Acids, Bases and pH
 Answers

Q	Part	Sub Part	Marking Guidance		Mark	Comments
5	(a)	(i)	$-\log \left[\mathrm{H}^{+}\right]$		1	penalise missing [] here and not elsewhere
5	(a)	(ii)	$\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$		1	
5	(b)	(i)	$\begin{aligned} & {\left[\mathrm{H}^{+}\right]=2.34 \times 10^{-7}} \\ & \mathrm{pH}=6.63 \end{aligned}$ Penalise fewer than 3 sig figs but allow more than $2 d p$		1 1	
5	(b)	(ii)	$\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$		1	
5	(b)	(iii)	$\begin{aligned} & {\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]} \\ & \left(=5.48 \times 10^{-14} / 0.140\right)=3.91 \times 10^{-13} \\ & \mathrm{pH}=12.4(1) \end{aligned}$ Penalise fewer than 3 sig figs but allow more than 3 sfs For values above 10, allow 3sfs - do not insist on 2 dp. For values below 1, allow 2dp-do not insist on 3 sig figs	M1 M2 M3	1 1 1	if upside down or CE, allow M3 only for correct use of their $\left[\mathrm{H}^{+}\right]$ not 12.40 (AE from 12.407)
			Not allow pH = 14-pOH but can award M3 only for pH = 13.1(46) Can award all three marks if $\mathrm{pK}_{\mathrm{w}}=13.26$ is used			

Question	Part	Sub part		Mark	Comments
2	(a)	(i)	$-\log \left[\mathrm{H}^{+}\right]$	1	or log1/[H^{+}] penalise ()
2	(a)	(ii)	$\left[\mathrm{H}^{+}\right]=0.56$ $\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]=1 / 2 \times 0.56=0.28$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	mark for the answer; allow 2dp or more
2	(b)	(i)	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O} \\ & \text { OR } \\ & \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \\ & \hline \end{aligned}$	1	Allow $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ etc
2	(b)	(ii)	$\begin{aligned} & \mathrm{mol} \text { acid }=\left(25.0 \times 10^{-3}\right) \times 0.41=1.025 \times 10^{-2} \text { or } 1.03 \times 10^{-2} \\ & {[\mathrm{NaOH}]=1.025 \times 10^{-2} / 22.6 \times 10^{-3}=0.45(4)} \\ & O R \\ & {[\mathrm{NaOH}]=1.03 \times 10^{-2} / 22.6 \times 10^{-3}=0.456 \text { or } 0.46} \end{aligned}$	1 1	mark for answer if not 0.454 look back for error
2	(b)	(iii)	cresol purple	1	
2	(b)	(iv)	NaOH reacts with carbon dioxide (in the air)	1	
2	(c)	(i)	$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]} \quad \begin{aligned} & \text { allow molecular formulae or } \\ & \text { minor slip in formulae }\end{aligned}$	1	penalise () allow $\mathrm{H}_{3} \mathrm{O}^{+}$ not allow HA etc

2	(c)	(ii)	$\begin{aligned} & \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]} \quad \text { or with numbers } \\ & {\left[\mathrm{H}^{+}\right]=\left(\sqrt{ }\left(1.74 \times 10^{-5} \times 0.410\right)=\sqrt{ }\left(7.13 \times 10^{-6}\right) \quad\right)=2.67 \times 10^{-3}} \\ & \mathrm{pH}=2.57 \quad \begin{array}{l} \text { can give three ticks here for (c)(ii) } \\ \text { penalise decimal places }<2\rangle \end{array} \end{aligned}$	1	allow HA etc here This can be scored in part(c)(i) but doesn't score there. mark for 2.67×10^{-3} or 2.7×10^{-3} either gives 2.57 pH mark conseq on their $\left[\mathrm{H}^{+}\right]$ so 5.15 gets 2 marks where square root not taken
2	(c)	(iii)	NB Unlike Qu 2(c)(ii), this pH mark is NOT awarded conseq to their $\left[\mathrm{H}^{+}\right]$unless following AE	1 1 1 1 1	If no subtraction or other wrong chemistry the max score is 3 for M1, M2 and M4 If A^{-}is wrong, $\max 3$ for M1, M2 and M3 or use of $\mathrm{pH}=\mathrm{pKa}-\log [\mathrm{HA}] /\left[\mathrm{A}^{-}\right]$ Mark is for insertion of correct numbers in correct expression for $\left[\mathrm{H}^{+}\right]$ if $[\mathrm{HA}] /\left[\mathrm{A}^{-}\right]$upside down lose M5 \& M6 If wrong method e.g. $\left[\mathrm{H}^{+}\right]^{2} /[\mathrm{HA}]$ max 3 for M1, M2 and M3 Some may calculate concentrations $[\mathrm{HA}]=0.264$ and $\left[\mathrm{A}^{-}\right]=0.0286$ and rounding this to 0.029 gives $\mathrm{pH}=3.80$ (which is OK) BEWARE: using 0.01025 wrongly instead of 0.00925 gives $\mathrm{pH}=3.75$ (this gets 3 for M1, M2 \& M4)

Question Marking Guidance Mark Comments 1(a) C 1 A 1 1(b)(i) Bromocresol green 1 1(b)(ii) Purple to yellow 1 Must have both colours:\quadPurple start - yellow finish

Question	Marking Guidance	Mark	Comments
2(a)(i)	- $\log \left[\mathrm{H}^{+}\right]$	1	penalise missing [] here and not elsewhere
2(a)(ii)	$\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$	1	Allow () brackets, but must have charges
2(a)(iii)	Mark independently from a(ii) $\begin{aligned} & {\left[\mathrm{H}^{+}\right]=10^{-13.72}=1.905 \times 10^{-14}} \\ & \mathrm{~K}_{\mathrm{w}}=1.905 \times 10^{-14} \times 0.154==(2.93-2.94) \times 10^{-15} \end{aligned}$		If wrong no further mark
2(b)(i)	$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$	1	Must have charges and all brackets, allow () Acid/salt shown must be $\mathrm{CH}_{3} \mathrm{COOH}$ not HA and correct formulae needed

2(b)(ii) In pH values penalise fewer than 3 sig figs each time but allow more than $\mathbf{2 d p}$
For values above 10, allow 3sfs - do not insist on 2 dp

$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$	1	Allow HA
$\left(\left[\mathrm{H}^{+}\right]^{2}=1.75 \times 10^{-5} \times 0.154=2.695 \times 10^{-6}=2.70 \times 10^{-6}\right)$		If $\sqrt{ }$ shown but not done gets $\mathrm{pH}=5.57$ $($ scores 2$)$
$\left[\mathrm{H}^{+}\right]=1.64 \times 10^{-3}$	1	Allow mark for pH conseq to their $\left[\mathrm{H}^{+}\right]$here $\mathrm{pH}=2.78$ or 2.79
only		

2(c)(i)	In pH values penalise fewer than 3 sig figs each time but allow more than 2 dp For values above 10, allow 3sfs - do not insist on 2 dp		
