Acids, Bases and pH Answers

Q	Part	Sub Part	Marking Guidance			Comments
5	(a)	(i)	- log[H ⁺]	1	penalise missing [] here and not elsewhere	
5	(a)	(ii)	[H ⁺][OH ⁻]		1	
5	(b)	(i)	$[H^+] = 2.34 \times 10^{-7}$		1	
			pH = 6.63 Penalise fewer than 3 sig figs but allow more than 2 dp			
5	(b)	(ii)	[H ⁺] = [OH [−]]			
5	(b)	(iii)	$[H^+] = K_w/[OH^-]$	M1	1	if upside down or CE, allow M3 only for correct use of their [H ⁺]
			$(= 5.48 \times 10^{-14} / 0.140) = 3.91 \times 10^{-13}$	M2	1	
			pH = 12.4(1)	M3	1	not 12.40 (AE from 12.407)
			Penalise fewer than 3 sig figs but allow more than 3 sfs For values above 10, allow 3sfs - do not insist on 2 dp. For values below 1, allow 2dp – do not insist on 3 sig figs Not allow pH = 14 – pOH but can award M3 only for pH = 13.1(46) Can award all three marks if $pK_w = 13.26$ is used			

5	(c)			mol NaOH = mol OH ⁻ = $(30 \times 10^{-3}) \times 0$.	$20 = 6.0 \times 10^{-3}$	M1	1	mark for answer	
				mol H ₂ SO ₄ = $(25 \times 10^{-3}) \times 0.15 = 3.7$	'5×10 ⁻³	M2	1	mark for answer	
				mol H ⁺ = $(25 \times 10^{-3}) \times 0.15 \times 2 = 7.5$ OR XS mol H ₂ SO ₄ = 0.75×10^{-3}	5 ×10 ⁻³	М3	1	if factor of 2 missed or lose M3 and next mark they must then use K_w see examples below	used wrongly, CE - gained. In this case to score any more.
				XS mol H ⁺ = 1.5×10^{-3}		M4	1		
	$[H^+] = (1.5 \times 10^{-3}) \times (1000/55) = 0.0273$.0273	M5	1	if no use or wrong use and M6 except if 1000 AE -1 (pH = 4.56)	of volume, lose M5 missed		
				pH = 1.56 Penalise fewer than 3 sig figs but allo For values above 10, allow 3sfs - do For values below 1, allow 2dp – do no	w more than 3 sfs not insist on 2 dp. ot insist on 3 sig figs	M6	1		
5	(d)	(i) (i) $K_a = \frac{[H^+][CH_3COO^-]}{[CH_3COOH]}$ Must have all 3 brackets but don't penalize () see note to Q5(a)(i)			but don't Q5(a)(i)	1	not HA This mark could score	in (d) (ii)	
5	(d) (ii) $K_a = \frac{[H^+]^2}{[CH_3COOH]}$ or with numbers or $[H^+] = [CH_3COO^-]$				1	allow HA here This mark could score	in (d) (i)		
		$[H^+] = (\sqrt{(1.74 \times 10^{-5} \times 0.136)} = \sqrt{(2.366 \times 10^{-6})^{-6}} = (1.54 \times 10^{-3})^{-3}$				1	mark for answer if 1.5 ×10 ⁻³ penalise here	if miss √ but it is shown, AE -1 so allow 2 for	
	pH = 2.81 can give three marks here for (d)(ii) Do not insist on 2 dp Penalise fewer than 3 sig figs but allow more than 3 sfs For values below 1, allow 2dp – do not insist on 3 sig figs			1	allow pH = 2.82 conseq	pH = 5.63			

Question	Part	Sub		Mark	Comments
		part			
2	(a)	(i)	-log[H ⁺]	1	or log1/[H^+] penalise ()
2	(a)	(ii)	[H ⁺] = 0.56	1	mark for the answer; allow 2dp or more
			$[H_2SO_4] = \frac{1}{2} \times 0.56 = 0.28$	1	
2	(b)	(i)	$CH_3COOH + NaOH \rightarrow CH_3COONa + H_2O$	1	Allow CH ₃ CO ₂ H etc
			OR		
			$CH_3COOH + OH^- \rightarrow CH_3COO^- + H_2O$		
2	(b)	(ii)	mol acid = $(25.0 \times 10^{-3}) \times 0.41 = 1.025 \times 10^{-2}$ or 1.03×10^{-2}	1	
			$[NaOH] = 1.025 \times 10^{-2} / 22.6 \times 10^{-3} = 0.45(4)$	1	mark for answer
			OR		If not 0.454 look back for error
			[NaOH] = 1.03 × 10 ⁻² / 22.6 × 10 ⁻³ = 0.456 or 0.46		
2	(b)	(iii)	cresol purple	1	
2	(b)	(iv)	NaOH reacts with carbon dioxide (in the air)	1	
2	(c)	(i)	$K_{a} = \frac{[H^{+}][CH_{3}COO^{-}]}{[CH_{3}COOH]}$ allow molecular formulae or minor slip in formulae	1	penalise () allow H₃O⁺ not allow HA etc

