 79 The pH of a solution of 0.1 M solution of K₃PO₄ will be approximately A 2 B 5 C 7 D 11 E 13
Slide 190 / 208	Slide 190 (Answer) / 208
80 The pH of a solution of 0.1M solution of LiHCO ₃ at 25° C will be approximately	80 The pH of a solution of 0.1M solution of LiHCO₃ at 25° C will be approximately
OA 2	OA 2 D
⊙в 5	B 5 LiHCOs contains the cation of a strong base, Li [*] , that will not react with water and the
°c 7	OC 7 To treact with water and the amphoteric, conjugate base, HCO ₃ , of a weak acid, H ₂ CO ₃ The K ₈ for HCO ₃ is 5.6 x 10 ⁻¹¹
^O D 11	$ \bigcirc D 11 $ and the K _b = 1 x 10 ⁻¹⁴ K _a (Kb = 1.79 x 10 ⁴ . The K _b is greater than K _a therefore in water HCO ₃ will act like a base
°E 13	© E 13
Slide 191 / 208	Slide 191 (Answer) / 208
81 A 0.1 <i>M</i> aqueous solution of will have a pH of 7.0 at 25°C.	81 A 0.1 <i>M</i> aqueous solution of will have a pH of 7.0 at 25°C.
Q A NaOCI	OA NaOCI B
⊖ B BaBr₂	B BaBr ₂ BaBr ₂ BaBr ₂ contains the cation of a strong base, Ba ²⁺ and the conjugate
O C NH₄CI	solution will be neutral.
\bigcirc D Ca(C ₂ H ₃ O ₂) ₂ \bigcirc E none of these	\bigcirc D Ca(C ₂ H ₃ O ₂) ₂ \bigcirc E none of these

 82 A 0.1<i>M</i> aqueous solution of has a pH of less than 7.0 at 25°C. ○ A Na₂S ○ B KF ○ C NaNO₃ ○ D NH₄Cl ○ E NaF 	 82 A 0.1<i>M</i> aqueous solution of has a pH of less than 7.0 at 25°C. A Na₂S B KF C NaNO₃ D NH₄Cl E NaF 		
Slide 193 / 208	Slide 193 (Answer) / 208		
 83 An aqueous solution of will produce a basic solution at 25°C. A NH₄ClO₄ B KBr C NaCl D CaCO₃ E Fe(ClO ₃)₂ 	 83 An aqueous solution of will produce a basic solution at 25°C. A NH₄ClO₄ B KBr C NaCl D CaCO₃ E Fe(ClO 3)2 Water and produce a basic solution. KBr and NaCl will make neutral solutions. 		
Slide 194 / 208	Slide 194 (Answer) / 208		
 84 A 1-molar solution of which of the following salts has the highest pH? A NaNO₃ B Na₂CO₃ C NH₄Cl D NaHSO₄ E Na ₂SO ₄ 	 84 A 1-molar solution of which of the following salts has the highest pH? A NaNO₃ B Na₂CO₃ C NH₄Cl D NaHSO₄ E Na₂SO₄ 		
Question from the College Board	Question from the College Board		

Slide 195 / 208

 85 An aqueous solution of will produce a neutral solution. A NH₄ClO₄ B AlBr₃ C FeCl₃ D SrCO₃ E BaCl₂ 	 85 An aqueous solution of will produce a neutral solution. A NH₄ClO₄ B AlBr₃ C FeCl₃ D SrCO₃ E BaCl₂ 	
Slide 196 / 208	Slide 196 (Answer) / 208	
 86 Of the following substances, an aqueous solution of will form basic solutions. NH₄Cl, Cu(NO₃)₂, K₂CO₃, NaF A NH₄Cl and Cu(NO₃)₂ B NH₄Cl and K₂CO₃ C K₂CO₃ and NaF D NaF only E NH₄Cl only 	 86 Of the following substances, an aqueous solution of will form basic solutions. NH₄Cl, Cu(NO₃)₂, K₂CO₃, NaF A NH₄Cl and Cu(NO₃)₂ B NH₄Cl and K₂CO₃ C K₂CO₃ and NaF D NaF only E NH₄Cl only 	
Slide 197 / 208	Slide 198 / 208	
Acid-Base Properties of Salt Solutions Summary: Anions The conjugate bases of strong acids will not undergo hydrolysis and not affect pH. (Examples: Cl ⁻ ,l ⁻ , NO ₃ ⁻) The conjugate bases of weak acids will hydrolyze and will raise pH by creating excess OH ions. (Examples: NO ₂ ⁻ , ClO ⁻ , CO ₃ ²) Amphoteric anions will either act acidic or basic based on the K _a and K _b values of the acid and base. (Examples: HCO ₃ ⁻ , H ₂ PO ₄ ⁻)	$\label{eq:production} \begin{array}{l} \text{Acid-Base Properties of Salt Solutions} \\ \text{Summary: Cations} \\ \text{Summary: Cations} \\ \text{Cations from strong bases will not undergo hydrolysis and will not affect pH.} \\ (tramples, Na^+, Li^+, Ca^{2+}) \\ \text{The conjugate acids of weak bases will hydrolyze and will lower pH by creating excess H^+ ions.} \\ (tramples: NH_4^+, C_2H_5NH_3^+) \\ \text{Small metal cations from weak bases will hydrolyze and lower pH by creating excess H^+ ions. The higher the charge on the cation the greater the affect on pH.} \\ (tramples Fe^{2+}, Fe^{3+}, Al^{3+}) \\ \end{array}$	