	```M1 Initially mol OH}=(10\times1\mp@subsup{0}{}{-3})\times0.154\mathrm{ and mol HA = (20 ×10-3) × 0.154 or mol OH}=1.54\times1\mp@subsup{0}{}{-3}\mathrm{ and mol HA =3.08 }\times1\mp@subsup{0}{}{-3```	1	
	M2 $\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a}} \frac{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}$or with numbers	1	Allow Henderson Hasselbach $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$
	M3 mol ethanoic acid left $=($ mol ethanoate ions $)=1.54 \times 10^{-3}$ $\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right] \quad$ or $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$ scores $\mathbf{M 1}$, $\mathbf{M} \mathbf{2}$ and $\mathbf{M 3}$	1	If either mol acid in mixture or mol salt wrong - max 2 for M1 and M2   Any mention of $\left[\mathrm{H}^{+}\right]^{2}-\max 2$ for M1 and M3
	M4 $\mathrm{pH}\left(=-\log 1.75 \times 10^{-5}\right)=4.76$ or 4.757	1	Not 4.75
	If no subtraction (so mol ethanoic acid in buffer =original mol) $\mathrm{pH}=4.46$ scores 2 for M 1 and M 2 If $\left[\mathrm{H}^{+}\right]^{2}$ used, $\mathrm{pH}=3.02$ scores 2 for M1 and M3		

## 2(c)(ii) In pH values penalise fewer than $\mathbf{3}$ sig figs each time but allow more than $\mathbf{2} \mathbf{d p}$

For values above 10, allow 3sfs - do not insist on 2 dp

M1 $\left.\underline{\text { XS mol KOH }( }=\left(20 \times 10^{-3}\right) \times 0.154\right)=3.08 \times 10^{-3}$	1	If no subtraction: max 1 for correct use of volume   No subtraction and no use of volume scores zero   If wrong subtraction or wrong moles   Can only score M2 and M3 for process
M2 $\left[\mathrm{OH}^{-}\right]=3.08 \times 10^{-3} \times \frac{10^{3}}{60}=0.0513(3)$	1	Mark for dividing their answer to M1 by correct volume (method mark)   If no volume or wrong volume or multiplied by volume, max 2 for M1 and M3 process
$\begin{array}{r} \text { M3 }\left[\mathrm{H}^{+}\right]=\frac{10^{-14}}{0.05133}\left(=1.948 \times 10^{-13} \text { to } 1.95 \times 10^{-13}\right) \\ \text { or } \mathrm{pOH}=1.29 \end{array}$	1	Mark for $\mathrm{K}_{\mathrm{w}}$ divided by their answer to M2   If pOH route, give one mark for $14-\mathrm{pOH}$
$\mathbf{M 4} \mathrm{pH}=12.7(1)$	1	Allow 3sf but not 12.70

If no subtraction and no use of volume ( $\mathrm{pH}=11.79$ scores zero)
If no subtraction, $\max 1$ for correct use of volume, $\left(60 \mathrm{~cm}^{3}\right)(\mathrm{pH}=13.01$ scores 1$)$
If volume not used, $\mathrm{pH}=11.49$ (gets 2 )
If multiplied by vol, $\mathrm{pH}=10.27$ (gets 2 )

Question	Marking Guidance	Mark	Comments
2(a)(i)	- $\log \left[\mathrm{H}^{+}\right]$or $\log 1 /\left[\mathrm{H}^{+}\right]$	1	penalise missing square brackets here only
2(a)(ii)	0.81	1	2dp required, no other answer allowed
2(a)(iii)	M1 $\mathrm{mol} \mathrm{H}^{+}=1.54 \times 10^{-3}$   $\mathbf{M 2} \mathbf{p H}=2.81$	1	if wrong no further mark if $1.5 \times 10^{-3}$ allow M1 but not M2 for 2.82 allow more than 2dp but not fewer
2(b)	M1 $\left[\mathrm{H}^{+}\right]=3.31 \times 10^{-3}$   M2 $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{X}^{-}\right]}{[\mathrm{HX}]}$ or $\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HX}]}$ or using numbers   M3 $[H X]=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\mathrm{~K}_{\mathrm{a}}}=\frac{\left(3.31 \times 10^{-3}\right)^{2}}{4.83 \times 10^{-5}}$   M4 $[\mathrm{HX}]=0.227$	1   1   1	do not penalise ( ) or one or more missing [ ]   allow conseq on their $\left[\mathrm{H}^{+}\right]^{2} /\left(4.83 \times 10^{-5}\right) \quad(\mathrm{AE})$ if upside down, no further marks after M2   allow 0.225-0.23
2(c)	M1 extra/added $\mathrm{OH}^{-}$removed by reaction with $\mathrm{H}^{+}$or the acid   $\mathbf{M} 2$ correct discussion of equm shift i.e. $\mathrm{HX} \rightleftharpoons \mathrm{H}^{+}+\mathrm{X}^{-}$moves to right   OR   ratio $\frac{[\mathrm{HX}]}{[\mathrm{X}]}$ remains almost constant	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	




## If Henderson Hasselbalch equation used:

M1 Mol HY after adding $\mathrm{NaOH}=0.0214-5.0 \times 10^{-4}=0.0209$

M2 Mol $\mathrm{Y}^{-}$after adding $\mathrm{NaOH}=0.0236+5.0 \times 10^{-4}=0.0241$

M3 $\quad \log \left(\frac{0.0209}{0.0241}\right)=-0.062$

M4 $\quad \mathrm{pH}=4.87-(-0.062)=4.93$

If Henderson Hasselbalch equation used:
Can score full marks for correct consequential use of their HY and $\mathrm{Y}^{-}$values from $\mathrm{d}(\mathrm{i})$

AE in subtraction loses just M1
If wrong initial mol HY (i.e. not conseq to part d(i)) or no subtraction
or subtraction of wrong amount
lose M1 and M3

AE in addition loses just M2
If wrong mol $\mathrm{Y}^{-}$(i.e. not conseq to part $\mathrm{d}(\mathrm{i})$ ) or no addition
or addition of wrong amount lose M2 and next mark gained
if $\mathrm{HY} / \mathrm{Y}^{-}$upside down, no further marks
allow more than 2dp but not fewer

Question	Marking Guidance	Mark	Additional Guidance
3(a)	Proton donor or $\mathrm{H}^{+}$donor	1	Allow donator
3(b)(i)	B B	1	Both need to be correct to score the mark
3(b)(ii)	A A	1	Both need to be correct to score the mark
3(b)(iii)	B A	1	Both need to be correct to score the mark
3(c)	M 1	$\left[\mathrm{H}^{+}\right]=10^{-1.25}$ OR 0.05623	1

Mark Scheme - General Certificate of Education (A-level) Chemistry - Unit 4: Kinetics, Equilibria and Organic Chemistry - June 2012

3(e)	M1	mol OH	1	Mark for answer
	M2	orig mol HX $=\left(15.0 \times 10^{-3}\right) \times 0.174=2.61 \times 10^{-3}$	1	Mark for answer