2 (0	c) (ii	$\begin{aligned} K_{a} &= \frac{[\mathrm{H}^{+}]^{2}}{[\mathrm{CH}_{3}\mathrm{COOH}]} & \text{or with numbers} \\ [\mathrm{H}^{+}] &= (\sqrt{(1.74 \times 10^{-5} \times 0.410)} = \sqrt{(7.13 \times 10^{-6})}) = 2.67 \times 10^{-3} \\ \mathrm{pH} &= 2.57 & \text{can give three ticks here for (c)(ii)} \\ &\text{penalise decimal places } < 2 > \end{aligned}$	1	allow HA etc here This can be scored in part(c)(i) but doesn't score there. mark for 2.67 ×10 ⁻³ or 2.7×10 ⁻³ either gives 2.57 pH mark conseq on their [H ⁺] so 5.15 gets 2 marks where square root not taken
2 (0	c) (ii	$ \begin{array}{l} \textbf{M1} \mbox{ mol } OH^- = (10.0 \times 10^{-3}) \times 0.10 = 1.0 \times 10^{-3} \\ \textbf{M2} \mbox{ orig mol } HA = (25.0 \times 10^{-3}) \times 0.41 = 0.01025 \\ \mbox{ or } 1.025 \times 10^{-2} \mbox{ or } 1.03 \times 10^{-2} \\ \textbf{M3} \mbox{ mol } \underline{HA} \mbox{ in buffer } = \mbox{ orig mol } HA - \mbox{ mol } OH^- \\ \mbox{ = } 0.00925 \mbox{ or } 0.0093 \\ \textbf{M4} \mbox{ mol } A^- \mbox{ in buffer } = \mbox{ mol } OH^- = 1.0 \times 10^{-3} \\ \textbf{M5} \mbox{ [H^+]} = (\frac{Ka \times [CH_3COOH]}{[CH_3COO^-]} =) \\ \mbox{ (} \frac{(1.74 \times 10^{-5})(0.00925)}{0.0010} \mbox{ or } \frac{(1.74 \times 10^{-5})(0.00930)}{0.0010} \\ \mbox{ (= } 1.61 \times 10^{-4} \mbox{ or } 1.62 \times 10^{-4} \mbox{)} \\ \textbf{M6} \mbox{ pH = } 3.79 \mbox{ can give six ticks for } 3.79 \\ \mbox{ NB Unlike Qu } 2(c)(ii), \mbox{ this pH mark is NOT awarded conseq to their [H^+] unless following AE } \end{array} $	1 1 1 1 1 1	If no subtraction or other wrong chemistry the max score is 3 for M1, M2 and M4 If A ⁻ is wrong, max 3 for M1, M2 and M3 or use of pH = pKa – log [HA]/ [A ⁻] Mark is for insertion of correct numbers in correct expression for [H ⁺] if [HA]/[A ⁻] upside down lose M5 & M6 If wrong method e.g. [H ⁺] ² /[HA] max 3 for M1, M2 and M3 Some may calculate concentrations [HA] = 0.264 and [A ⁻] = 0.0286 and rounding this to 0.029 gives pH = 3.80 (which is OK) BEWARE: using 0.01025 wrongly instead of 0.00925 gives pH = 3.75 (this gets 3 for M1, M2 & M4)

Question	Marking Guidance	Mark	Comments
1(a)	С	1	
	A	1	
	D	1	
1(b)(i)	Bromocresol green	1	Allow wrong spellings
1(b)(ii)	Purple to yellow	1	Must have both colours: Purple start – yellow finish

Question	Marking Guidance	Mark	Comments
2(a)(i)	- log[H ⁺]	1	penalise missing [] here and not elsewhere
2(a)(ii)	[H ⁺][OH ⁻]	1	Allow () brackets, but must have charges
2(a)(iii)	Mark independently from a(ii) $[H^+] = 10^{-13.72} = 1.905 \times 10^{-14}$ $K_w = 1.905 \times 10^{-14} \times 0.154 = = (2.93 - 2.94) \times 10^{-15}$	1	If wrong no further mark
2(b)(i)	$K_a = \frac{[H^+][CH_3COO^-]}{[CH_3COOH]}$	1	Must have charges and all brackets, allow () Acid/salt shown must be CH ₃ COOH not HA and correct formulae needed
- 4 - 4 - 4 - 4			

2(b)(ii)	In pH values penalise fewer than 3 sig figs each time but allow more than 2 dp For values above 10, allow 3sfs - do not insist on 2 dp					
	$K_{a} = \frac{[H^{+}]^{2}}{[CH_{3}COOH]}$	1	Allow HA			
	$([H^+]^2 = 1.75 \times 10^{-5} \times 0.154 = 2.695 \times 10^{-6} = 2.70 \times 10^{-6})$		If $$ shown but not done gets pH = 5.57 (scores 2)			
	$[H^+] = 1.64 \times 10^{-3}$	1	Allow mark for pH conseq to their [H ⁺] here			
	pH = 2.78 or 2.79	1	only			

2(c)(i)	In pH values penalise fewer than 3 sig figs each time but allow more than 2 dp For values above 10, allow 3sfs - do not insist on 2 dp					
	M1 Initially mol OH ⁻ = $(10 \times 10^{-3}) \times 0.154$ and mol HA = $(20 \times 10^{-3}) \times 0.154$ or mol OH ⁻ = 1.54×10^{-3} and mol HA = 3.08×10^{-3}	1				
	M2 $[H^+] = K_a \frac{[CH_3COOH]}{[CH_3COO^-]}$ or with numbers	1	Allow Henderson Hasselbach $pH = pK_a + \log \frac{[CH_3COO^-]}{[CH_3COOH]}$			
	M3 mol ethanoic acid left = (mol ethanoate ions) = 1.54×10^{-3} K _a = [H ⁺] or pH = pK _a scores M1 , M2 and M3	1	If either mol acid in mixture or mol salt wrong - max 2 for M1 and M2 Any mention of $[H^+]^2$ - max 2 for M1 and M3			
	M4 pH (= $-\log 1.75 \times 10^{-5}$) = 4.76 or 4.757	1	Not 4.75			
	If no subtraction (so mol ethanoic acid in buffer = original mol) $pH = 4.46$ scores 2 for M1 and M2 If $[H^+]^2$ used, $pH = 3.02$ scores 2 for M1 and M3					

2(c)(ii)	In pH values penalise fewer than 3 sig figs each time but allow more than 2 dp For values above 10, allow 3sfs - do not insist on 2 dp					
	M1 <u>XS mol KOH</u> (= $(20 \times 10^{-3}) \times 0.154$) = 3.08×10^{-3}	1	If no subtraction: max 1 for correct use of volume			
			No subtraction and no use of volume scores zero			
			If wrong subtraction or wrong moles			
			Can only score M2 and M3 for process			
	M2 $[OH^{-}] = 3.08 \times 10^{-3} \times \frac{10^{3}}{60} = 0.0513(3)$	1	Mark for dividing their answer to M1 by correct volume (method mark)			
			If no volume or wrong volume or multiplied by volume, max 2 for M1 and M3 process			
	M3 $[H^+] = 10^{-14}$ (= 1.948 × 10 ⁻¹³ to 1.95 × 10 ⁻¹³)	1	Mark for K_w divided by their answer to $\ensuremath{\text{M2}}$			
	0.05133 or pOH = 1.29		If pOH route, give one mark for 14 – pOH			
	M4 pH = 12.7(1)	1	Allow 3sf but not 12.70			
	If no subtraction and no use of volume (pH = 11.79 scores zero)					
	If no subtraction, max 1 for correct use of volume, (60 cm^3) (pH = 13.01 scores 1)					
	If volume not used, pH = 11.49 (gets 2)					
	If multiplied by vol, pH = 10.27 (gets 2)					