Slide 199 / 208

Factors Affecting Acid

Strength

Factors Affecting Acid Strength

The more polar the H-X bond and/or the weakerthe H-X bond, the more acidic the compound.

So acidity increases from left to right across a rowand from top to bottom down a group.

Slide 201 / 208

Return to the Table of Contents

Factors Affecting Acid Strength

In oxyacids, in which an -OH is bonded to another atom, Y, the more electronegative Y is, the more acidic the acid.

 K_a = 3.0x10⁻⁸

K_a= 2.3x10⁻¹¹

In HOCI, the electron density will be shifted to the more electronegative CI atom weakening the O-Hbond.

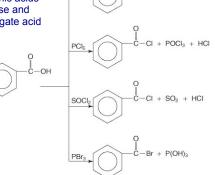
The strength of the acid will be in the order

HOCI > HOBr > HOI

Slide 202 / 208

Factors Affecting Acid Strength

Among oxyacids, the more oxygen atoms in the molecule, the stronger the acid would be.


The electron density will be more towards the oxygen atoms and the oxidation number increases, the strength of the acid increases.

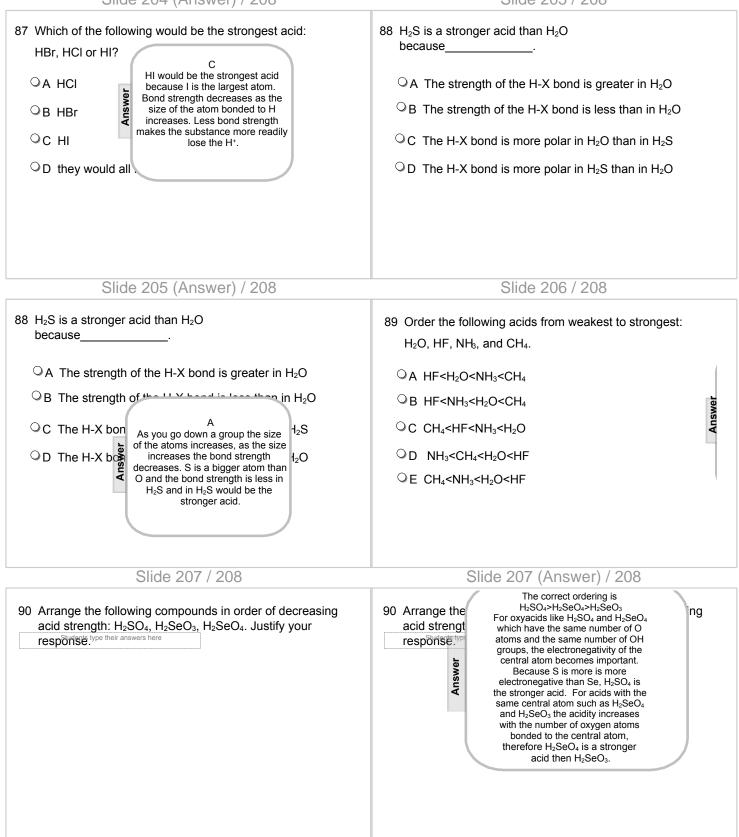
For a series of oxyacids, acidity increases with the number of oxygen atoms.

Slide 203 / 208

Factors Affecting Acid Strength

Resonance in the conjugate bases of carboxylic acids stabilizes the base and makes the conjugate acid more acidic.

+ P(OH)3


Slide 204 / 208

87 Which of the following would be the strongest acid: HBr, HCl or HI?

OA HCI

- OB HBr
- ОС НІ
- \bigcirc D they would all be equally strong acids

Slide 204 (Answer) / 208

Slide 208 / 208