	M3	$\begin{aligned} & \text { mol } \mathrm{HX} \text { in buffer }=\text { orig } \mathrm{mol} \mathrm{HX}-\mathrm{mol} \mathrm{OH}^{-} \\ &=2.61 \times 10^{-3}-1.25 \times 10^{-3}=1.36 \times 10^{-3} \\ &\left([\mathrm{HX}]=1.36 \times 10^{-3} / 25 \times 10^{-3}=0.0544\right) \end{aligned}$	1	Mark for answer   Allow conseq on their (M2-M1)   If no subtraction, $\max 3$ for $\mathrm{M} 1, \mathrm{M} 2 \& \mathrm{M} 4(\mathrm{pH}=4.20)$   If $\left[\mathrm{H}^{+}\right]=[\mathrm{X}]$ \& V used, $\max 3$ for M1, M2 \& M3 ( $\mathrm{pH}=2.89$ )
	M4	$\begin{aligned} & \mathrm{mol} \mathrm{X} \\ & \mathrm{X}^{-} \text {in buffer }=\mathrm{mol} \mathrm{OH}^{-}=1.25 \times 10^{-3} \\ & \left([\mathrm{X}]=1.25 \times 10^{-3} / 25 \times 10^{-3}=0.05\right) \end{aligned}$	1	May be scored in M5 expression
	M5	$\begin{aligned} & {\left[\mathrm{H}^{+}\right] \quad\left(=\frac{\mathrm{Ka} \times[\mathrm{HX}]}{\left[\mathrm{X}^{-}\right]}\right)} \\ & =\frac{3.01 \times 10^{-5} \times 1.36 \times 10^{-3}}{1.25 \times 10^{-3}} \text { OR } \frac{3.01 \times 10^{-5} \times 0.0544}{0.05} \\ & \left(=3.27 \times 10^{-5}\right) \end{aligned}$	1	If use $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HX}]}$ no further marks   If either value of HX or X used wrongly or expression upside down, no further marks
	M6	$\mathrm{pH}=4.48$ or $4.49 \quad$ (allow more than 2dp but not fewer)	1	Do not allow M6 for correct calculation of pH using their $\left[\mathrm{H}^{+}\right]$- this only applies in 3d(iii) - apart from earlier AE


Question	Marking Guidance		Mark	Comments
3(a)	Proton acceptor		1	
3(b)(i)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{3}^{+}+\mathrm{OH}^{-}$		1	allow eq with or without $\rightleftharpoons$   allow $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$(plus can be on N or H or 3)   allow RHS as $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{OH}$
3(b)(ii)	Mark independently of 3 b (i)   reaction/equilibrium lies to left or low $\left[\mathrm{OH}^{-}\right] \mathbf{O R}$ little $\mathrm{OH}^{-}$formed OR little ethylamine has reacted		1	Allow   Ethylamine is only partly/slightly dissociated OR   Ethylamine is only partly/slightly ionized   Ignore "not fully dissociated" or "not fully ionized"   Ignore reference to ionisation or dissociation of water
3(c)	Ethylamine   alkyl group is electron releasing/donating   OR alkyl group has (positive) inductive effect increases electron density on $\mathrm{N}\left(\mathrm{H}_{2}\right)$   OR increased availability of $\underline{\underline{p}}$   OR increases ability of $\underline{l p}$ (to accept $\mathrm{H}(+)$ )	M1   M2   M3	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	If wrong no marks in 3c   Mark M3 is independent of M2

Mark Scheme - General Certificate of Education (A-level) Chemistry - Unit 4: Kinetics, Equilibria and Organic Chemistry - January 2012

3(d)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{3} \mathrm{Cl}$   allow name (ethylammonium chloride or ethylamine hydrochloride) or other halide for Cl	1	Or any amine hydrochloride or a strong organic acid NOT $\mathrm{NH}_{4} \mathrm{Cl}$
3(e)	Mark independently of 3(d)   Extra $\mathrm{H}^{+}$reacts with ethylamine or $\mathrm{OH}^{-}$   OR $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{H}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}$   OR $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$   Equilibrium shifts to RHS   OR ratio $\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{3}^{+}\right] /\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}\right]$ remains almost constant	1 1	Or makes reference to Equilibrium (in 3(b)(i)) with amine on LHS


Question	Marking Guidance		Mark	Comments
4(a)	$\begin{aligned} & {\left[\mathrm{H}^{+}\right]=0.0170} \\ & \mathrm{pH}=1.77 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M2 } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$2 \mathrm{dp}$   Allow M2 for correct pH calculation from their wrong $\left[\mathrm{H}^{+}\right]$for this pH calculation only
4(b)(i)	$K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{X}^{-}\right]}{[\mathrm{HX}]} \quad \text { Ignore } K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HX}]}$		1	Penalize missing [ ] here and not elsewhere Allow HA instead of HX
4(b)(ii)	$\begin{aligned} & {\left[\mathrm{H}^{+}\right]=10^{-2.79} \text { OR } 1.6218 \ldots \times 10^{-3}} \\ & K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HX}]} \text { OR } \frac{\left[1.62 \times 10^{-3}\right]^{2}}{[0.0850]} \\ & K_{\mathrm{a}}=3.09 \times 10^{-5} \quad 3 \mathrm{sfs} \mathrm{~min} \end{aligned}$   (allow $3.10 \times 10^{-5}$ if 1.6218 rounded to 1.622 ) Ignore units	M1   M2   M3	1   1	If $\left[\mathrm{H}^{+}\right]$wrong, can only score M2   Allow HA instead of HX   If $[\mathrm{HX}]$ used as $\left(0.0850-1.62 \times 10^{-3}\right)$   this gives $K_{\mathrm{a}}=3.15 \times 10^{-5}$   $(0.0016)^{2} / 0.085=3.01 \times 10^{-5} \quad$ scores 2 for AE


4(c)	$\begin{aligned} & \mathrm{mol} \mathrm{OH}^{-}\left(=\left(38.2 \times 10^{-3}\right) \times 0.550\right) \\ &= 2.10(1) \times 10^{-2} \text { or } 0.0210(1) \\ & \mathrm{mol} \mathrm{H}^{+} \quad\left(=\left(25.0 \times 10^{-3}\right) \times 0.620\right) \\ &= 1.55 \times 10^{-2} \text { or } 0.0155 \\ & \text { excess } \mathrm{mol} \mathrm{OH}^{-}=5.5(1) \times 10^{-3} \end{aligned}$		M1   M2   M3	1 1	Mark for answer   Mark for answer   Allow conseq for M1 - M2   If wrong method e.g. no subtraction or use of $\sqrt{ }$ can only score max of M1, M2, M3 and M4.