Question	Marking Guidance	Mark	Comments
2(a)(i)	- log[H ⁺] or log 1/[H ⁺]	1	penalise missing square brackets here only
2(a)(ii)	0.81	1	2dp required, no other answer allowed
2(a)(iii)	M1 mol H ⁺ = 1.54×10^{-3}	1	if wrong no further mark if 1.5 $\times 10^{-3}$ allow M1 but not M2 for 2.82
	M2 pH = 2.81	1	allow more than 2dp but not fewer
2(b)	M1 $[H^+] = 3.31 \times 10^{-3}$	1	
	M2 $K_a = \frac{[H^+][X^-]}{[HX]}$ or $\frac{[H^+]^2}{[HX]}$ or using numbers	1	do not penalise () or one or more missing []
	M3 [HX] = $\frac{[H^+]^2}{K_a} = \frac{(3.31 \times 10^{-3})^2}{4.83 \times 10^{-5}}$	1	allow conseq on their $[H^+]^2/(4.83 \times 10^{-5})$ (AE) if upside down, no further marks after M2
	M4 [HX] = 0.227	1	allow 0.225 – 0.23
2(c)	M1 extra/added OH [−] removed by reaction with H ⁺ or the acid	1	
	M2 correct discussion of equm shift i.e. HX \implies H ⁺ + X ⁻ moves to right	1	
	OR		
	ratio $\frac{[HX]}{[X^{-}]}$ remains almost constant		

2(d)(i)	M1	mol HY = $(50 \times 10^{-3}) \times 0.428 = 0.0214$	OR $[Y^{-}] = .0236 \times \frac{1000}{50} = 0.472$	1	mark for answer
	M2	$[H^+] = 1.35 \times 10^{-5} \times \frac{0.0214}{0.0236}$	OR $[H^+] = 1.35 \times 10^{-5} \times \frac{0.428}{0.472}$	1	must be numbers not just rearrangement of Ka expression
	OR	$1.35 \times 10^{-5} = [H^+] \times \frac{0.0236}{0.0214}$	OR $1.35 \times 10^{-5} = [H^+] \times \frac{0.472}{0.428}$		If either HY value or Y [−] value wrong, (apart from AE -1) lose M2 and M3
	M3 $[H^+] = 1.22 \times 10^{-5}$			1	mark for answer
	M4 pH = 4.91			1	allow more than 2dp but not fewer
					allow M4 for correct pH calculation using their [H⁺] (this applies in 2(d)(i) only)
	lf He	enderson Hasselbalch equation	used:		If Henderson Hasselbalch equation used:
	M1	mol HY = $(50 \times 10^{-3}) \times 0.428$ = 0.0214	OR [Y ⁻] = .0236 × $\frac{1000}{50}$ = 0.472	1	mark for answer
	M2 p <i>K</i> a = 4.87			1	
	М3	$\log(\frac{0.0214}{0.0236}) = -0.043$	$\log\left(\frac{0.428}{0.472}\right) = -0.043$	1	If either HY value or Y^- value wrong, (apart from AE-1) lose M3 and M4
	М4	pH = 4.87 - (-0.043) = 4.9)1	1	allow more than 2dp but not fewer

2(d)(ii)	M1	Mol HY after adding NaOH = 0.0	$214 - 5.0 \times 10^{-4} = 0.0209$	1	Can score full marks for correct consequential use of their HY and Y ⁻ values from d(i) AE in subtraction loses just M1 If wrong initial mol HY (i.e. not conseq to part d(i)) or no subtraction
					or subtraction of wrong amount, lose M1 and M3
	M2 Mol Y ⁻ after adding NaOH = 0.0236 + 5.0 ×10 ⁻⁴ = 0.0241		1	AE in addition loses just M2 If wrong mol Y ⁻ (i.e. not conseq to part d(i)) or no addition or addition of wrong amount lose M2 and next mark gained	
	M3	$[H^+] = 1.35 \times 10^{-5} \times \frac{0.0209}{0.0241}$ $(= 1.17 \times 10^{-5})$	if convert to concentrations $[H^+] = 1.35 \times 10^{-5} \times \frac{0.418}{0.482}$ $(= 1.17 \times 10^{-5})$	1	if HY/Y ⁻ upside down, no further marks
	M4	pH = 4.93	I	1	allow more than 2dp but not fewer
					NOT allow M4 for correct pH calculation using their $[H^+]$ (this allowance applies in 2(d)(i) only)

If He	nderson Hasselbalch equation used:		If Henderson Hasselbalch equation used:
M1	Mol HY after adding NaOH = 0.0214 – 5.0 ×10 ⁻⁴ = 0.0209	1	Can score full marks for correct consequential use of their HY and Y ⁻ values from d(i) AE in subtraction loses just M1 If wrong initial mol HY (i.e. not conseq to part d(i)) or no subtraction or subtraction of wrong amount
M2	Mol Y ⁻ after adding NaOH = 0.0236 + 5.0 ×10 ⁻⁴ = 0.0241	1	Iose M1 and M3 AE in addition Ioses just M2 If wrong mol Y ⁻ (i.e. not conseq to part d(i)) or no addition or addition of wrong amount Iose M2 and next mark gained
М3	$\log\left(\frac{0.0209}{0.0241}\right) = -0.062$	1	if HY/Y upside down, no further marks
M4	pH = 4.87 - (-0.062) = 4.93	1	allow more than 2dp but not fewer

Question	Marking Guidance		Additional Guidance
3(a)	Proton donor or H ⁺ donor	1	Allow donator
3(b)(i)	ВВ	1	Both need to be correct to score the mark
3(b)(ii)	A A	1	Both need to be correct to score the mark
3(b)(iii)	BA	1	Both need to be correct to score the mark
3(c)	M1 $[H^+] = 10^{-1.25}$ OR 0.05623 M2 mol HCl = $(25 \times 10^{-3}) \times 0.0850$ (= 2.125 × 10 ⁻³) M3 vol (= $\frac{2.125 \times 10^{-3}}{0.05623}$) = 0.0378 dm ³ or 37.8 cm ³ allow 0.0375 - 0.038 dm ³ or 37.5 - 38 cm ³	1 1 1	Mark for Working Units and answer tied Lose M3 if total given as (25+ 37.8) = 62.8 cm ³ Ignore "vol added = 12.8cm ³ " after correct answer
3(d)(i)	4.52	1	Must be 2dp
3(d)(ii)	$K_{a} = \frac{[H^{+}][X^{-}]}{[HX]} \text{ignore} = \frac{[H^{+}]^{2}}{[HX]} \text{but this may score M1} \\ \text{in d(iii)}$	1	Must have all brackets but allow () Allow HA etc NO mark for 10 ^{-pKa}
3(d)(iii)	M1 $K_a = \frac{[H^+]^2}{[HX]}$ or with numbers M2 $[H^+] = (\sqrt{(3.01 \times 10^{-5} \times 0.174)} = \sqrt{(5.24 \times 10^{-6})})$ $= 2.29 \times 10^{-3} - 2.3 \times 10^{-3}$ M3 pH = 2.64 (allow more than 2dp but not fewer)	1 1 1	Allow $[H^+] = \sqrt{(Ka \times [HA])}$ for M1 Mark for <u>answer</u> Allow 1 for correct pH from their wrong $[H^+]$ If square root forgotten, pH = 5.28 scores 2 for M1 and M3

3(e)	M1	mol OH ⁻ = $(10.0 \times 10^{-3}) \times 0.125 = 1.25 \times 10^{-3}$	1	Mark for answer
	M2	orig mol HX = $(15.0 \times 10^{-3}) \times 0.174 = 2.61 \times 10^{-3}$	1	Mark for answer
	М3	mol HX in buffer = orig mol HX – mol OH ⁻ = $2.61 \times 10^{-3} - 1.25 \times 10^{-3} = 1.36 \times 10^{-3}$ ([HX] = $1.36 \times 10^{-3}/25 \times 10^{-3} = 0.0544$)	1	Mark for answer Allow conseq on their (M2 – M1) If no subtraction, max 3 for M1, M2 & M4 (pH = 4.20) If $[H^+] = [X^-] \& \sqrt{used}$, max 3 for M1, M2 & M3 (pH = 2.89)
	M4	mol X ⁻ in buffer = mol OH ⁻ = 1.25×10^{-3} ([X ⁻] = $1.25 \times 10^{-3}/25 \times 10^{-3} = 0.05$)	1	May be scored in M5 expression
	M5	$[H^{+}] \left(=\frac{\text{Ka x } [\text{HX}]}{[\text{X}^{-}]}\right)$ $= \frac{3.01 \times 10^{-5} \text{ x } 1.36 \times 10^{-3}}{1.25 \times 10^{-3}} \text{OR} \frac{3.01 \times 10^{-5} \text{ x } 0.0544}{0.05}$ $(= 3.27 \times 10^{-5})$	1	If use $K_a = \frac{[H^+]^2}{[HX]}$ no further marks If either value of HX or X ⁻ used wrongly or expression upside down, no further marks
	M6	pH = 4.48 or 4.49 (allow more than 2dp but not fewer)	1	Do not allow M6 for correct calculation of pH using their [H ⁺] - this only applies in 3d(iii) - apart from earlier AE

Question	Marking Guidance		Mark	Comments
3(a)	Proton acceptor		1	
3(b)(i)	$CH_3CH_2NH_2 + H_2O \rightarrow CH_3CH_2NH_3^+ + OH^-$	₃ CH ₂ NH ₃ ⁺ + OH [−]		allow eq with or without \implies allow C ₂ H ₅ NH ₂ and C ₂ H ₅ NH ₃ ⁺ (plus can be on N or H or 3) allow RHS as C ₂ H ₅ NH ₃ OH
3(b)(ii)	Mark independently of 3b(i) reaction/equilibrium lies to left or low [OH ⁻] OR little OH ⁻ formed OR little ethylamine has reacted	ly of 3b(i) m lies to left or low [OH⁻] OR little OH⁻ formed ne has reacted		Allow Ethylamine is only partly/slightly dissociated OR Ethylamine is only partly/slightly ionized Ignore "not fully dissociated" or "not fully ionized" Ignore reference to ionisation or dissociation of water
3(c)	Ethylamine alkyl group is electron releasing/donating <i>OR</i> alkyl group has (positive) inductive effect increases electron density <u>on N(H₂)</u> <i>OR</i> increased availability of <u>Ip</u> <i>OR</i> increases ability of <u>Ip</u> (to accept H(+))	M1 M2 M3	1 1 1	If wrong no marks in 3c Mark M3 is independent of M2

3(d)	CH ₃ CH ₂ NH ₃ CI allow name (ethylammonium chloride or ethylamine hydrochloride) or other halide for CI	1	Or any amine hydrochloride or a strong organic acid NOT NH ₄ CI
3(e)	Mark independently of 3(d) Extra H ⁺ reacts with ethylamine or OH ⁻ OR CH ₃ CH ₂ NH ₂ + H ⁺ \rightarrow CH ₃ CH ₂ NH ₃ ⁺	1	Or makes reference to Equilibrium (in 3(b)(i)) with amine on LHS
	<i>OR</i> H ⁺ + OH ⁻ → H ₂ O Equilibrium shifts to RHS <i>OR</i> ratio [CH ₃ CH ₂ NH ₃ ⁺]/[CH ₃ CH ₂ NH ₂] remains almost constant	1	

Question	Marking Guidance			Comments
4(a)	[H ⁺] = 0.0170	M1	1	
	pH = 1.77	M2	1	2 dp
				Allow M2 for correct pH calculation from their wrong $[H^+]$ for this pH calculation only
4(b)(i)	$\mathcal{K}_{a} = \frac{[H^{+}][X^{-}]}{[HX]} \qquad \text{Ignore } \mathcal{K}_{a} = \frac{[H^{+}]^{2}}{[HX]}$		1	Penalize missing [] here and not elsewhere Allow HA instead of HX
4(b)(ii)	[H ⁺] = 10 ^{-2.79} OR 1.6218 ×10 ⁻³	M1	1	If [H ⁺] wrong, can only score M2
	$K_{a} = \frac{[H^{+}]^{2}}{[HX]}$ OR $\frac{[1.62 \times 10^{-3}]^{2}}{[0.0850]}$	M2	1	Allow HA instead of HX
	$K_{\rm a} = 3.09 \times 10^{-5}$ 3sfs min (allow 3.10 × 10 ⁻⁵ if 1.6218 rounded to 1.622) Ignore units	МЗ	1	If [HX] used as $(0.0850 - 1.62 \times 10^{-3})$ this gives $K_a = 3.15 \times 10^{-5}$ $(0.0016)^2 / 0.085 = 3.01 \times 10^{-5}$ scores 2 for AE