	$\begin{aligned} & {\left[\left[\mathrm{OH}^{-}\right]=5.51 \times 10^{-3} \times \frac{10^{3}}{63.2} \quad[=0.08718 \quad(0.0872)]\right.} \\ & \text { OR }\left[\mathrm{OH}^{-}\right]=5.5 \times 10^{-3} \times \frac{10^{3}}{63.2}=0.0870(2) \end{aligned}$		M4	1	( $\mathrm{M} 1-\mathrm{M} 2) /$ vol in $\mathrm{dm}^{3}$ mark for dividing by volume (take use of 63.2 without $10^{-3}$ as AE so 9.94 scores 5) If no use or wrong use of vol lose M4 \& M6 Can score M5 for showing (10-14/their XS alkali)
	$\begin{aligned} & {\left[\mathrm{H}^{+}\right]=\frac{10^{-14}}{0.08718}=1.147 \times 10^{-13}} \\ & \text { OR } \frac{10^{-14}}{0.0870}=1.149 \times 10^{-13} \end{aligned}$	OR $\mathrm{pOH}=1.06$	M5	1	If no use or wrong use of $\mathrm{K}_{\mathrm{w}}$ or pOH no further marks
	$\mathrm{pH}=12.9$ (4) allow 3sf		M6	1	If vol missed score max 4 for 11.7(4)
					If acid- alkali reversed max 4 for $\mathrm{pH}=1.06$ Any excess acid - max 4


Question		Marking Guidance	Mark	Comments
3(a)	Proton donor or $\mathrm{H}^{+}$donor		1	
3(b)(i)	$K_{\mathrm{a}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]} \text { or } \frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$		1	If $K_{\mathrm{a}}$ wrong, can only score M1 below.   Must be ethanoic acid not HA   Must have square brackets (penalise here only) but mark on in (b)(ii).
3(b)(ii)	M1	$\left[\mathrm{H}^{+}\right]=10^{-2.69}$ OR $2.042 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$	1	
	M2	$\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\mathrm{~K}_{\mathrm{a}}}$	1	Ignore ()   Mark for correctly rearranged expression incl $\left[\mathrm{H}^{+}\right]^{2}$
	M3	$=\frac{\left(2.042 \times 10^{-3}\right)^{2}}{1.75 \times 10^{-5}}$	1	If M2 wrong no further marks.
	M4	$=0.238\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \quad$ Allow $0.229-0.24$	1	
3(c)(i)	$\begin{aligned} & \mathrm{ClCH}_{2} \mathrm{COOH} \rightleftarrows \mathrm{ClCH}_{2} \mathrm{COO}^{-}+\mathrm{H}^{+} \\ & \text {OR } \mathrm{ClCH}_{2} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{ClCH}_{2} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \end{aligned}$		1	Allow $\rightarrow$   Allow $\mathrm{ClCH}_{2} \mathrm{CO}_{2} \mathrm{H}$ and $\mathrm{ClCH}_{2} \mathrm{CO}_{2}{ }^{-}$
3(c)(ii)	M1	Cl is (more electronegative so) withdraws electrons OR negative inductive effect of Cl	1	Ignore electronegativity.   Ignore chloroethanoic acid has a lower $K_{\mathrm{a}}$ value.   Allow Cl reduces + ve inductive effect of methyl group.
	M2	Weakens O-H bond $\mathrm{OR} \mathrm{O}-\mathrm{H}$ bond is more polar $O R$ reduces negative charge on $\mathrm{COO}^{-}$ OR stabilizes $\mathrm{COO}^{-}$(more)	1	M1 \& M2 are independent marks.   Ignore $\mathrm{H}^{+}$lost more easily.


3(d)(i)	A		1	
3(d)(ii)	C		1	
3(d)(iii)	D		1	
3(e)	M1	$\mathrm{Mol} \mathrm{NaOH}=\mathrm{mol} \mathrm{OH}^{-}=\left(19.6 \times 10^{-3}\right) \times 0.720=1.41(1) \times 10^{-2}$	1	Mark for answer.
	M2	$\mathrm{Mol} \mathrm{H} \mathrm{SO}_{4}=\left(26.4 \times 10^{-3}\right) \times 0.550=1.45(2) \times 10^{-2}$	1	Mark for answer.
	M3	Mol H${ }^{+}$added $=2 \times\left(1.452 \times 10^{-2}\right)=2.90(4) \times 10^{-2}$ OR   $\mathrm{XS} \mathrm{mol} \mathrm{H} \mathrm{H}_{2} \mathrm{SO}_{4}=7.46(4) \times 10^{-3}$	1	If factor $\times 2$ missed completely $(\mathrm{pH}=2.05)$ or used wrongly later, can score max 4 for M1, M2, M5 \& M6
	M4	XS mol H${ }^{+}=0.0149(3)$	1	
	M5	For dividing by volume $\left[\mathrm{H}^{+}\right]=0.0149(3) \times(1000 / 46.0)=0.324-0.325 \mathrm{~mol} \mathrm{dm}^{-3}$	1	If no use or wrong use of volume lose M5 and M6 ie can score 4 for $\mathrm{pH}=1.83$ (no use of vol)   Treat missing 1000 as $\mathrm{AE}(-1)$ \& score 5 for $\mathrm{pH}=3.49$
	M6	$\mathrm{pH}=0.49$	1	2dp (penalise more or less).