4(c)	4(c) mol OH ⁻ (= (38.2 × 10 ⁻³) × 0.550) = 2.10(1) × 10 ⁻² or 0.0210(1) mol H ⁺ (= (25.0 × 10 ⁻³) × 0.620) = 1.55 × 10 ⁻² or 0.0155 excess mol OH ⁻ = 5.5(1) × 10 ⁻³ [[OH ⁻] = 5.51 × 10 ⁻³ × $\frac{10^3}{63.2}$ [= 0.08718 (0.0872)] OR [OH ⁻] = 5.5 × 10 ⁻³ × $\frac{10^3}{63.2}$ = 0.0870(2)		M1 M2	1	Mark for answer Mark for answer
			M3	1	Allow conseq for M1 – M2 If wrong method e.g. no subtraction or use of $$ can only score max of M1, M2, M3 and M4.
			M4	1	(M1 - M2) / vol in dm ³ mark for dividing by volume (take use of 63.2 without 10 ⁻³ as AE so 9.94 scores 5) If no use or wrong use of vol lose M4 & M6 Can score M5 for showing (10 ⁻¹⁴ /their XS alkali)
	$[H^{+}] = \frac{10^{-14}}{0.08718} = 1.147 \times 10^{-13}$ OR $\frac{10^{-14}}{0.0870} = 1.149 \times 10^{-13}$	OR pOH = 1.06	M5	1	If no use or wrong use of K_w or pOH no further marks
	pH = 12.9(4) allow 3sf		M6	1	If vol missed score max 4 for 11.7(4)
					If acid- alkali reversed max 4 for pH = 1.06 Any excess acid - max 4

Question		Marking Guidance	Mark	Comments
3(a)	Protor	n donor or H⁺ donor	1	
3(b)(i)	$K_{a} = \frac{[CH_{3}COO^{-}][H^{+}]}{[CH_{3}COOH]} \text{ or } \frac{[CH_{3}COO^{-}][H_{3}O^{+}]}{[CH_{3}COOH]}$		1	If K_a wrong, can only score M1 below. Must be ethanoic acid not HA Must have square brackets (penalise here only) but mark on in (b)(ii).
3(b)(ii)	M1	$[H^+] = 10^{-2.69} \text{ OR } 2.042 \times 10^{-3} \text{ (mol dm}^{-3}\text{)}$	1	
	M2	$[CH_{3}COOH] = \frac{[H^{+}]^{2}}{K_{a}}$	1	Ignore () Mark for correctly rearranged expression incl $\left[H^{+}\right]^{2}$
	М3	$= \frac{(2.042 \times 10^{-3})^2}{1.75 \times 10^{-5}}$	1	If M2 wrong no further marks.
	M4	$= 0.238 \pmod{4000}$ Allow $0.229 - 0.24$	1	
3(c)(i)	$CICH_{2}COOH \iff CICH_{2}COO^{-} + H^{+}$ $OR CICH_{2}COOH + H_{2}O \iff CICH_{2}COO^{-} + H_{3}O^{+}$		1	Allow \rightarrow Allow CICH ₂ CO ₂ H and CICH ₂ CO ₂ ⁻
3(c)(ii)	M1	CI is (more electronegative so) withdraws electrons OR negative inductive effect of CI	1	Ignore electronegativity. Ignore chloroethanoic acid has a lower K_a value. Allow CI reduces +ve inductive effect of methyl group.
	M2	Weakens O—H bond <i>OR</i> O—H bond is more polar <i>OR</i> reduces negative charge on COO ⁻ <i>OR</i> stabilizes COO ⁻ (more)	1	M1 & M2 are independent marks. Ignore H ⁺ lost more easily.

3(d)(i)	Α	Α		
3(d)(ii)	С		1	
3(d)(iii)	D	D		
3(e)	M1	Mol NaOH = mol OH ⁻ = $(19.6 \times 10^{-3}) \times 0.720 = 1.41(1) \times 10^{-2}$	1	Mark for answer.
	M2	M2 Mol H ₂ SO ₄ = $(26.4 \times 10^{-3}) \times 0.550 = 1.45(2) \times 10^{-2}$		Mark for answer.
	М3	Mol H ⁺ added = $2 \times (1.452 \times 10^{-2}) = 2.90(4) \times 10^{-2}$ <i>OR</i> XS mol H ₂ SO ₄ = 7.46(4) × 10 ⁻³	1	If factor × 2 missed completely (pH = 2.05) or used wrongly later, can score max 4 for M1, M2, M5 & M6
	M4	XS mol H ⁺ = 0.0149(3)	1	
	M5	For dividing by volume $[H^+] = 0.0149(3) \times (1000 / 46.0) = 0.324 - 0.325 \text{ mol dm}^{-3}$	1	If no use or wrong use of volume lose M5 and M6 ie can score 4 for pH = 1.83 (no use of vol) Treat missing 1000 as AE (-1) & score 5 for pH = 3.49
	M6	pH = 0.49	1	2dp (penalise more or less).
				If × 2 missed & vol not used, pH=3.39 scores M1 & M2 only.

Question	Marking Guidance	Mark	Comments
2(a)(i)	[H ⁺][OH ⁻] OR [H ₃ O ⁺][OH ⁻] Ignore (aq)	1	Must have [] not ()
2(a)(ii)	$\sqrt{3.46 \times 10^{-14}}$ (= 1.86 × 10 ⁻⁷) pH = 6.73	1 1	If no square root, CE=0 Must be 2dp
2(a)(iii)	$[H^{+}] = 10^{-11.36} (= 4.365 \times 10^{-12} \text{ OR } 4.37 \times 10^{-12})$ $K_{w} = [4.365 \times 10^{-12} \text{ OR } 4.37 \times 10^{-12} \times 0.047] = 2.05 \times 10^{-13}$ Allow 2.05 × 10 ⁻¹³ - 2.1 × 10 ⁻¹³	1	Mark for working Mark for answer Ignore units
2(b)(i)	HCOOH \rightleftharpoons HCOO ⁻ + H ⁺ <i>OR</i> HCOOH + H ₂ O \rightleftharpoons HCOO ⁻ + H ₃ O ⁺	1	Must have \rightleftharpoons but ignore brackets. Allow HCO ₂ ⁻ or CHOO ⁻ ie minus must be on oxygen, so penalise COOH ⁻
2(b)(ii)	$K_{a} = \frac{[H^{+}][HCOO^{-}]}{[HCOOH]} OR \frac{[H_{3}O^{+}][HCOO^{-}]}{[HCOOH]}$	1	Must have all brackets but allow () Must be HCOOH etc. Allow ecf in formulae from 2(b)(i)
2(b)(iii)	M1 $K_a = \frac{[H^+]^2}{[HCOOH]}$ ($[H^+]^2 = 1.78 \times 10^{-4} \times 0.056 = 9.97 \times 10^{-6}$) M2 $[H^+] = 3.16 \times 10^{-3}$	1	Allow HA or HX etc. Allow $[H^+] = \sqrt{(Ka \times [HA])}$ for M1 Mark for answer
	M3 $pH = 2.50$ allow more than 2 dp but not fewer	1	Allow correct pH from their wrong [H ⁺] here only If square root shown but not taken, pH = 5.00 can score max 2 for M1 and M3

2(b)(iv)	M1	Decrease Mark M1 independently	1	
	M2	Equm <u>shifts/moves</u> to RHS OR more H^+ OR K_a increases OR more dissociation		
	М3	To reduce temperature or oppose increase/change in temperature	1	Only award M3 following correct M2
2(c)(i)	M1	$[H^+] = \frac{Ka \times [HX]}{[X^-]} \qquad OR \qquad pH = pK_a - \log \frac{[HX]}{[X^-]}$	1	If [HX]/[X ⁻] upside down, no marks
	M2	$\frac{1.78 \times 10^{-4} \text{ x } 2.35 \times 10^{-2}}{1.84 \times 10^{-2}} \textbf{OR} \text{pH} = 3.75 \ -\log \frac{2.35 \times 10^{-2}}{1.84 \times 10^{-2}}$	1	
		$(= 2.27 \times 10^{-4})$		
	M3	pH = 3.64 allow more than 2 dp but not fewer	1	pH calc NOT allowed from their wrong $[H^*]$ here
2(c)(ii)	M1	Mol H ⁺ added = 5.00×10^{-4}	1	Mark on from AE in moles of HCI (eg 5 x 10^{-3} gives pH = 3.42 scores 3)
	M2	Mol HCOOH = 2.40×10^{-2} and Mol HCOO ⁻ = 1.79×10^{-2}	1	If either wrong no further marks except AE (-1) OR if ECF in mol acid and/or mol salt from (c)(i), can score all 4
	М3	$\left[[H^{+}] \left(= \frac{\text{Ka x } [HX]}{[X^{-}]} \right) = \frac{1.78 \times 10^{-4} \text{ x } 2.40 \times 10^{-2}}{1.79 \times 10^{-2}} \left(= 2.39 \text{ x } 10^{-4} \right) \right]$	1	If [HX]/[X ⁻] upside down here after correct expression in (c)(i), no further marks
		OR pH = $3.75 - \log \frac{2.40 \times 10^{-2}}{1.79 \times 10^{-2}}$		If $[HX]/[X^-]$ upside down here and is repeat error from (c)(i), max 3 (pH = 3.88 after 3.86 in 2(c)(i))
	M4	pH = 3.62 allow more than 2 dp but not fewer	1	pH calc NOT allowed from their wrong $[H^*]$ here

Question	Marking Guidance		Mark	Comments
2(a)	(only) slightly or partially dissociated / ionised		1	Ignore 'not fully dissociated'. Allow low tendency to dissociate or to lose / donate a proton. Allow shown equilibrium well to the left. otherwise ignore equations
2(b)	$\begin{array}{c} 2CH_{3}CH_{2}COOH + Na_{2}CO_{3} \longrightarrow 2CH_{3}CH_{2}COONa + H_{2}O + CO_{2} \\ \textbf{OR} \\ 2CH_{3}CH_{2}COOH + CO_{3}^{2-} \longrightarrow 2CH_{3}CH_{2}COO^{-} + H_{2}O + CO_{2} \\ \textbf{OR} \\ CH_{3}CH_{2}COOH + Na_{2}CO_{3} \longrightarrow CH_{3}CH_{2}COONa + NaHCO_{3} \\ \textbf{OR} \\ CH_{3}CH_{2}COOH + CO_{3}^{2-} \longrightarrow CH_{3}CH_{2}COO^{-} + HCO_{3}^{-} \end{array}$		1	Must be propanoic acid, allow C_2H_5COOH not molecular formulae Allow multiples. Ignore reversible sign. Not H_2CO_3
2(c)	$[OH^{-}] = 2 \times 0.0120 = 0.0240$ $[H^{+}] = \frac{1 \times 10^{-14}}{0.0240} = 4.166 \times 10^{-13} \text{ OR } \text{pOH} = 1.62$ $\text{pH} = 12.38$	M1 M2 M3	1 1 1	Correct answer for pH with or without working scores 3 If \times 2 missed or used wrongly can only score M3 for correct calculation of pH from their [H ⁺] Lose M3 if not 2 decimal places: 12.4 scores 2 12.08 scores 1 (missing \times 2); 12.1 scores 0 11.78 scores 1 (dividing by 2) 11.8 scores 0

2(d)(i)	Ka	$= \frac{[H^+][C_6H_5COO^-]}{[C_6H_5COOH]}$	1	Ignore () here but brackets must be present. Must be correct acid and salt. If wrong, mark (d)(ii) independently.
2(d)(ii)	M1	$K_{\rm a} = \frac{[{\rm H}^+]^2}{[{\rm C}_6{\rm H}_5{\rm COOH}]}$ OR with numbers	1	Correct answer for pH with or without working scores 3 Allow HX, HA and ignore () here. May score M1 in (d)(i).
	M2	$[H^{+}] = \sqrt{(6.31 \times 10^{-5} \times 0.0120)} \text{ or } \sqrt{(K_a \times [C_6H_5COOH])}$ $(= \sqrt{(7.572 \times 10^{-7})^{-7}} = 8.70 \times 10^{-4})$	1	pH = 6.12 may score 2 if correct working shown and they show the square root but fail to take it. but if no working shown or wrong $K_a = \frac{[H^+]}{[C_6H_5COOH]}$ used
	M3	рН = 3. <u>06</u>	1	which also leads to 6.12, then zero scored. Must be 2 decimal places ie 3.1 loses M3