				If $\times 2$ missed \& vol not used, $\mathrm{pH}=3.39$ scores M1 \& M2 only.


Question	Marking Guidance	Mark	Comments
2(a)(i)	$\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$OR $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right] \quad$ Ignore (aq)	1	Must have [ ] not ( )
2(a)(ii)	$\begin{aligned} & \sqrt{ } 3.46 \times 10^{-14} \quad\left(=1.86 \times 10^{-7}\right) \\ & \mathrm{pH}=6.73 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	If no square root, $\mathrm{CE}=0$ Must be 2dp
2(a)(iii)	$\begin{aligned} & {\left[\mathrm{H}^{+}\right]=10^{-11.36} \quad\left(=4.365 \times 10^{-12} \text { OR } 4.37 \times 10^{-12}\right)} \\ & K_{\mathrm{w}}=\left[4.365 \times 10^{-12} \text { OR } 4.37 \times 10^{-12} \times 0.047\right]=2.05 \times 10^{-13} \\ & \quad \text { Allow } 2.05 \times 10^{-13}-2.1 \times 10^{-13} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Mark for working Mark for answer Ignore units
2(b)(i)	$\begin{aligned} & \mathrm{HCOOH} \rightleftarrows \mathrm{HCOO}^{-}+\mathrm{H}^{+} \\ & \mathrm{OR} \mathrm{HCOOH}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{HCOO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \end{aligned}$	1	Must have $\rightleftarrows$ but ignore brackets.   Allow $\mathrm{HCO}_{2}{ }^{-}$or $\mathrm{CHOO}^{-}$ie minus must be on oxygen, so penalise $\mathrm{COOH}^{-}$
2(b)(ii)	$K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCOO}^{-}\right]}{[\mathrm{HCOOH}]}$ or $\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HCOO}^{-}\right]}{[\mathrm{HCOOH}]}$	1	Must have all brackets but allow ( )   Must be HCOOH etc.   Allow ecf in formulae from 2(b)(i)
2(b)(iii)	M1 $K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HCOOH}]} \quad\left(\left[\mathrm{H}^{+}\right]^{2}=1.78 \times 10^{-4} \times 0.056=9.97 \times 10^{-6}\right)$   M2 $\left[\mathrm{H}^{+}\right]=3.16 \times 10^{-3}$   M3 $\mathrm{pH}=2.50 \quad$ allow more than 2 dp but not fewer	1   1   1	Allow HA or HX etc.   Allow $\left[\mathrm{H}^{+}\right]=\sqrt{ }(\mathrm{Ka} \times[\mathrm{HA}])$ for M1   Mark for answer   Allow correct pH from their wrong [ $\mathrm{H}^{+}$] here only If square root shown but not taken, $\mathrm{pH}=5.00$ can score max 2 for M1 and M3

\begin{tabular}{|c|c|c|c|c|}
\hline 2(b)(iv) \& \begin{tabular}{l}
M1 \\
M2 \\
M3
\end{tabular} \& \begin{tabular}{l}
Decrease Mark M1 independently \\
Equm shifts/moves to RHS OR more \(\mathrm{H}^{+} \quad\) OR \(\quad K_{\mathrm{a}}\) increases OR more dissociation \\
To reduce temperature or oppose increase/change in temperature
\end{tabular} \& 1
1
1 \& Only award M3 following correct M2 \\
\hline 2(c)(i) \& \begin{tabular}{l}
M1 \\
M2 \\
M3
\end{tabular} \& \[
\begin{aligned}
\& {\left[\mathrm{H}^{+}\right]=\frac{\mathrm{Ka} \times[\mathrm{HX}]}{\left[\mathrm{X}^{-}\right]} \quad \text { OR } \quad \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}-\log \frac{[\mathrm{HX}]}{\left[\mathrm{X}^{-}\right]}} \\
\& \frac{1.78 \times 10^{-4} \times 2.35 \times 10^{-2}}{1.84 \times 10^{-2}} \quad \text { OR } \quad \mathrm{pH}=3.75-\log \frac{2.35 \times 10^{-2}}{1.84 \times 10^{-2}} \\
\& \left(=2.27 \times 10^{-4}\right) \\
\& \mathrm{pH}=3.64 \quad \text { allow more than } 2 \text { dp but not fewer }
\end{aligned}
\] \& 1
1 \& \begin{tabular}{l}
If \([H X] /[X]\) upside down, no marks \\
pH calc NOT allowed from their wrong \(\left[\mathrm{H}^{+}\right]\)here
\end{tabular} \\
\hline 2(c)(ii) \& M1
M2
M3

M4 \& | Mol H ${ }^{+}$added $=5.00 \times 10^{-4}$ |
| :--- |
| $\mathrm{Mol} \mathrm{HCOOH}=2.40 \times 10^{-2}$ and $\mathrm{Mol} \mathrm{HCOO}^{-}=1.79 \times 10^{-2}$ $\begin{gathered} {\left[\mathrm{H}^{+}\right]\left(=\frac{\mathrm{Ka} \times[\mathrm{HX}]}{\left[\mathrm{X}^{-}\right]}\right)=\frac{1.78 \times 10^{-4} \times 2.40 \times 10^{-2}}{1.79 \times 10^{-2}}\left(=2.39 \times 10^{-4}\right)} \\ \text { OR } \mathrm{pH}=3.75-\log \frac{2.40 \times 10^{-2}}{1.79 \times 10^{-2}} \end{gathered}$ |
| $\mathrm{pH}=3.62$ allow more than 2 dp but not fewer | \& 1

1
1
1

1 \& | Mark on from AE in moles of $\mathrm{HCl} \quad\left(\mathrm{eg} 5 \times 10^{-3}\right.$ gives $\mathrm{pH}=3.42$ scores 3 ) |
| :--- |
| If either wrong no further marks except $A E(-1) O R$ if ECF in mol acid and/or mol salt from (c)(i), can score all 4 |
| If [HX]/[X] upside down here after correct expression in (c)(i), no further marks |