					-
2((d)(iii)	M1	$[H^+] = 10^{-4.00} = 1.00 \times 10^{-4}$	1	Correct answer for mass with or without working scores 5
			Ka x [HX]		Allow 1 × 10^{-4}
		M2	$[X_{-}] = \frac{1}{[H_{+}]}$	1	Ignore () here.
		МЗ	$= \frac{6.31 \times 10^{-5} \times 0.0120}{1.00 \times 10^{-4}}$	1	If [HX]/[X ⁻] upside down, can score M1 plus M4 for 5.26×10^{-7} And M5 for 7.57 $\times 10^{-5}$ g
		M4	$= 7.572 \times 10^{-3}$	1	
		M5	Mass (C ₆ H ₅ COONa) = $7.572 \times 10^{-3} \times 144 = 1.09 \text{ g}$ or 1.1 g	1	Wrong method, eg using $[H^+]^2$ may only score M1 and M5 for correct multiplication of their M4 by 144
					(provided not of obviously wrong substance)
	2(e)	M1	CO	1	Allow NO. and SO.
	2(0)	MO	nu (It) falla/daaraaaaa		If M1 wrong, no further more
		IVIZ		1	n wrong, no further marks.
		M3	mark M2 & M3 independently	1	
			acidic (gas)		Not forms $H_2CO_3 H_2SO_3 H_2SO_4$ etc OR H^+ ions.
			OR reacts with alkali(ne solution)/ OH ⁻		
			OR CO_2 + $2OH^- \longrightarrow CO_3^{2-} + H_2O$		
			OR $CO_2 + OH^- \longrightarrow HCO_3^-$		

Question	Marking Guidance	Mark	Comments
3(a)(i) A	G	1	
3(a)(ii) A	F	1	
3(a)(iii) A	Н	1	
3(b)(i) A	cresol purple	1	
3(b)(ii) G	yellow to red	1	both colours needed and must be in this order
3(b)(iii) G	Yellow or pale yellow	1	Not allow any other colour with yellow

Question		Marking Guidance	Mark	Comments
4(a)	M1	$[H_2O]$ is very high (compared with $[H^+]$ and $[OH^-]$)	1	
		OR		
		Very few H⁺ and OH⁻ ions		
		OR		
		Only / very slightly dissociates		Not partially dissociates
		OR		
		Equilibrium lies <u>far to the left</u>		
	M2	$[H_{2}\Omega]$ is (effectively) constant	1	Allow changes by only a very small amount
	1012	OD is incorrected into the constant K		Allow changes by only a very small amount
		OK is incorporated into the constant K		
4(b)	(Dissoc	iation OR breaking bonds) is endothermic	1	
	∴ Equi	librium moves to RHS (at higher T) to absorb heat or to		
	lower T	or oppose increase in T	1	Allow to oppose change only if increase T mentioned

4(c) Marked with 4(d)	[H⁺] pH	= $\sqrt{K_w}$ (or = $\sqrt{5.48 \times 10^{-14}}$) If wrong method no marks = 2.34×10^{-7} = 6.63	1 1 1	Correct pH answer scores 3 Using alternative K_w (1.00 x 10 ⁻¹⁴) gives pH = 7.00 which scores 1 Final answer must have 2dp
4(d) Marked with 4(c)	[H ⁺]	= K_w / [OH ⁻] or (= 5.48 × 10 ⁻¹⁴ /0.12) If wrong method no marks = 4.566 × 10 ⁻¹³ = 12.34	1 1 1	Correct pH answer scores 3 If use alternative K_w (1.00 x 10 ⁻¹⁴) again, do not penalise repeat error so pH = 13.08 scores 3 If use alternative K_w (1.00 x 10 ⁻¹⁴) not as a repeat error, pH = 13.08 scores 1 If AE in K_w value made in part (c) is repeated here, do not penalise again. Final answer must have 2dp, but if dp penalised in 4(c) allow more than 2dp here but not fewer.

Question		Answers	Mark	Comments
9(a)	M1	$[H^+] = \frac{K_a \times [CH_3COOH]}{[CH_3COOH]}$ or $= 1.74 \times 10^{-5} \times \frac{0.186}{0.105}$	1	Allow ()
	M2	$[CH_{3}COO]$ = 3.08 × 10 ⁻⁵	1	If $[HX]/[X^-]$ or $\frac{0.186}{0.105}$ upside down, or any addition or subtraction lose M1 & M2.
	M3	pH = 4.51 (correct answer scores 3)	1	Can score M3 for correct pH conseq to their $[H^+]$, so pH = 5.01 scores one
				Must be to 2 dp
9(b)	M1	mol HX after addition (= 0.251 + 0.015) = 0.266	1	For HX, if no addition or error in addition (other than AE) (or subsequent extra add or sub) MAX 3
	M2	mol X ⁻ after subtraction (= $0.140 - 0.015$) = 0.125	1	For X^{-} if no subtraction or error in subtraction (other than AE) (or subsequent extra add or sub) MAX 3
	M3	$[H^{+}] = \left(\frac{K_a \times [CH_3 COOH]}{[CH_3 COO^{-}]} \right) = \frac{1.74 \times 10^{-5} \times 0.266}{0.125}$	1	If errors above in both addition AND subtraction can only score M3 for insertion of their numbers in rearranged expression. One exception, if addition and subtraction reversed then $pH = 4.58$ scores 2
	M4	$[H^+] = 3.703 \times 10^{-5} \text{ (mol dm}^{-3}\text{)}$	1	If [HX]/[X ⁻] upside down, lose M3 & M4 (or next two marks) but can score M5 for correct pH conseq to
		pH = 4.43 Correct use of HX and X ⁻ values from 9(a) gives pH= 4.41 and scores 4	I	If wrong method, e.g $$ or no use of rearranged K_a expression, may score M1 & M2 but no more. Allow more but not fewer than 2dp here.