| If $[H X] /[\mathrm{X}]$ upside down here and is repeat error from (c)(i), max $3 \quad$ ( $\mathrm{pH}=3.88$ after 3.86 in 2(c)(i)) |
| pH calc NOT allowed from their wrong [ $\mathrm{H}^{+}$] here | <br>

\hline
\end{tabular}

Question	Marking Guidance		Mark	Comments
2(a)	(only) slightly or partially dissociated / ionised		1	Ignore 'not fully dissociated'.   Allow low tendency to dissociate or to lose / donate a proton. Allow shown equilibrium well to the left. otherwise ignore equations
2(b)	$2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$   OR $2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{CO}_{3}^{2-} \longrightarrow 2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$   OR $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{Na}_{2} \mathrm{CO}_{3} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COONa}+\mathrm{NaHCO}_{3}$   OR $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{CO}_{3}^{2-} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{HCO}_{3}^{-}$		1	Must be propanoic acid, allow $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$ not molecular formulae   Allow multiples.   Ignore reversible sign.   Not $\mathrm{H}_{2} \mathrm{CO}_{3}$
2(c)	$\begin{aligned} & {\left[\mathrm{OH}^{-}\right]=2 \times 0.0120=0.0240} \\ & {\left[\mathrm{H}^{+}\right]=\frac{1 \times 10^{-14}}{0.0240}=4.166 \times 10^{-13} \text { OR } \mathrm{pOH}=1.62} \\ & \mathrm{pH}=12.3 \underline{88} \end{aligned}$	M1   M2   M3	1 1 1	Correct answer for pH with or without working scores 3   If $\times 2$ missed or used wrongly can only score M3 for correct calculation of pH from their $\left[\mathrm{H}^{+}\right]$   Lose M3 if not 2 decimal places: 12.4 scores 2   12.08 scores 1 (missing $\times 2$ ) ; 12.1 scores 0   11.78 scores 1 (dividing by 2) 11.8 scores 0


2(d)(i)	$K_{a}$	$=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]}$	1	Ignore ( ) here but brackets must be present.   Must be correct acid and salt.   If wrong, mark (d)(ii) independently.
2(d)(ii)	M1   M2   M3	$\begin{aligned} & K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]} \text { OR with numbers } \\ & {\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(6.31 \times 10^{-5} \times 0.0120\right) \text { or } \sqrt{ }\left(K_{\mathrm{a}} \times\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]\right)} \\ & \left(=\sqrt{ }\left(7.572 \times 10^{-7}=8.70 \times 10^{-4}\right)\right. \\ & \mathrm{pH}=3 . \underline{06} \end{aligned}$	1	Correct answer for pH with or without working scores 3 Allow HX, HA and ignore ( ) here.   May score M1 in (d)(i).   $\mathrm{pH}=6.12$ may score 2 if correct working shown and they show the square root but fail to take it.   but if no working shown or wrong $K_{a}=\frac{\left[\mathrm{H}^{+}\right]}{\left[C_{6} H_{5} \mathrm{COOH}\right]}$ used which also leads to 6.12 , then zero scored.   Must be 2 decimal places ie 3.1 loses M3


2(d)(iii)	M1   M2   M3   M4   M5	$\begin{aligned} & {\left[\mathrm{H}^{+}\right]=10^{-4.00}=1.00 \times 10^{-4}} \\ & {\left[\mathrm{X}^{-}\right]=\frac{\mathrm{Ka} \times[\mathrm{HX}]}{\left[\mathrm{H}^{+}\right]}} \\ & =\frac{6.31 \times 10^{-5} \times 0.0120}{1.00 \times 10^{-4}} \\ & \quad=7.572 \times 10^{-3} \\ & \text { Mass }\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}\right)=7.572 \times 10^{-3} \times 144=1.09 \mathrm{~g} \\ & \text { or } 1.1 \mathrm{~g} \end{aligned}$	1 1 1 1 1	Correct answer for mass with or without working scores 5 Allow $1 \times 10^{-4}$ Ignore () here.   If $[\mathrm{HX}] /\left[\mathrm{X}^{-}\right]$upside down, can score M1 plus   M4 for $5.26 \times 10^{-7}$   And M5 for $7.57 \times 10^{-5} \mathrm{~g}$   Wrong method, eg using $\left[\mathrm{H}^{+}\right]^{2}$ may only score M1 and M5 for correct multiplication of their M4 by 144   (provided not of obviously wrong substance)


2(e)	M1   M2   M3	$\mathrm{CO}_{2}$   pH (It) falls/decreases   mark M2 \& M3 independently   acidic (gas)   OR reacts with alkali(ne solution)/ $\mathrm{OH}^{-}$   $\mathrm{OR} \mathrm{CO} 2+2 \mathrm{OH}^{-} \longrightarrow \mathrm{CO}_{3}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}$   $\mathrm{OR} \mathrm{CO}+\mathrm{OH}^{-} \longrightarrow \mathrm{HCO}_{3}^{-}$	1 1 1	Allow $\mathrm{NO}_{\mathrm{x}}$ and $\mathrm{SO}_{2}$   If M1 wrong, no further marks.   Not forms $\mathrm{H}_{2} \mathrm{CO}_{3} \mathrm{H}_{2} \mathrm{SO}_{3} \mathrm{H}_{2} \mathrm{SO}_{4}$ etc $\mathrm{OR} \mathrm{H}^{+}$ions.


Question	Marking Guidance	Mark	Comments
3(a)(i)   A	G	1	
3(a)(ii)   A	F	1	
3(a)(iii)   A	H	1	
3(b)(i)   A	cresol purple	1	
3(b)(ii)   G	yellow to red	1	both colours needed and must be in this order
3(b)(iii)   G	Yellow or pale yellow	1	Not allow any other colour with yellow

\begin{tabular}{|c|c|c|c|}
\hline Question \& Marking Guidance \& Mark \& Comments \\
\hline 4(a) \& \begin{tabular}{l}
M1 \(\quad\left[\mathrm{H}_{2} \mathrm{O}\right]\) is very high (compared with \(\left[\mathrm{H}^{+}\right]\)and \(\left[\mathrm{OH}^{-}\right]\)) \\
OR \\
Very few \(\mathrm{H}^{+}\)and \(\mathrm{OH}^{-}\)ions \\
OR \\
Only / very slightly dissociates \\
OR \\
Equilibrium lies far to the left \\
[ \(\mathrm{H}_{2} \mathrm{O}\) ] is (effectively) constant \\
OR is incorporated into the constant K
\end{tabular} \& 1

1 \& | Not partially dissociates |
| :--- |
| Allow changes by only a very small amount | <br>

\hline 4(b) \& | (Dissociation OR breaking bonds) is endothermic |
| :--- |
| $\therefore$ Equilibrium moves to RHS (at higher T) to absorb heat or to lower T or oppose increase in T | \& | 1 |
| :--- |
| 1 | \& Allow to oppose change only if increase T mentioned <br>

\hline
\end{tabular}

$4(\mathrm{c})$   Marked with 4(d)	$\left[\mathrm{H}^{+}\right]$   pH	$=\sqrt{ } K_{\mathrm{w}} \quad\left(\mathrm{or}=\sqrt{ } 5.48 \times 10^{-14}\right)$   If wrong method no marks $\begin{aligned} & =2.34 \times 10^{-7} \\ & =6.63 \end{aligned}$	1 1	Correct pH answer scores 3   Using alternative $\mathrm{K}_{\mathrm{w}}\left(1.00 \times 10^{-14}\right)$ gives $\mathrm{pH}=7 . \underline{00}$ which scores 1   Final answer must have 2dp
4(d)   Marked with 4(c)	$\left[\mathrm{H}^{+}\right]$   pH	$=K_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right] \text {or }\left(=5.48 \times 10^{-14} / 0.12\right)$   If wrong method no marks $\begin{aligned} & =4.566 \times 10^{-13} \\ & =12.34 \end{aligned}$	1 1 1	Correct pH answer scores 3   If use alternative $K_{w}\left(1.00 \times 10^{-14}\right)$ again, do not penalise repeat error so $\mathrm{pH}=13.08$ scores 3   If use alternative $K_{w}\left(1.00 \times 10^{-14}\right)$ not as a repeat error, $\mathrm{pH}=13.08$ scores 1   If AE in $K_{\mathrm{w}}$ value made in part (c) is repeated here, do not penalise again.   Final answer must have 2dp, but if dp penalised in 4(c) allow more than 2dp here but not fewer.


Question		Answers	Mark	Comments
9(a)	M1   M2   M3	$\begin{aligned} & {\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\mathrm{a}} \times\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]} \quad \text { or }=1.74 \times 10^{-5} \times \frac{0.186}{0.105}} \\ & =3.08 \times 10^{-5} \\ & \mathrm{pH}=4.51 \quad \text { (correct answer scores } 3 \text { ) } \end{aligned}$	1 1 1	Allow ( )   If $[H X] /[X]$ or $\frac{0.186}{0.105}$ upside down, or any addition or subtraction lose M1 \& M2.   Can score M3 for correct pH conseq to their $\left[\mathrm{H}^{+}\right]$, so $\mathrm{pH}=5.01$ scores one   Must be to 2 dp
9(b)	M1 M2 M3 M4 M5	$\left.\begin{array}{l} \mathrm{mol} \mathrm{HX} \text { after addition }(=0.251+0.015)=0.266 \\ \mathrm{~mol} \mathrm{X} \text { after subtraction }(=0.140-0.015)=0.125 \\ {\left[\mathrm{H}^{+}\right]=\left(\frac{\mathrm{K}}{\mathrm{a} \times\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}\right.} \\ {\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]} \end{array}\right)=\frac{1.74 \times 10^{-5} \times 0.266}{0.125} .$   Correct use of HX and $\mathrm{X}^{-}$values from 9(a) gives $\mathrm{pH}=4.41$ and scores 4	1   1   1   1   1	For HX , if no addition or error in addition (other than AE) (or subsequent extra add or sub) MAX 3   For $\mathrm{X}^{-}$if no subtraction or error in subtraction (other than AE) (or subsequent extra add or sub) MAX 3   If errors above in both addition AND subtraction can only score M3 for insertion of their numbers in rearranged expression. One exception, if addition and subtraction reversed then $\mathrm{pH}=4.58$ scores 2   If $[\mathrm{HX}] /[\mathrm{X}]$ upside down, lose M3 \& M4 (or next two marks) but can score M5 for correct pH conseq to their $\left[\mathrm{H}^{+}\right]$, so if M1 \& M2 correct, $\mathrm{pH}=5.09$ scores 3.   If wrong method, e.g $V$ or no use of rearranged $K_{\mathrm{a}}$ expression, may score M1 \& M2 but no more.   Allow more but not fewer than 2dp here.


Questio		Answers	Mar	Comments
	Alternative using Henderson-Hasselbach Equation			
9(a)	M1   M2   M3	$\begin{aligned} & \mathrm{pH}=\mathrm{pKa}-\log [\mathrm{HX}] / \mathrm{X}]=-\log \left(1.74 \times 10^{-5}\right)-\log \left(\frac{0.186}{0.105}\right) \\ & \mathrm{pKa}=4.76-0.248 \\ & \mathrm{pH}==4.51 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Allow ( )   If $[H X] /[X]$ or $\frac{0.186}{0.105}$ upside down, can only score 1 so $\mathrm{pH}=5.01$   Must be to 2 dp
9(b)	M1   M2   M3   M4   M5	$\begin{aligned} & \mathrm{mol} \text { acid after addition }=0.251+0.015=0.266 \\ & \text { mol salt after addition }=0.140-0.015=0.125 \\ & \mathrm{pH}=(\mathrm{pKa}-\log [\mathrm{HX}] /[\mathrm{X}])=-\log \left(1.74 \times 10^{-5}\right)-\log (0.266 / 0.125) \\ & \mathrm{pH}=4.76-0.328 \\ & \mathrm{pH}==4.43 \end{aligned}$	1   1   1   1   1	For HX, if no addition or error in addition (other than AE) (or subsequent extra add or sub) MAX 3   For $\mathrm{X}^{-}$if no subtraction or error in subtraction (other than AE) (or subsequent extra add or sub) MAX 3   If errors above in both addition AND subtraction can only score M3 for insertion of their numbers - except if addition and subtraction reversed then $\mathrm{pH}=4.58$ scores 2   If $[\mathrm{HX}] /[\mathrm{X}]$ upside down, lose M3 \& M4 (or next two marks) but can score M5 for correct pH conseq to their working, so if $\mathrm{M} 1 \& \mathrm{M} 2$ correct, $\mathrm{pH}=5.09$ scores 3.   Allow more but not fewer than 2dp here.