Questio	Answers		Mar	Comments
	Alter	Alternative using Henderson-Hasselbach Equation		
9(a)	M1	$pH = pKa - log[HX]/X^{-}] = -log(1.74 \times 10^{-5}) - log(\frac{0.186}{0.105})$	1	Allow ()
	M2	pKa = 4.76 - 0.248	1	If [HX]/[X ⁻] or $\frac{0.186}{0.105}$ upside down, can only score 1
			1	so pH = 5.01
	М3	pH = = 4.51		Must be to 2 dp
9(b)	M1	mol acid after addition = 0.251 + 0.015 = 0.266	1	For HX, if no addition or error in addition (other than AE) (or subsequent extra add or sub) MAX 3
	M2	mol salt after addition = 0.140 – 0.015 = 0.125	1	For X^{-} if no subtraction or error in subtraction (other than AE) (or subsequent extra add or sub) MAX 3
	M3	$pH = (pKa - log[HX]/[X]) = -log(1.74 \times 10^{-5}) - log(0.266/0.125)$	1	If errors above in both addition AND subtraction can only score M3 for insertion of their numbers - except
	M4	pH = 4.76 - 0.328	1	if addition and subtraction reversed then pH =4.58 scores 2
	M5	pH = = 4.43	1	If $[HX]/[X^-]$ upside down, lose M3 & M4 (or next two marks) but can score M5 for correct pH conseq to their working, so if M1 & M2 correct, pH = 5.09 scores 3.
				Allow more but not fewer than 2dp here.

Question	Answers	Mark	Additional Comments/Guidance	ID detail
1a	$\begin{array}{rcl} CH_3COOH &+& H_2O \ \rightleftharpoons & CH_3COO^- \ + & H_3O^+ \\ \\ OR \\ \\ CH_3COOH &\rightleftharpoons & CH_3COO^- \ + & H^+ \end{array}$	1	Must show \rightleftharpoons allow CH ₃ CO ₂ H, CH ₃ CO ₂ ⁻ Ignore state symbols	
1b	$CH_3COOH + HNO_3 \rightarrow CH_3COOH_2^+ + NO_3^-$	1	Ignore \rightleftharpoons Allow CH ₃ CO ₂ H, CH ₃ CO ₂ H ₂ ⁺ , CH ₃ C ⁺ (OH) ₂	

1c(i) marked with 1c(ii)	(new [HNO ₃] = [H ⁺] = $\frac{100}{150} \times 0.0125$) M1 [H ⁺] = 8.3(3) × 10 ⁻³ (mol dm ⁻³)	1	OR new [HNO ₃] = $\frac{\text{mol HNO}_3}{\text{total vol}} = \frac{1.25 \times 10^{-3}}{150 \times 10^{-3}}$
	M2 pH = -log M1 OR 2.08	1	Must be 2 dp Allow correct pH conseq to their [H ⁺] concentration
1c(ii)	M1 mol NaOH (= $50 \times 10^{-3} \times 0.0108$) = 5.40 × 10^{-4}	1	
marked with 1c(i)	M2 Subtraction of M1 from moles of HNO_3 (1.25 × 10 ⁻³ or conseq from 1c(i)) Excess mol H ⁺ = 7.10 × 10 ⁻⁴	1	M2 allow ecf for subtraction of mol If no subtraction, no further marks
	M3 $[H^+] = \frac{M2}{150 \times 10^{-3}}$ OR $\frac{7.10 \times 10^{-4}}{150 \times 10^{-3}} = 4.73 \times 10^{-3}$ M4 pH = -log M3 OR 2.32	1	M3 if no use of volume, no further marks (pH=3.15) If incorrect volume used, can score M4 M4 Allow 2.33 Must be 2 dp

1d(i)	M1 $K_{a} = \frac{[H^{+}][CH_{3}COO^{-}]}{[CH_{3}COOH]}$ M2 $K_{a} = \frac{[H^{+}]^{2}}{[CH_{3}COOH]}$ or with numbers or with HA M3 $[H^{+}] = [\sqrt{(1.74 \times 10^{-5} \times 0.0125)]} = 4.66 \times 10^{-4}$	1penalise () once hereNot $[H+][A-] / [HA]$ if K_a expression wrong – Allow correct pH conseq to their $[H^+]$ concentration M4 only1mark for answer
	M4 pH = 3.33	1 Must be 2 dp Allow correct pH conseq to their [H ⁺] concentration (pH = 3.83 can score M1, M2 and M4)
G 1d(ii)	sodium ethanoate	1 Ignore formula allow sodium acetate
1d(iii)	M1 $[H^+] = 1.45 \times 10^{-5}$ M2 $\frac{[salt]}{[acid]} (OR \frac{[CH_3COO^-]}{[CH_3COOH]} = \frac{Ka}{[H^+]}) = \frac{1.74 \times 10^{-5}}{1.45 \times 10^{-5}}$ M3 1.2(0)	1 Accept 1.445 × 10 ⁻⁵ or 1.4 × 10 ⁻⁵ 1 If M1 incorrect CE=0 Inclusion of 0.0125 in calculation can only score M1 1 ignore units 1.4 x 10 ⁻⁵ gives 1.24
1e	 M1 (Electronegative) chlorine withdraws electrons M2 Stabilises/reduces charge on COO- OR weakens <u>O-H</u> bond OR makes <u>O-H</u> more polar 	1 Allow CI has negative inductive effect 1 Ignore chloroethanoic acid dissociates more readily Mark independently

1f	M1 M2	Strong acids (almost) completely dissociated/ionised OR not an equilibrium OR equilibrium lies <u>far</u> to the right \underline{K}_{a} value for strong acids tends to infinity/is very large OR can't divide by zero in \underline{K}_{a}	1	Cannot have \underline{K}_{a} value for a reaction not in equilibrium scores both marks	
Total			20		

Question	Answers	Mark	Additional Comments/Guidance	ID details
G 2a(i)	Nucleophilic addition	1	any extra loses the mark allow minor spelling errors e.g. nucleophyllic	
2a(ii)	$\begin{array}{c} CH_{3}CH_{2} \longrightarrow M1 \\ H_{3}C \longrightarrow M2 \\ H \longrightarrow M2 \end{array}$	1	M1 for arrow from lone pair on oxygen in ethanol to C of C=O (or to space half way between O and C) M2 for arrow from C=O bond to oxygen in ethanal Do not allow M2 as first step without nucleophilic attack, but can allow M1 for attack on C+ produced + rather than δ + on C=O loses M2 Ignore any further steps Mark independently	
2b(i)	Equal mixture of enantiomers/optical isomers OWTTE	1		
2b(ii)	(non-superimposable) mirror images	1	Ignore rotates light in opposite directions Ignore stereoisomers	