Question	Answers	Mark	Additional Comments/Guidance	$\begin{gathered} \text { ID } \\ \text { detail } \end{gathered}$
1 a	$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$ OR $\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$	1	Must show $\rightleftharpoons \quad$ allow $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$ Ignore state symbols	
1b	$\mathrm{CH}_{3} \mathrm{COOH}+\underline{\mathrm{HNO}_{3}} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}_{2}^{+}+\mathrm{NO}_{3}^{-}$	1	$\begin{aligned} & \text { Ignore } \rightleftharpoons \\ & \text { Allow } \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}_{2}^{+}, \mathrm{CH}_{3} \mathrm{C}^{+}(\mathrm{OH})_{2} \end{aligned}$	


$\begin{gathered} \text { 1c(i) } \\ \text { marked } \\ \text { with 1c(ii) } \end{gathered}$	$\left.\begin{array}{l} \left(\text { new }\left[\mathrm{HNO}_{3}\right]=\left[\mathrm{H}^{+}\right]=\frac{100}{150} \times 0.0125\right) \\ \text { M1 }\left[\mathrm{H}^{+}\right]=8.3(3) \times 10^{-3}(\mathrm{~mol} \mathrm{dm} \end{array}\right)$	1	OR $\text { new }\left[\mathrm{HNO}_{3}\right]=\frac{\mathrm{mol} \mathrm{HNO}_{3}}{\text { total vol }}=\frac{1.25 \times 10^{-3}}{150 \times 10^{-3}}$   Must be 2 dp   Allow correct pH conseq to their $\left[\mathrm{H}^{+}\right]$concentration
$\begin{gathered} \hline \text { 1c(ii) } \\ \text { marked } \\ \text { with 1c(i) } \end{gathered}$	$\begin{array}{ll} \hline \text { M1 } & \mathrm{mol} \mathrm{NaOH}\left(=50 \times 10^{-3} \times 0.0108\right)=5.40 \times 10^{-4} \\ \text { M2 } & \begin{array}{l} \text { Subtraction of M1 from moles of } \mathrm{HNO}_{3}\left(1.25 \times 10^{-3}\right. \text { or } \\ \\ \\ \\ \\ \text { Exsen from } 1 \mathrm{c}(\mathrm{i})) \end{array} \\ \text { M3 } & {\left[\mathrm{H}^{+}\right]=\frac{M 2}{150 \times 10^{-3}} \text { OR } \frac{7.10 \times 10^{-4}}{150 \times 10^{-3}}=4.73 \times 10^{-3}} \\ \text { M4 } & \mathrm{pH}=-\log \mathrm{M} 3 \text { OR } 2.32 \end{array}$	1 1 1	M2 allow ecf for subtraction of mol   If no subtraction, no further marks   M3 if no use of volume, no further marks ( $\mathrm{pH}=3.15$ ) If incorrect volume used, can score M4   M4 Allow 2.33 Must be 2 dp


1d(i)	M1 $\quad K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$   M2 $\quad K_{a}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$ or with numbers or with HA   M3 $\quad\left[\mathrm{H}^{+}\right]=\left[\sqrt{ }\left(1.74 \times 10^{-5} \times 0.0125\right)\right]=4.66 \times 10^{-4}$   M4 $\mathrm{pH}=3.33$	1 1 1	penalise ( ) once here $\operatorname{Not}[\mathrm{H}+][\mathrm{A}-] /[\mathrm{HA}]$   if $K_{\mathrm{a}}$ expression wrong - Allow correct pH conseq to their $\left[\mathrm{H}^{+}\right]$concentration M4 only   mark for answer   Must be 2 dp   Allow correct pH conseq to their $\left[\mathrm{H}^{+}\right]$concentration   ( $\mathrm{pH}=3.83$ can score $\mathrm{M} 1, \mathrm{M} 2$ and M 4 )	
G 1d(ii)	sodium ethanoate	1	Ignore formula allow sodium acetate	
1d(iii)	$\begin{array}{ll} \text { M1 } & {\left[\mathrm{H}^{+}\right]=1.45 \times 10^{-5}} \\ \text { M2 } & \frac{[\text { salt }]}{[\text { acid }]}\left(\mathrm{OR} \frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=\frac{K a}{\left[\mathrm{H}^{+}\right]}\right)=\frac{1.74 \times 10^{-5}}{1.45 \times 10^{-5}} \\ \text { M3 } & 1.2(0) \end{array}$	1 1 1	Accept $1.445 \times 10^{-5}$ or $1.4 \times 10^{-5}$   If M1 incorrect CE=0 Inclusion of 0.0125 in calculation can only score M1 ignore units $1.4 \times 10^{-5} \text { gives } 1.24$	
1 e	M1 (Electronegative) chlorine withdraws electrons   M2 Stabilises/reduces charge on COO-   OR weakens $\underline{\mathrm{O}-\mathrm{H}}$ bond   OR makes $\underline{\mathrm{O}-\mathrm{H}}$ more polar	1 1	Allow Cl has negative inductive effect Ignore chloroethanoic acid dissociates more readily Mark independently	


1f	M1 M2	Strong acids (almost) completely dissociated/ionised OR not an equilibrium   OR equilibrium lies far to the right   $\underline{K}_{a}$ _value for strong acids tends to infinity/is very large OR can't divide by zero in $\underline{K}_{\underline{a}}$	1 1	Cannot have $\underline{K}_{a}$ value for a reaction not in equilibrium scores both marks	
Total			20		


Question	Answers	Mark	Additional Comments/Guidance	ID details
G 2a(i)	Nucleophilic addition	1	any extra loses the mark allow minor spelling errors e.g. nucleophyllic	
2a(ii)		$1$   1	M1 for arrow from lone pair on oxygen in ethanol to C of $\mathrm{C}=\mathrm{O}$ (or to space half way between O and C ) M2 for arrow from $\mathrm{C}=\mathrm{O}$ bond to oxygen in ethanal   Do not allow M2 as first step without nucleophilic attack, but can allow M1 for attack on C+ produced   + rather than $\delta+$ on $\mathrm{C}=\mathrm{O}$ loses M 2   Ignore any further steps   Mark independently	
2b(i)	Equal mixture of enantiomers/optical isomers OWTTE	1		
2b(ii)	(non-superimposable) mirror images	1	Ignore rotates light in opposite directions Ignore stereoisomers	

